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VISUALLY LOSSLESS COMPRESSION OF MULTILOOK SAR IMAGES   

 
Synthetic aperture radars (SARs) produce a large amount of remote sensing data useful for numerous 

applications. SAR image resolution improves, leading to an increased size of acquired images that must be 

transferred to on-land data processing centers or directly to customers. Then, SAR data compression is required. 

Nowadays, lossy compression is mostly applied, but it is necessary to control losses to avoid undesired 

(inappropriate) deterioration of useful information contained in SAR images. In this study, we consider visually 
lossless compression of multilook SAR images using several lossy compression techniques (including modern 

coders such as BPG, AVIF, and HEIF) and both conventional and visual quality metrics (including PSNR-HVS-

M, HaarPSI, and MS-SSIM). Such metrics and the corresponding distortion invisibility thresholds are employed 

to achieve the maximum possible compression ratio. We show that, in general, the attained compression ratios 

are approximately 3 if calculated for 8-bit representation of the images to be compressed. Depending on the 

visual quality metric used, different coders might produce the largest compression ratio. The considered 

compression techniques are directly applied to normalized SAR without preliminary variance stabilizing 

transforms. The images used in the tests have the same speckle characteristics as the real-life images acquired 

by Sentinel-1 synthetic aperture radar operating in multilook mode, i.e., the speckle is simulated as quasi-

Gaussian multiplicative spatially correlated noise. Examples of original and compressed images are presented, 

demonstrating their very high similarity and practical invisibility of distortions introduced by lossy compression. 

The obtained results are discussed, and further research directions are proposed. In particular, the use of 
variance-stabilizing transforms must be considered.  
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1. Introduction 
 

1.1. Motivation 
 

Radar remote sensing (RS) is known to be efficient 

and useful in solving numerous tasks in snow cover 

mapping [1], ecological monitoring [2], oceanography 

[3], defense [4], etc. Currently, synthetic aperture radars 

(SARs) are mostly employed due to their ability to 

provide high spatial resolution [5]. Improved spatial 

resolution resulted in a larger number of pixels for the 

same sensed area. In turn, average image size has greatly 

increased, and this led to problems with both raw data 

processing and different operations carried out with 

formed images especially on-board where available 

resources for data storage and processing are usually 

limited [6].  Then, it is reasonable to transfer SAR data to 

on-land centers of image processing for providing their 

further processing, storage, and dissemination.  

SAR image compression has been of prime interest 

over, at least, recent 30 years [7-9]. It has been shown 

that lossless compression applied to SAR images is 

usually inefficient [10] because images are corrupted by 

speckle – a noise-like phenomenon having multiplicative 

nature and typical for coherent imaging [11]. Meanwhile, 

the inherent presence of speckle in SAR images has 

impact on all other typical operations of image 

processing including denoising (despeckling) [12], edge 

and object detection [13], and lossy compression [14, 

15]. Lossy compression of SAR images, similarly to 

lossy compression of noisy images in general [16], 

exhibits specific noise filtering effect [14, 15]. This 

filtering, even under the best settings of a coder, is not as 

efficient as denoising itself by the best existing filters. 

Because of this, there are several strategies of SAR image 

lossy compression where the choice of the best one 

depends on requirements to SAR image processing and 

their priority as well as on advantages and drawbacks of 

these strategies. This fact stimulates considering these 

strategies and developing each of them.          

 

1.2. State-of-the-art 
 

Below we briefly review four possible strategies 

considering their positive features and shortcomings. The 

first strategy is to compress an SAR image in optimal 

operation point (OOP) [15, 16] where OOP is such a 
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parameter controlling compression (e.g., quality factor 

for JPEG) that quality of compressed image is maximally 

close to the quality of the corresponding noise-free image 

according to a used quality metric (criterion) and 

compressed image quality is better than original (noisy, 

uncompressed) image quality. Possible existence of OOP 

in SAR lossy compression was, probably, first 

demonstrated in [17] in 90th of the previous century. 

There are two positive features of this strategy: 1) a rather 

large CR is usually provided; 2) it does not require pre-

filtering on-board saving time and resources. The 

negative features are that the quality of compressed 

image is worse than for other strategies and quality of 

compressed practically cannot be improved by post-

filtering on-land. Another strategy presumes pre-filtering 

on-board with further lossy compression [15]. Its 

advantages consist in providing better quality of 

compressed image than for the previous strategy and 

producing a rather large CR. The drawback is that 

efficient despeckling should be carried out on-board and 

this requires time, memory and computational resources. 

The third and fourth strategies deal with “careful” 

compression on-board with further despeckling on-land. 

The difference in these two strategies is that, for the third 

strategy, PCC is set in such a way that CR is about two 

times smaller than for OOP and introduced distortions are 

visible. Then, post-filtering after decompression is able 

to improve the image quality but not too much. For the 

fourth strategy, visually lossless compression [15, 18] is 

carried out that practically preserves properties of 

original image and offers good pre-requisites for efficient 

despeckling after decompression. However, such 

preservation is reached by the expense of quite small CR.  

In this paper, we consider the fourth strategy. Our 

interest to it stems from the following facts. First, 

compared to compression techniques considered in [15], 

novel coders have been proposed recently including 

better portable graphics (BPG) [19], High Efficiency 

Image File Format (HEIF) [20], and AV1 Image File 

Format (AVIF) [21] that are the parts of HEVC video 

coding. Performance of these novel compression 

techniques has been recently studied for images 

corrupted by additive white Gaussian noise [16] and 

shown to be significantly better than for JPEG. Second, 

new approaches to assessing visual quality of 

compressed images have appeared [22, 23]. The 

importance of visual quality assessment has been 

stressed. Third, new efficient visual quality metrics have 

been proposed including MDSI [24], HaarPSI [25], and 

others. Distortion invisibility thresholds have been 

determined for some visual quality metrics and high 

correlation between the best metrics has been 

demonstrated [26]. The aforementioned recent 

achievements allow obtaining new insights concerning 

visually lossless compression of SAR images. 

1.3. Objectives and the approach 

 

Our objective is to analyze characteristics of 

visually lossless compression of SAR images for several 

compression techniques including aforementioned 

modern coders (BPG, HEIF, AVIF) and compare them. 

As a particular case of SAR system, we consider 

Sentinel-1 [27] that has become very popular and 

attractive for solving practical tasks [28, 29]. The images 

used in simulations mimic the properties of multilook 

data provided by Sentinel-1 in dual-polarization mode, 

i.e. multiplicative nature of spatially correlated speckle 

with distribution quite close to Gaussian. In our studies, 

we use three visual quality metrics, namely, PSNR-HVS-

M (https://ponomarenko.info/psnrhvsm.htm) based on 

DCT, MS-SSIM [30] that exploits several scales in image 

quality assessment, and HaarPSI [25] that incorporates 

peculiarities of human attention to image regions while 

assessing image quality. The reason for using three 

metrics deals with the fact that, although all three metrics 

are more adequate than traditional PSNR, they are not 

perfect anyway. Thus, it is worth making general 

conclusions based on their joint analysis. Recall here that 

Spearman rank order correlation coefficient (SROCC) 

between these metrics and mean opinion score for images 

corrupted by distortions connected with lossy 

compression in the database TID2013 is equal to 0.935 

for MS-SSIM, 0.961 for PSNR-HVS-M, 0.968 for 

HaarPSI, whilst SROCC is only 0.914 for PSNR and 

even less (0.893) for famous SSIM. Therefore, the 

metrics HaarPSI and PSNR-HVS-M are the “most 

reliable” in our analysis.       

 

2. Materials and methods of research 

For obtaining initial insights on performance of 

lossy compression for multi-look SAR images, we 

followed methodology proposed in [31]. Since 

commonly accepted true (noise-free) SAR images are 

absent (although there are successful attempts in 

physical-level simulation of SAR images that correspond 

to canonical scenes [32]), almost noise-free component 

images for multispectral Sentinel data [33] are exploited 

as noise-free basis and then speckle with properties 

practically identical to properties of speckle in multi-look 

SAR images is simulated.  

Fig. 1 illustrates this methodology. The noise-free 

image used as the first test image in our experiments is 

presented in Fig. 1,a. Its noisy version is given in Fig. 1,b. 

Noisy version of the second test image is represented in 

Fig. 1,c. As seen, noise is clearly seen in almost all 

fragments of the images except “black” ones proving 

multiplicative nature of the simulated speckle which is 

more intensive in regions with larger mean values.   

 

https://ponomarenko.info/psnrhvsm.htm
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(a) 

 
(b) 

 
(c)  

Fig. 1. Noise-free test image #1 (a), its noisy version 

(b), and the noisy version of the test image #2 

  

Simultaneously, joint analysis of images in Figures 

1,a and 1,b clearly demonstrates how speckle masks low 

contrast edges and details that can be partly “recovered” 

by means of efficient denoising.  

In our study, we deal with image representation as 

8-bit 2D data arrays although more bits (up to 16) are 

often used for SAR images. There are several reasons 

behind this. First, some coders (e.g., AGU-M) can be 

applied only to images presented as 8-bit data arrays. The 

same holds for some quality metrics. Second, most 

metrics are designed in such a way that they are 

“normalized” to the range of image data representation 

(recall PSNR as one example). Third, distortions 

introduced by normalization to the range 0-255 and 

inverse renormalization are usually considerably smaller 

than distortions that can be introduced by lossy 

compression in conditions of visually lossless 

compression. Then, distortions due to normalization 

operations can be ignored.    

In this paper, we consider five coders, namely, 

JPEG and AGU-M [34] oriented on providing good 

visual quality by exploiting non-equal quantization of 

DCT coefficients as well as standard versions of the 

BPG, HEIF, and AVIF coders. One problem is that these 

coders use different PCCs that allow varying CR and, 

respectively, image quality. JPEG, HEIF, and AVIF use 

quality factors (QFs) that are integers in the limits from 

1 (poor quality) to 100 (excellent quality). Note here that 

AVIF and HEIF have the same compression results for 

pairs of neighbor PCC values, e.g., 39 and 40. Because 

of this, we will further consider only odd values of QF. 

BPG coder uses parameter Q as PCC that varies from 1 

to 51 where 1 corresponds to excellent quality and 51 

usually relates to poor quality and large CR. AGU-M 

employs scaling factor (SF) as PCC where SF can be any 

non-negative value. According to [34], the use of SF 

about 8, on the average, produces practically invisible 

distortions.           

Typical dependences of PSNR calculated between 

noisy and compressed images on QF for AVIF and HEIF 

coders (test image #1) are presented in Fig. 2,a. As seen, 

they are both monotonously increasing. For small QF, 

introduced distortions are large (PSNR<25 dB). For large 

QF (QF>47 dB for HEIF and QF>57 for AVIF), the 

introduced distortions are small (PSNR>45 dB). Just 

noticeable difference point # 1 (JND#1) is expected to be 

in the remained parts of the curves. For the same QF, 

PSNR values are usually larger for the HEIF coder.  

Fig. 2,b presents dependences of CR on QF for the 

same coders and the same test image. As one can see CR 

is less than 1.5 for Q≥69 for HEIF and for Q≥93 for 

AVIF. Then, one deals with near-lossless compression. 

With QF reduction, CR starts to grow faster. For small 

QF, the CR growth is very fast.  
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For approximately equal CR in the area of interest 

(e.g., CR=6), PSNR for both coders are approximately 

equal (about 30 dB). Note that here and below CR values 

are calculated with respect to the 8-bit representation of 

images to be compressed.       

 

 
a  

 
b 

Fig. 2. Dependences of PSNR on QF (a) and CR  

on QF (b) for AVIF and HEIF coders  

for the test image #1  

 

Concerning visual quality metrics and the 

corresponding thresholds of distortion invisibility, 

JND#1, in general, depends on image complexity and 

noise intensity. However, it is possible to set fixed 

thresholds that practically guarantee that distortions are 

invisible. For the considered metrics, this happens [26] if 

the threshold T is set equal to 0.95 for HaarPSI, 44 dB 

for PSNR-HVS-M, and 0.99 for MS-SSIM.  

Then, having the obtained dependences and setting 

the corresponding threshold for a considered metric, it is 

possible to determine all other parameters and metrics. 

For example, setting the threshold for HaarPSI equal to 

0.95, it is possible to approximately determine MSE of 

introduced distortions, PSNR, CR, PSNR-HVS-M, and 

MS-SSIM.  

One practical question to be discussed here is how 

to carry out lossy compression with providing a given 

metric approximately equal to the corresponding 

threshold. There are two ways to do this: 1) to apply 

iterative procedures [34] with multiple compression, 

decompression, metric calculation and PCC changing 

towards producing metric value close to the threshold; 2) 

to use the two-step procedure [26] exploiting average 

rate/distortion curve (RDC), image compression and 

decompression at the first step and PCC correction and 

final compression at the second.      

  

3. CR analysis  

for the Considered Coders 
 

3.1. Examples of RDC 
 

Let us demonstrate examples of RDC for some 

particular cases. Fig. 3 presents the dependence of 

HaarPSI on QF for HEIF and AVIF for the test image #2. 

As seen, both dependences are monotonically increasing. 

For small QF, difference between images is large 

(HaarPSI is small). For large QF, images are very similar 

(HaarPSI is close to unity). Meanwhile, it is easy to 

determine QS for which the RDCs cross the level 0.95.  

 

 
Fig. 3. Dependences of HaarPSI on QF for AVIF  

and HEIF coders for the test image #2 

 

Fig. 4 represents the RDCs PSNR-HVS-M on Q for 

the BPG coder for both test images. Very high values of 

PSNR-HVS-M are observed for Q≤21. Then, with 

further growth of Q till Q≈45, almost linear decreasing of 

PSNR-HVS-M with Q growth is observed. After this, 

RDC behavior is unstable but, according to  
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PSNR-HVS-M, difference between original and 

compressed images is significant.   

 

 
Fig. 4. Dependences of PSNR-HVS-M on Q  

for the BPG coder for both test images 

 

Finally, Fig. 5 presents the plots of MS-SSIM vs SF 

for AGU-M for both test images. Although it might seem 

that the RDCs practically coincide for the considered test 

images, there is a small difference. The problem of MS-

SSIM metric is that its values mainly concentrate in the 

limits from 0.9 to 1.0.   

 

 
 

Fig. 5. Dependences of MS-SSIM on SF  

for the AGU-M coder for both test images 

 

The examples of RDCs given in this subsection 

show that they are monotonous functions (at least, in the 

areas of our interest) that allow estimating parameters 

corresponding to visually lossless compression.    

 

3.2.  CR analysis  

for different threshold settings 
 

Let us now fix the used metric and threshold for it. 

Let us start from the metric HaarPSI. The obtained data 

are presented in Table 1. Their analysis shows the 

following:  

1) The desired values of HaarPSI are provided with 

rather high accuracy that allows comparing the 

performance characteristics of the coders;  

2) The JPEG and AGU-M coders produce 

considerably larger MSE and, respectively, significantly 

smaller PSNR than three other coders;  

3) MS-SSIM are all about 0.99 or larger showing 

that introduced distortions are, most probably, invisible; 

MS-SSIM for the JPEG and AGU-M coders are smaller 

than for other three coders;  

4) Meanwhile, PSNR-HVS-M for the JPEG and 

AGU-M coders are larger than for other three coders;  

5) The results for BPG, HEIF, and AVIF coders are 

very close to each other;  

6) CR in both cases is the largest for AGU-M; 

visually lossless compression is observed for SF=6;  

7) CR for other four coders is slightly smaller 

than 3.  

Consider now the data for the metric PSNR-HVS-M 

set equal to 44 dB. The obtained data are presented in 

Table 2. Their analysis demonstrates the following:  

1) The JPEG and AGU-M coders again produce 

considerably larger MSE and smaller PSNR than other 

four coders; 

2) Due to this, they provide CR considerably larger 

than other three coders;  

3) Meanwhile, AGU-M and, especially, JPEG 

coders produce MS-SSIM and HaarPSI smaller than the 

corresponding thresholds;  

4) The HEIF, BPG, and AVIG coders again 

produce very similar results and CR for them is smaller 

than 3.  

Finally, let us analyze data for the case of MS-SSIM 

setting equal to 0.99. These data are collected in Table 3. 

Their analysis allows concluding the following:  

1) Again, MSE for JPEG and AGU-M is larger and 

PSNR is smaller than for other three coders;  

2) PSNR-HVS-M for the JPEG and AGU-M is 

considerably larger than for other three coders;  

3) HaarPSI for the JPEG and AGU-M is also better 

for the JPEG and AGU-M than for BPG, HEIF, and 

AVIF although AVIF for JPEG and AGU-M is slightly 

smaller than for the desired threshold;  

4) CR values are mostly slightly smaller than 3 

except the data for JPEG;  

5) The results for the BPG, HEIF, and AVIF coders 

are again almost identical.  
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Table 1 

Compression characteristics for using the metric HaarPSI with T=0.95 
Image 1 

Coder CR/PСС PSNR-HVS-M MSE PSNR MS-SSIM HaarPSI 

JPEG 2.79/72 52.0 110.1 27.7 0.990 0.951 

AGU-M 3.42/6 46.40 118.4 27.4 0.991 0.948 

BPG 2.73/31 43.29 21.5 34.8 0.995 0.950 

HEIF 2.62/45 44.15 19.8 35.2 0.996 0.954 

AVIF 2.78/55 43.30 22.2 34.7 0.995 0.948 

Image 2 

JPEG 2.60/70 51.6 131.4 26.9 0.992 0.949 

AGU-M 3.08/6 47.5 127.0 27.1 0.993 0.952 

BPG 2.45/31 44.4 21.5 34.8 0.996 0.955 

HEIF 2.44/45 44.3 21.7 34.8 0.996 0.954 

AVIF 2.52/55 44.6 21.7 34.8 0.996 0.954 
 

Table 2 

Compression characteristics for using the metric PSNR-HVS-M with T=44 dB 
Image 1 

Coder CR/PСС PSNR-HVS-M MSE PSNR MS-SSIM HaarPSI 

JPEG 4.44/43 43.89 326.2 23.0 0.969 0.864 

AGU-M 3.76/7 44.30 152.9 26.3 0.987 0.934 

BPG 2.73/31 43.29 21.5 34.8 0.995 0.950 

HEIF 2.49/47 45.80 15.7 36.2 0.997 0.962 

AVIF 2.69/57 44.26 19.5 35.2 0.996 0.955 

Image 2 

JPEG 4.19/38 44.0 462.6 21.4 0.967 0.846 

AGU-M 3.62/8 43.2 211.6 24.9 0.988 0.923 

BPG 2.45/31 44.4 21.5 34.8 0.996 0.955 

HEIF 2.44/45 44.3 21.7 34.8 0.996 0.954 

AVIF 2.52/55 44.6 21.7 34.8 0.996 0.954 

Table 3 

Compression characteristics for using the metric MS-SSIM with T=0.99 
Image 1 

Coder CR/PСС PSNR-HVS-M MSE PSNR MS-SSIM HaarPSI 

JPEG 2.79/72 52.0 110.1 27.7 0.990 0.951 

AGU-M 3.42/6 46.4 118.4 27.3 0.991 0.948 

BPG 3.34/34 38.6 44.1 31.7 0.990 0.910 

HEIF 3.43/37 37.9 50.2 31.1 0.990 0.901 

AVIF 3.31/47 39.0 41.7 31.9 0.991 0.913 

Image 2 

JPEG 2.73/67 50.7 158.0 26.1 0.990 0.939 

AGU-M 3.34/7 45.1 168.4 25.8 0.990 0.938 

BPG 3.16/35 37.7 56.7 30.6 0.990 0.898 

HEIF 3.11/37 37.6 56.3 30.6 0.990 0.898 

AVIF 3.32/43 37.1 62.5 30.2 0.989 0.888 

As one can see, some conclusions coincide for data 

in all three Tables. In particular, the results for the BPG, 

HEIF, and AVIF coders are very similar, and they are, in 

general, not better than for JPEG and AGU-M coders. We 

associate this with the fact that JPEG and AGU-M are 

adapted to providing higher visual quality. Meanwhile, 

the conclusions that follow from the use of different 

metrics do not fully coincide.  

The obtained data have, at least, resulted in initial 

insights on what PCC to set for the considered coders: 

QF≈60 for JPEG, SF≈6.5 for AGU-M, Q≈32 for BPG, 

QF≈43 for HEIF, and QF≈51 for AVIF. Meanwhile, it 

might be so that PCC depends on image content. Then, 

more test images are needed for analysis.    

It might happen that, according to one metric one 

coder is better whilst, according to another metric, 

another coder is the best. As an example, consider the 

first test image compressed with CR≈3.  

The corresponding data are given in Table 4. 

According to MSE and PSNR, the best results are 

provided by AVIF and HEIF; according to PSNR-HVS-

M, the best are the JPEG and AGU-M coders; according 

to HaarPSI, AGU-M is the best; and, finally, according to 

MS-SSIM, four modern coders produced similar results 
outperforming JPEG.   
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Table 4 

Compression characteristics for CR=3 for the test image #1 
Image 1 

Coder CR/PСС PSNR-HVS-M MSE PSNR MS-SSIM HaarPSI 

JPEG 2.99/68 50.7 139.1 26.7 0.987 0.940 

AGU-M 3.09/5 49.1 86.0 28.78 0.993 0.962 

BPG 3.10/33 40.1 34.54 32.75 0.992 0.926 

HEIF 2.97/41 40.9 31.59 33.13 0.993 0.931 

AVIF 3.07/51 40.8 31.92 33.09 0.993 0.930 

       One more conclusion is that if one provides CR 

about 3 (with respect to 8-bit data representation), this 

practically guarantees that visually lossless compression 

is ensured. Let us check this hypothesis. 

 

4. Compression Examples  

and Discussion 
 

4.1.  Compression Examples 

 

Fig. 6 presents the compressed images for the 

coders JPEG, AGU-M, and BPG for the test image #1 

where PCC are set according to data in Table 4 to provide 

CR≈3 for all coders. As seen, the images seem identical 

and they look the same as the image in Fig. 1,b. No 

speckle suppression and/or edge/detail/texture smearing 

are observed. 

Fig. 7 demonstrates the compressed images for the 

HEIF and AVIF coders, the test image and the provided 

CR are the same as in Fig. 6. The images seem identical 

to each other, identical to images in Fig. 6, and the same 

as in Fig. 1,b. This means that visually lossless 

compression is attained for all coders although images in 

Figures 6 and 7 have different values of PSNR, PSNR-

HVS-M, MS-SSIM, and HaarPSI (see Table 4). This 

phenomenon might seem strange, but it has two 

explanations. 

 

4.2. Discussion 
 

The first reason for invisibility of distortions is that, 

if coders are applied to SAR images directly, essential 

speckle suppression for small CR takes place in image 

homogeneous regions with low mean intensity (“black 

areas”) where speckle, due to its low intensity, is 

practically not seen even in original images (consider 

“dark” regions in images in Figures 1,b and 1,c. To prove 

this, Figure 8 and 9 present images compressed by the 

BPG coder with Q=38 and Q=43. In this case (see the 

plots in Fig. 4), the introduced distortions should be 

visible (PSNR-HVS-M<44 dB) and this is really so 

(compare the images in Figures 8 and 9 to the image in 

Fig. 6,c). Note that noise filtering effect simultaneously 

with detail smearing and compression artifacts are 

mainly observed in relatively dark image areas whilst 

image quality in brighter regions is still satisfactory 

(distortions in them are practically invisible). Moreover, 

distortions for Q=43 are significantly more intensive than 

for Q=38. 

The second reason is that MSE of introduced 

distortions in all considered cases is smaller than 

equivalent noise variance in original images. Really, 

equivalent noise variance 𝜎𝑒𝑞
2  for the images with speckle 

is approximately equal to 𝜎𝜇
2 ∑ ∑ 𝐼𝑡 𝑘𝑙

2 /𝐾𝐿𝐿
𝑙=1

𝐾
𝑘=1  where 

𝜎𝜇
2  denotes the speckle relative variance (approximately 

equal to 0.05 for multi-look images that we consider), K  

and L define the image size and 𝐼𝑡 𝑘𝑙
2  is the true image 

value in a kl-th pixel. For SAR images represented as 8-

bit data ∑ ∑ 𝐼𝑡 𝑘𝑙
2 /𝐾𝐿𝐿

𝑙=1
𝐾
𝑘=1  is about 10000 or larger, and, 

thus, 𝜎𝑒𝑞
2  is about 500 or larger. Then, even in the worst 

cases (see data for JPEG in Tables 1 and 4), MSE of 

introduced losses is several times smaller than 𝜎𝑒𝑞
2 .  

CR about 3 is not large. On the one hand, the 

obtained CR values are at the same level as in [15]. On 

the other hand, the attained CR might be unsatisfactory 

for practice. The results presented in [15] show that 

visually lossless compression can be also reached using 

variance stabilizing transform of logarithmic/exponential 

type with providing larger CR values. Logarithmic type 

transform is applied before lossy compression and 

inverse exponential transform is applied after 

decompression. The use of such transforms slightly 

complicates processing, but they are very fast. Therefore, 

it is worth studying this approach in the future. 

 

5. Conclusions 
 

Visually lossless compression of multilook SAR 

images is considered. It is demonstrated that attained 

compression ratios (compared to images represented as 

8-bit data arrays) are about 3. Three visual quality metrics 

with the corresponding distortion invisibility thresholds 

have been analyzed and as shown, the results are slightly 

different - different coders might produce the largest 

compression ratio and/or the best quality. Examples 

demonstrating that original and compressed images are 

practically identical are presented. The results obtained 

for two test SAR images are discussed.  

The directions of research to be conducted in the 

future are considered. In particular, the use of variance 

stabilizing transforms should be studied. 
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a 

 
b 

 
c  

Fig. 6. Compressed noisy test image #1 using the JPEG 

(a), AGU-M (b), and BPG (c) coders  

with providing CR≈3  

 
a 

 
b  

Fig. 7. Compressed noisy test image #1 using  

the HEIF (a) and AVIF (b) coders with providing CR≈3  
 

 
Fig. 8. Compressed noisy test image #1  

using the BPG with Q=38 
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Fig. 9. Compressed noisy test image #1  

using the BPG with Q=43 
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ВІЗУАЛЬНО БЕЗВТРАТНЕ СТИСНЕННЯ БАГАТОВИГЛЯДОВИХ РСА-ЗОБРАЖЕНЬ 

В. В. Лукін, С. С. Кривенко, А. Д. Павлюк 

Радари із синтезованою апертурою (РСА) створюють велику кількість даних дистанційного зондування, 

корисних для численних застосувань. Роздільна здатність зображень РСА покращується, що призводить до 

збільшення розміру отриманих зображень, які необхідно передавати до наземних центрів обробки даних або 

безпосередньо користувачам. Тоді потрібне стиснення даних РСА. В даний час переважно застосовується 

стиснення з втратами, але необхідно контролювати втрати, щоб уникнути небажаного (неналежного) 

погіршення корисної інформації, що міститься в РСА-зображеннях. У цій статті ми розглядаємо візуально 

безвтратне стиснення багатопогляжових РСА-зображень з використанням кількох методів стиснення з 

втратами (включаючи такі сучасні кодери, як BPG, AVIF та HEIF) та як звичайних, так і візуальних метрик 

якості (включаючи PSNR-HVS-M, HaarPSI та MS-SSIM). Такі метрики та відповідні пороги невидимості 

спотворень використовуються для досягнення максимально можливого коефіцієнта стиснення. Показано, що 

загалом досягнуті коефіцієнти стиснення становлять близько 3, якщо розраховувати їх відносно 8-бітного 

представлення зображень, що стискаються. Залежно від використовуваної метрики візуальної якості, різні 

кодери можуть досягати найбільшого коефіцієнта стиснення. Розглянуті методи стиснення застосовуються 

безпосередньо до нормованого РСА-зображення, без попередніх варіаційно-стабілізуючих перетворень. 

Зображення, що використовуються в тестах, мають ті ж характеристики спеклу, що й реальні зображення, 

отримані РСА Sentinel-1, що працює в багатопоглядовому режимі, тобто спекл моделюється як 

квазігауссівський мультиплікативний просторово корельований шум. Представлено приклади оригінальних 

та стиснутих зображень, що демонструють їх дуже високу подібність та практичну невидимість спотворень, 

внесених стисненням з втратами. Обговорюються отримані результати та пропонуються напрямки подальших 

досліджень. Зокрема, необхідно розглянути використання варіаційно-стабілізуючих перетворень. 

Ключові слова: радар з синтезованою апертурою; візуально безвтратне стиснення; спекл; зображення. 
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