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APPLICATION OF MESH-FREE METHODS IN THE WING RIGIDITY ANALYSIS
TO SUPPORT AUTOMATION OF UAV DESIGN

Modern aircraft design, including both manned aircraft and unmanned aerial vehicles (UAVs), faces computa-
tional challenges balancing aerodynamic efficiency, structural integrity, and weight optimization within practi-
cal timeframes. Conventional high-fidelity methods create bottlenecks that limit the design space exploration
essential for UAV development. This paper presents a computational framework that integrates mesh-free struc-
tural analysis with generative knowledge-based engineering (KBE) and surrogate modelling for the optimization
of rapid automated UAV wing design.

The methodology combines the formalization of classical aerodynamic and structural mechanics knowledge with
programmable CAD integration using the open-source Python package CadQuery. The developed framework
automatically generates parametric wing geometries, extracts geometric properties, including cross-sectional
moments of inertia and volumes, and performs structural analysis without mesh generation or finite element
preprocessing. Aerodynamic loads are estimated using reusable meta-models from CFD studies stored as B-
spline approximations in SplineCloud, enabling decoupled workflows and rapid evaluation.

The mesh-free algorithm implements the numerical integration of beam bending equations, incorporating dis-
tributed aerodynamic and gravitational loads with variable cross-sectional properties. This eliminates the com-
putational overhead of mesh generation while maintaining sufficient accuracy for preliminary design. The work-
flow is embedded in a KBE wing model, automating geometry generation and structural evaluation for swept
wings with variable materials and geometries. The validation studies used three NACA airfoil families (2410,
2412, 2415) across aspect ratios (6-9), sweep angles (12°-18°), and spans (500-2500 mm). Individual evalua-
tions completed in ~20 seconds versus hours/days for FEM simulations, achieving 2-3 orders of magnitude effi-
ciency improvement. Generated 2nd-order meta-models enable sub-millisecond response evaluations suitable
for iterative optimization requiring thousands of evaluations. This research advances automated design meth-
odologies, providing computationally efficient alternatives to high-fidelity approaches while maintaining engi-
neering accuracy for preliminary optimization. Open-source implementation ensures accessibility for the UAV
design community. Future work will focus on FEM validation, aeroelastic coupling, and extensions to complex
configurations.

Keywords: aircraft; UAV; design automation; mesh-free methods; numerical analysis; stress; strength; MDO;
programmable CAD; knowledge-based engineering.

custom mesh-free method for evaluating wing stiffness
and strength, all embedded within a generative

Introduction

The modern field of aircraft design, encompassing
both manned aircraft and unmanned aerial vehicles
(UAVs) design is increasingly shaped by complex multi-
disciplinary challenges that require advanced computa-
tional methods to achieve optimal system performance.
The integration of aerodynamic efficiency, structural in-
tegrity, weight reduction, radar signature minimization,
and mission-specific constraints calls for design method-
ologies capable of managing strong inter-dependencies
across disciplines while remaining computationally fea-
sible for extensive design space exploration.

This paper presents a methodology to address the
problem of design automation in the context of analyzing
and optimizing a tapered wing console with variable
sweep angle, span, and aspect ratio. The core of the pro-
posed approach lies in the integration of surrogate models
for computational fluid dynamics (CFD) analysis with a

knowledge-based engineering (KBE) model of the wing
console. The method leverages an industry-grade CAD
kernel (OpenCASCADE) through its Python interface,
CadQuery, to generate 3D geometry based on parametric
rules and to extract geometric properties (e.g., cross-sec-
tional moments of inertia and volumes) required to sup-
port structural analysis.

While the implementation details and software ar-
chitecture of the generative KBE model are beyond the
scope of this paper, we focus here more on the underlying
numerical methods used to estimate wing bending under
operational loads. The structure of this paper is as fol-
lows: Section 1 provides an overview of the principles of
Multidisciplinary Design Optimization (MDO) and
Knowledge-Based Engineering (KBE), highlighting the
state-of-the-art and current challenges in these fields.
Section 2 introduces the proposed approach for enabling

Creative Commons Attribution
NonCommercial 4.0 International



https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

140

ISSN 1814-4225 (print)

ABIAIIITHO-KOCMIYHA TEXHIKA I TEXHOJIOTISI, 2024, Ne 4 cneusumyck 1 (205) 1SSN 2663-2012 (online)

multidisciplinary analysis and optimization of the wing
console using generative KBE modeling, with emphasis
on model structure and the application of surrogate mod-
els for aerodynamic load estimation. Section 3 details the
custom numerical method developed for wing strength
analysis. Section 4 presents a case study involving a
swept wing console designed for UAV applications and
discusses the results.

1. Computational Challenges
in UAV Design Optimization

Aircraft design presents unique challenges that am-
plify the computational limitations of traditional MDO
approaches. The relatively small scale of UAV systems
demands high precision in aerodynamic and structural
analysis, while the diverse mission requirements necessi-
tate extensive parametric studies to identify optimal con-
figurations. In [1] comprehensive studies on UAV design
optimization were conducted, demonstrating that effec-
tive design space exploration requires thousands of de-
sign evaluations, each involving tightly coupled aerody-
namic and structural analyses.

The computational intensity of high-fidelity meth-
ods creates a fundamental bottleneck in UAV design au-
tomation. Computational Fluid Dynamics (CFD) analy-
sis, essential for accurate aerodynamic performance pre-
diction, typically requires significant computational re-
sources and time. Similarly, Finite Element Method
(FEM) structural analysis, while providing high accu-
racy, demands substantial preprocessing effort for mesh
generation and extensive computational resources for so-
lution convergence.

Hwang and Martins [2] addressed these challenges
through the development of gradient-based optimization
techniques for UAV design, achieving efficiency im-
provements via analytical sensitivity analysis. However,
their approach remained dependent on high-fidelity sim-
ulation tools, limiting its applicability in cases requiring
broad design space exploration or rapid iteration cycles.

To address these limitations, alternative formula-
tions and tool architectures have been studied and incor-
porated into modern MDO workflows. These approaches
aim to reduce computational cost while maintaining ade-
quate model fidelity for design decision-making.

1.1. Multidisciplinary Design Optimization
in Aerospace Applications

MDO has emerged as a critical methodology for ad-
dressing the complexity inherent in modern aerospace
system design. The term MDO was first formalized and
widely disseminated in the late 1980s and early 1990s.
Work [3] defined MDO as a methodology that systemat-

ically integrates and optimizes multiple interacting disci-
plines in the design of complex systems, such as aero-
space vehicles. MDO aims to improve overall system
performance by coordinating disciplinary analyses and
optimizing across the full system, rather than treating
each discipline in isolation.

MDO and related fields - such as knowledge-based
engineering [4], generative design [5], and computational
engineering [6] are actively evolving, integrating diverse
methods, tools, and models into comprehensive compu-
tational pipelines. These developments target two pri-
mary goals: reducing computational time and improving
the fidelity and automation of simulation-based design
workflows.

The Multidisciplinary Feasible (MDF) method is
one of the earliest and most widely used MDO architec-
tures [7]. In MDF, the optimization is performed over a
fully coupled multidisciplinary analysis (MDA), ensur-
ing that each design point satisfies all interdisciplinary
consistency constraints. While this approach is conceptu-
ally straightforward, it becomes computationally expen-
sive when applied to large-scale problems or systems
with weakly coupled disciplines.

To overcome these challenges, alternative architec-
tures were proposed, including Individual Discipline
Feasible (IDF), Collaborative Optimization (CO), and
Concurrent Subspace Optimization (CSSO) [7]. These
methods introduce different levels of problem decompo-
sition and coordination to improve scalability and flexi-
bility. IDF relaxes the requirement of full consistency
during optimization. CO employs a hierarchical structure
that distributes the optimization problem across disci-
plines, coordinating via shared variables. CSSO intro-
duces surrogate models within decomposed subspaces,
reducing the number of high-fidelity evaluations required
and enabling concurrent optimization across disciplines.

While these architectures address limitations of
MDF, they also highlight a broader dependency shared
by all MDO frameworks: the quality and flexibility of ge-
ometry representation and numerical analysis methods.
MDO performance is influenced not only by solver accu-
racy but also by the level of automation in geometry mod-
eling, the ability to extract and reuse geometric proper-
ties, and the ease of coupling between design and simu-
lation environments.

This diversity is reflected in available MDO frame-
works. Commercial tools such as iSight and ModelCenter
provide visual interfaces and broad integration capabili-
ties with proprietary solvers. Open-source frameworks
like OpenMDAO and OpenAeroStruct offer Python-
based environments that emphasize extensibility and gra-
dient-based optimization. Tools such as pyMDO focus on
lightweight, research-oriented implementations.
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Geometry representation remains a key challenge.
Open-source tools typically employ simplified paramet-
ric models to support gradient-based optimization, but
may sacrifice geometric fidelity or require manual setup
for mesh consistency. Integration with external CAD sys-
tems via APIs introduces further complexity, especially
when derivative information is needed.

The same principle applies to numerical analysis
methods. Proprietary frameworks often rely on tightly
coupled, high-fidelity solvers, while open-source frame-
works favor modular, customizable, and lower-fidelity
models. This confirms the search for the trade-off be-
tween accuracy and computational efficiency.

The integration of KBE with optimization tech-
niques has shown particular promise for managing MDO
complexity. In work [8] author developed knowledge-
based design environments for aircraft conceptual de-
sign, integrating automated geometry generation with
multidisciplinary analysis capabilities. Their approach
enabled rapid evaluation of design alternatives while
maintaining the flexibility required for preliminary de-
sign exploration.

1.2. Knowledge-Based Engineering

Knowledge-Based Engineering has evolved as a
complementary and increasingly essential methodology
for managing the growing complexity and automation
demands of modern engineering design. KBE integrates
engineering knowledge, design rules, parametric model-
ing, and reasoning logic into a unified computational
framework to support decision-making and reduce design
cycle times. As defined in [9], KBE systems aim to cap-
ture expert knowledge and embed it within design auto-
mation processes to improve design consistency, reduce
manual effort, and enable the reuse of validated engineer-
ing solutions.

A foundational application of KBE to aerospace
was demonstrated in [10], who developed a KBE system
for aircraft design that supported parametric modeling,
design rules, and multi-disciplinary analysis integration.
Their work showed that KBE enables rapid and con-
sistent generation of design variants, significantly reduc-
ing development time in preliminary design phases with-
out compromising engineering accuracy.

Modern developments in KBE have increasingly
focused on enhancing integration with parametric CAD
systems and simulation tools. Recent reviews and case
studies [9, 11] emphasize that current KBE systems are
being extended with support for knowledge graphs, se-
mantic modeling, and model-based systems engineering
(MBSE) principles. These developments reflect a
broader push toward data-driven and model-centric engi-
neering workflows that tightly couple geometry, simula-
tion, and rule-based logic.

Work [12] previously laid the groundwork for
knowledge-based design environments by combining ge-
ometric modeling with physics-based analysis tools, al-
lowing design alternatives to be evaluated automatically.

The current trajectory of KBE emphasizes open-
ness, modularity, and integration with multidisciplinary
optimization workflows. As discussed in recent surveys
[13], modern KBE systems not only automate routine de-
sign tasks but also facilitate the reuse of domain-specific
knowledge in collaborative engineering contexts, making
them ideal companions to MDO frameworks. Their abil-
ity to explicitly represent design knowledge and structure
geometry generation processes positions them as ena-
bling technologies for scalable, surrogate-enhanced, and
decoupled MDO approaches.

Current work represents an initial effort of the au-
thors in exploring the advantages of integrating surrogate
modelling with KBE to develop a framework for genera-
tive UAV design and MDO using open-source tools (in-
cluding programmable CAD) and open knowledge man-
agement platform SplineCloud.

2. Generative KBE model
of the UAV wing console

A Generative Knowledge-Based Engineering
model is a computational model that encodes engineering
knowledge, rules, and constraints to automatically gener-
ate, modify, and evaluate design configurations. It com-
bines the declarative structure of traditional KBE systems
(i.e., rules, parameters, logic) with procedural capabili-
ties to dynamically create geometry, simulations, and as-
sociated metadata based on high-level design inputs or
goals.

Input Data B KBE Model

X ds and rules
- requirements »

- constraints
- objective functions

al methods

Knowledge Base 5

Design Output *

- 3D models @
- Simulations
- Manufacturing codes

- material properties

- components specifications
- test data

- simulation data

- statistical data

—atc,

Fig. 1. A general KBE system schema

The important aspect of any KBE model is the effi-
cient reuse of formalized knowledge, either stored in the
external database (like SplineCloud) or encoded in the al-
gorithms that generate geometry and perform engineer-
ing analysis.
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2.1. Reuse of meta models from parametric
CFD studies

In the proposed approach, reusable knowledge is
represented in the form of meta-models and datasets
stored in the SplineCloud repositories and accessed in
computer code over the API. These meta models are rep-
resented in the form of B-splines that approximate de-
pendencies between aerodynamic coefficients and other
parameters (angle of attack, wing span coordinate). Such
an approach allows for decoupling aerodynamics from
the stress analysis. This enables the reuse of aerodynam-
ics data without the necessity to build and run CFD sim-
ulations.

SplineCloud Python
{
"NACA 4412": {
CL airfoil "name": "NACA 4412 (nacad412-il)",
"curves": {
"CL_1000000": "spl_SMIngWp8tFik",
"CL_5000@@": "spl_cTj@LM7UbRHv",
"CL_2000@@": "spl_ajJkUYMsRf2z",
"CL_100000": "spl_kB9lqsI4roUE",
"CL_50000": "spl_jlYGh@CRE3HG",
» "CD_1000000": "spl_qYuy@HI80EUh",
"CD_500000": "spl_0tESL6PgHtLu",
"CD_200000": "spl_xwVepCunHEI6"
a|pha "CD_1000@8": "spl_1lhWaKIN@ju3M",
"CD_50@00": "spl_LpjgfXkztoxg",
"CM_1000@80": "spl_vH@5ix3EaeUs",
(j[)aidoﬂ class Airfoil(airfoil_data):

! I def eval_cl(alpha, Re)
l\ def eval_cd(alpha, Re)
|

/ def cl_to_cd(alpha, Re)
1 def cd_to_cl(alpha, Re)
def alpha_optimal(Re)
def alpha_max_lift(Re)

def alpha_min_drag(Re)

alpha

Fig. 2. Ruse of airfoil performance curves in Python
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ccls_data = {
"gamma=12": {

Python
*alpha=0": {

6: "spl_if8XAOz1EFQ1",

3

1.80e-03 (RMSE)

CcL(y, AR)

7: "spl_QyMql7K4dyEe",
- 8: "spl_gk3ZnLPcdim2",
9: "spl_rPgCZnOE1Bc4"

}
"alpha=5": {

- 6: "spl_JvesBTdOISVS",

0.6

05

0.4
0.3

0.0

.4
or, 0.6
"’"”zsd s, 08
Pay,

1.0 9.0

7: "spl_VOSHqg@jfvql",
8: "spl_3bGg9cNVK9kj",
9: "spl_lyEFFznnRiS3"

},

"alpha=10": {
6: "spl_VLW7VrFbfws2",
7: "spl_aeTTLUK15Byg",
8: "spl_ORbrtErrHwih",
9: "spl_OutDl1pXbXMw"

}

Fig. 3. Reuse of lift efficiency curves in Python code
and a lift efficiency response surface model

Particularly, the following models are used to eval-
uate aerodynamic loads:

— Dependencies of airfoils' lift and drag coeffi-
cients on the angle of attack (Fig. 2);

— Lift efficiency (lift coefficient magnitude) as a
function of normalized wing span (Fig. 3);

— Span efficiency factor as a function of aspect ra-
tio and taper ratio (Fig. 5).

Airfoil's performance data is obtained from the
XFOIL simulations for various Reynolds numbers. Sim-
ulation data is provided by the popular resource Air-
foilTools.

Lift efficiency distribution curves are calculated us-
ing a parametric swept wing model in OpenVSP software
(Fig. 4), using the VLM method.

Fig. 4. Parametric wing model in OpenVSP
and calculated lift distribution data
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Fig. 5. Span efficiency factor response surface model
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Induced drag is calculated using empirical relations
[14], digitized on SplineCloud and converted into the re-
sponse curves, loaded into Python code over the API, and
converted into a response surface model (Fig.5).

The detailed description of the approach towards
performing CFD analysis and converting results into di-
mensionless response surface models goes beyond the
scope of the current work. However, it is important to
mention that such an approach allows for to prediction of
the values of aerodynamic coefficients for a large number
of airfoils and wing geometries by evaluating approxi-
mating models, avoiding the need to perform simulations
on each step of the wing performance analysis.

2.2. Wing console structure
and generative model

The wing's internal structure is represented by the
three structural components: an internal rigid box, an air-
foil-shaped body, and an outer shell (Fig. 6). The rigid
box is a load-bearing component and can be made of alu-
minum alloys or composite materials. The shaper body
can be made out of lightweight materials: polystyrene
foam or honeycomb. The outer shell can be made of fi-
berglass or another material that would protect the shaper
body from external factors.

Fiberglass cover

Polystyrene Foam

Carbon composite box
Fig. 6. Wing console section and internal structure

Gid @0 goto G (3] @ ) 3 6D @ 6 B o Tarspwent 1 Black edges [ Explode

N

class SweptWingConsole(box_section):
def build_geometry(...)
def assign_materials(...)
def compute_drag_force(...)
def compute_lift_force(...)
def fit_chord_to_required_lift force(...)
# Find proper chord length to fit required lift force
# and ensure tip deflection is not greater than 'tip_delta_max'
def fit_length_to_required_tip_deflection(...)
# Find console length that ensures tip deflection equal to 'tip_delta_max’
def get_box_mass(...)
def get foam_mass(...)
def get_shell_mass(...)
def get_ component_section_inertia_moments(...)

Fig. 7. Swept wing console mathematical model

The wing geometry generation algorithm is based
on the open-source Python library CadQuery, which uses
the OpenCASCADE kernel and allows building 3D mod-
els programmatically. The usage of CadQuery allows en-
coding design and engineering rules to:

— automatically rebuild geometry for the selected
airfoil;

— evaluate volumes of elements of the wing struc-
ture (and masses, given the densities of materials);

— evaluate areas and moments of inertia of the wing
console sections to support the calculation of the bending
moment and wing tip displacement in a meshless way.

A SweptWingConsole class structure and the gen-
erated output are given in Fig. 7.

3. Wing bending analysis

Wing load scheme is given in Fig. 8. A cantilever
beam is studied with distributed loading from aerody-
namic forces and gravity forces.

Fig. 8. Wing console loading scheme

In the given problem setup, the following simplifi-
cations and assumptions are taken to simplify the engi-
neering analysis process:

— pure bending is studied - no torque and shear are
analyzed.

— isotropic material properties are considered (for
simplicity);

— no aeroelasticity effects are considered (wing
load scheme is taken for the undeformed wing, small tip
displacements are expected);

— all components act in the bending loading, pro-
portional to their rigidity.

The bending moment and tip deflection are calcu-
lated numerically, integrating the following equations:
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h= f 8(y)dy, 1)
y=b/2
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y=w/2
Mo = (@O-u@hd, @
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where h — the absolute wing tip displacement in the ver-
tical direction, 6 — the local bending angle, y — the coor-
dinate from the aircraft longitudinal axis to the wing tip,
w — the fuselage width, E; - is the tensile modulus of the
structural component material, l; — the i-th component
section moment of inertia at the distance y from the air-
craft longitudinal axis (evaluated using CadQuery),
b — the wing span (doubled wing console length), My, — is
the bending moment, that is calculated by numerically in-
tegrating the difference between the distributed aerody-
namic load ga, and the distributed gravity load qg:

qa(o,y) = (CL(o,y) cosa +
v 4)

+ Cp(a,y)[1sina) pT Co»

dm,
q() = n;—y(}’)g. )

where ¢ is the —wing root chord; p is—air density; a—angle
of attack; Cy (a,y) — local lift coefficient, obtained by mul-
tiplying lift coefficient of the airfoil by the lift efficiency
evaluated from the response surface model (Fig. 3), that al-
ready includes local chord to root chord ratio; Cp(a,y) —
local drag coefficient, evaluated as a sum of the zero drag
and induced drag coefficients; and v is the airspeed.

Numerical integration is implemented inside the
wing KBE model as a Python method of the Swept-
WingConsole class. The important part here is the ability
to inform the algorithm with data from the CAD kernel:
for each finite slice of the wing (from the tip to the chord),
the slice mass and the component sections' inertia mo-
ments are computed. This allows to avoid the need for
building mesh and solving FEM equations, which signif-
icantly simplifies the workflow.

4. Case study - wing rigidity analysis
for different airfoil types

To demonstrate the computational benefits of the
proposed knowledge-based approach, several wing con-
sole models with different airfoils (Fig. 9) and design pa-
rameters (sweep angle and aspect ratio) were generated
and analyzed. No comparison with FEM approach was

performed on this stage but this work will be conduced
in the future.

For each of the selected airfoils (NACA 2410,
NACA 2412 and NACA 2415) a range of wing models
with different wing spans, varying from 500 mm to 2500
mm were generated for three values of sweep angle: 12,
15 and 18 degrees. A fixed value of the taper ratio
(TR=0.75) was selected for all cases to reduce variability
in the study. All models have the same values of the box
thickness (0.5 mm) and shell thickness (0.25 mm) for the
same considerations. The aspect ratio was changing from
6 to 9 for all cases.

For all cases same flight conditions were analyzed:
airspeed 70 m/s, angle of attack 1 degree. All initial pa-
rameters a grouped in Table 1.

Table 1
Solution cases
Airfoil NACA NACA NACA
2410 2412 2415
Taper ratio 0.75
Aspect ratio 6,7,89
Sweep angle ° 12,15, 18
Wing Span, mm 500..2500 with step 100
Average time for a single ~20
model analysis, s

NACA-2410

Fig. 9. Generated airfoil sections for selected airfoils

For all wing models, the same materials for the wing
structural components were considered (Table 2).

Table 2
Material properties
Component Box Shaper Shell
Material Carbon XPS foam | Fiberglass
composite coat
Density, kg/m? 1500 30 1800
Tensile 450 0.001 290
strength, MPa
Tensile modu- 35 0.025 12.4
lus, GPa

4.1. Results and Discussion

Results of each case study were uploaded to
SplineCloud open repository [15], and the following
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relations were constructed on the platform as a function
of the wing console excess lift force (a pure lift force that
includes the wing weight):

— Aerodynamic quality;

— Bend rigidity;

— Wing span.

Fig. 10. Aerodynamic quality of the generated NACA
2410 wing console families with sweep angle 12

Fig. 11. Aerodynamic quality of the generated NACA
2412 wing console families with sweep angle 12

Fig. 12. Aerodynamic quality of the generated NACA
2415 wing console families with sweep angle 12¢

Such relations allow for further analysis and can be
reused in MDO applications to quickly find the optimal
solution (with sufficient rigidity and high aerodynamic
quality). Response curve evaluation time takes under a
millisecond on the modern computers, comparing to

hours or even days for a high fidelity FEM or CFD sim-
ulation execution.

4.0 l
35
& 3.0
g 25
X 20
15
1.0
400 9.0
&, 300 808>
Xceg. 200 757 _ %0
Ss ¢ 100 55 MO @R

X Orce p&pe

Fig. 13. Relative wing tip bend deflection
of the generated NACA 2410 wing console families
with sweep angle 12-

% ‘e119p

Fig. 14. Relative wing tip bend deflection
of the generated NACA 2412 wing console families
with sweep angle 12-

1.75
1.50
1.25
1.00
0.75
0.50
0.25 1

% ‘e3ep

Fig. 15. Relative wing tip bend deflection of
the generated NACA 2415 wing console families with

sweep angle 12-
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The response curves were loaded into Python code
for analysis and converted into response surface models
using linear interpolation by the wing aspect ratio. The
images of these surfaces are presented in Fig. 10-15.

Results show that, as expected, wings with thinner
airfoils have lower rigidity, but at the same time have
higher quality. The peculiar observation from the results
is the steep drop in the aerodynamic quality for small
wings (those that produce lower lift). This can be ex-
plained by lower numbers of Reynolds numbers, result-
ing in a lower airfoil performance.

Response surfaces for other sweep angles (15° and
18°) are not presented in the current paper due to the dis-
covered small difference in both aerodynamic quality
and relative tip deflection with the families of wing con-
sole models with a 12° sweep angle.

The construed response surfaces of the parametric
studies can be considered as 2nd-order meta models (1st-
order meta-models were used to evaluate aerodynamics
inside the wing console KBE model). These meta models
can significantly speed up multidisciplinary design opti-
mization processes and inform decision making in the
early stages of the design with formalized knowledge
about the approximate (due to accepted assumptions and
simplifications) wing performance.

One example of the reuse of the obtained meta-
models is the comparison of the wing consoles with dif-
ferent airfoils (Table 3).

Table 3
Comparison of wing models with the same rigidity
S NACA NACA NACA
Airfoil 2410 2412 2415
Excess lift force, N 200 200 200
Relative wing tip 15 1.5 15
bending deflection, %
Wing aspect ratio 6.36 7.24 8.6
Aerodynamic quality 28.4 27.5 26.7

The analysis shows that, having the same excess lift
force and relative rigidity, wings with thinner airfoils
(NASA 2410) require a lower aspect ratio and at the same
time have slightly higher aerodynamic quality. Such re-
sults can inform decision-making in the early stages and
prove wrong initial guesses based on the general recom-
mendations, which say that “increasing the aspect ratio
generally improves aerodynamic quality”. Such discrep-
ancy is caused by deep modeling and multidisciplinary
analysis, which includes wing mass and rigidity estima-
tion, and not only geometrical and aerodynamic proper-
ties.

Another example of the possible reuse of the ob-
tained meta-model is the iterative optimization process
for wing size selection. In a hypothetical situation, when

designing a UAV, the size and mass of the fuselage de-
pend on the volume of the payload and systems, includ-
ing a battery or tank with fuel. The volume of these en-
ergy storage systems depends in turn on the UAV's drag
and aerodynamic quality. So, only by running an iterative
matching process is it possible (in a computationally fea-
sible way) to find the wing shape and size that satisfies
the required technical requirements. In this process, the
computational speed of the single iteration can play a
critical role in selecting a truly optimal combination of
design parameters. With 2nd-order meta models of the
wings (evaluation of which takes under a millisecond on
modern machines), the design optimization problem be-
comes computationally feasible, given that other calcula-
tion processes do not take significantly longer time.

Conclusions

The proposed approach proves effective in address-
ing the computational challenges inherent in early-stage
UAV wing design, particularly in the context of multidis-
ciplinary design optimization and automation. By inte-
grating a custom mesh-free method for wing rigidity
analysis within a generative knowledge-based engineer-
ing (KBE) framework, the methodology enables rapid
evaluation of structural responses without the need for
computationally intensive mesh generation or finite ele-
ment pre-processing.

The use of programmable CAD tools and automated
geometric property extraction facilitates a seamless link
between parametric geometry generation and structural
analysis, significantly improving workflow efficiency.
The incorporation of reusable aerodynamic meta-models
further enhances the framework by decoupling aerody-
namic load estimation from structural analysis, enabling
rapid evaluation of aerodynamic loads. However, this
puts a limit on the applicability of such an approach to
the rigid wings, where aeroelastic effects can be ne-
glected.

Preliminary results demonstrate that the mesh-free
method provides notable reductions in computational
cost. This makes the approach particularly suitable for it-
erative design processes where a large number of config-
urations must be assessed within limited time frames.
Nevertheless, the accuracy of the implemented mesh-free
method for wing rigidity analysis has to be validated by
comparing results with FEM-based methods.

Future work will focus on conducting the validation
of the proposed method through comparison with high-
fidelity FEM simulations, incorporating aeroelastic cou-
pling effects, and extending the framework to support
more complex UAV configurations and load scenarios.
The presented methodology lays the groundwork for
scalable, automated, and knowledge-driven UAV design
processes compatible with modern open-source design
ecosystems.
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3ACTOCYBAHHS BE3CITKOBUX METOJIB B AHAJII3I JKOPCTKOCTI KPHJIA
JUIS MIATPUMKH ABTOMATHU3AIIL TPOEKTYBAHHS BILJIA

B. L Ilacoko, C. C. Oukesuu

CyuacHe pOeKTYBaHHS JIITAIBHUX allapatiB, BKIFOUAIOYH SIK MIJIOTOBAHI JIITAKH, TaK 1 OE3MIJIOTHI JiTaJIbHi amna-
patu (BIIJIA), cTukaeThcs 3 00YMCITIOBAIFHUMU IPOOIIeMaMu OaTaHCYBaHHS aepOAMHAMIYHOI €(heKTUBHOCTI, CTPYK-
TYPHOI IUTICHOCTI Ta ONTHUMIi3alii Bard B MPaKTUYHI TepMiHU. TpaauIliiiHi BUCOKOTOYHI METOAU CTBOPIOIOTH BY3BKi
MICIIS, [0 OOMEXYIOTh TOCIIKEHHS IPOCTOPY NPOEKTYBaHHA, HeoOXimHe ams po3podku BITIA. V miif cratTi mpen-
CTaBIICHO OOYHMCITIOBANFHY 0a3y, IO iHTerpye OE3CITKOBUH CTPYKTYpHHI aHAJ3 i3 TEHEPATHBHOKI IHKEHEPi€I0 Ha
ocHoBi 3HaHb (KBE) Ta cyporaTHuM MozeTIOBaHHSIM JJIs IIBUIKOI aBTOMAaTH30BAHOI ONITHUMI3allil KOHCTPYKIIiT KpHiia
BITJIA.

Meropornoris iHTerpye (hopMalizamiro KIAaCHYHUX 3HAHb 3 aePOIUHAMIKH Ta MEXaHIKHA KOHCTPYKIIHN i3 mporpa-
moBaanM CAD, BukopuctoBytouu Biakputuii Python-maker CadQuery. Po3pobnena mratdopma aBTOMaTHIHO TE€HE-
pye mapaMeTpudHi TeOMETPii KPUII, BU3HAYA€ TEOMETPHYHI XapaKTePUCTUKH, 30KpeMa MOMEHTH 1HEPIIil TOIepedHoro
mepepizy Ta 00’emu, i BUKOHYE CTPYKTYpHHUH aHaii3 0e3 CTBOPEHHS CITKH UM IONEPEeIHBOI 0OPOOKH I METOIY
CKIHYEHHHX €JIEMEHTIB. AepoIHaMi4HI HaBaHTa)KCHHS! OL[IHIOIOTHCS 3@ JJOMIOMOTOI0 TIOBTOPHO BHKOPHCTOBYBAaHHX
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Meta-moneneit i3 CFD-mociimkens, 30epekeHnx sk B-cruraitHosi anmpokcuMartii B SplineCloud, mro 3abe3neuye po3-
TIOAIiJIeHi po0OOYi MPOLECH Ta IMIBHAKE OI[IHIOBAHHS.

BesciTkoBMIA alTOpUTM peastizye YUCIOBE IHTErPYBaHHS PIBHSIHB 3THHY OaJIOK, BPaXOBYIOUH PO3IIOIiIICHI aepo-
JMHAMIYHI CHJIM Ta HABAHTA)KCHHS BiJI BaTW 31 3MiHHUMHY BIIACTUBOCTSIMH TIOTIepeuHoro mepepizy. Lle ycyBae o0umc-
JIIOBaJIbHI BUTPATH Ha CTBOPEHHS CITKH, 30€piraloun JOCTaTHIO TOYHICTD JUIS ITONIEPETHHOr0 IPOEKTYBaHHs. Pobounii
nipouec inTerpoBaHo B KBE-Mozens kpuita, sika aBTOMaTH3ye TeHEpaIlilo FTeOMETpii Ta CTPYKTYPHE OIIHIOBAHHS IS
KpHJI 31 cTpitonoaiOHo0 GOpMOI0, pi3HUMH MaTepiajlaMi Ta TeOMETPisSIMH, BKIIOYHO 3 PI3HUMH THUIIaMH NPODiTiB.

Baumiganiiini gocmipkeHHsT POBOAMIIUCS Ha Tphox ciMeiicTBax mpodinis NACA (2410, 2412, 2415) i3 nonos-
keHHaMH kpuna (6-9), kyramu crpinonoaiorocti (12°-18°) Ta posmaxamu (5002500 mm). Okpemi OLIHKHA BUKOHY-
I0ThCsl IPHOSTN3HO 3a 20 CeKyH/I MOPIBHAHO 3 TOMMHAMK 4d JHsAMH uis FEM-po3paxyHkiB, 110 3a0e3neuye ITiaBH-
meHHs e eKTUBHOCTI Ha 2—3 nopsaku. CTBOpEHI MeTa-MOoJeNl APYroro MOpsaKy JO3BOJSIOTH MPOBOANTH OLIIHKH 3
CyOMUTICEKYHAHOO MIBHAKICTIO, IO MiAXOANUTH IS iITepaliiifHol onTUMi3ali, sika moTpedye TUCSY OL[IHOK.

JocnimkeHHs crpusie pO3BUTKY METO/IONOT i aBTOMaTH30BaHOTO MPOEKTYBAHHSI, IPOIIOHYIOUN 00UHCITIOBAIIEHO
e(eKTUBHY aJIbTEPHATHBY BHCOKOTOUHHMM ITiJIX0ZaM 31 30€peKeHHSIM 1H)KEHEPHOI TOYHOCTI ISl OMEPEeHbOI ONTH-
Mizamii. Peasizaris 3 BIIKpUTUM KO/IOM 3a0e31euye JOCTYIHICTh st CHiIbHOTH po3poOHuKiB BITJIA. [ogansmii no-
CIIIJPKEHHS 30CepeDKeH] Ha Bajijalii MEeToJoM CKiHUeHHUX eJeMeHTIiB, aepoejacTHYHOMY 3B’A3KY Ta pPO3IIH-
PeHHi Ha ckJaaHimi KoHpirypamii.

Karouosi ciioBa: nitak; briJIA; aBromaTH3anist mpoekTyBaHHS; O€3CITKOBI METO/IU; YNCETIbHUI aHalli3; Halpy-
YKEHHSI; MIIIHICTh; MIXKIUCIUILTIHAPHA ONTHMIi3allist; mporpamoBaHe CAD; iHkeHepis 3aCHOBaHa HA 3HAHHSIX.
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