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DIGITAL IMAGE REPRESENTATION BY ATOMIC FUNCTIONS:
FEATURES FOR COMPUTER VISION AND MACHINE LEARNING

Digital images obtained from remote sensing (RS) systems have become essential in numerous technological
applications across diverse domains, including environmental monitoring, agriculture, urban planning, and de-
fense. These images are typically characterized by high spatial and spectral resolution, resulting in large data
volumes. Compared to other data types, their substantial size presents challenges in terms of the efficient appli-
cation of machine learning (ML) and computer vision (CV) methods. In particular, the processing of such large-
scale data can be computationally intensive and time-consuming, making it difficult to deploy conventional ML
and CV techniques in scenarios requiring real-time responses or in systems with limited processing resources,
such as autonomous platforms. One of the key issues in this context is the development of compact image repre-
sentations that retain essential features for further analysis. These representations must reduce data dimension-
ality without losing critical information required for classification, clustering, and other ML/CV tasks. In this
study, we explore the discrete atomic transform (DAT), which is based on atomic functions, as a potential solu-
tion to this problem. Previous research has demonstrated that DAT provides valuable benefits in terms of data
compression and encryption, thereby enabling secure and efficient storage and transmission. The focus of this
work is to assess whether DAT is suitable for ML and CV applications, particularly in the context of image
clustering. We evaluated the performance of the well-known k-means clustering algorithm when applied to DAT
images. The experimental results demonstrate that using DAT significantly reduces computation time, achieving
multiple-fold acceleration, without compromising clustering quality. This suggests that DAT not only minimizes
data size and preserves structural and statistical features relevant to learning-based tasks. These results indicate
that the integration of DAT into preprocessing pipelines for RS imagery is a promising approach. The proposed
method can enhance the efficiency of downstream ML and CV algorithms, especially in constrained environ-
ments where computational resources are limited. Overall, the discrete atomic transform is a practical and
versatile method for improving the scalability and applicability of intelligent image analysis in remote sensing
and related fields.

Keywords: image representation; atomic function; discrete atomic transform; atomic embeddings; image clus-
tering.

ML and CV methods frequently operate on raw or
decompressed images [12,13], demanding substantial
memory and processing time. Solutions such as GPUs,
TPUs, and distributed computing have been adopted to
reduce latency [14], but their deployment is impractical

1. Introduction

1.1. Motivation

Remote sensing (RS) imagery has become a key

data source for diverse fields including ecological moni-
toring [1], precision agriculture [2, 3], urban develop-
ment [4], disaster response [5, 6], oceanographic studies
[2, 7], and defense [8]. Modern RS sensors are capable of
capturing extremely high-resolution images —often with
tens of millions of pixels per frame. While this improves
analytical potential, it simultaneously introduces signifi-
cant challenges related to memory usage, transmission,
and computational load [9]. Standard image compression
techniques [10] help mitigate some of these limitations
[11], but when RS images are subjected to machine learn-
ing (ML) or computer vision (CV) algorithms, new bot-
tlenecks emerge.

in many real-world systems [15]. For example, edge de-
vices and autonomous platforms are typically con-
strained by limited power, compute capacity [16], and
network bandwidth [17]. Moreover, transferring large RS
images via communication links can be infeasible due to
bandwidth limitations or interference. This creates an ur-
gent need for compact image representations that reduce
data size while preserving relevant features for ML/CV
analysis. Conventional compression algorithms were not
designed with learning tasks in mind. As such, the inte-
gration of compact representations that combine efficient
compression with learning-readiness becomes a compel-
ling research direction. Prior studies of the discrete
atomic transform (DAT) have demonstrated its strong
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compression and approximation capabilities, while more
recent work shows that lossy DAT compression intro-
duces only minor accuracy loss for classification tasks.
These results suggest that DAT might enable fast and ef-
ficient learning, especially in unsupervised scenarios.
The potential of DAT to accelerate key algorithms such
as clustering without degrading their output quality rep-
resents a valuable opportunity for further exploration.

1.2. State-of-the-art

The exponential growth in the use of remote sensing
(RS) imagery has led to significant efforts aimed at re-
ducing the computational burden associated with pro-
cessing such large-scale data. High-resolution images
generated by modern RS systems are routinely used in
ecological, agricultural, urban, and security applications,
but their vast size creates constraints on memory, trans-
mission, and real-time processing. Compression algo-
rithms have been widely adopted to address storage and
bandwidth limitations. However, these solutions alone do
not resolve challenges related to data analysis using ma-
chine learning (ML) and computer vision (CV) tools. ML
and CV techniques extract meaningful patterns from data
and often work with full-resolution or decompressed im-
agery, making the analysis process computationally ex-
pensive. To alleviate this, solutions involving GPU accel-
eration, cloud computing, and distributed systems have
been implemented. Yet, such architectures are not always
feasible for real-world edge devices and autonomous sys-
tems due to constraints in power and connectivity.

While many general-purpose and image-specific
compression methods exist [18], they are traditionally
optimized for human visual perception and efficient stor-
age rather than ML/CV compatibility [19]. As a result,
they may discard features that are semantically meaning-
ful for automated analysis [20]. There is growing interest
in developing representations that are both compact and
learning-aware.

The discrete atomic transform (DAT), which is
based on atomic functions, has shown promise in this di-
rection [21]. Recent studies demonstrate that DAT
achieves good compression ratios while preserving im-
portant image characteristics [22]. Moreover, DAT has
been shown to maintain classification accuracy under
lossy compression [23], indicating its potential utility in
broader ML/CV applications such as image clustering
[24] and segmentation [25].

1.3. Objectives
and the approach

This research aims to evaluate whether image rep-
resentations based on the discrete atomic transform
(DAT) can serve as effective input for machine learning

(ML) and computer vision (CV) tasks, particularly under
resource-constrained conditions. Traditional compres-
sion algorithms are not optimized for learning-based ap-
plications, leading to inefficiencies when decompressing
data for ML/CV analysis.

Our objective is to assess the DAT’s ability to re-
duce image size while maintaining clustering perfor-
mance in unsupervised learning settings. We focus on the
widely used k-means algorithm as a benchmark task. To
this end, we propose and test two modifications of the
standard k-means algorithm that operate directly on DAT-
based image representations. The aim is to achieve simi-
lar clustering quality with significantly lower computa-
tional costs. This work aligns with current efforts to de-
velop edge-friendly ML strategies by providing a scala-
ble, efficient alternative to full-resolution image pro-
cessing in RS applications.

2. Materials
and methods of research

Denote by M a matrix of a given hxw digital image
I. In this research, we consider three-channel RS images.
However, the proposed approaches can be generalized
for other cases.

Let T be an image transform that maps M to its rep-
resentation W:

™M ->W

To train a neural network, it is important to choose
a dataset that clearly and accurately labels objects. Also,
the dataset should allow training using different image
sizes, i.e., it should be of sufficiently high resolution.
These parameters are important when choosing a da-
taset [21]. By the suggested definition, W is an ML/CV-
oriented representation of | with respect to a given algo-
rithm A if the following conditions are satisfied:

- Storing W requires less memory than storing M.
In other words, data compression is provided.

- W can be represented as a set of matrix blocks
B ={Bs1, By, ... , Bn}, such that A(M) = A(P), where
P={Bi1, Bi,,... } isa subset of B (L < N), and “=” denotes
a minor deviation of an output of the algorithm A in terms
of an appropriate metric(s). This feature means that a
given ML/CV method can be applied to smaller data
without significant degradation of its efficiency, and,
hence, computations could be reduced.

In our previous research [24, 26], we investigated the
lossy and lossless compression features of image repre-
sentation by AFs. Based on them, discrete atomic com-
pression (DAC) was developed. As shown, DAC pro-
vides considerable memory savings, especially when
compressing satellite data [26]. Thus, the first require-
ment is met. Further, to provide the correctness of the
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comparison A(M) ~ A(P), one should specify P, how to
apply A to P, and how to measure the difference. In this
research, we consider the k-means clustering algorithm
and image representation W provided by AFs. Therefore,
the main tasks are as follows:

- Indicate which part of the suggested representa-
tion could be used in the k-means algorithm to cluster a
given image without significant modifications that might
improve computations;

- Provide an appropriate update of the k-means al-
gorithm;

- Specify metrics for measuring efficiency;

- Perform the comparison of the designed modifi-
cations in terms of the selected indicators.

We start with the properties of atomic functions and
their applications to image processing.

3. Image Representation
by Atomic Functions

3.1. Atomic Functions
and their Properties

In function theory, a function is called atomic if it is
a solution with a compact support of a linear functional-
differential equation with constant coefficients and linear
transformations of an argument [22]. This class of func-
tions can be considered a generalization of wavelets [27].

Here, we consider a set of atomic functions given as
follows:

_L e e S (1)
upS(X) T om f—°° € Hk:l szt(Zs)_ksin(t(Zs)_k)d '
wheres=1,2,3, ....

A support of upg(x) is a segment [-1, 1], i.e.
ups(x) = 0 if |x| = 1. Also, for any s, the function
up, (x) satisfies the equation

vy =2%8, @sx+2s—-2k+1) - (2
—y(2sx — 2k + 1)).

The equation (2) has a simple interpretation. The
graph of the derivative of upg(x) consists of several
parts, each of which is similar to the graph of up(x).
Figure 1 illustrates this property.

Despite the complexity of the representation (1),
atomic functions up(x) are simple to apply. First, their
values can be found precisely in points of a dense grid
using fast algorithms that leverage the principles of dy-
namic programming [28]. Next, their derivatives of any
order can be easily computed using (2). Finally, due to
the compactness of the support of upg(x), various numer-
ical expansion schemes, which are based on these map-
pings, have low time and spatial complexity [29].
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Fig. 1. Graphs of atomic functions and their deriva-
tives: (a) up, (x) and (b) up,(x)

There are several ways to apply atomic functions as
constructive tools. One of them is the use of linear com-
binations of translates of upg(x):

@(x) = Xy Crups (x - %) 3

Spaces of functions of the form (3) were investi-
gated in [22, 23]. It was shown that these spaces con-
tained algebraic polynomials. Moreover, in their periodic
versions, there exists a basis that consists of functions
close to trigonometric. In addition, such spaces are as-
ymptotically extremal for approximating differentiable
functions. Hence, atomic functions upg(x) have good ap-
proximation properties that guarantee insignificant errors
when expanding functions to the form (3). A combination
of these features makes up(x) as good as trigonometric
functions for signal and image processing [20, 27]. Fur-
ther, we consider the practical aspects of their applica-
tions.
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3.2. Discrete Atomic Transform

When applying a certain system of functions to pro-
cessing and analyzing discrete data, an ability to get or-
thogonal components is preferable [27]. Expansion of a
function to the sum of orthogonal terms is one of the core
principles of applying atomic functions to image pro-
cessing [29]. Consider it in more detail.

Denote by L, the linear space of functions of the
form (3). It follows that, in this space, there exists a set
of nested subspaces {Ly}, such that

- LgoL; oL, 0.

- any function f € L, can be given in the form

fx) =2 vk (X — 2k+t #),

where v (x) is an infinitely smooth function with com-
pact support:

V(%) = 0, |x| = 2K*1/N. (4)

These conditions mean that each subspace Ly con-
sists of linear combinations of shifts of a single function
vy (x) with compact support. Moreover, by (4), each basic
function vy (x) is two times less local than vi_,(X). In
other words, the spaces {L;} provide different levels of
resolution, differing by a factor of two.

Further, let Wy be the orthogonal complement to Ly
in the space L,_, with respect to the inner product de-
fined by the formula: (f,g) = f_oooo f(x)g(x)dx.

This implies that, for any positive integer m, the fol-
lowing orthogonal decomposition holds:

Lo =W1®W2 @...@Wm®]_am.

Besides,
{Wk (X — 2k+1 ]—)} that consists of shifts of
j=0,41,42,..

in each space W, there is a basis

the function wy (x) with a support [0, 2K - 3/N].
The system of functions

[ (=2 ) v (2 )} O

constitutes a basis of the space L,. Each function f € L,
has the following expansion:

© =0, 5 o (-2 )+ O

N
[m+1] _om+1 )
+2 o) Vi (x 2 N).

The system (5) is called the atomic wavelet system.
Figure 2 shows an example of the expansion (6).

j
— 2m+l 'E) or L.,-compo-

Wherein, J; mj[m+1]vm (x
nents represent the low-frequency profile of a given func-
tion f(x). Combining it with Wy-components (for k =
m,m—1,...,1, sequentially) provides a reconstruction
of the source function f(x). Figure 3 is an illustration.

The concept of the system {L,} is similar to multi-
resolution analysis (MRA), which is one of the core prin-
ciples of wavelet theory [27]. Since functions vy (x) are
different, this system belongs to a non-stationary type of
MRAs [30].
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Fig. 2. Sample expansion of a function to the atomic
wavelet system (5): graphs of profiles corresponding to
different terms of the representation (6)

~__ - >—

| W
f W
Fig. 3. Sample reconstructions of a given function (red)

by items of its atomic wavelet expansion. Adding more
terms provides a profile (green) closer to the source

Each function wy (x), vi (%) is infinitely smooth and
has compact support. So, (5) presents a system of non-
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stationary, infinitely differentiable wavelets with a com-
pact support. In practice, an application of wavelet sys-
tems constructed using a single function might be prefer-
able due to the simplicity of numerical algorithms and
their implementations. However, stationary systems of
infinitely smooth, compactly supported wavelets do not
exist [30].

The compactness and locality of the support of
functions vy (x) and wy (x) ensure the design of rapid ex-
pansion schemes and the reduction of accumulated er-
rors. The high order of smoothness of these functions
makes them useful, especially for representation of
smooth signals. Furthermore, they guarantee a good ap-
proximation of a wide range of mappings due to the con-
structive properties of the space L, mentioned above.

Let d(x) represents a given one-dimensional vector

D = (d,,d,,...,d,). Denote by Q = (u)j[k]) an ordered
vector of its atomic wavelet expansion coefficients (see
(6)). A procedure that maps D to Q is called discrete
atomic transform (DAT). ) can be presented as follows:
Q=(QQ,...,Q0,), where Q = (wj[“‘“‘k]), k=

0,1,...,m. Here, m is called the depth of DAT. Figure 4
shows an example of DAT of depth 3. Further, we con-
sider two-dimensional DAT and its application to image
processing.

DAT

D
-t

W3-components

AV VA by
W2-components
VVVVVVVY =

Wi- compunents
ANkl A L
IOAALL NP

Fig. 4. The structure of a discrete atomic transform
of depth 3: the correspondence of DAT coefficients
to different frequency bands

il =

3.3. Atomic Embeddings of Images

There are several ways to present digital images.
One of the most common is the use of matrices. In this
research, we concentrate on this approach. Discrete

atomic transform of matrices is constructed using the ar-
ray transform DAT as follows [26].

Consider two-dimensional matrix M. Apply the ar-
ray transform DAT of the depth m to each row of this
matrix. A matrix B of intermediate DAT-coefficients is
computed. Then, apply the array DAT of the depth n to
each column of B. A block-structured matrix Q of DAT-
coefficients is obtained. The transform, which maps M to
Q, is called the matrix discrete atomic transform of the
scheme DAT]1. Figure 5 illustrates DAT1. It follows that
Q = (Qy);x2y» Where each block Qy contains DAT-co-
effcients corresponding to the same frequency band. The
number of blocks is equal to (m + 1)(n + 1).

Consider another scheme of the matrix DAT. Apply
the array DAT of depth 1 to each row of a given matrix
M and then to each column of the obtained matrix of in-
termediate DAT-coefficients (see Figure 6). This trans-
form is called DAT2 of depth 1. Generally, DAT2 of
depth m is constructed as follows. DAT2 of depth 1 is
performed m times; each time this transform is applied to
the block of the lowest frequency band, i.e., to the upper
left block (see Figure 7). It is obvious that DAT2 of depth
m produces 3m + 1 blocks.

array
DAT
m rows

source matrix intermediate
DAT-coefficients

array
DAT
[y
to
columns

final
DAT-coefficients

Fig. 5. Discrete atomic transform of matrices:
the scheme DATL. First, the array DAT is applied
to each row of a given matrix, and a matrix
of intermediate DAT-coefficients is computed. Second,
the array DAT is applied to each column of this matrix.
The array DAT of depth 3 is used in the given example

array
DAT
(depth 1)
= |
to
columns

array
DAT
(depth 1)
=

1o rows

final
DAT-coefficients

intermediate
DAT-coefficients

source matrix

Fig. 6. Discrete atomic transform of matrices:
the scheme DAT2 of depth 1. First, the array DAT
of depth 1 is applied to each row of a given matrix,
and a matrix of intermediate DAT-coefficients is com-
puted. Second, the array DAT of depth 1
is applied to each column of this matrix

Both DAT1 and DAT?2 produce a set of blocks. To
solve the data compression task, values of these blocks
are quantized and then encoded. This method is called
discrete atomic compression (DAC) [26].

The DAC algorithm can be applied to both one- and
multi-channel images. When compressing full-color 24-
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bit images given by a matrix M of red, green, and blue
components (RGB), the color space transform RGB-to-
YCrCb is applied at the first step. It produces three ma-
trices Y, Cr, and Cb of luma and chroma components.
Next, DAT is applied to each of them. After that, the com-
puted matrices of DAT-coefficients are quantized and
then encoded, usually employing a combination of
Golomb coding (GC) and context adaptive binary arith-
metic coding (CABAC) [21, 26]. Figure 8 presents the
general scheme of color image DAC.

DAT?2 DAT2 DAT2 .
= = ==
depth 1 depth 1 depth 1

intermediate
DAT-coefficients

final
DAT-coefficients

source matrix

Fig. 7. Discrete atomic transform of matrices:
the scheme DAT2, general case. The transform DAT2
of depth 1 is applied several times. Each time the upper
left block (low-level frequency coefficients) of a matrix
of intermediate DAT-coefficients is transformed

RGE matrix
RGBto-YCrCh =  DAT C.> Quantization C,>| Encoding
compressed
image

Fig. 8. Discrete atomic compression (DAC)
of full-color 24-bit images

By design, the DAC is a lossy compression tech-
nique. This means that source and decompressed images
are not identical. So, distortions are produced. However,
there exists a quality loss control mechanism [26]. It is
based on the properties of the atomic functions upg(x)
and provides an ability to get the desired level of distor-
tion that is measured by the following classic metrics:

- Maximum absolute deviation (MAD):

MAD = maXi|Xi - Yily

where X = (Xy,...,Xy) and Y = (Y4, .
and reconstructed data, respectively;
- Root mean square error (RMSE):

.., Yy) are source

RMSE=\/§Z§11 X — V)%
- Peak signal-to-noise ratio (PSNR):

PSNR = 20log, ,(255/RMSE).

In DAC, both DAT1 and DAT?2 can be used. In [26],
a comparison of their compression efficiency was con-
ducted. It was shown that these schemes provided nearly
the same compression ratio (CR) for any PSNR in the
range from 35 dB to 48 dB. In this case, distortions are
invisible to the human eye, despite the produced loss of
quality.

The DAC algorithm can be modified to ensure loss-
less image compression. To achieve this feature, in [21],
it is proposed to add encoded differences of source and
decompressed images to a file with compressed data.

The convenience of DAC is ensured by the con-
structive properties of the atomic wavelet system (5). The
locality of its functions provides quite small errors and,
therefore, the reduction of distortions, as well as linear
time complexity of the method. And, most importantly,
the good approximation properties of (5) guarantee the
data compression feature of DAC.

DAT1 and DAT? are based on the same array trans-
form. Nevertheless, these procedures have several major
dissimilarities. The main difference is that DAT1 pro-
vides deeper decomposition of a source matrix. In gen-
eral, it uses a higher number of functions from the system
of atomic wavelets (5) and produces more blocks of DAT-
coefficients than DAT2. By construction, the scheme
DAT2 belongs to classic discrete wavelet transforms
[27], which have numerous applications in image pro-
cessing [20, 31].

In a sense, DAT 1 provides “richer” image represen-
tation than DAT?2 due to the higher number of feature lev-
els. This property improves flexibility, as will be shown
below, and might be useful in ML/CV.

Further, both DAT1 and DAT2 have asymptotically
equivalent time complexity, which is of linear order with
respect to the number of pixels of the processed image.
However, our experience shows that DAT1 performs
faster. This advantage is attributed to the organization of
the memory hierarchy of computational architectures
[32]. Indeed, the scheme DAT1 uses more localized ma-
trix data that ensures better utilization of memory caches.
In addition, DAT1 possesses better capabilities in terms
of parallel computing [33].

Given the combination of advantages of DAT1, we
focus on this scheme of DAT in the current research. Con-
sider it in more detail.

As mentioned above, DAT1 transforms a given ma-
trix M to Q = (Qy) that consists of (m+ 1)(n+ 1)
blocks. Each array DAT is based on the atomic function
up,(x), where s is a fixed positive integer. Therefore,
DAT1 has three hyperparameters that define its settings.

When processing images with c¢ channels, a matrix
specifying each channel is transformed by DAT1 inde-
pendently, and ¢ matrices of DAT-coefficients are ob-
tained. The computed matrices can be combined into a c-
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channel matrix (). It represents atomic wavelet features
of a source image. We call them atomic embeddings.

Atomic embeddings of images possess the follow-
ing features:

- Unsupervisedness. DATL1 is a matrix function.
This mapping has no unknown parameter that requires
fitting. There is no need for training. From this point of
view, DAT1 outperforms auto-encoders [34] that have
recent applications to data compression [35], especially
synthetic aperture radar [36] and satellite images [37];

- Low complexity. Time complexity of the
scheme DAT1 is of the order O(N), where N = hwd and
h, w, and d are, respectively, height, width, and number
of channels of a processed image. In terms of computa-
tional complexity, DAT1 is better than discrete cosine
transform (DCT), which is a classic image processing
tool [20, 27]. Indeed, the time complexity of DCT is of
the order O(N?). However, in some partial cases, fast nu-
merical schemes provide O(N -log(N)) [27]. Anyway,
DAT has a lower time complexity than DCT,;

- Entire-image transformation capability.
DAT1 does not require splitting its input into blocks and
can be applied to an entire image. This distinguishes
DAT1 from DCT. Due to fundamental properties of trig-
onometric functions, in many applications, the block-
splitting procedure precedes DCT, which is further ap-
plied to each obtained block separately. It is clear that the
computed DCT-coefficients could be grouped with re-
spect to their frequencies, providing an entire image rep-
resentation. Meanwhile, this additional step increases the
time of processing and might complicate software imple-
mentations;

- Features grouping and shape-preserving. By
construction, each block Qix of DAT1's output contains
certain features of an entire input image. Qqo has the
smallest size. It contains an aggregation of source data.
A downscaled copy of a processed image can be recon-
structed using this block. For example, Figure 9 shows a
sample satellite image provided by the European Space
Agency (https://www.esa.int), and Figure 10 presents an
image reconstructed from the block Qqo. As it can be
seen, Qoo provides a source image preview. It preserves
the shape of many objects and some of their features, es-
pecially colors. Nevertheless, better reconstruction of in-
itial data requires other blocks Qi.

Atomic embeddings could be useful in various im-
age analysis tasks. They ensure compact representation
of image features, and, therefore, their application could
improve the performance of the existing ML and CV al-
gorithms. It is clear that proving this hypothesis requires
extensive research.

In the next Section, we consider the k-means clus-
tering algorithm, which is a classic unsupervised learning
method, and show that its performance can be increased
using DATI.

Fig. 9. Sample European Space Agency satellite image.
Original: 3556 x 3486 pixels, 24-bit, 35.4 MB (raw)

Fig. 10. Reconstruction of an image shown in Figure 9
using the blocks Q,, (coefficients of the lowest fre-
quency) of DAT-coefficients. A true-size image is dis-
played: 113 x 110 pixels, 24-bit, 36.5 KB (raw)

4. Results and Discussion

4.1. K-Means Clustering Using Atomic
Embeddings

Pixel clustering splits an image into groups or clus-
ters of pixels that have similar features, such as color,
spatial location, and so on [20, 25]. It reduces the com-
plexity of an input image and makes its further analysis
more efficient. In some cases, it is used as a prepro-
cessing step of higher-level techniques.

In this research, we consider the k-means clustering
algorithm, which is a classic unsupervised learning
method. It takes a set of vectors I = {p;,p,,..., pn} and
partitions it into k disjoint clusters C = {C,,..., C;} that
minimize the following objective function:

J(©) =2k Tpeg, Ip—m[’, @
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where m; is a mean vector of the set C; and |-| denotes a

norm. Vectors {m]-} are called centroids. Note that k is a
hyperparameter of the method.

Finding the minimum of the function (7) belongs to
NP-hard problems. A wide range of heuristic methods
providing an approximate solution have been recently de-
veloped [38]. The following approach is considered the
“standard” k-means clustering algorithm:

- Initialization. Set an initial set of centroids
{my,....my}.

- Assignment. Assign each vector p_j to the clus-
ter set whose centroid is the closest.

- Update. Update centroids: for each j=1,2, ..., k,

where n; is the number of elements of the cluster C;.

- Test. Compute the sum of norms of the differ-
ences between the corresponding current and previous
centroids. If it is greater than the predefined threshold,
then go back to step 2. Else, stop computations.

Time complexity of the iterative part can be pre-
sented as follows:

T = O(Ndki), 8)

where N and d are, respectively, the number of clustered
samples and their dimensionality, k is the number of clus-
ters, and i is the number of iterations.

We note that the result significantly depends on the
initial values chosen for the centroids {m,,...,my}. In
applications, the most common approach is k-means++
[39]. It selects centroids using sampling based on an em-
pirical probability distribution of the vectors [ = {pj}.
This initialization is slower than the use of random pick-
ing, but it ensures better clustering in combination with
faster convergence.

In pixel clustering, vectors p; represent points in a
color space. Currently, we consider 24-bit full-color im-
ages. So, pj is a vector of RGB-components (r,g,b),
where each component is an integer from the range
(0,1,...,255). Note that normalization is usually applied
before performing clustering.

Further, we propose two modifications of the k-
means clustering algorithm that utilize atomic embed-
dings of images and explore the performance of the sug-
gested approaches.

4.2. The K-Means Algorithm Modifications

Consider pixel clusterization of a given d-channel
image with N pixels. Time complexity of the iterative
part of the standard k-means algorithm is given by the
asymptotic formula (8). It follows that if k and d, which

specify the number of clusters and the dimensionality, re-
spectively, are fixed, then a reduction of computations
can be achieved by reducing the following items:

- Iterations. Indeed, a smaller value of i ensures
fewer iterations. The proper initialization of the centroids
{mjy, ..., mJ} might accelerate the convergence and, there-
fore, reduce the required number of iterations.

- Samples. The number of analyzed pixels (N) is
the major factor upon which the overall time complexity
depends. However, to reduce it, major modifications of
the clustering algorithm are needed.

We suggest the use of the k-means clustering
method in combination with atomic embeddings of digi-
tal images. We propose to apply this algorithm to an im-
age preview that is reconstructed using the block €,
and, further, utilize the computed centroids for analysis
of a source image. Figures 9 and 10 illustrate this idea.
Indeed, the image preview shown in Figure 10 contains a
significant amount of the color features of the source im-
age given in Figure 9 and consists of fewer pixels. It is
expected that preview analysis is faster, and its results are
useful for analyzing a source image. It is clear that some
modifications of the algorithm are required. We present
them below.

Our first suggestion is to use image preview cen-
troids as initializations for the algorithm that clusters the
corresponding source image. The following steps provide
the details:

- Preview clustering. Cluster a preview of a
given image using k-means++ and find the centroids
{uq, ..., u} of the obtained clusters.

- Source clustering. Cluster a given source im-
age using the following approach: set initial centroids to
{uq, ..., ux}, which are computed at the previous step, and
perform the standard k-means method.

We call this algorithm k-means clustering with ini-
tialization by image preview centroids and denote it by
k-means (I).

Another proposition is to cluster a given source im-
age directly by centroids of its preview:

- Preview clustering. Cluster a preview of a
given image using k-means++ and find the centroids

{uq, ..., u} of the obtained clusters.
- Source clustering. Cluster a given source im-
age by {uy,..., 1} In other words, the cluster of each

.....

We call this technique k-means with cluster predic-
tion by image preview centroids and denote it by k-
means (P). It is clear that this method is a partial case of
the previous approach. Indeed, k-means (P) is the k-
means (I) with a single iteration at the second step.
Hence, it requires fewer computations and, thus, is faster.

Both modifications are expected to be less time-
consuming than the classic k-means algorithm. In gen-
eral, they produce different clustering results. So, their
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comparison should be performed using proper numerical
indicators. Further, we introduce them.

4.3. Metrics

To explore the efficiency of the proposed modifica-
tions of the k-means clustering method, we suggest sev-
eral metrics that evaluate time performance and the dif-
ference between clusters provided by the considered
methods.

Denote by T, (k) the time of clustering a given im-
age using the algorithm A, where k is the number of clus-
ters and A is one of the following algorithms: k-means++,
k-means (I), or k-means (P). Consider the following ac-
celeration ratios (AR):

AR;(K) = Tx-means++(K) / Tk—means () k), ©)

ARP(k) = Tk—means++(k) / Tk—means P (k) (10)

The indicators (9) and (10) measure, respectively,
how much faster the algorithms k-means (I) and k-means
(P) run compared to k-means++, which is considered as
a standard (reference).

Now, we introduce a criterion that measures clus-
ters’ similarity.

Let I = {p1,p2,-.., Pn} be a set of pixels of a given
image. Applying the k-means++ algorithm to I computes
centroids of clusters M = {m,, ..., my} and the clusteri-
zation map C = {cy,Cy,...,Cy}, Where ¢; specifies the
cluster of the pixel p; foranyj=1,2,...,N.

Further, let A= NS and
¥ = {o04,0,,...,0y} be cluster centroids and the clusteri-
zation map provided by applying the k-means (I) to the
same image 1.

To evaluate the difference between C and X, the cor-
respondence between clusters, which are produced by k-
means++ and k-means (I), is required. We construct it as
follows:

_____ (11)
wherei=1,..., k.

Next, let us apply the mapping (11) to each element
of X. We obtain W={{;,s,,..., Iy}, where
¥ =p(0)),j =12,...,N.

Now, when a proper correspondence between clus-
ters is built, we introduce clusterization similarity that is
defined by the formula:

SiMy_means 1y (K) = 5 - 100%, (12)

where T is the number of elements of the set Il =
eld,...N:y; =}

The indicator (criterion) (12) measures the percent-
age of similarity between the clusterization maps pro-
vided by the k-means++ and k-means (I) algorithms.

Clusterization similarity Simy_means (py(K) be-
tween the clusterization maps produced by k-means++
and k-means (P) is defined in the same way.

Figure 11 shows the results of the application of k-
means++, k-means (I), and k-means (P) techniques to the
image given in Figure 9 with k = 10. Visually, the clus-
terization maps can be considered as identical (see Fig-
ures 11 (b), 11 (c), and 11 (e)), but there are dissimilarities
marked with bright color (see data in Figures 11 (d) and
). Also, Simy_means (1) (10) = 94% and
Simy_means (p)(10) = 86%, which are equal to the per-
centage of “bright” pixels presented in Figure 11 (d) and
(f), respectively.

The results shown in Figure 11 have been obtained
using the Scikit-learn library [40]. Computations have
been performed on AMD Ryzen 5 5600H 3.30 GHz CPU.
The following values of ARs have been computed:
AR;(10) = 2.47 and ARp(10) = 24.24.

This example shows that the proposed modifica-
tions of the k-means algorithm ensure nearly the same
clustering while significantly reducing the computational
time. A deeper exploration is given below.

4.4. Test Data Processing

Now, we compare the k-means++ method to k-
means (I) and k-means (P) in terms of the proposed met-
rics. We conduct exploration using a set of different full-
color 24-bit images. The following procedure is applied
to each sample (test image):

- Preview construction. Compute atomic em-
beddings Q,, for a given source image and reconstruct
an image preview;

- Clustering. Perform k-means++ method, k-
means (1) and k-means (P);

- Evaluation.  Compute  Simy_peans (p)(K),
Sirnk—meams () (k)! ARl(k) and ARP(k)-

In this research, we use k = 2,3,...,20. Atomic em-
beddings are provided by DAT1 based on the DAT of
depth 5 and the function ups, (x).

In addition to the proposed metrics, we also evalu-
ate the silhouette coefficient (SC) [41]. This indicator
provides numerical interpretation and validation of con-
sistency within clusters of data. It varies in the range
[-1,1]. The higher the value of SC, the better the cluster-

ing.
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f
Fig. 11. Clustering the image shown in Figure 9
using the k-means++, k-means (I) and k-means (P)
algorithms with k = 10: (a) Source image; (b) Clus-
terization map by k-means++; (c) Clusterization map
by k-means (1); (d) The difference between clusteri-
zation maps produced by k-means++
and k-means (1) (points with “identical clusters”
are dark); (e) Clusterization map k-means (P); (
f) The difference between clusterization maps pro-
duced by k-means++ and k-means (P).
In this case, Simy_means 1) (10) = 94%
a.nd Simk_means (P) (10) = 86%

Moreover, we perform the same analysis of cluster-
ing using discrete wavelet transform (of depth 5) based
on the Haar wavelet [27].

All computations are performed using the Scikit-
learn library [40] on AMD Ryzen 5 5600H 3.30 GHz
CPU.

We start with a sample image offered by the Euro-
pean Space Agency (ESA). Its scaled copy is given in
Figure 9. The mage preview obtained using atomic em-
beddings is shown in Figure 10. The sizes of the source
and the preview images are 3556 x 3486 and 113 x 110
pixels, respectively.

Table 1 presents the results of the clustering using
the k-means (I) method. Also, it shows values of the in-
dicator SC provided by the application of k-means++.
Also, Figures 12, 13 and 14 compare the behavior of
Simy_means (1), ARy and SC with respect to the number of
clusters (k) growth.

Table 1
Clustering the image shown in Figure 9
using k-means (I)

‘ S'mlol/zlmy’ AccerI;tLatlon Silhouette coefficient
DAT | Haar | DAT | Haar | “1" | DAT | Haar

2 99 99 | 143|160 | 0.59 | 0.58 | 0.56
3 99 99 | 199|189 | 0.61 | 0.60 | 0.60
4 96 98 | 243|218 | 055 | 0.52 | 0.51
5 94 96 | 181|237 | 050 | 051 |0.51
6 98 98 | 230|185 0.46 | 0.45 | 0.46
7 85 85 | 254201043 043|044
8 99 99 | 178|140 | 0.39 | 0.43 | 0.43
9 83 90 | 233|238 043 |0.44 | 0.40
10 | 94 75 | 248 | 211 | 040 | 0.41 | 0.39
11| 92 67 | 1.83 | 168 | 040 | 0.42 | 0.36
12 | 73 92 | 275|114 ] 035 | 0.35| 0.34
13| 73 76 | 240 | 241 | 0.38 | 0.40 | 0.32
14 | 85 82 |339|153]| 038|032 0.34
15| 98 90 | 219|144 037 |0.34|0.33
16 | 80 78 | 192|182 | 0.34 | 0.34 | 0.36
17 | 85 78 | 399 (225|032 | 0.34|0.33
18 | 81 74 | 325|247 032|035 0.33
19| 77 71 | 3.48 | 3.58 | 0.34 | 0.35 | 0.36
20 | 67 68 | 2.20 | 3.57 | 0.34 | 0.33 | 0.32
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Fig. 12. Clustering the image shown in Figure 9 using
k-means (I): the dependence of the similarity indicator
Simy_means (1y ON the number of clusters k

Further, the results of the clustering using k-means
(P) are given in Table 2. Figures 15-17 visualize them.

The given Tables are available at the following link
to Google Drive folder:
https://drive.google.com/drive/fold-
ers/115fGW8rcD9fIvNtAn7Trqg EOTdTx&82Jf?usp=driv
e_link.



https://drive.google.com/drive/folders/115fGW8rcD9fJvNtAn7Trq_E0TdTx82Jf?usp=drive_link
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—e—DAT —m—Haar

Fig. 13. Clustering the image shown in Figure 9 using
k-means (I): the dependence of the acceleration rate
AR; on the number of clusters k
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Fig. 14. Clustering the image shown in Figure 9 using
k-means (I): the dependence of the silhouette coeffi-

cient SC on the number of clusters k

Table 2
Clustering the image shown in Figure 9
using k-means (P)

‘ Slmlol/(a;\rlty, ACCtarI;;anon Silhouette coefficient

DAT | Haar | DAT | Haar | “7%" | DAT | Haar
2 97 97 9.76 | 10.84 | 0.59 | 0.57 | 0.57
3 98 96 | 11.27 | 10.14 | 0.61 | 0.59 | 0.53
4| 95 | 94 |17.19|16.86 | 0.55 | 0.51 | 0.50
5 87 90 | 20.18 | 18.21 | 0.50 | 0.50 | 0.50
6 96 86 | 16.20 | 15.01 | 0.46 | 0.49 | 0.43
7 81 76 | 23.33 | 2251 | 0.43 | 0.48 | 0.46
8 84 75 | 31.45|29.23 | 0.39 | 0.42 | 0.42
9 77 79 | 27.37 | 25.38 | 0.43 | 0.44 | 0.42
10 | 86 75 | 24.24 | 2259 | 0.40 | 0.38 | 0.39
11| 82 80 | 23.72| 24.63 | 0.40 | 0.39 | 0.37
12| 75 76 | 33.06 | 32.56 | 0.35 | 0.36 | 0.37
13| 78 69 | 30.02|29.29 | 0.38 | 0.38 | 0.33
14 | 83 75 | 30.65|30.48 | 0.38 | 0.35 | 0.34
15| 83 76 | 35.75| 33.55| 0.37 | 0.34 | 0.31
16 | 81 76 | 41.08 | 3894 | 0.34 | 0.32 | 0.34
17| 82 67 | 40.58 | 39.45| 0.32 | 0.35 | 0.32
18| 81 68 | 45.17 | 42.36 | 0.32 | 0.35 | 0.33
19| 75 67 | 46.52 | 45.29 | 0.34 | 0.33 | 0.29
20| 73 63 | 47.23 | 4584 | 0.34 | 0.30 | 0.31

Consider also a sample image from the Land-
Cover.ai dataset [42]. Its scaled copy is shown in Figure
18. The original size is 8973 x 9429 pixels. It is an image
of a very high resolution with a huge number of pixels.
Figure 19 presents its preview obtained using atomic em-
beddings. One can see that the preview preserves many
features that might be useful for pixel clustering the
source image.

Tables 3 and 4 present the result of clusterization of
the considered image by k-means++, k-means (I) and k-
means (P). Figures 20-25 provide their visualization.
This data are available at the following link to Google
Drive folder: https:/drive.google.com/drive/folders/
1rP12eB1QTW8vgZM4iveyEor-
Zobp_an59?usp=drive_link.

el
“u =,

2 345678 91011121314151617181920
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Fig. 15. Clustering the image shown in Figure 9 using
k-means (P): the dependence of the similarity indicator
Simy_means (py ON the number of clusters k

23456 7 8 91011121314151617181920
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Fig. 16. Clustering the image shown in Figure 9 using
k-means (P): the dependence of the acceleration rate
AR, on the number of clusters k
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Fig. 17. Clustering the image shown in Figure 9 using
k-means (P): the dependence of the silhouette coeffi-
cient SC on the number of clusters k

Fig. 18. Sample image from the LandCover.ai dataset
(scaled copy is displayed). Original: 8973 x 9429 pix-
els, 24-hit, 242 MB (raw)

Fig. 19. Reconstruction of an image shown in Figure
18 using Q. A true-size image is displayed: 282 x
296 pixels, 24-bit, 245 KB (raw)
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Fig. 20. Clustering the image shown in Figure 18 using
k-means (I): the metric Simy_pmeans (1)
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Fig. 21. Clustering the image shown in Figure 18 using
k-means (I): the metric AR,
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Fig. 22. Clustering the imageshown in Figure 18 using
k-means (I): the indicator SC
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Fig. 23. Clustering the image shown in Figure 18 us-
ing k-means (P): the metric Simy_means (p)
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Clustering the image shown
in Figure 18 by k-means (1)

T

able 3

Simi)larity, Acceleration Silhouette coefficient
Kk % rate
DAT | Haar | DAT | Haar | 7" | DAT | Haar
2 | 99 99 | 173 | 1.62 | 0.56 | 0.57 | 0.59
3] 99 98 | 2.06 | 1.98 | 0.52 | 0.52 | 0.55
4 | 98 99 | 172 | 1.75 | 0.49 | 0.44 | 0.48
51| 95 92 | 3.34 | 253 | 0.48 | 0.45 | 0.47
6 | 93 89 | 299 | 1.77 | 0.47 | 0.44 | 0.44
7 | 66 99 | 342 | 213 | 0.45 | 0.46 | 0.45
8 | 79 83 | 293 | 2.05 | 0.42 | 0.41 | 0.40
9 | 96 82 | 3.85 | 1.60 | 0.38 | 0.39 | 0.38
10| 94 89 | 340 | 1.54 | 0.39 | 0.38 | 0.39
11| 74 72 | 3.05 | 1.47 | 0.37 | 0.40 | 0.38
12| 71 82 | 268 | 2.08 | 0.34 | 0.36 | 0.37
13| 78 83 | 524 | 472 | 0.33 | 0.33 | 0.36
14 | 63 72 | 475 | 3.65 | 0.33 | 0.36 | 0.35
15| 79 81 | 474 | 450 | 0.33 | 0.30 | 0.31
16 | 68 75 | 405 | 3.52 | 0.32 | 0.30 | 0.30
17 | 82 63 | 457 | 225 | 0.33 | 0.31 | 0.29
18| 70 73 | 247 | 3.73 | 0.27 | 0.31 | 0.30
19| 70 65 | 4.28 | 3.67 | 0.29 | 0.29 | 0.29
20 | 64 64 | 2.86 | 4.63 | 0.29 | 0.29 | 0.30
Table 4
Clustering the image shown
in Figure 18 using k-means (P)
Similarity, Acceleration Silhouette coeffi-
K % rate cient
DAT | Haar | DAT | Haar |“™" | DAT | Haar
2 | 99 98 | 14.23 | 15.10 | 0.56 | 0.58 | 0.61
3| 98 95 | 18.55 | 15.36 | 0.52 | 0.52 | 0.51
4 | 92 92 | 17.50 | 15.20 | 0.49 | 0.50 | 0.50
51 95 84 | 27.35 | 22.71 | 0.48 | 0.47 | 0.45
6 | 92 77 | 21.54 | 19.28 | 0.47 | 0.42 | 0.44
7 | 65 86 | 26.94 | 23.00 | 0.45 | 0.43 | 0.40
8 | 79 78 | 37.88 | 24.71 | 0.42 | 0.35 | 0.41
9 | 93 78 | 38.43 | 26.68 | 0.38 | 0.40 | 0.37
10| 91 76 | 42.36 | 28.11 | 0.39 | 0.40 | 0.34
11| 69 66 | 33.05 | 27.48 | 0.37 | 0.36 | 0.33
12 | 68 86 | 44.51 | 30.74 | 0.34 | 0.35 | 0.32
13| 76 79 | 49.91 | 37.61 | 0.33 | 0.37 | 0.31
14| 61 71 | 51.44 | 38.29 | 0.33 | 0.36 | 0.31
15| 75 77 | 50.83 | 37.84 | 0.33 | 0.31 | 0.32
16 | 66 79 | 4761 | 376 | 0.32|0.32|0.30
17| 79 76 | 42.46 | 35.10 | 0.33 | 0.31 | 0.28
18 | 69 73 | 49.85 | 40.02 | 0.27 | 0.30 | 0.29
19| 71 73 | 49.59 | 37.30 | 0.29 | 0.31 | 0.29
20 | 65 65 | 60.55 | 46.98 | 0.29 | 0.26 | 0.29
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Fig. 24. Clustering the image shown in Figure 18 using
k-means (P): the metric ARp
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Fig. 25. Clustering the image shown in Figure 18 using
k-means (P): the indicator SC

We also consider the USC-SIPI Aerials dataset
available at the following site of the Signal and Image
Processing Institute of the University of Southern Cali-
fornia (USC-SIPI): https:/sipi.usc.edu/database/ data-
base.php?volume=aerials. Images from this dataset are
smaller than the samples considered above. Figure 26
shows the largest of them, which is a 2250 x 2250 pixels
image. Figure 27 presents its preview. It is clear that the
majority of image features are lost. Hence, the results of
the evaluation of the similarity indicators and silhouette
coefficients are of particular interest. Below, we present
their aggregated values. All other results can be found at
the following link: https://drive.google.com/drive/ fold-
ers/INyB7TWC]TT2K4s02CB1k7mAM-
FgB76G7H?usp=sharing.

Tables 5 and 6 contain the aggregated results of
evaluation of clustering images from the USC-SIPI Aer-
ials dataset using k-means++, k-means (I) and k-means
(P). Figures 28-31 provide their visualization.



https://sipi.usc.edu/database/%20database.php?volume=aerials
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Fig. 26. Sample image from the Classic Aerials
dataset (USC-SIPI Aerials). A scaled copy is displayed.
Original image: 2250 x 2250 pixels, 24-bit,
14.48 MB (raw)

Fig. 27. Reconstruction of an image shown
in Figure 26 using Q. A true-size image is displayed:
72 x 72 pixels, 24-bit, 15.18 KB (raw)

4.5. Analysis

Analyzing the obtained results, we see the follow-
ing. First, both k-means (I) and k-means (P) ensure high
values of the evaluated similarity indicators
Simy_means (1) and Simy_eans (), respectively, for any
k = 2,3,...,20 and each applied discrete transform. So,
these modifications of the k-means algorithm provide
clusters that are close to clusters produced by k-means+-+.
Furthermore, there is a minor deviation between values
of silhouette coefficients (see Figures 14, 17, 22, 25, 29,
and 31), which means that the produced clusters have
nearly the same quality measured by the indicator SC.

Besides, the proposed methods perform faster than
k-means++, which is shown in Figures 13, 16, 21, and
24. Specifically, k-means (P) guarantees a significantly
higher acceleration compared to k-means (I).

Second, an analysis of the behavior of the similarity
metrics SiMy_means (1) and SiMy_means (py shows that
they cannot be considered homogeneous with respect to
k. There is a significant dependence of these indicators
on the content of the clustered image. However, a de-
creasing trend is obvious with an increase in the number
of clusters, which is illustrated by Figures 28 and 30 that
visualize aggregated data. At the same time, the silhou-
ette coefficient demonstrates a more robust behavior (less
decrease).
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Fig. 28. Clustering images
from the USC-SIPI Aerials dataset using
k-means (1): the metric Simy_means (1

Table 5
Clustering images from the USC-SIPI Aerials dataset
using k-means (1)

Mean simi- Median simi- Mean Silhouette co-
K larity, % larity, % efficient

DAT | Haar | DAT | Haar | DAT | Haar |70
2 98 99 99 99 0.57 | 0.57 | 0.57
3 97 98 99 99 0.51 | 0.49 | 0.50
4 95 96 98 98 0.45 | 0.44 | 0.45
5 95 95 99 98 0.42 | 0.43 | 0.42
6 93 94 97 97 0.40 | 0.40 | 0.39
7 90 90 96 93 0.38 | 0.38 | 0.37
8 86 88 89 92 0.36 | 0.36 | 0.36
9 83 85 86 87 0.35 | 0.34 | 0.34
10| 81 85 82 88 0.33 | 0.33 | 0.34
11| 78 78 76 74 0.32 | 0.32 | 0.32
12| 75 79 76 78 0.31 | 0.31 | 0.32
13| 76 77 74 74 0.30 | 0.30 | 0.31
14| 75 75 74 74 0.30 | 0.30 | 0.30
15| 75 76 73 76 0.29 | 0.30 | 0.30
16| 74 72 74 71 0.29 | 0.28 | 0.29
17| 73 73 73 72 0.28 | 0.28 | 0.29
18| 73 72 71 72 0.28 | 0.28 | 0.29
19| 75 73 75 72 0.28 | 0.27 | 0.28
20| 70 73 69 73 0.27 | 0.27 | 0.28
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Table 6
Clustering images from the USC-SIPI
Aerials dataset using k-means (P)

Mean simi- Median simi- Mean Silhouette co-
K larity, % larity, % efficient

DAT | Haar | DAT | Haar | DAT | Haar |10
2 93 93 95 95 0.56 | 0.56 | 0.57
3 88 82 93 88 0.50 | 0.48 | 0.50
4 82 76 86 77 0.46 | 0.42 | 0.45
5 79 74 80 75 0.41 | 041 | 042
6 79 71 82 72 0.39 | 0.37 | 0.39
7 78 73 80 74 0.37 | 0.34 | 0.37
8 76 70 78 70 0.35 | 0.33 | 0.36
9 72 70 73 72 0.33 | 0.32 | 0.34
10| 71 69 71 70 0.31 | 0.30 | 0.34
11| 70 67 70 70 0.31 | 0.29 | 0.32
12 | 67 65 67 65 0.30 | 0.27 | 0.32
13| 67 65 68 66 0.29 | 0.27 | 0.31
14 | 66 64 66 65 0.28 | 0.26 | 0.30
15| 66 62 65 64 0.27 | 0.25 | 0.30
16 | 66 62 66 64 0.27 | 0.25 | 0.29
17 | 65 61 66 63 0.27 | 0.24 | 0.29
18 | 63 61 64 63 0.25 | 0.23 | 0.29
19| 63 61 65 61 0.26 | 0.22 | 0.28
20| 62 61 65 62 0.26 | 0.23 | 0.28
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Fig. 29. Clustering images from the USC-SIPI Aerials
dataset using k-means (1): the silhouette coefficient
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Fig. 30. Clustering images from the USC-SIPI Aerials
dataset using k-means (P): the metric Simy_,cans (p)
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Fig. 31. Clustering images from the USC-SIPI Aerials
dataset using k-means (P): the silhouette coefficient

Next, comparing the use of DAT- and Haar-based
transforms, the following conclusions can be drawn:

- On average, DAT provides better results than
discrete Haar wavelet transform with respect to the simi-
larity metrics (see Figures 28, 30). However, the differ-
ence is not significant. Moreover, in some particular
cases, Haar-based representation is more efficient;

- Inmost cases, DAT guarantees a higher value of
the silhouette coefficient, but the difference is insignifi-
cant;

- Generally, DAT ensures better time perfor-
mance, especially when it is applied in the scope of k-
means (P) technique.

Despite the minor differences between the DAT-
and Haar-based transforms in terms of the similarity
measure, we have noticed that they produce non-coincid-
ing clusters. If we compare them to clusters provided by
k-means++, we notice the following: the Haar-based
clustering produces greater distinctions at object bound-
aries, while distinctions produced by the DAT-based
technique are more concentrated within objects. Figures
32 and 33 illustrate this phenomenon.

In the next Section, we further discuss the obtained
results from different viewpoints. Also, we consider pos-
sible applications of the introduced methods and atomic
embeddings of digital images.

4.6. Discussion

The proposed modifications of the k-means algo-
rithm can be considered a special heuristic for the initial-
ization of clusters’ centroids. By design, the k-means (P)
technique is the restricted version of k-means (P). De-
spite the simplicity of k-means (P), the results of the test
data analysis show that it provides an acceptable approx-
imation of clusters produced by the k-means++ method.
This feature is due to good approximation properties of
atomic functions and confirms the hypothesis that the im-
age representation by atomic embeddings is ML/CV-ori-
ented with respect to the k-means clustering.
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The highest difference between clusters, produced
by the basic method and the suggested modifications, ap-
pears at object boundaries. This is a consequence of the
aggregating features of the applied discrete transforms.

b
Fig. 32. The difference between clusters provided by k-
means++ and k-means (P) for the image shown in
Figure 9 for k = 12: (a) Haar-based clustering,
Simy_means (p)(12) = 76%; (b) DAT-based clustering,
Simy_means (p)(12) = 75%. The Haar-based clustering
produces greater distinctions at object boundaries,
while distinctions produced by the DAT-based
technique are more concentrated within objects. Scaled
images are given. Original size: 3556 x 3486 pixels

Indeed, in both k-means (I) and k-means (P), the
wavelet coefficients corresponding to the lowest-level
frequency band are applied. However, they contain poor
or no information on object boundaries, especially if the

depth of the wavelet transform is large. The use of a
higher number of blocks of wavelet coefficients could
reduce the deviation, but it would increase the size of the
processed image preview and, hence, computations.

b
Fig. 33. The difference between clusters provided by
the k-means++ and k-means (P) for the image shown in
Figure 18 for k = 13: (a) Haar-based clustering,
Simy_means (p)(13) = 79%; (b) DAT-based clustering,
Simy_means (p)(13) = 76%. The Haar-based clustering
produces greater distinctions at object boundaries,
while distinctions produced by DAT-based technique
are more concentrated within objects. Scaled images
are given. Original size: 8973 x 9429 pixels

In this research, we use the proposed similarity
measure and silhouette coefficient. Their main advantage
is that these indicators do not require labeled data and can
be evaluated in an unsupervised manner. Meanwhile,
they do not assess the relationship between particular
clusters. The intersection over union (IoU) metric might
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be more suitable for this purpose [25]. This classic indi-
cator is widely used in image segmentation analysis and
provides the comparison of two clusters of pixels. So,
IoU is more local than Simy_peans (1) and Simy_pmeans (p)
that analyze the whole cluster maps. We plan to use it in
the future.

Next, this paper considers unsupervised methods
for image analysis and processing. In particular, the DAT
transform produces image embeddings, eliminating the
need for any model training. We apply them in combina-
tion with only one of the wide range of clustering algo-
rithms. We expect that the use of atomic embeddings in
other methods might improve their efficiency.

Further, the matrix transform DAT has flexible set-
tings. By varying its hyperparameters, including the
depth of the array DAT, one may get the desired custom-
ization. Moreover, various mixtures of the atomic func-
tions upg (x) can be used in this transform. Besides, other
function systems, for instance, generalized atomic wave-
lets, can be applied for the construction of image repre-
sentation that is similar to the one considered in this pa-
per [43].

Finally, the obtained results show a slight advantage
of atomic wavelets over the Haar wavelet. The difference
is insignificant since a tiny subset of wavelet coefficients
is applied (currently, the ratio is about 1 to 1024). It is
expected that using more coefficients will make this ad-
vantage more noticeable due to approximation properties
of spaces of atomic functions [23].

5. Conclusions

In this research, we have considered image repre-
sentation, which is built using the atomic functions
ups(x) and called atomic embeddings, from the image
analysis perspective. Discrete atomic transform was ear-
lier developed mainly for solving image compression
tasks [26, 29]. It is the core of the DAC algorithm, which
provides both compression and encryption features [21].
In this paper, we have proposed applying atomic embed-
dings to solve machine learning and computer vision
tasks.

The potential of the proposed approach has been
demonstrated with respect to the k-means clustering al-
gorithm. This classic unsupervised learning technique is
widely applied as a part of complex image analysis pipe-
lines [44] aimed to solve applied problems of innovate
agriculture [45, 46] and medicine [47, 48].

We have introduced two modifications of the k-
means algorithm. Both proposed approaches leverage a
minor part of atomic embeddings. Their efficiency has
been evaluated using acceleration ratio and clusterization
map similarity metrics. The analysis of test remote sens-

ing images has demonstrated a significantly faster ap-
proach to achieving nearly the same clustering results.
Hence, image representation by atomic functions upg(x)
is ML/CV-oriented in terms of k-means clustering.
Meanwhile, we expect that image representation by
atomic functions up,(x) might be useful in a considera-
bly wider range of ML/CV methods. In particular, it
could be useful in semantic and instance segmentation
[25, 44], where the proposed modifications of k-means
could be performed as a preprocessing step. This can be
one of the tasks to be solved in the future.

We have also compared the atomic and Haar wave-
lets. It follows that, in general, atomic wavelets perform
better. However, the obtained results do not provide a
comprehensive comparison in terms of their usability in
image analysis. Moreover, other wavelet systems have
not been considered. This aspect will be addressed in fu-
ture research.
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[IU®POBE MPEJICTABJEHHS 305PAKEHD 3A JIOIOMOI'OI0 ATOMHHMX ®YHKIIIMI:
OCOBJIMBOCTI JJIs1 KOMIT'FOTEPHOI'O 30PY TA MAIIMHHOI'O HABUYAHHS

B. O. Makapuues, B. B. JIykin,
C. C. Kpugenko, 1. B. bpucina

udposi 300paxkeHHsI, OTpUMaHi 3a JIOIMOMOI'OI0 CUCTEM AMCTaHIIHHOrOo 30HAYBaHH: (/13), cTany BayKITMBUMU
B YHMCJICHHUX TEXHOJIOTTYHUX 3aCTOCYBaHHSX y PI3HHX Taly3sX, BKIIOYAIOYM MOHITOPHMHI HaBKOJMIIHBOTO CEPeno-
BHIIIA, CILChKE FOCIIOAPCTBO, MiChKE IIaHYBaHHS Ta 000poHy. [TOpiBHSHO 3 IHIIMMU THIIAMH TAHHUX, TXHIA 3HAYHUIHA
PO3MIp CTBOPIOE TPYIHOILI /ISl ePEKTUBHOTO 3aCTOCYBaHHSI METO/IiB MarmHHOro HapuauHs (MH) ta koMmm'toTepHoro
30py (K3). 3okpema, 00poOka TaKMX BETUKOMACIITAOHUX TAHUX MOXKE OYTH O0UYHMCITIOBATIBHO PECYPCOEMHOIO T TPY-
JIOMICTKOIO, 1110 YCKIIQJHIOE PO3ropTanHs TpaauiiiHux MetoniB MH ta K3 y cieHapisix, 1o BUMaratotTh pearyBaHHs
B PEXHUMI peasibHOro 4yacy, abo B cHCTeMax 3 00OMEKEHHMH pecypcamu oOpOoOKH, TAKUX SIK aBTOHOMHI TUIAT(OpMHU.
OnHKUM 3 KITFOUOBUX MHUTAaHb y I[bOMY KOHTEKCT] € po3p0o0Ka KOMIIAKTHUX MPEACTAaBIIEHb 300paxKeHb, siKi 30epiraroTh
BaXJTUBI XapaKTEPUCTHKH JJISl MOJANbIIOro aHamizy. Lli npeicraBiieHHs OBHHHI 3MEHIIYBATH PO3MIPHICTh JTAHUX
0e3 BTpatu KpuTH4HO iH(popMarii, HeoOXiaHoT st Kiacudikalii, kmactepusaiii Ta iHmmx 3apnanb MH/K3. Y nsomy
JIOCITI/DKEHH] MU JIOCTIIKYEMO JUCKpeTHe aToMapHe neperBopenHs (DAT), sike 6a3yeThess Ha aTOMApPHUX (YHKIIISX,
SIK TIOTEHIIIiHe pimmeHHs wiei mpobmemu. [lonepenni mocmimkenns mokasanm, mo DAT Hagae 1iHHI mepeBaru 3 TOYKH
30py CTHUCHEHHs Ta mm(pyBaHHs AaHHX, 3a0e3neuyroun Oe3rnedHe Ta eeKTUBHE 30epiranHs Ta nepeaady. MeToro
iei podotu € ominka npuaatHocTi DAT mns 3acrocyBanp MammHHOTO HaBYaHHA (ML) Ta KOrepeHTHOI TiarHOCTHKU
(CV), 30kpema B KOHTEKCTi KJacTepu3arlii 300pakeHb. MH OIiHIOEMO MTPOAYKTUBHICTE BiIOMOT0 aJrOPUTMY KJlacTe-
pusariii k-cepenHix mpu 3acTocyBaHHI 10 300pakeHb, IpeAcTaBIeHUX 3a gonomoroio DAT. EkcriepuMmenTanbHi pe-
3yJIbTaTH MOKa3yIoTh, 10 BUKoprcTaHHI DAT 3Ha4HO CKOpodye Yac 0OUUCIIEHHS, JOCATal0ul 0araTOKpaTHOTO pH-
CKOpeHHsI, 0e3 KoM [T AKOCTi Knactepusartii. Lle cBimuants mpo Te, mo DAT He TiapKu MiHIMI3Ye po3Mip JaHUX,
ae ¥ 30epirae CTPYKTYpHi Ta CTATHCTHYHI OCOOIMBOCTI, BXKJIMBI IS 3aBIaHb, 3ACHOBAHNX HA HABUYAHHI.

Kuro4uoBi ciioBa: mpencraBieHHs 300pakeHHsT; aToMapHa (YHKIIS; TUCKPETHE aTOMHE IIepETBOPEHHS, aTOMHI
BOYIOBYBaHHS;, KJIACTEPH3AIIisl 300paskeHb.
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