102 - ISSN 1814-4225 (print)
ABIAIIAHO-KOCMIYHA TEXHIKA I TEXHOJIOTTSL, 2024, Ne 4 cnensumnyck 2 (206) 1SSN 2663-2012 (online)

UDC 533.6.013.42 doi: 10.32620/aktt.2025.4sup2.11

Sergey FILIPKOVSKIJ, Evgen POLYAKOV
National Aerospace University ""Kharkiv Aviation Institute”, Ukraine

DEVELOPMENT AND MODAL ANALYSIS OF A DISCRETE MODEL
OF A WING WITH ENGINE

The object of this study is the vibrations of a wing with an engine. This study aims to develop a model with the
smallest possible number of degrees of freedom (DOF) for solving the influence of imbalance and engine axis
tilt on aeroelastic oscillations of the wing console.

Current economic constraints and environmental regulations require the development of more efficient aircraft
configurations. The observed trend in aircraft design to reduce aerodynamic drag and fuel consumption and
emissions is to increase the wing aspect ratio. However, under the same operating conditions, a thin wing is
more flexible and subject to higher deflections. This effect can lead to changes in the dynamic behavior and
aeroelastic response, potentially leading to instability. Following the requirements of AC 25.629-1B, the ab-
sence of aeroelastic instability must be demonstrated for all speed and altitude combinations. In this case, all
possible engine operating conditions and combinations of conditions must be considered to consider the influ-
ence of gyroscopic loads and thrust on aeroelastic stability.

A review of publications showed that models with a maximum of three DOF are used to study the aeroelasticity
of a high aspect ratio powered wing.

A discrete wing model with an engine has been developed. This model has 23 DOF. This model significantly
expands the capabilities of the numerical analysis of aeroelastic oscillations compared with the generally ac-
cepted model with three DOF, which reduces wing oscillations to oscillations of an average profile. This num-
ber of DOF is sufficient to approximate the shapes of the wing’s bending and torsional oscillations in the fre-
quency range up to the engine speed. A rotating imbalance force can be applied to the concentrated mass,
which models the engine at the pylon end. The effect of imbalance in any given plane on the dynamics of the
model can be investigated to meet the requirements of AC 25.629-1B. Modal analysis of the discrete model was
performed. The obtained frequencies and modes of oscillations were similar to those of the high aspect ratio
wing of a transport aircraft. In the future, this model will be used to investigate the effect of engine imbalance
and tilt on aeroelastic oscillations, flutter, and the transition to limit wing oscillation cycles.

Keywords: wing; engine; vortex flutter; model; degrees of freedom; modal analysis.

combinations of conditions must be considered, from
idle power to maximum available thrust, including cases

Introduction

Current economic constraints and environmental
regulations require the development of more efficient
aircraft configurations. The observed trend in aircraft
design to reduce aerodynamic drag, as well as to reduce
fuel consumption and emissions, is to increase the wing
aspect ratio. However, a thin wing is more flexible and
subject to higher deflections under the same operating
conditions. This effect can lead to changes in dynamic
behavior and aeroelastic response, potentially leading to
instability. It is therefore important to consider geomet-
ric nonlinearities when designing high aspect ratio
wings, and to have accurate calculation programs that
link aerodynamic and structural models in the presence
of nonlinearities.

In accordance with the requirements of AC
25.629-1B, the absence of aeroelastic instability must be
demonstrated for all combinations of speed and altitude.
In this case, all possible engine operating conditions and

of one engine stopped and windmilling, in order to take
into account the influence of gyroscopic loads and thrust
on aeroelastic stability [1].

The aeroelastic stability assessment shall include
investigations of any significant elastic, inertial and
aerodynamic forces, including those associated with
rotation and in-plane translation of any turbofan or pro-
peller, including propeller or fan blade aerodynamics,
powerplant elasticity, powerplant mounting characteris-
tics, and gyroscopic coupling; the effects of engine
mount, engine gearbox mount or shaft failures that re-
sult in propeller hub axis shift during pitch or yaw
movements [1].

The structural aspect of aeroelastic modeling typi-
cally involves approximating the aircraft wing in its
simplest structural form as a long, thin, and symmetrical
plate with uniformly distributed mass and structural
properties. Due to the uniformity and symmetry of such
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a plate, a complete understanding of its dynamic behav-
ior can be obtained by observing only one cross-section,
known as the typical wing section [2, 3]. With such
structural approximations, this reduces the three-
dimensional aeroelastic problem to a two-dimensional
problem.

Another important model is the pseudo-model of
two degrees of freedom (DOF) with bending and pitch-
ing. Similar to the cantilever plate, there are two-
dimensional flexible airfoils that are modeled as finite
beam elements with chord bending, capable of bending
and twisting [4].

The interaction of the pitch and bending DOF with
the additional offset from the attached element leads to
multiple flutter phenomena that cannot be observed in
two DOF models. More realistic aeroelastic modeling
requires consideration of three or more DOF.

The action of rotating parts of a turboprop power
plant (propeller and gas turbine engine rotor) causes
whirl flutter. The physical principles of whirl flutter are
explained using a simple mechanical system with two
DOF. In the book [5], an analytical solution is given to
determine the aerodynamic forces caused by gyroscopic
motion on each of the propeller blades and the influence
of the main structural parameters on the whirl flutter
stability are discussed.

In article [6], an aeroelastic method developed for
the study of propeller flutter is presented and tested.
Propeller flutter can take various forms, with stall,
whirl, and classical flutter being the primary responses.
In [7], the effects of blade elasticity, wing/pylon model,
density, speed of sound, unstable aerodynamics, and
realistic airfoil tables on whirl flutter velocity are con-
sidered. The paper [8] investigates the influence of a
freeplay structural nonlinearity on the degree of free-
dom of the nacelle pitch. Two rotor-nacelle models of
contrasting complexity are studied: one represents the
classic whirl flutter (propellers), and the other captures
the main effects of tiltrotor aeroelasticity (proprotors).

Most of the whirl flutter stability analyses in the
current literature are based on linear theory, which does
not fully capture the effects of nonlinearity [9]. Instead,
continuation and bifurcation methods (CBM) can he
used to fully evaluate and analyze the effects of the
presence of nonlinearity. A 9-DOF model with quasi-
stable aerodynamics, a flexible wing and blades that can
move both cyclically and jointly in both flapping and
lead-lag motions, producing a gimbal flap-like behavior,
was adopted from the existing literature. [10] presents
methodologies used to analyze the stability of systems
subjected to periodic aerodynamic excitation when the
problem is modeled using full-featured multibody solv-
ers, in support of whirl flutter identification during wind
tunnel testing. In [11], frequency domain transfer matri-
ces for propeller hub loads determined using a time-

dependent multibody simulation model of an isolated
turboprop propeller are included in a frequency domain
flutter analysis to study the effect of blade elasticity on
propeller whirl flutter.

A study [12] shows how the critical speed of wing-
propeller systems depends on the mounting stiffness and
the propeller position. Weak mounting stiffness leads to
whirl flutter, while rigid mounting stiffness leads to
wing flutter. In the latter case, the propeller position
along the wing span can change the wing mode shapes
and hence the flutter mechanism.

A review of publications showed that models with a
maximum of three DOF are used to study flutter. Such a
model replaces the wing with its section, in which the DOF
are the vertical movement of the profile, its pitch rotation,
plus either an aileron rotation or a suspended magazine
deflection. In a powered wing, as a rule, the engine is lo-
cated closer to the wing root, and the greatest elastic de-
formations are observed at the end of the console. There-
fore, more than three DOF are required to study the aeroe-
lasticity of a high aspect ratio powered wing.

The object of study is the vibrations of a wing with an
engine. The purpose of this article is to develop a model
with the smallest possible number of DOF for solving
problems of the influence of imbalance and engine axis tilt
on aeroelastic oscillations of the wing console.

1. Beam Model

The simplest model with a finite number of DOF
for studying the vibrations of a high aspect ratio wing
with an engine is a beam consisting of several elements
[15]. The rigidity of each element is equal to the rigidity
of the corresponding section of the wing, and the masses
with moments of inertia are concentrated in the sections
in which the elements are connected. The DOF are the
deflections and rotation angles of the beam sections in
which the elements are connected. In the wing, the cen-
ters of mass of the sections are shifted relative to the
elastic axis (Fig. 1). Therefore, instead of one mass, we
place a pair of concentrated masses in the sections. We
fix one of the masses on a rigid arm relative to the elas-
tic axis to ensure a given position of the center of mass
and the moment of inertia (Fig. 2).

The wing shown in Fig.1 has a half-span of
L =16.0m, a root chord of b, = 4.85m, a tip chord of
b: = 1/45 m, and the position of the elastic axis relative
to the leading edge of Xo/b =0.37. Table 1 gives the
stiffness and inertial parameters in five sections of the
wing, where Z is the distance from the root, m is the
linear mass, oy is the position of the center of mass rela-
tive to the elastic axis (ox > 0 means the center of mass
is behind the elastic axis), Im; is the linear moment of
inertia of the section, GJy is the torsional rigidity, El; is
the bending rigidity in the vertical plane, Ely is the
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bending rigidity in the horizontal plane. The directions
of the axes are shown in Fig. 2.
by

c.g. line

elastic axis

engine c.g.

fuselage
c.g.

Xo

b,

Fig. 1. Masses and elastic axis of the wing

The engine is approximated by a concentrated
mass at the end of the pylon, the mass of the engine
with the nacelle M. = 2917 kg, the moments of inertia
lex = 1525 kg'm?,  ley = 4420 kg'm?, le; = 4582 kg'm?.
The engine is lowered relative to the wing plane by
0.6 m. The length of the pylon X, = 2.39 m, the rigidity
parameters are as follows: Elp=2.9-10" N-m?,
Elyp = 0.6:10" N'm?, Gy, = 0.4-10'N'm?.

The fuselage with the tail unit is approximated by
a concentrated mass, which is attached to the root chord
of the wing. The mass of the fuselage with the tail unit
is M;=13403 kg, the moments of inertia are
I = 6.1-10% kgm?, ly = 5.7-10° kg'm?,
I, = 6.0-10° kg'm?.

2. Finite Element Model

We construct the finite element model in the AN-
SYS software package. We use beam finite elements
BEAM188 with two nodes and six DOF in the node.
We use elements whose cross-section changes linearly
along the length. We use a box section (Fig. 3) so that
the rigidity properties of the beam match the properties
of the wing. The moments of inertia, on which the rigid-

ity parameters of such a cross-section depend, can be
written using the following formulas [16]:

Fig. 2. Beam model of the wing

iy
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b

Fig. 3. Cross-section of the beam
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We select an aluminum alloy as the beam material,
which has an elastic modulus E = 7.1-10% Pa, Poisson's
ratio p=0.32, density p = 2700 kg/m?, shear modulus
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G =E/2(1+u) = 2.7-10% Pa. Thus, we have obtained a
system of three equations with four unknowns for each
of the five sections. To select the dimensions of the sec-
tions, we set one of the dimensions, the rest are obtained
by solving the system of equations (1) — (3).

We determine the linear masses of the obtained
sections using the formula

pF = p[bh —(b—2t, Yh—2t,,)], (4)

where F is the cross-section area. The linear masses pF
obtained less than the specified linear masses in Table 1.
To obtain such inertial characteristics of the beam sec-
tions as specified in Table 1, we add a concentrated
mass M with a moment of inertia I; in each section,
where i is the section number. To shift the center of
mass of the section relative to the elastic axis, as speci-
fied in Table 1, we add a balancing mass M. on a rigid
bracket of size ai (Fig.2). We use finite elements
MASS21 as masses. We use the same beam elements
with high rigidity and zero density as brackets.

Let us write down the equations for determining
the additional masses and moments of inertia (we omit
the section number).

m:pF+—Ml+IM2 , (5)
oy = MA___ ()
pF|+M1+M2
I, +M,a?
Imz:p(lz"'lz)"'#v (7

where | is the length of the part of the beam that is adja-
cent to the mass My, for the extreme nodes | =L /8, for
the remaining nodes | = L /4. We have obtained a sys-
tem of three equations with four unknowns for each of
the five sections. To obtain a solution, we set the size a,
the masses and the moment of inertia are obtained by

solving the system of equations (5) — (7). Table 2 con-
tains the results of the calculations of the beam sections.

The pylon is modeled by a single box-section
beam element. The section dimensions b = 0/8247 m,
h =0/2890 m, t, = 0.0009 m, t, = 0.0056 m are calculat-
ed using formulas (1) — (3). The engine and fuselage
with tail unit are modeled using MASS21 finite ele-
ments.

3. Modal analysis of the finite element
model

Modal analysis is performed to determine the fre-
quencies and modes of free vibrations. As a rule, the
lowest frequencies and modes of free vibrations are
determined during aircraft bench tests. By comparing
the calculated and experimental results of modal analy-
sis, it is possible to check how accurately the finite ele-
ment model approximates the wing. The results of mod-
al analysis are then used to analyze forced vibrations
and motion stability.

The constructed model has 11 nodes and, accord-
ingly, 66 DOF. The aircraft wing can bend in the verti-
cal plane and twist around the rigidity axis during oscil-
lations. Therefore, we can leave only those DOF that
allow these movements, and fix the rest. For all wing
console nodes, we fix the DOF in the XZ plane (move-
ments along the X, Z axes and rotation around the Y
axis). The balancing masses on rigid brackets do not
have moments of inertia, so we can also fix their rota-
tions around the X and Z axes. We will study only
symmetrical oscillation modes, so we fix the root sec-
tion rotation along the roll (around the X axis) and allow
only the pitch rotation. For the engine at the end of the
pylon, we fix the movement along the longitudinal X
axis and the rotation around this axis. The model with
23 DOF remains.

Table 1
Inertial parameters of wing sections
Z/L m, kg/m Gy, M Imz, kg'm G, N-m? El;, N-m? Ely, N-m?
0.00 200 -0.20 200 8.0-107 15.0-107 60.0-107
0.25 190 0.40 250 5.0-107 10.0-107 40.0-107
0.50 120 0.30 100 1.3-107 3.0-107 10.0-107
0.75 70 0.08 20 0.25-107 0.65-107 3.0-107
1.00 21 -0.05 3 0.1-107 0.15-107 1.0-107
Table 2
Parameters of the wing beam model sections
Z/IL b, m h, m tp, M th, M a, m 11, kg-m? M, kg M, kg
0.00 1.6026 1.1248 0.0055 0.0008 -0.3 318.95 52.575 266.66
0.25 2.1391 1.5310 0.0015 0.0002 0.5 771.94 92.579 608.00
0.50 1.0485 0.8451 0.0029 0.00035 0.4 322.62 59.081 360.00
0.75 0.6913 0.4851 0.0035 0.0003 0.4 65.487 182.44 56.000
1.00 0.5343 0.2730 0.0033 0.0005 -0.1 4.9153 8.2992 21.000
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The model is not fixed along the Y axis, so the of this axis. The remaining frequencies correspond to
lower frequency is zero and this frequency corresponds  elastic oscillations of the model (Fig. 4).
to the model's movement as a rigid body in the direction

c d
Fig. 4. Natural vibration modes of a discrete model
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Continuation of the Fig. 4. Natural vibration modes of a discrete model
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The first mode of oscillation (Fig. 4,a) is bending
with one node near the section Z=0.75L, it has a fre-
quency of 5.24 Hz. The greatest deflection of the wing
model occurs at the end of the console.

The second, third and fourth modes of vibration
(Fig. 4,b, c, d) are also bending, with two, three and four
nodes respectively and have frequencies of 21.80, 32.55
and 43.31 Hz. The last node of these three modes is
located near the end section, and the remaining nodes
are distributed evenly along the length of the console.
The greatest deflection of the second and third modes is
observed in the section Z=0.75 L, and the fourth mode
in the section Z = 0.25 L. The fifth mode of oscillation
(Fig. 4,e) has a frequency of 75.25 Hz and represents
oscillations of the engine on the pylon. In the figure, the
pylon is shown as a straight line in a deformed state
because in the ANSYS graphic window, the nodes are
connected by straight lines; in reality, the pylon axis is
curved. The wing console is practically not deformed.

The sixth, seventh and eighth modes of oscillation
are bending-torsional, they have frequencies of 79.06,
103.96 and 126.47 Hz respectively. The sixth mode
shows rotation and deflection of the root section relative
to the wing console axis (Fig. 4,f). The seventh mode
shows more deflections than torsion. The eighth mode
(Fig. 4,9) shows rotations of the root section and the
Z =0.25 L section in opposite directions together with
deflections along the entire length of the console. The
eighth mode of elastic oscillations (Fig. 4,h) has a fre-
quency that slightly exceeds the rotation frequency of
the fan rotor.

Conclusions

A discrete model of a wing with an engine has
been developed. This model has 23 DOF. This model
significantly expands the capabilities of the numerical
analysis of aeroelastic oscillations compared to the gen-
erally accepted model with three DOF, which reduces
wing oscillations to oscillations of an average profile.
This number of DOF is sufficient to approximate the
shapes of bending and torsional oscillations of the wing
in the frequency range up to the engine speed. A rotat-
ing imbalance force can be applied to the concentrated
mass, which models the engine at the end of the pylon.
The effect of imbalance in any given plane on the dy-
namics of the model can be investigated in order to meet
the requirements of AC 25.629-1B [1]. In the future,
this model will be used to investigate the effect of en-
gine imbalance and tilt on aeroelastic oscillations, flut-
ter, and the transition to limit cycles of wing oscilla-
tions.

A modal analysis of the discrete model was per-
formed. The frequencies and modes of oscillations ob-

tained were similar to those of the high aspect ratio
wing of a transport aircraft.
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PO3POBKA TA MOJAJIBHUM AHAJII3 JUCKPETHOI MOJEJII KPUIA 3 IBUT'YHOM
C. B. Dininkoscovkuii, €. I0. Ilonakos

OG'eKTOM TOCITI/XKEHHS € KOJMBAHHS KpHJa 3 ABUTYHOM. MeTta poOGOTH — pO3pOOHTH MOJEND 3 IKOMOTa MEH-
IIOO KUJIBKICTIO CTYNEHIB CBOOOIM JUIsl BUPIIICHHS 3aB/laHb BILTMBY IUCOANIAHCy Ta MEPEeKoCcy Ooci JBUI'YHA Ha aepo-
NPYXXHI KOJMBaHHS KOHCOJI KpHJa.

[ToTouH1 eKOHOMIYHI OOMEKEHHS Ta €KOJIOTIYHI HOPMHU BUMAraroTh po3po0KH Haie(heKTUBHIIINX 3MiH JITaKIB.
CroctepexxyBaHa TEHJCHIISI 1O 3HIDKSHHS OMOPY KOHCTPYKIIT JITakiB, BUKIMKAHOTO aepOJMHAMIYHOI CHIIO, a
TAKOX 3HIDKEHHS] BUTPATH TaJKMBa i BUKHUIIB IKIJUIMBIUX PEYOBHH IMOB’si3aHAa 31 30LIBIICHHSM MOIOBXKEHHS KpHJIa.
OnHak TOHKE KPWJIO € THYYKIIIMM i CXHIIbHE /10 OUIBIIMX BIAXHMJIEHb y THX € yMOBax ekcruryatauii. Lleit epext
MOKE€ IPU3BECTH 10 3MiH JMHAMIYHOI MOBEJIHKMA Ta aepONPYXHOI peakiii, M0 MOTEHIIHHO MOXe MPHU3BECTH 10
HecTabinpHOCTI. Binnosigno no BuMor AC 25.629-1B, BiacyTHICTh aeponpy»HOI HecTiHKOCTI Mae OyTH mokazaHa
JUIsl BCIX KOMOIHAIIH MIBUKOCTI Ta BUCOTH NONBOTY. [Ipu 1iboMy Tpeda po3risiHYyTH BCI MOXIIMBI PEKUMHU POOOTH
JIBUT'YHA Ta KOMOIHAI[T peXKHUMIB 3 METOIO BPaxyBaHHsI BIUTUBY TiPOCKONIYHUX HABAHTAXEHb 1 TSATH HA aepONPYKHY
CTiHKiCTB.

Ornsin myOmikaniii mokasas, 10 MPH JOCHTIPKEHH] (hiaTepa BUKOPUCTOBYIOTBCS MOJIEINI, SIKI MalOTh MAKCUMYM
TPH CTYIEHS CBOOO/IH, 11100 JOCHI/PKYBATH aepOINPYKHICTh KPHJia BEJIMKOTO MOJOBXKEHHS 3 JBUT'YHOM. Po3po0iieHo
JMCKPETHY MOJIENb KpHia 3 IBUT'YHOM, siKa Mae 23 cryrnens cBoboau. Taka MOIenb CYyTTEBO POSLIMPIOE MOXKIMBOCTI
YHCENBHOT0 aHaJli3y AepoNpPYKHHUX KOJIMBaHb IOPIBHAHO 13 3araJlbHONPUIHATOI0 MOJEIUIIO 3 TPbOMa CTYNEHAMU
cB0OO/IH, siKa 3BOAUTH KOJMBAHHS KPHJA JI0 KOJIMBAaHb ycepeaHeHoro npodinto. Takoi KUIbKOCTI CTyneHIB cBOOOIU
JOCTATHBO JUISL TOTO, 1100 arnpoKCUMYBaTh (JOPMH 3TUHAIBHHUX 1 KPYTHIIBHUX KOJIMBaHb KPUJIa HA Jiala3oHi 4acToT
aX 710 4acTOTH obepTaHHA ABHUTYHa. J{0 30cepemKenoi MacH, sika MOJETIOE IBUTYH Ha KiHI MiJIOHA, MOXKHA TIPHK-
JacTH 00epTOBY CHITy qucOanancy. MokHa JOCTIANTH BIUTHB AucOanaHcy B OyIb-sKiil 3aJaHiii TUIONIMHI HA JAWHA-
MiKy Mozeni, 11100 3anoBoibauTH BuMoru AC 25.629-1B.

BukoHnaHo MojajibHUI aHANI3 AUCKPETHOI Mojeni. OTprMaHi 4acToTH Ta GOpMH KOJIHMBAaHb aHAJIOTIYHI YacTo-
TaM i popMaM KOJIMBaHb KPWJIa BEIHMKOTO MOJOBKEHHS TPAHCIIOPTHOrO Jiitaka. Haxaii 3a gomoMororo miel mozeni
MOXHa Oyzie JOCIIINTH BIUIMB IUCOAIaHCY Ta TIEPEeKoCy JBUTYHA HA aepoNpPYKHI KOJMBAaHHSI, (uaTep 1 nepexin 10
TPaHUYHUX IUKIIIB KOJMBAaHb KPHJIA.
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