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VISUALLY LOSSLESS COMPRESSION OF MULTILOOK SAR IMAGES

Synthetic aperture radars (SARs) produce a large amount of remote sensing data useful for numerous
applications. SAR image resolution improves, leading to an increased size of acquired images that must be
transferred to on-land data processing centers or directly to customers. Then, SAR data compression is required.
Nowadays, lossy compression is mostly applied, but it is necessary to control losses to avoid undesired
(inappropriate) deterioration of useful information contained in SAR images. In this study, we consider visually
lossless compression of multilook SAR images using several lossy compression techniques (including modern
coders such as BPG, AVIF, and HEIF) and both conventional and visual quality metrics (including PSNR-HVS-
M, HaarPSI, and MS-SSIM). Such metrics and the corresponding distortion invisibility thresholds are employed
to achieve the maximum possible compression ratio. We show that, in general, the attained compression ratios
are approximately 3 if calculated for 8-bit representation of the images to be compressed. Depending on the
visual quality metric used, different coders might produce the largest compression ratio. The considered
compression techniques are directly applied to normalized SAR without preliminary variance stabilizing
transforms. The images used in the tests have the same speckle characteristics as the real-life images acquired
by Sentinel-1 synthetic aperture radar operating in multilook mode, i.e., the speckle is simulated as quasi-
Gaussian multiplicative spatially correlated noise. Examples of original and compressed images are presented,
demonstrating their very high similarity and practical invisibility of distortions introduced by lossy compression.
The obtained results are discussed, and further research directions are proposed. In particular, the use of
variance-stabilizing transforms must be considered.

Keywords: synthetic aperture radar; visually lossless compression, speckled image.

1. Introduction

1.1. Motivation

Radar remote sensing (RS) is known to be efficient
and useful in solving numerous tasks in snow cover
mapping [1], ecological monitoring [2], oceanography
[3], defense [4], etc. Currently, synthetic aperture radars
(SARs) are mostly employed due to their ability to
provide high spatial resolution [5]. Improved spatial
resolution resulted in a larger number of pixels for the
same sensed area. In turn, average image size has greatly
increased, and this led to problems with both raw data
processing and different operations carried out with
formed images especially on-board where available
resources for data storage and processing are usually
limited [6]. Then, it is reasonable to transfer SAR data to
on-land centers of image processing for providing their
further processing, storage, and dissemination.

SAR image compression has been of prime interest
over, at least, recent 30 years [7-9]. It has been shown
that lossless compression applied to SAR images is
usually inefficient [10] because images are corrupted by
speckle — a noise-like phenomenon having multiplicative

nature and typical for coherent imaging [11]. Meanwhile,
the inherent presence of speckle in SAR images has
impact on all other typical operations of image
processing including denoising (despeckling) [12], edge
and object detection [13], and lossy compression [14,
15]. Lossy compression of SAR images, similarly to
lossy compression of noisy images in general [16],
exhibits specific noise filtering effect [14, 15]. This
filtering, even under the best settings of a coder, is not as
efficient as denoising itself by the best existing filters.
Because of this, there are several strategies of SAR image
lossy compression where the choice of the best one
depends on requirements to SAR image processing and
their priority as well as on advantages and drawbacks of
these strategies. This fact stimulates considering these
strategies and developing each of them.

1.2. State-of-the-art

Below we briefly review four possible strategies
considering their positive features and shortcomings. The
first strategy is to compress an SAR image in optimal
operation point (OOP) [15, 16] where OOP is such a
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parameter controlling compression (e.g., quality factor
for JPEG) that quality of compressed image is maximally
close to the quality of the corresponding noise-free image
according to a used quality metric (criterion) and
compressed image quality is better than original (noisy,
uncompressed) image quality. Possible existence of OOP
in SAR lossy compression was, probably, first
demonstrated in [17] in 90" of the previous century.
There are two positive features of this strategy: 1) arather
large CR is usually provided; 2) it does not require pre-
filtering on-board saving time and resources. The
negative features are that the quality of compressed
image is worse than for other strategies and quality of
compressed practically cannot be improved by post-
filtering on-land. Another strategy presumes pre-filtering
on-board with further lossy compression [15]. Its
advantages consist in providing better quality of
compressed image than for the previous strategy and
producing a rather large CR. The drawback is that
efficient despeckling should be carried out on-board and
this requires time, memory and computational resources.
The third and fourth strategies deal with “careful”
compression on-board with further despeckling on-land.
The difference in these two strategies is that, for the third
strategy, PCC is set in such a way that CR is about two
times smaller than for OOP and introduced distortions are
visible. Then, post-filtering after decompression is able
to improve the image quality but not too much. For the
fourth strategy, visually lossless compression [15, 18] is
carried out that practically preserves properties of
original image and offers good pre-requisites for efficient
despeckling after decompression. However, such
preservation is reached by the expense of quite small CR.

In this paper, we consider the fourth strategy. Our
interest to it stems from the following facts. First,
compared to compression techniques considered in [15],
novel coders have been proposed recently including
better portable graphics (BPG) [19], High Efficiency
Image File Format (HEIF) [20], and AV1 Image File
Format (AVIF) [21] that are the parts of HEVC video
coding. Performance of these novel compression
techniques has been recently studied for images
corrupted by additive white Gaussian noise [16] and
shown to be significantly better than for JPEG. Second,
new approaches to assessing visual quality of
compressed images have appeared [22, 23]. The
importance of visual quality assessment has been
stressed. Third, new efficient visual quality metrics have
been proposed including MDSI [24], HaarPSI [25], and
others. Distortion invisibility thresholds have been
determined for some visual quality metrics and high
correlation between the best metrics has been
demonstrated [26]. The aforementioned recent
achievements allow obtaining new insights concerning
visually lossless compression of SAR images.

1.3. Objectives and the approach

Our objective is to analyze characteristics of
visually lossless compression of SAR images for several
compression techniques including aforementioned
modern coders (BPG, HEIF, AVIF) and compare them.
As a particular case of SAR system, we consider
Sentinel-1 [27] that has become very popular and
attractive for solving practical tasks [28, 29]. The images
used in simulations mimic the properties of multilook
data provided by Sentinel-1 in dual-polarization mode,
i.e. multiplicative nature of spatially correlated speckle
with distribution quite close to Gaussian. In our studies,
we use three visual quality metrics, namely, PSNR-HVS-
M (https://ponomarenko.info/psnrhvsm.htm) based on
DCT, MS-SSIM [30] that exploits several scales in image
quality assessment, and HaarPSI [25] that incorporates
peculiarities of human attention to image regions while
assessing image quality. The reason for using three
metrics deals with the fact that, although all three metrics
are more adequate than traditional PSNR, they are not
perfect anyway. Thus, it is worth making general
conclusions based on their joint analysis. Recall here that
Spearman rank order correlation coefficient (SROCC)
between these metrics and mean opinion score for images
corrupted by distortions connected with lossy
compression in the database TID2013 is equal to 0.935
for MS-SSIM, 0.961 for PSNR-HVS-M, 0.968 for
HaarPSI, whilst SROCC is only 0.914 for PSNR and
even less (0.893) for famous SSIM. Therefore, the
metrics HaarPSI and PSNR-HVS-M are the “most
reliable” in our analysis.

2. Materials and methods of research

For obtaining initial insights on performance of
lossy compression for multi-look SAR images, we
followed methodology proposed in [31]. Since
commonly accepted true (noise-free) SAR images are
absent (although there are successful attempts in
physical-level simulation of SAR images that correspond
to canonical scenes [32]), almost noise-free component
images for multispectral Sentinel data [33] are exploited
as noise-free basis and then speckle with properties
practically identical to properties of speckle in multi-look
SAR images is simulated.

Fig. 1 illustrates this methodology. The noise-free
image used as the first test image in our experiments is
presented in Fig. 1,a. Its noisy version is given in Fig. 1,b.
Noisy version of the second test image is represented in
Fig. 1,c. As seen, noise is clearly seen in almost all
fragments of the images except “black™ ones proving
multiplicative nature of the simulated speckle which is
more intensive in regions with larger mean values.
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Fig. 1. Noise-free test image #1 (a), its noisy version
(b), and the noisy version of the test image #2

Simultaneously, joint analysis of images in Figures
1,aand 1,b clearly demonstrates how speckle masks low
contrast edges and details that can be partly “recovered”
by means of efficient denoising.

In our study, we deal with image representation as
8-bit 2D data arrays although more bits (up to 16) are
often used for SAR images. There are several reasons
behind this. First, some coders (e.g., AGU-M) can be
applied only to images presented as 8-bit data arrays. The
same holds for some quality metrics. Second, most
metrics are designed in such a way that they are
“normalized” to the range of image data representation
(recall PSNR as one example). Third, distortions
introduced by normalization to the range 0-255 and
inverse renormalization are usually considerably smaller
than distortions that can be introduced by lossy
compression in conditions of visually lossless
compression. Then, distortions due to normalization
operations can be ignored.

In this paper, we consider five coders, namely,
JPEG and AGU-M [34] oriented on providing good
visual quality by exploiting non-equal quantization of
DCT coefficients as well as standard versions of the
BPG, HEIF, and AVIF coders. One problem is that these
coders use different PCCs that allow varying CR and,
respectively, image quality. JPEG, HEIF, and AVIF use
quality factors (QFs) that are integers in the limits from
1 (poor quality) to 100 (excellent quality). Note here that
AVIF and HEIF have the same compression results for
pairs of neighbor PCC values, e.g., 39 and 40. Because
of this, we will further consider only odd values of QF.
BPG coder uses parameter Q as PCC that varies from 1
to 51 where 1 corresponds to excellent quality and 51
usually relates to poor quality and large CR. AGU-M
employs scaling factor (SF) as PCC where SF can be any
non-negative value. According to [34], the use of SF
about 8, on the average, produces practically invisible
distortions.

Typical dependences of PSNR calculated between
noisy and compressed images on QF for AVIF and HEIF
coders (test image #1) are presented in Fig. 2,a. As seen,
they are both monotonously increasing. For small QF,
introduced distortions are large (PSNR<25 dB). For large
QF (QF>47 dB for HEIF and QF>57 for AVIF), the
introduced distortions are small (PSNR>45 dB). Just
noticeable difference point # 1 (JND#1) is expected to be
in the remained parts of the curves. For the same QF,
PSNR values are usually larger for the HEIF coder.

Fig. 2,b presents dependences of CR on QF for the
same coders and the same test image. As one can see CR
is less than 1.5 for Q=69 for HEIF and for Q>93 for
AVIF. Then, one deals with near-lossless compression.
With QF reduction, CR starts to grow faster. For small
QF, the CR growth is very fast.
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For approximately equal CR in the area of interest
(e.g., CR=6), PSNR for both coders are approximately
equal (about 30 dB). Note that here and below CR values
are calculated with respect to the 8-bit representation of
images to be compressed.
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Fig. 2. Dependences of PSNR on QF (a) and CR
on QF (b) for AVIF and HEIF coders
for the test image #1

Concerning visual quality metrics and the
corresponding thresholds of distortion invisibility,
JND#1, in general, depends on image complexity and
noise intensity. However, it is possible to set fixed
thresholds that practically guarantee that distortions are
invisible. For the considered metrics, this happens [26] if
the threshold T is set equal to 0.95 for HaarPSl, 44 dB
for PSNR-HVS-M, and 0.99 for MS-SSIM.

Then, having the obtained dependences and setting
the corresponding threshold for a considered metric, it is
possible to determine all other parameters and metrics.

For example, setting the threshold for HaarPSI equal to
0.95, it is possible to approximately determine MSE of
introduced distortions, PSNR, CR, PSNR-HVS-M, and
MS-SSIM.

One practical question to be discussed here is how
to carry out lossy compression with providing a given
metric approximately equal to the corresponding
threshold. There are two ways to do this: 1) to apply
iterative procedures [34] with multiple compression,
decompression, metric calculation and PCC changing
towards producing metric value close to the threshold; 2)
to use the two-step procedure [26] exploiting average
rate/distortion curve (RDC), image compression and
decompression at the first step and PCC correction and
final compression at the second.

3. CR analysis
for the Considered Coders

3.1. Examples of RDC

Let us demonstrate examples of RDC for some
particular cases. Fig. 3 presents the dependence of
HaarPSI on QF for HEIF and AVIF for the test image #2.
As seen, both dependences are monotonically increasing.
For small QF, difference between images is large
(HaarPSI is small). For large QF, images are very similar
(HaarPSI is close to unity). Meanwhile, it is easy to
determine QS for which the RDCs cross the level 0.95.
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Fig. 3. Dependences of HaarPSI on QF for AVIF
and HEIF coders for the test image #2

Fig. 4 represents the RDCs PSNR-HVS-M on Q for
the BPG coder for both test images. Very high values of
PSNR-HVS-M are observed for Q<21. Then, with
further growth of Q till Q=45, almost linear decreasing of
PSNR-HVS-M with Q growth is observed. After this,
RDC behavior is unstable but, according to
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PSNR-HVS-M, difference between original and
compressed images is significant.
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Fig. 4. Dependences of PSNR-HVS-M on Q
for the BPG coder for both test images

Finally, Fig. 5 presents the plots of MS-SSIM vs SF
for AGU-M for both test images. Although it might seem
that the RDCs practically coincide for the considered test
images, there is a small difference. The problem of MS-
SSIM metric is that its values mainly concentrate in the
limits from 0.9 to 1.0.
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Fig. 5. Dependences of MS-SSIM on SF
for the AGU-M coder for both test images

The examples of RDCs given in this subsection
show that they are monotonous functions (at least, in the
areas of our interest) that allow estimating parameters
corresponding to visually lossless compression.

3.2. CR analysis
for different threshold settings

Let us now fix the used metric and threshold for it.
Let us start from the metric HaarPSI. The obtained data
are presented in Table 1. Their analysis shows the
following:

1) The desired values of HaarPSI are provided with
rather high accuracy that allows comparing the
performance characteristics of the coders;

2) The JPEG and AGU-M coders produce
considerably larger MSE and, respectively, significantly
smaller PSNR than three other coders;

3) MS-SSIM are all about 0.99 or larger showing
that introduced distortions are, most probably, invisible;
MS-SSIM for the JPEG and AGU-M coders are smaller
than for other three coders;

4) Meanwhile, PSNR-HVS-M for the JPEG and
AGU-M coders are larger than for other three coders;

5) The results for BPG, HEIF, and AVIF coders are
very close to each other;

6) CR in both cases is the largest for AGU-M;
visually lossless compression is observed for SF=6;

7) CR for other four coders is slightly smaller
than 3.

Consider now the data for the metric PSNR-HVS-M
set equal to 44 dB. The obtained data are presented in
Table 2. Their analysis demonstrates the following:

1) The JPEG and AGU-M coders again produce
considerably larger MSE and smaller PSNR than other
four coders;

2) Due to this, they provide CR considerably larger
than other three coders;

3) Meanwhile, AGU-M and, especially, JPEG
coders produce MS-SSIM and HaarPSI smaller than the
corresponding thresholds;

4) The HEIF, BPG, and AVIG coders again
produce very similar results and CR for them is smaller
than 3.

Finally, let us analyze data for the case of MS-SSIM
setting equal to 0.99. These data are collected in Table 3.
Their analysis allows concluding the following:

1) Again, MSE for JPEG and AGU-M is larger and
PSNR is smaller than for other three coders;

2) PSNR-HVS-M for the JPEG and AGU-M is
considerably larger than for other three coders;

3) HaarPSI for the JPEG and AGU-M is also better
for the JPEG and AGU-M than for BPG, HEIF, and
AVIF although AVIF for JPEG and AGU-M is slightly
smaller than for the desired threshold;

4) CR values are mostly slightly smaller than 3
except the data for JPEG;

5) Theresults for the BPG, HEIF, and AVIF coders
are again almost identical.
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Table 1
Compression characteristics for using the metric HaarPSI with T=0.95
Image 1
Coder CR/PCC PSNR-HVS-M MSE PSNR MS-SSIM HaarPSI
JPEG 2.79/72 52.0 110.1 27.7 0.990 0.951
AGU-M 3.42/6 46.40 1184 27.4 0.991 0.948
BPG 2.73/31 43.29 215 34.8 0.995 0.950
HEIF 2.62/45 44.15 19.8 35.2 0.996 0.954
AVIF 2.78/55 43.30 22.2 34.7 0.995 0.948
Image 2
JPEG 2.60/70 51.6 1314 26.9 0.992 0.949
AGU-M 3.08/6 47.5 127.0 27.1 0.993 0.952
BPG 2.45/31 44.4 215 34.8 0.996 0.955
HEIF 2.44/45 44.3 21.7 34.8 0.996 0.954
AVIF 2.52/55 44.6 21.7 34.8 0.996 0.954
Table 2
Compression characteristics for using the metric PSNR-HVS-M with T=44 dB
Image 1
Coder CR/PCC PSNR-HVS-M MSE PSNR MS-SSIM HaarPSlI
JPEG 4.44/43 43.89 326.2 23.0 0.969 0.864
AGU-M 3.76/7 44.30 152.9 26.3 0.987 0.934
BPG 2.73/31 43.29 21.5 34.8 0.995 0.950
HEIF 2.49/47 45.80 15.7 36.2 0.997 0.962
AVIF 2.69/57 44.26 19.5 35.2 0.996 0.955
Image 2
JPEG 4.19/38 44.0 462.6 21.4 0.967 0.846
AGU-M 3.62/8 43.2 211.6 24.9 0.988 0.923
BPG 2.45/31 44.4 215 34.8 0.996 0.955
HEIF 2.44/45 44.3 21.7 34.8 0.996 0.954
AVIF 2.52/55 44.6 21.7 34.8 0.996 0.954
Table 3
Compression characteristics for using the metric MS-SSIM with T=0.99
Image 1
Coder CR/PCC PSNR-HVS-M MSE PSNR MS-SSIM HaarPSI
JPEG 2.79/72 52.0 110.1 21.7 0.990 0.951
AGU-M 3.42/6 46.4 1184 27.3 0.991 0.948
BPG 3.34/34 38.6 44.1 31.7 0.990 0.910
HEIF 3.43/37 37.9 50.2 31.1 0.990 0.901
AVIF 3.31/47 39.0 41.7 31.9 0.991 0.913
Image 2
JPEG 2.73/67 50.7 158.0 26.1 0.990 0.939
AGU-M 3.34/7 45.1 168.4 25.8 0.990 0.938
BPG 3.16/35 37.7 56.7 30.6 0.990 0.898
HEIF 3.11/37 37.6 56.3 30.6 0.990 0.898
AVIF 3.32/43 37.1 62.5 30.2 0.989 0.888

As one can see, some conclusions coincide for data
in all three Tables. In particular, the results for the BPG,
HEIF, and AVIF coders are very similar, and they are, in
general, not better than for JPEG and AGU-M coders. We
associate this with the fact that JPEG and AGU-M are
adapted to providing higher visual quality. Meanwhile,
the conclusions that follow from the use of different
metrics do not fully coincide.

The obtained data have, at least, resulted in initial
insights on what PCC to set for the considered coders:
QF=60 for JPEG, SF~=6.5 for AGU-M, Q=32 for BPG,
QF~=~43 for HEIF, and QF=51 for AVIF. Meanwhile, it

might be so that PCC depends on image content. Then,
more test images are needed for analysis.

It might happen that, according to one metric one
coder is better whilst, according to another metric,
another coder is the best. As an example, consider the
first test image compressed with CR~3.

The corresponding data are given in Table 4.
According to MSE and PSNR, the best results are
provided by AVIF and HEIF; according to PSNR-HVS-
M, the best are the JPEG and AGU-M coders; according
to HaarPSI, AGU-M is the best; and, finally, according to
MS-SSIM, four modern coders produced similar results
outperforming JPEG.
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Table 4
Compression characteristics for CR=3 for the test image #1
Image 1

Coder CR/PCC PSNR-HVS-M MSE PSNR MS-SSIM HaarPSI

JPEG 2.99/68 50.7 139.1 26.7 0.987 0.940
AGU-M 3.09/5 49.1 86.0 28.78 0.993 0.962

BPG 3.10/33 40.1 34.54 32.75 0.992 0.926

HEIF 2.97/41 40.9 31.59 33.13 0.993 0.931

AVIF 3.07/51 40.8 31.92 33.09 0.993 0.930

One more conclusion is that if one provides CR
about 3 (with respect to 8-bit data representation), this
practically guarantees that visually lossless compression
is ensured. Let us check this hypothesis.

4. Compression Examples
and Discussion

4.1. Compression Examples

Fig. 6 presents the compressed images for the
coders JPEG, AGU-M, and BPG for the test image #1
where PCC are set according to data in Table 4 to provide
CR=3 for all coders. As seen, the images seem identical
and they look the same as the image in Fig. 1,b. No
speckle suppression and/or edge/detail/texture smearing
are observed.

Fig. 7 demonstrates the compressed images for the
HEIF and AVIF coders, the test image and the provided
CR are the same as in Fig. 6. The images seem identical
to each other, identical to images in Fig. 6, and the same
as in Fig. 1,b. This means that visually lossless
compression is attained for all coders although images in
Figures 6 and 7 have different values of PSNR, PSNR-
HVS-M, MS-SSIM, and HaarPSI (see Table 4). This
phenomenon might seem strange, but it has two
explanations.

4.2. Discussion

The first reason for invisibility of distortions is that,
if coders are applied to SAR images directly, essential
speckle suppression for small CR takes place in image
homogeneous regions with low mean intensity (“black
areas”) where speckle, due to its low intensity, is
practically not seen even in original images (consider
“dark” regions in images in Figures 1,b and 1,c. To prove
this, Figure 8 and 9 present images compressed by the
BPG coder with Q=38 and Q=43. In this case (see the
plots in Fig. 4), the introduced distortions should be
visible (PSNR-HVS-M<44 dB) and this is really so
(compare the images in Figures 8 and 9 to the image in
Fig. 6,c). Note that noise filtering effect simultaneously
with detail smearing and compression artifacts are
mainly observed in relatively dark image areas whilst
image quality in brighter regions is still satisfactory

(distortions in them are practically invisible). Moreover,
distortions for Q=43 are significantly more intensive than
for Q=38.

The second reason is that MSE of introduced
distortions in all considered cases is smaller than
equivalent noise variance in original images. Really,
equivalent noise variance o, for the images with speckle
is approximately equal to g7 ¥5_; X, I?};/KL where
o/ denotes the speckle relative variance (approximately
equal to 0.05 for multi-look images that we consider), K
and L define the image size and I?; is the true image
value in a kl-th pixel. For SAR images represented as 8-
bit data X¥_, X5, I1?,,/KL is about 10000 or larger, and,
thus, o2, is about 500 or larger. Then, even in the worst
cases (see data for JPEG in Tables 1 and 4), MSE of
introduced losses is several times smaller than g2,

CR about 3 is not large. On the one hand, the
obtained CR values are at the same level as in [15]. On
the other hand, the attained CR might be unsatisfactory
for practice. The results presented in [15] show that
visually lossless compression can be also reached using
variance stabilizing transform of logarithmic/exponential
type with providing larger CR values. Logarithmic type
transform is applied before lossy compression and
inverse exponential transform is applied after
decompression. The use of such transforms slightly
complicates processing, but they are very fast. Therefore,
it is worth studying this approach in the future.

5. Conclusions

Visually lossless compression of multilook SAR
images is considered. It is demonstrated that attained
compression ratios (compared to images represented as
8-bit data arrays) are about 3. Three visual quality metrics
with the corresponding distortion invisibility thresholds
have been analyzed and as shown, the results are slightly
different - different coders might produce the largest
compression ratio and/or the best quality. Examples
demonstrating that original and compressed images are
practically identical are presented. The results obtained
for two test SAR images are discussed.

The directions of research to be conducted in the
future are considered. In particular, the use of variance
stabilizing transforms should be studied.
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Fig. 7. Compressed noisy test image #1 using
the HEIF (a) and AVIF (b) coders with providing CR=3

c

Fig. 6. Compressed noisy test image #1 using the JPEG Sinia R
(@), AGU-M (b), and BPG (c) coders Fig. 8. Compressed noisy test image #1
with providing CR~3 using the BPG with Q=38
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Fig. 9. Compressed noisy test image #1
using the BPG with Q=43
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BI3BYAJIBHO BE3BTPATHE CTUCHEHHS BATATOBUTJISIAIOBUX PCA-306PA’KEHD
B. B. JIykin, C. C. Kpueenxo, A. /I. Ilasnwok

Panapwu i3 cunre3zoBaHoro anepTyporo (PCA) CTBOPIOIOTH BEITUKY KiJIBKICTh JAHUX JUCTAHIIHHOTO 30HTyBaHHS,
KOPHMCHUX JUIsl YUCIEHHHUX 3acTocyBaHb. Po3minbHa 3aaTHICT 300paxkeHb PCA mokpalyeTbesi, 0 NPU3BOIAMUTH 10
301IBLIEHHST PO3Mipy OTPUMAaHUX 300pakeHb, sIKi HEOOXIHO MepeaaBaTH O Ha3eMHHX LIEHTPIiB 00pOOKH aHuX abo
OesmnocepenHb0 KopuctyBauaMm. Toni motpiOHe ctucHeHHs naHux PCA. B manmii 9ac mepeBa)<HO 3aCTOCOBYETHCS
CTHCHEHHsSI 3 BTpaTaMH, ajleé HEOOXiJHO KOHTPOJIOBATH BTpaTH, 00 YHUKHYTH HeOa)XaHOTro (HEHaJIeKHOrO)
TIOTipIIeHHs] KOpHUCHOI iHdopMmalii, mo MictuThess B PCA-300pakeHHsIX. Y LiH CTaTTi MU PO3IIISIAEMO Bi3yabHO
Oe3BTpaTHe CTHUCHEHHs OaraTomoriispkoBux PCA-300pa)keHb 3 BUKOPHUCTAHHSM KiJIBKOX METOJIB CTHUCHEHHS 3
BTpaTaMu (BKIIIOYAIO4M Taki cydacHi konepu, sik BPG, AVIF ta HEIF) Ta sk 3BMuaiiHnX, Tak i Bi3yalbHHX METPHK
skocti (Bkiroyatoun PSNR-HVS-M, HaarPSI ta MS-SSIM). Taki MeTpuKH Ta BIANOBIAHI MOPOTM HEBUIUMOCTI
CIOTBOPEHb BUKOPUCTOBYIOTHCS JIJIsI IOCATHEHHS MaKCUMAaIIbHO MOXKITMBOr0 KoedilieHTa cTucHeHHs. [loka3aHo, 1o
3arajioM JIOCSTHYTI KOe(ilieHTH CTUCHEHHS CTaHOBIATH OJNU3BKO 3, SIKIIO pO3paxoBYBaTH iX BiJHOCHO 8-0iTHOro
NPENICTABIICHHS 300Pa)KEeHb, 110 CTUCKAIOTHCS. 3aJIeKHO BiJi BUKOPUCTOBYBAHOI METPUKH Bi3yaJbHOI SIKOCTi, Pi3HI
KOJIEpH MOXYTb JOCATaTH HAHOUIBIIOro KoedilieHTa CTUCHEHHS. PO3TIIsIHYTI METOAM CTUCHEHHS 3aCTOCOBYIOTHCS
OesnocepenHbo a0 HOopMmoBaHoro PCA-300pakeHHs, Oe3 TONEpeAHiX BapialidHO-CTa0lIi3yI0UHX MEPETBOPEHb.
300paxkeHHsl, 110 BUKOPUCTOBYIOTHCS B TECTaX, MAIOTh Ti ) XapaKTEPUCTHKH CIICKIY, L0 U pealibHi 300pa)KeHHs,
orpumani PCA Sentinel-1, mo mnpamoe B 0araTonorisigoBOMY pPeXHMi, TOOTO CHEKJI MOJEIIOEThCS SIK
KBAa3iraycCiBChbKMi MYJIbTUILTIKATUBHHUI IPOCTOPOBO KOPEIbOBaHMUIT IyM. [IpencTaBieHo NpUKIaad OpUIiHATBHUX
Ta CTUCHYTUX 300paXkeHb, L0 JIEMOHCTPYIOTh IX YK€ BUCOKY MOAIOHICTh Ta NPAKTHYHY HEBUIMUMICTh CIIOTBOPEHD,
BHECEHUX CTUCHEHHSM 3 BTpaTaMu. OOroBOPIOIOTHCSA OTPUMaH1 Pe3yIbTaTH Ta MPOIOHYIOTHCS HAIPSIMKH MTOAANBIINX
JOCITiKeHb. 30KpeMa, He0OXiJIHO PO3TJISTHYTH BUKOPUCTaHHSI BapialiiiHO-CTa0li3yl0unX MepeTBOPEHb.

KurouoBi cioBa: panap 3 CHHTE30BaHOIO allepTypOIO; Bi3yalnbHO Oe3BTpaTHE CTUCHEHHS; CIIEKI; 300pakeHHS.
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