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Digital images obtained from remote sensing (RS) systems have become essential in numerous technological 

applications across diverse domains, including environmental monitoring, agriculture, urban planning, and de-

fense. These images are typically characterized by high spatial and spectral resolution, resulting in large data 

volumes. Compared to other data types, their substantial size presents challenges in terms of the efficient appli-

cation of machine learning (ML) and computer vision (CV) methods. In particular, the processing of such large-
scale data can be computationally intensive and time-consuming, making it difficult to deploy conventional ML 

and CV techniques in scenarios requiring real-time responses or in systems with limited processing resources, 

such as autonomous platforms. One of the key issues in this context is the development of compact image repre-

sentations that retain essential features for further analysis. These representations must reduce data dimension-

ality without losing critical information required for classification, clustering, and other ML/CV tasks. In this 

study, we explore the discrete atomic transform (DAT), which is based on atomic functions, as a potential solu-

tion to this problem. Previous research has demonstrated that DAT provides valuable benefits in terms of data 

compression and encryption, thereby enabling secure and efficient storage and transmission. The focus of this 

work is to assess whether DAT is suitable for ML and CV applications, particularly in the context of image 

clustering. We evaluated the performance of the well-known k-means clustering algorithm when applied to DAT 

images. The experimental results demonstrate that using DAT significantly reduces computation time, achieving 
multiple-fold acceleration, without compromising clustering quality. This suggests that DAT not only minimizes 

data size and preserves structural and statistical features relevant to learning-based tasks. These results indicate 

that the integration of DAT into preprocessing pipelines for RS imagery is a promising approach. The proposed 

method can enhance the efficiency of downstream ML and CV algorithms, especially in constrained environ-

ments where computational resources are limited. Overall, the discrete atomic transform is a practical and 

versatile method for improving the scalability and applicability of intelligent image analysis in remote sensing 

and related fields. 
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tering. 

 

1. Introduction 
 

1.1. Motivation 
 

Remote sensing (RS) imagery has become a key 

data source for diverse fields including ecological moni-

toring [1], precision agriculture [2, 3], urban develop-

ment [4], disaster response [5, 6], oceanographic studies 

[2, 7], and defense [8]. Modern RS sensors are capable of 

capturing extremely high-resolution images –often with 

tens of millions of pixels per frame. While this improves 

analytical potential, it simultaneously introduces signifi-

cant challenges related to memory usage, transmission, 

and computational load [9]. Standard image compression 

techniques [10] help mitigate some of these limitations 

[11], but when RS images are subjected to machine learn-

ing (ML) or computer vision (CV) algorithms, new bot-

tlenecks emerge. 

ML and CV methods frequently operate on raw or 

decompressed images [12,13], demanding substantial 

memory and processing time. Solutions such as GPUs, 

TPUs, and distributed computing have been adopted to 

reduce latency [14], but their deployment is impractical 

in many real-world systems [15]. For example, edge de-

vices and autonomous platforms are typically con-

strained by limited power, compute capacity [16], and 

network bandwidth [17]. Moreover, transferring large RS 

images via communication links can be infeasible due to 

bandwidth limitations or interference. This creates an ur-

gent need for compact image representations that reduce 

data size while preserving relevant features for ML/CV 

analysis. Conventional compression algorithms were not 

designed with learning tasks in mind. As such, the inte-

gration of compact representations that combine efficient 

compression with learning-readiness becomes a compel-

ling research direction. Prior studies of the discrete 

atomic transform (DAT) have demonstrated its strong 
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compression and approximation capabilities, while more 

recent work shows that lossy DAT compression intro-

duces only minor accuracy loss for classification tasks. 

These results suggest that DAT might enable fast and ef-

ficient learning, especially in unsupervised scenarios. 

The potential of DAT to accelerate key algorithms such 

as clustering without degrading their output quality rep-

resents a valuable opportunity for further exploration. 

 

1.2. State-of-the-art 
 

The exponential growth in the use of remote sensing 

(RS) imagery has led to significant efforts aimed at re-

ducing the computational burden associated with pro-

cessing such large-scale data. High-resolution images 

generated by modern RS systems are routinely used in 

ecological, agricultural, urban, and security applications, 

but their vast size creates constraints on memory, trans-

mission, and real-time processing. Compression algo-

rithms have been widely adopted to address storage and 

bandwidth limitations. However, these solutions alone do 

not resolve challenges related to data analysis using ma-

chine learning (ML) and computer vision (CV) tools. ML 

and CV techniques extract meaningful patterns from data 

and often work with full-resolution or decompressed im-

agery, making the analysis process computationally ex-

pensive. To alleviate this, solutions involving GPU accel-

eration, cloud computing, and distributed systems have 

been implemented. Yet, such architectures are not always 

feasible for real-world edge devices and autonomous sys-

tems due to constraints in power and connectivity.  

While many general-purpose and image-specific 

compression methods exist [18], they are traditionally 

optimized for human visual perception and efficient stor-

age rather than ML/CV compatibility [19]. As a result, 

they may discard features that are semantically meaning-

ful for automated analysis [20]. There is growing interest 

in developing representations that are both compact and 

learning-aware. 

The discrete atomic transform (DAT), which is 

based on atomic functions, has shown promise in this di-

rection [21]. Recent studies demonstrate that DAT 

achieves good compression ratios while preserving im-

portant image characteristics [22]. Moreover, DAT has 

been shown to maintain classification accuracy under 

lossy compression [23], indicating its potential utility in 

broader ML/CV applications such as image clustering 

[24] and segmentation [25]. 
 

1.3. Objectives  

and the approach 
 

This research aims to evaluate whether image rep-

resentations based on the discrete atomic transform 

(DAT) can serve as effective input for machine learning 

(ML) and computer vision (CV) tasks, particularly under 

resource-constrained conditions. Traditional compres-

sion algorithms are not optimized for learning-based ap-

plications, leading to inefficiencies when decompressing 

data for ML/CV analysis. 

Our objective is to assess the DAT’s ability to re-

duce image size while maintaining clustering perfor-

mance in unsupervised learning settings. We focus on the 

widely used k-means algorithm as a benchmark task. To 

this end, we propose and test two modifications of the 

standard k-means algorithm that operate directly on DAT-

based image representations. The aim is to achieve simi-

lar clustering quality with significantly lower computa-

tional costs. This work aligns with current efforts to de-

velop edge-friendly ML strategies by providing a scala-

ble, efficient alternative to full-resolution image pro-

cessing in RS applications. 

 

2. Materials  

and methods of research 

Denote by M a matrix of a given h×w digital image 

I. In this research, we consider three-channel RS images. 

However, the proposed approaches can be generalized 

for other cases. 

Let T be an image transform that maps M to its rep-

resentation W: 

 

T: M →  W  

 

To train a neural network, it is important to choose 

a dataset that clearly and accurately labels objects. Also, 

the dataset should allow training using different image 

sizes, i.e., it should be of sufficiently high resolution. 

These parameters are important when choosing a da-

taset [21]. By the suggested definition, W is an ML/CV-

oriented representation of I with respect to a given algo-

rithm A if the following conditions are satisfied: 

­ Storing W requires less memory than storing M. 

In other words, data compression is provided. 

­ W can be represented as a set of matrix blocks 

B ={B1, B2, ... , BN}, such that  A(M)  ≈  A(P), where 

P={Bi1, Bi2,... } is a subset of B (𝐿 < 𝑁), and “≈” denotes 

a minor deviation of an output of the algorithm A in terms 

of an appropriate metric(s). This feature means that a 

given ML/CV method can be applied to smaller data 

without significant degradation of its efficiency, and, 

hence, computations could be reduced.  

In our previous research [24, 26], we investigated the 

lossy and lossless compression features of image repre-

sentation by AFs. Based on them, discrete atomic com-

pression (DAC) was developed. As shown, DAC pro-

vides considerable memory savings, especially when 

compressing satellite data [26]. Thus, the first require-

ment is met. Further, to provide the correctness of the 
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comparison A(M) ≈ A(P), one should specify P, how to 

apply A to P, and how to measure the difference. In this 

research, we consider the k-means clustering algorithm 

and image representation W provided by AFs. Therefore, 

the main tasks are as follows: 

­ Indicate which part of the suggested representa-

tion could be used in the k-means algorithm to cluster a 

given image without significant modifications that might 

improve computations; 

­ Provide an appropriate update of the k-means al-

gorithm; 

­ Specify metrics for measuring efficiency; 

­ Perform the comparison of the designed modifi-

cations in terms of the selected indicators. 

We start with the properties of atomic functions and 

their applications to image processing. 

  

3. Image Representation  

by Atomic Functions 
 

3.1. Atomic Functions  

and their Properties 
 

In function theory, a function is called atomic if it is 

a solution with a compact support of a linear functional-

differential equation with constant coefficients and linear 

transformations of an argument [22]. This class of func-

tions can be considered a generalization of wavelets [27]. 

Here, we consider a set of atomic functions given as 

follows: 

 

ups(x) =
1

2π
∫  

∞

−∞
eitx ∏  ∞

k=1

sin2(st(2s)−k)

s2t(2s)−ksin(t(2s)−k)
dt,  

 

(1) 

where s = 1, 2, 3, …. 

A support of ups(x) is a segment [-1, 1], i.e. 

ups(x) = 0 if |x| ≥ 1. Also, for any s, the function 

ups(x) satisfies the equation 

 

y′(x) = 2 ∑  2s
k=1 (y(2sx + 2s − 2k + 1) −

−y(2sx − 2k + 1)). 

(2) 

 

The equation (2) has a simple interpretation. The 

graph of the derivative of ups(x) consists of several 

parts, each of which is similar to the graph of ups(x). 

Figure 1 illustrates this property. 

Despite the complexity of the representation (1), 

atomic functions ups(x) are simple to apply. First, their 

values can be found precisely in points of a dense grid 

using fast algorithms that leverage the principles of dy-

namic programming [28]. Next, their derivatives of any 

order can be easily computed using (2). Finally, due to 

the compactness of the support of ups(x), various numer-

ical expansion schemes, which are based on these map-

pings, have low time and spatial complexity [29]. 

 
(a) 

 
(b) 

 

Fig. 1. Graphs of atomic functions and their deriva-

tives: (a) up1(x) and (b) up2(x) 

 

There are several ways to apply atomic functions as 

constructive tools. One of them is the use of linear com-

binations of translates of ups(x): 

 

φ(x) = ∑ ckups (x −
k

N
) 

k . (3) 

 

Spaces of functions of the form (3) were investi-

gated in [22, 23]. It was shown that these spaces con-

tained algebraic polynomials. Moreover, in their periodic 

versions, there exists a basis that consists of functions 

close to trigonometric. In addition, such spaces are as-

ymptotically extremal for approximating differentiable 

functions. Hence, atomic functions ups(x) have good ap-

proximation properties that guarantee insignificant errors 

when expanding functions to the form (3). A combination 

of these features makes ups(x) as good as trigonometric 

functions for signal and image processing [20, 27]. Fur-

ther, we consider the practical aspects of their applica-

tions. 
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3.2.  Discrete Atomic Transform 
 

When applying a certain system of functions to pro-

cessing and analyzing discrete data, an ability to get or-

thogonal components is preferable [27]. Expansion of a 

function to the sum of orthogonal terms is one of the core 

principles of applying atomic functions to image pro-

cessing [29]. Consider it in more detail. 

Denote by L0 the linear space of functions of the 

form (3). It follows that, in this space, there exists a set 

of nested subspaces {Lk}, such that 

 

­ L0 ⊃ L1 ⊃ L2 ⊃. ..; 

 

­ any function f ∈ Lk can be given in the form 

 

f(x) = ∑   
j cjvk (x − 2k+1 ⋅

j

N
),  

 
where vk(x) is an infinitely smooth function with com-

pact support: 

 

vk(x) = 0, |x| ≥ 2k+1/N. (4) 

 

These conditions mean that each subspace Lk con-

sists of linear combinations of shifts of a single function 

vk(x) with compact support. Moreover, by (4), each basic 

function vk(x) is two times less local than vk−1(x). In 

other words, the spaces {Lk} provide different levels of 

resolution, differing by a factor of two.  

Further, let Wk be the orthogonal complement to Lk 

in the space Lk−1 with respect to the inner product de-

fined by the formula: (f, g) = ∫ f(x)g(x)dx
∞

−∞
. 

This implies that, for any positive integer m, the fol-

lowing orthogonal decomposition holds: 

 

L0 = W1 ⊕ W2 ⊕. . .⊕ Wm ⊕ Lm.  

 

Besides, in each space Wk, there is a basis 

{wk (x − 2k+1 ⋅
j

N
)}

j=0,±1,±2,...
 that consists of shifts of 

the function wk(x) with a support [0, 2k ⋅ 3/N]. 

The system of functions 

 

{wk (x − 2k+1 ⋅
j

N
) , vm (x − 2m+1 ⋅⋅

j

N
)}

k,j
 

(5) 

 

constitutes a basis of the space L0. Each function f ∈ L0 

has the following expansion: 

 

f(x) = ∑  m
k=1 ∑   

j ωj
[k]

wk (x − 2k+1 ⋅
j

N
) +

+ ∑   
j ωj

[m+1]
vm (x − 2m+1 ⋅

j

N
). 

(6) 

 

The system (5) is called the atomic wavelet system. 

Figure 2 shows an example of the expansion (6). 

Wherein, ∑   
j ωj

[m+1]
vm (x − 2m+1 ⋅

j

N
) or Lm-compo-

nents represent the low-frequency profile of a given func-

tion f(x). Combining it with Wk-components (for k =

m, m − 1, . . . ,1, sequentially) provides a reconstruction 

of the source function f(x). Figure 3 is an illustration. 

The concept of the system {Lk} is similar to multi-

resolution analysis (MRA), which is one of the core prin-

ciples of wavelet theory [27]. Since functions vk(x) are 

different, this system belongs to a non-stationary type of 

MRAs [30]. 

 

 
 

Fig. 2. Sample expansion of a function to the atomic 

wavelet system (5): graphs of profiles corresponding to 

different terms of the representation (6) 

 

 
 

Fig. 3. Sample reconstructions of a given function (red) 

by items of its atomic wavelet expansion. Adding more 

terms provides a profile (green) closer to the source 

 

Each function wk(x), vk(x) is infinitely smooth and 

has compact support. So, (5) presents a system of non-
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stationary, infinitely differentiable wavelets with a com-

pact support. In practice, an application of wavelet sys-

tems constructed using a single function might be prefer-

able due to the simplicity of numerical algorithms and 

their implementations. However, stationary systems of 

infinitely smooth, compactly supported wavelets do not 

exist [30]. 

The compactness and locality of the support of 

functions vk(x) and wk(x) ensure the design of rapid ex-

pansion schemes and the reduction of accumulated er-

rors. The high order of smoothness of these functions 

makes them useful, especially for representation of 

smooth signals. Furthermore, they guarantee a good ap-

proximation of a wide range of mappings due to the con-

structive properties of the space L0 mentioned above. 

Let d(x) represents a given one-dimensional vector 

D = (d1, d2, . . . , dn). Denote by Ω = (ωj

[k]
) an ordered 

vector of its atomic wavelet expansion coefficients (see 

(6)). A procedure that maps D to Ω is called discrete 

atomic transform (DAT). Ω can be presented as follows: 

Ω = (Ω0, Ω1, . . . , Ωm), where Ωk = (ωj

[m+1−k]
), k =

0,1, . . . , m. Here, m is called the depth of DAT. Figure 4 

shows an example of DAT of depth 3. Further, we con-

sider two-dimensional DAT and its application to image 

processing.  

 
 

Fig. 4. The structure of a discrete atomic transform  
of depth 3: the correspondence of DAT coefficients  

to different frequency bands 

 

3.3.  Atomic Embeddings of Images 
 

There are several ways to present digital images. 

One of the most common is the use of matrices. In this 

research, we concentrate on this approach. Discrete 

atomic transform of matrices is constructed using the ar-

ray transform DAT as follows [26]. 

Consider two-dimensional matrix M. Apply the ar-

ray transform DAT of the depth m to each row of this 

matrix. A matrix B of intermediate DAT-coefficients is 

computed. Then, apply the array DAT of the depth n to 

each column of B. A block-structured matrix Ω of DAT-

coefficients is obtained. The transform, which maps M to 

Ω, is called the matrix discrete atomic transform of the 

scheme DAT1. Figure 5 illustrates DAT1. It follows that 

Ω = (Ωik)
i,k=0
m,n

, where each block Ωik contains DAT-co-

effcients corresponding to the same frequency band. The 

number of blocks is equal to (m + 1)(n + 1).  

Consider another scheme of the matrix DAT. Apply 

the array DAT of depth 1 to each row of a given matrix 

M and then to each column of the obtained matrix of in-

termediate DAT-coefficients (see Figure 6). This trans-

form is called DAT2 of depth 1. Generally, DAT2 of 

depth m is constructed as follows. DAT2 of depth 1 is 

performed m times; each time this transform is applied to 

the block of the lowest frequency band, i.e., to the upper 

left block (see Figure 7). It is obvious that DAT2 of depth 

m produces 3m + 1 blocks. 

 

 
 

Fig. 5. Discrete atomic transform of matrices:  

the scheme DAT1. First, the array DAT is applied  

to each row of a given matrix, and a matrix  

of intermediate DAT-coefficients is computed. Second, 

the array DAT is applied to each column of this matrix. 

The array DAT of depth 3 is used in the given example 

 

 
 

Fig. 6. Discrete atomic transform of matrices:  

the scheme DAT2 of depth 1. First, the array DAT  

of depth 1 is applied to each row of a given matrix,  

and a matrix of intermediate DAT-coefficients is com-

puted. Second, the array DAT of depth 1  
is applied to each column of this matrix 

 

Both DAT1 and DAT2 produce a set of blocks. To 

solve the data compression task, values of these blocks 

are quantized and then encoded. This method is called 

discrete atomic compression (DAC) [26]. 

The DAC algorithm can be applied to both one- and 

multi-channel images. When compressing full-color 24-
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bit images given by a matrix M of red, green, and blue 

components (RGB), the color space transform RGB-to-

YCrCb is applied at the first step. It produces three ma-

trices Y, Cr, and Cb of luma and chroma components. 

Next, DAT is applied to each of them. After that, the com-

puted matrices of DAT-coefficients are quantized and 

then encoded, usually employing a combination of 

Golomb coding (GC) and context adaptive binary arith-

metic coding (CABAC) [21, 26]. Figure 8 presents the 

general scheme of color image DAC. 

 

 
 

Fig. 7. Discrete atomic transform of matrices:  

the scheme DAT2, general case. The transform DAT2 

of depth 1 is applied several times. Each time the upper 

left block (low-level frequency coefficients) of a matrix 

of intermediate DAT-coefficients is transformed 

 

 
 

Fig. 8. Discrete atomic compression (DAC) 

 of full-color 24-bit images 

 

By design, the DAC is a lossy compression tech-

nique. This means that source and decompressed images 

are not identical. So, distortions are produced. However, 

there exists a quality loss control mechanism [26].  It is 

based on the properties of the atomic functions ups(x) 

and provides an ability to get the desired level of distor-

tion that is measured by the following classic metrics: 

­ Maximum absolute deviation (MAD):  
 

MAD = maxi|Xi − Yi|, 
 

where X = (X1, . . . , XN) and Y = (Y1, . . . , YN) are source 

and reconstructed data, respectively; 

­ Root mean square error (RMSE):  

 

RMSE = √
1

N
∑  N

i=1 (Xi − Yi)
2; 

 
­ Peak signal-to-noise ratio (PSNR):  

 

PSNR = 20log10(255/RMSE). 
 

In DAC, both DAT1 and DAT2 can be used. In [26], 

a comparison of their compression efficiency was con-

ducted. It was shown that these schemes provided nearly 

the same compression ratio (CR) for any PSNR in the 

range from 35 dB to 48 dB. In this case, distortions are 

invisible to the human eye, despite the produced loss of 

quality.  

The DAC algorithm can be modified to ensure loss-

less image compression. To achieve this feature, in [21], 

it is proposed to add encoded differences of source and 

decompressed images to a file with compressed data. 

The convenience of DAC is ensured by the con-

structive properties of the atomic wavelet system (5). The 

locality of its functions provides quite small errors and, 

therefore, the reduction of distortions, as well as linear 

time complexity of the method. And, most importantly, 

the good approximation properties of (5) guarantee the 

data compression feature of DAC. 

DAT1 and DAT2 are based on the same array trans-

form. Nevertheless, these procedures have several major 

dissimilarities. The main difference is that DAT1 pro-

vides deeper decomposition of a source matrix. In gen-

eral, it uses a higher number of functions from the system 

of atomic wavelets (5) and produces more blocks of DAT-

coefficients than DAT2. By construction, the scheme 

DAT2 belongs to classic discrete wavelet transforms 

[27], which have numerous applications in image pro-

cessing [20, 31].  

In a sense, DAT1 provides “richer” image represen-

tation than DAT2 due to the higher number of feature lev-

els. This property improves flexibility, as will be shown 

below, and might be useful in ML/CV.  

Further, both DAT1 and DAT2 have asymptotically 

equivalent time complexity, which is of linear order with 

respect to the number of pixels of the processed image. 

However, our experience shows that DAT1 performs 

faster. This advantage is attributed to the organization of 

the memory hierarchy of computational architectures 

[32]. Indeed, the scheme DAT1 uses more localized ma-

trix data that ensures better utilization of memory caches. 

In addition, DAT1 possesses better capabilities in terms 

of parallel computing [33].  

Given the combination of advantages of DAT1, we 

focus on this scheme of DAT in the current research. Con-

sider it in more detail. 

As mentioned above, DAT1 transforms a given ma-

trix M to Ω = (Ωik) that consists of (m + 1)(n + 1) 

blocks. Each array DAT is based on the atomic function 

ups(x), where s is a fixed positive integer. Therefore, 

DAT1 has three hyperparameters that define its settings. 

When processing images with c channels, a matrix 

specifying each channel is transformed by DAT1 inde-

pendently, and c matrices of DAT-coefficients are ob-

tained. The computed matrices can be combined into a c-
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channel matrix Ω. It represents atomic wavelet features 

of a source image. We call them atomic embeddings. 

Atomic embeddings of images possess the follow-

ing features: 

­ Unsupervisedness. DAT1 is a matrix function. 

This mapping has no unknown parameter that requires 

fitting. There is no need for training. From this point of 

view, DAT1 outperforms auto-encoders [34] that have 

recent applications to data compression [35], especially 

synthetic aperture radar [36] and satellite images [37]; 

­ Low complexity. Time complexity of the 

scheme DAT1 is of the order O(N), where N = hwd and 

h, w, and d are, respectively, height, width, and number 

of channels of a processed image. In terms of computa-

tional complexity, DAT1 is better than discrete cosine 

transform (DCT), which is a classic image processing 

tool [20, 27]. Indeed, the time complexity of DCT is of 

the order O(N2). However, in some partial cases, fast nu-

merical schemes provide O(N ∙ log(N)) [27]. Anyway, 

DAT has a lower time complexity than DCT; 

­ Entire-image transformation capability. 

DAT1 does not require splitting its input into blocks and 

can be applied to an entire image. This distinguishes 

DAT1 from DCT. Due to fundamental properties of trig-

onometric functions, in many applications, the block-

splitting procedure precedes DCT, which is further ap-

plied to each obtained block separately. It is clear that the 

computed DCT-coefficients could be grouped with re-

spect to their frequencies, providing an entire image rep-

resentation. Meanwhile, this additional step increases the 

time of processing and might complicate software imple-

mentations; 

­ Features grouping and shape-preserving. By 

construction, each block Ωik of DAT1's output contains 

certain features of an entire input image. Ω00 has the 

smallest size. It contains an aggregation of source data. 

A downscaled copy of a processed image can be recon-

structed using this block. For example, Figure 9 shows a 

sample satellite image provided by the European Space 

Agency (https://www.esa.int), and Figure 10 presents an 

image reconstructed from the block Ω00. As it can be 

seen, Ω00 provides a source image preview. It preserves 

the shape of many objects and some of their features, es-

pecially colors. Nevertheless, better reconstruction of in-

itial data requires other blocks Ωik. 

Atomic embeddings could be useful in various im-

age analysis tasks. They ensure compact representation 

of image features, and, therefore, their application could 

improve the performance of the existing ML and CV al-

gorithms. It is clear that proving this hypothesis requires 

extensive research.  

In the next Section, we consider the k-means clus-

tering algorithm, which is a classic unsupervised learning 

method, and show that its performance can be increased 

using DAT1. 

 
 

Fig. 9. Sample European Space Agency satellite image. 

Original: 3556 x 3486 pixels, 24-bit, 35.4 MB (raw) 

 

 

 
 

Fig. 10. Reconstruction of an image shown in Figure 9 

using the blocks Ω00 (coefficients of the lowest fre-

quency) of DAT-coefficients. A true-size image is dis-

played: 113 x 110 pixels, 24-bit, 36.5 KB (raw) 

 

4. Results and Discussion 
 

4.1.  K-Means Clustering Using Atomic  

Embeddings 
 

Pixel clustering splits an image into groups or clus-

ters of pixels that have similar features, such as color, 

spatial location, and so on [20, 25]. It reduces the com-

plexity of an input image and makes its further analysis 

more efficient. In some cases, it is used as a prepro-

cessing step of higher-level techniques.  

In this research, we consider the k-means clustering 

algorithm, which is a classic unsupervised learning 

method. It takes a set of vectors I = {p1, p2, . . . , pN} and 

partitions it into k disjoint clusters C = {C1, . . . , Ck} that 

minimize the following objective function: 

 

J(C) = ∑  k
j=1 ∑   

p∈Cj
|p − mj|

2
, (7) 
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where mj is a mean vector of the set Cj and |∙| denotes a 

norm. Vectors {mj} are called centroids. Note that k is a 

hyperparameter of the method. 

Finding the minimum of the function (7) belongs to 

NP-hard problems.  A wide range of heuristic methods 

providing an approximate solution have been recently de-

veloped [38]. The following approach is considered the 

“standard” k-means clustering algorithm: 

­ Initialization. Set an initial set of centroids 

{m1,...,mk}. 

­ Assignment. Assign each vector p_j to the clus-

ter set whose centroid is the closest. 

­ Update. Update centroids: for each j=1,2, ..., k,  
 

mj =
1

nj

∑ p,
p∈Cj

 

 

where nj is the number of elements of the cluster Cj. 

­ Test. Compute the sum of norms of the differ-

ences between the corresponding current and previous 

centroids. If it is greater than the predefined threshold, 

then go back to step 2. Else, stop computations. 

Time complexity of the iterative part can be pre-

sented as follows: 

 

T = O(Ndki), (8) 

 

where N and d are, respectively, the number of clustered 

samples and their dimensionality, k is the number of clus-

ters, and i is the number of iterations. 

We note that the result significantly depends on the 

initial values chosen for the centroids {m1, . . . , mk}. In 

applications, the most common approach is k-means++ 

[39]. It selects centroids using sampling based on an em-

pirical probability distribution of the vectors I = {pj}. 

This initialization is slower than the use of random pick-

ing, but it ensures better clustering in combination with 

faster convergence. 

In pixel clustering, vectors pj represent points in a 

color space. Currently, we consider 24-bit full-color im-

ages. So, pj is a vector of RGB-components (r, g, b), 

where each component is an integer from the range 

(0,1, . . . ,255). Note that normalization is usually applied 

before performing clustering. 

Further, we propose two modifications of the k-

means clustering algorithm that utilize atomic embed-

dings of images and explore the performance of the sug-

gested approaches. 

 

4.2. The K-Means Algorithm Modifications 

 

Consider pixel clusterization of a given d-channel 

image with N pixels. Time complexity of the iterative 

part of the standard k-means algorithm is given by the 

asymptotic formula (8). It follows that if 𝑘 and 𝑑, which 

specify the number of clusters and the dimensionality, re-

spectively, are fixed, then a reduction of computations 

can be achieved by reducing the following items: 

­ Iterations. Indeed, a smaller value of 𝑖 ensures 

fewer iterations. The proper initialization of the centroids 

{m1, ..., mk} might accelerate the convergence and, there-

fore, reduce the required number of iterations. 

­ Samples. The number of analyzed pixels (N) is 

the major factor upon which the overall time complexity 

depends. However, to reduce it, major modifications of 

the clustering algorithm are needed. 

We suggest the use of the k-means clustering 

method in combination with atomic embeddings of digi-

tal images. We propose to apply this algorithm to an im-

age preview that is reconstructed using the block Ω00, 

and, further, utilize the computed centroids for analysis 

of a source image. Figures 9 and 10 illustrate this idea. 

Indeed, the image preview shown in Figure 10 contains a 

significant amount of the color features of the source im-

age given in Figure 9 and consists of fewer pixels. It is 

expected that preview analysis is faster, and its results are 

useful for analyzing a source image. It is clear that some 

modifications of the algorithm are required. We present 

them below. 

Our first suggestion is to use image preview cen-

troids as initializations for the algorithm that clusters the 

corresponding source image. The following steps provide 

the details: 

­ Preview clustering. Cluster a preview of a 

given image using k-means++ and find the centroids 

{μ1, . . . , μk} of the obtained clusters. 

­ Source clustering. Cluster a given source im-

age using the following approach: set initial centroids to 

{μ1, . . . , μk}, which are computed at the previous step, and 

perform the standard k-means method.  

We call this algorithm k-means clustering with ini-

tialization by image preview centroids and denote it by 

k-means (I). 

Another proposition is to cluster a given source im-

age directly by centroids of its preview:  

­ Preview clustering. Cluster a preview of a 

given image using k-means++ and find the centroids 

{μ1, . . . , μk} of the obtained clusters. 

­ Source clustering. Cluster a given source im-

age by {μ1, . . . , μk}. In other words, the cluster of each 

pixel p is equal to arg minj=1,...,k|p − μj|. 

We call this technique k-means with cluster predic-

tion by image preview centroids and denote it by k-

means (P). It is clear that this method is a partial case of 

the previous approach. Indeed, k-means (P) is the k-

means (I) with a single iteration at the second step. 

Hence, it requires fewer computations and, thus, is faster. 

Both modifications are expected to be less time-

consuming than the classic k-means algorithm. In gen-

eral, they produce different clustering results. So, their 
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comparison should be performed using proper numerical 

indicators. Further, we introduce them. 

 

4.3. Metrics 
 

To explore the efficiency of the proposed modifica-

tions of the k-means clustering method, we suggest sev-

eral metrics that evaluate time performance and the dif-

ference between clusters provided by the considered 

methods. 

Denote by TA(k) the time of clustering a given im-

age using the algorithm A, where k is the number of clus-

ters and A is one of the following algorithms: k-means++, 

k-means (I), or k-means (P). Consider the following ac-

celeration ratios (AR): 

 

ARI(k) = Tk−means++(k) / Tk−means (I)(k), (9) 

 

ARP(k) = Tk−means++(k) / Tk−means (P)(k). (10) 

 

The indicators (9) and (10) measure, respectively, 

how much faster the algorithms k-means (I) and k-means 

(P) run compared to k-means++, which is considered as 

a standard (reference). 

Now, we introduce a criterion that measures clus-

ters’ similarity. 

Let I = {p1, p2, . . . , pN} be a set of pixels of a given 

image. Applying the k-means++ algorithm to I computes 

centroids of clusters M = {m1, . . . , mk} and the clusteri-

zation map C = {c1, c2, . . . , cN}, where cj specifies the 

cluster of the pixel pj for any j = 1,2, . . . , N. 

Further, let Λ = {λ1, . . . , λk} and  

Σ = {σ1, σ2, . . . , σN} be cluster centroids and the clusteri-

zation map provided by applying the k-means (I) to the 

same image I.  

To evaluate the difference between C and Σ, the cor-

respondence between clusters, which are produced by k-

means++ and k-means (I), is required. We construct it as 

follows: 

 

ρ(i) = arg minj=1,...,k|λi − mj|, (11) 

 

where i = 1, . . . , k.  

Next, let us apply the mapping (11) to each element 

of Σ. We obtain Ψ = {ψ1, ψ2, . . . , ψN}, where  

ψj = ρ(σj), j = 1,2, . . . , N. 

Now, when a proper correspondence between clus-

ters is built, we introduce clusterization similarity that is 

defined by the formula: 

 

 Simk−means (I)(k) =
T

N
⋅ 100%, (12) 

 

where T is the number of elements of the set Π =

{j ∈ {1, . . . , N}: ψj = cj}. 

The indicator (criterion) (12) measures the percent-

age of similarity between the clusterization maps pro-

vided by the k-means++ and k-means (I) algorithms.  

Clusterization similarity Simk−means (P)(k) be-

tween the clusterization maps produced by k-means++ 

and k-means (P) is defined in the same way. 

Figure 11 shows the results of the application of k-

means++, k-means (I), and k-means (P) techniques to the 

image given in Figure 9 with k = 10. Visually, the clus-

terization maps can be considered as identical (see Fig-

ures 11 (b), 11 (c), and 11 (e)), but there are dissimilarities 

marked with bright color (see data in Figures 11 (d) and 

(f)). Also, Simk−means (I)(10) = 94% and 

Simk−means (P)(10) = 86%, which are equal to the per-

centage of “bright” pixels presented in Figure 11 (d) and 

(f), respectively. 

The results shown in Figure 11 have been obtained 

using the Scikit-learn library [40]. Computations have 

been performed on AMD Ryzen 5 5600H 3.30 GHz CPU. 

The following values of ARs have been computed: 

ARI(10) = 2.47 and ARP(10) = 24.24. 

This example shows that the proposed modifica-

tions of the k-means algorithm ensure nearly the same 

clustering while significantly reducing the computational 

time. A deeper exploration is given below. 

 

4.4.  Test Data Processing 
 

Now, we compare the k-means++ method to k-

means (I) and k-means (P) in terms of the proposed met-

rics. We conduct exploration using a set of different full-

color 24-bit images. The following procedure is applied 

to each sample (test image): 

­ Preview construction. Compute atomic em-

beddings Ω00 for a given source image and reconstruct 

an image preview; 

­ Clustering. Perform k-means++ method, k-

means (I) and k-means (P); 

­ Evaluation. Compute Simk−means (P)(k), 

Simk−means (I)(k), ARI(k) and ARP(k). 

In this research, we use k = 2,3, . . . ,20. Atomic em-

beddings are provided by DAT1 based on the DAT of 

depth 5 and the function up32(x). 

In addition to the proposed metrics, we also evalu-

ate the silhouette coefficient (SC) [41]. This indicator 

provides numerical interpretation and validation of con-

sistency within clusters of data. It varies in the range  

[-1,1]. The higher the value of SC, the better the cluster-

ing. 
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a b 

  
c d 

  
e f 

Fig. 11. Clustering the image shown in Figure 9  

using the k-means++, k-means (I) and k-means (P) 

algorithms with k = 10: (a) Source image; (b) Clus-

terization map by k-means++; (c) Clusterization map 

by k-means (I); (d) The difference between clusteri-

zation maps produced by k-means++  

and k-means (I) (points with “identical clusters”  
are dark); (e) Clusterization map k-means (P); ( 

f) The difference between clusterization maps pro-

duced by k-means++ and k-means (P).  

In this case, Simk−means (I)(10) = 94%  

and Simk−means (P)(10) = 86% 

 

Moreover, we perform the same analysis of cluster-

ing using discrete wavelet transform (of depth 5) based 

on the Haar wavelet [27].  

All computations are performed using the Scikit-

learn library [40] on AMD Ryzen 5 5600H 3.30 GHz 

CPU. 

We start with a sample image offered by the Euro-

pean Space Agency (ESA). Its scaled copy is given in 

Figure 9. The mage preview obtained using atomic em-

beddings is shown in Figure 10. The sizes of the source 

and the preview images are 3556 x 3486 and 113 x 110 

pixels, respectively. 

Table 1 presents the results of the clustering using 

the k-means (I) method. Also, it shows values of the in-

dicator SC provided by the application of k-means++. 

Also, Figures 12, 13 and 14 compare the behavior of 

Simk−means (I), ARI and SC with respect to the number of 

clusters (k) growth. 

 

Table 1 

Clustering the image shown in Figure 9  

using k-means (I) 

k 

Similarity, 
% 

Acceleration 
rate 

Silhouette coefficient 

DAT Haar DAT Haar 
Kmeans 

++ DAT Haar 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
15 

16 

17 

18 

19 

20 

99 
99 

96 

94 

98 

85 

99 

83 

94 

92 

73 

73 

85 
98 

80 

85 

81 

77 

67 

99 
99 

98 

96 

98 

85 

99 

90 

75 

67 

92 

76 

82 
90 

78 

78 

74 

71 

68 

1.43 
1.99 

2.43 

1.81 

2.30 

2.54 

1.78 

2.33 

2.48 

1.83 

2.75 

2.40 

3.39 
2.19 

1.92 

3.99 

3.25 

3.48 

2.20 

1.60 
1.89 

2.18 

2.37 

1.85 

2.01 

1.40 

2.38 

2.11 

1.68 

1.14 

2.41 

1.53 
1.44 

1.82 

2.25 

2.47 

3.58 

3.57 

0.59 
0.61 

0.55 

0.50 

0.46 

0.43 

0.39 

0.43 

0.40 

0.40 

0.35 

0.38 

0.38 
0.37 

0.34 

0.32 

0.32 

0.34 

0.34 

0.58 
0.60 

0.52 

0.51 

0.45 

0.43 

0.43 

0.44 

0.41 

0.42 

0.35 

0.40 

0.32 
0.34 

0.34 

0.34 

0.35 

0.35 

0.33 

0.56 
0.60 

0.51 

0.51 

0.46 

0.44 

0.43 

0.40 

0.39 

0.36 

0.34 

0.32 

0.34 
0.33 

0.36 

0.33 

0.33 

0.36 

0.32 

 

 
 

Fig. 12. Clustering the image shown in Figure 9 using 

k-means (I): the dependence of the similarity indicator 

Simk−means (I) on the number of clusters k 

 

Further, the results of the clustering using k-means 

(P) are given in Table 2. Figures 15-17 visualize them. 

The given Tables are available at the following link 

to Google Drive folder: 

https://drive.google.com/drive/fold-

ers/115fGW8rcD9fJvNtAn7Trq_E0TdTx82Jf?usp=driv

e_link. 

 

https://drive.google.com/drive/folders/115fGW8rcD9fJvNtAn7Trq_E0TdTx82Jf?usp=drive_link
https://drive.google.com/drive/folders/115fGW8rcD9fJvNtAn7Trq_E0TdTx82Jf?usp=drive_link
https://drive.google.com/drive/folders/115fGW8rcD9fJvNtAn7Trq_E0TdTx82Jf?usp=drive_link
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Fig. 13. Clustering the image shown in Figure 9 using 

k-means (I): the dependence of the acceleration rate 

ARI on the number of clusters k 

 

 
 

Fig. 14. Clustering the image shown in Figure 9 using 

k-means (I): the dependence of the silhouette coeffi-

cient SC on the number of clusters k 

 

Table 2 

Clustering the image shown in Figure 9  

using k-means (P) 

k 

Similarity, 
% 

Acceleration 
rate 

Silhouette coefficient 

DAT Haar DAT Haar 
Kmeans 

++ DAT Haar 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
15 

16 

17 

18 

19 

20 

97 
98 

95 

87 

96 

81 

84 

77 

86 

82 

75 

78 

83 
83 

81 

82 

81 

75 

73 

97 
96 

94 

90 

86 

76 

75 

79 

75 

80 

76 

69 

75 
76 

76 

67 

68 

67 

63 

9.76 
11.27 

17.19 

20.18 

16.20 

23.33 

31.45 

27.37 

24.24 

23.72 

33.06 

30.02 

30.65 
35.75 

41.08 

40.58 

45.17 

46.52 

47.23 

10.84 
10.14 

16.86 

18.21 

15.01 

22.51 

29.23 

25.38 

22.59 

24.63 

32.56 

29.29 

30.48 
33.55 

38.94 

39.45 

42.36 

45.29 

45.84 

0.59 
0.61 

0.55 

0.50 

0.46 

0.43 

0.39 

0.43 

0.40 

0.40 

0.35 

0.38 

0.38 
0.37 

0.34 

0.32 

0.32 

0.34 

0.34 

0.57 
0.59 

0.51 

0.50 

0.49 

0.48 

0.42 

0.44 

0.38 

0.39 

0.36 

0.38 

0.35 
0.34 

0.32 

0.35 

0.35 

0.33 

0.30 

0.57 
0.53 

0.50 

0.50 

0.43 

0.46 

0.42 

0.42 

0.39 

0.37 

0.37 

0.33 

0.34 
0.31 

0.34 

0.32 

0.33 

0.29 

0.31 

 

Consider also a sample image from the Land-

Cover.ai dataset [42]. Its scaled copy is shown in Figure 

18. The original size is 8973 x 9429 pixels. It is an image 

of a very high resolution with a huge number of pixels. 

Figure 19 presents its preview obtained using atomic em-

beddings. One can see that the preview preserves many 

features that might be useful for pixel clustering the 

source image. 

Tables 3 and 4 present the result of clusterization of 

the considered image by k-means++, k-means (I) and k-

means (P). Figures 20-25 provide their visualization. 

This data are available at the following link to Google 

Drive folder: https://drive.google.com/drive/folders/ 

1rP12eB1QTW8vgZM4iveyEor-

Zobp_an59?usp=drive_link.  

 

 
 

Fig. 15. Clustering the image shown in Figure 9 using 

k-means (P): the dependence of the similarity indicator 

Simk−means (P) on the number of clusters k 

 

 

 
 

Fig. 16. Clustering the image shown in Figure 9 using 

k-means (P): the dependence of the acceleration rate 

ARP on the number of clusters k 

 

https://drive.google.com/drive/folders/%201rP12eB1QTW8vgZM4iveyEorZobp_an59?usp=drive_link
https://drive.google.com/drive/folders/%201rP12eB1QTW8vgZM4iveyEorZobp_an59?usp=drive_link
https://drive.google.com/drive/folders/%201rP12eB1QTW8vgZM4iveyEorZobp_an59?usp=drive_link
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Fig. 17. Clustering the image shown in Figure 9 using 

k-means (P): the dependence of the silhouette coeffi-

cient SC on the number of clusters k 

 

 
 

Fig. 18. Sample image from the LandCover.ai dataset 

(scaled copy is displayed). Original: 8973 x 9429 pix-

els, 24-bit, 242 MB (raw) 

 
 

Fig. 19. Reconstruction of an image shown in Figure 

18 using Ω00. A true-size image is displayed: 282 x 

296 pixels, 24-bit, 245 KB (raw) 

 
Fig. 20. Clustering the image shown in Figure 18 using 

k-means (I): the metric Simk−means (I) 

 
Fig. 21. Clustering the image shown in Figure 18 using 

k-means (I): the metric ARI 

 
Fig. 22. Clustering the imageshown in Figure 18 using 

k-means (I): the indicator SC 

 
Fig. 23. Clustering the image shown in Figure 18 us-

ing k-means (P): the metric Simk−means (P) 



Моделювання та цифровізація 
 

87 

Table 3 

Clustering the image shown  

in Figure 18 by k-means (I) 

k 

Similarity, 

% 

Acceleration 

rate 
Silhouette coefficient 

DAT Haar DAT Haar 
Kmeans 

++ DAT Haar 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

99 

99 

98 

95 

93 

66 

79 

96 

94 

74 

71 

78 

63 

79 

68 

82 

70 

70 

64 

99 

98 

99 

92 

89 

99 

83 

82 

89 

72 

82 

83 

72 

81 

75 

63 

73 

65 

64 

1.73 

2.06 

1.72 

3.34 

2.99 

3.42 

2.93 

3.85 

3.40 

3.05 

2.68 

5.24 

4.75 

4.74 

4.05 

4.57 

2.47 

4.28 

2.86 

1.62 

1.98 

1.75 

2.53 

1.77 

2.13 

2.05 

1.60 

1.54 

1.47 

2.08 

4.72 

3.65 

4.50 

3.52 

2.25 

3.73 

3.67 

4.63 

0.56 

0.52 

0.49 

0.48 

0.47 

0.45 

0.42 

0.38 

0.39 

0.37 

0.34 

0.33 

0.33 

0.33 

0.32 

0.33 

0.27 

0.29 

0.29 

0.57 

0.52 

0.44 

0.45 

0.44 

0.46 

0.41 

0.39 

0.38 

0.40 

0.36 

0.33 

0.36 

0.30 

0.30 

0.31 

0.31 

0.29 

0.29 

0.59 

0.55 

0.48 

0.47 

0.44 

0.45 

0.40 

0.38 

0.39 

0.38 

0.37 

0.36 

0.35 

0.31 

0.30 

0.29 

0.30 

0.29 

0.30 

 
Table 4 

Clustering the image shown  

in Figure 18 using k-means (P) 

k 

Similarity, 

% 

Acceleration 

rate 

Silhouette coeffi-

cient 

DAT Haar DAT Haar 
Kmeans 

++ DAT Haar 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

99 

98 

92 

95 

92 

65 

79 

93 

91 

69 

68 

76 

61 

75 

66 

79 

69 

71 

65 

98 

95 

92 

84 

77 

86 

78 

78 

76 

66 

86 

79 

71 

77 

79 

76 

73 

73 

65 

14.23 

18.55 

17.50 

27.35 

21.54 

26.94 

37.88 

38.43 

42.36 

33.05 

44.51 

49.91 

51.44 

50.83 

47.61 

42.46 

49.85 

49.59 

60.55 

15.10 

15.36 

15.20 

22.71 

19.28 

23.00 

24.71 

26.68 

28.11 

27.48 

30.74 

37.61 

38.29 

37.84 

37.6 

35.10 

40.02 

37.30 

46.98 

0.56 

0.52 

0.49 

0.48 

0.47 

0.45 

0.42 

0.38 

0.39 

0.37 

0.34 

0.33 

0.33 

0.33 

0.32 

0.33 

0.27 

0.29 

0.29 

0.58 

0.52 

0.50 

0.47 

0.42 

0.43 

0.35 

0.40 

0.40 

0.36 

0.35 

0.37 

0.36 

0.31 

0.32 

0.31 

0.30 

0.31 

0.26 

0.61 

0.51 

0.50 

0.45 

0.44 

0.40 

0.41 

0.37 

0.34 

0.33 

0.32 

0.31 

0.31 

0.32 

0.30 

0.28 

0.29 

0.29 

0.29 

 

 
 

Fig. 24. Clustering the image shown in Figure 18 using 

k-means (P): the metric ARP 

 

 

 
 

Fig. 25. Clustering the image shown in Figure 18 using 

k-means (P): the indicator SC 

 

We also consider the USC-SIPI Aerials dataset 

available at the following site of the Signal and Image 

Processing Institute of the University of Southern Cali-

fornia (USC-SIPI): https://sipi.usc.edu/database/ data-

base.php?volume=aerials. Images from this dataset are 

smaller than the samples considered above. Figure 26 

shows the largest of them, which is a 2250 x 2250 pixels 

image. Figure 27 presents its preview. It is clear that the 

majority of image features are lost. Hence, the results of 

the evaluation of the similarity indicators and silhouette 

coefficients are of particular interest. Below, we present 

their aggregated values. All other results can be found at 

the following link: https://drive.google.com/drive/ fold-

ers/1NyB7TWCjTT2K4s02CB1k7mAM-

FqB76G7H?usp=sharing. 

Tables 5 and 6 contain the aggregated results of 

evaluation of clustering images from the USC-SIPI Aer-

ials dataset using k-means++, k-means (I) and k-means 

(P). Figures 28-31 provide their visualization. 

 

https://sipi.usc.edu/database/%20database.php?volume=aerials
https://sipi.usc.edu/database/%20database.php?volume=aerials
https://drive.google.com/drive/%20folders/1NyB7TWCjTT2K4s02CB1k7mAMFqB76G7H?usp=sharing
https://drive.google.com/drive/%20folders/1NyB7TWCjTT2K4s02CB1k7mAMFqB76G7H?usp=sharing
https://drive.google.com/drive/%20folders/1NyB7TWCjTT2K4s02CB1k7mAMFqB76G7H?usp=sharing
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Fig. 26. Sample image from the Classic Aerials  

dataset (USC-SIPI Aerials). A scaled copy is displayed. 

Original image: 2250 x 2250 pixels, 24-bit,  
14.48 MB (raw) 

 

 
 

Fig. 27. Reconstruction of an image shown  

in Figure 26 using Ω00. A true-size image is displayed:  
72 x 72 pixels, 24-bit, 15.18 KB (raw) 

 

4.5. Analysis 

 

Analyzing the obtained results, we see the follow-

ing. First, both k-means (I) and k-means (P) ensure high 

values of the evaluated similarity indicators 

Simk−means (I) and Simk−means (P), respectively, for any 

k = 2,3, . . . ,20 and each applied discrete transform. So, 

these modifications of the k-means algorithm provide 

clusters that are close to clusters produced by k-means++. 

Furthermore, there is a minor deviation between values 

of silhouette coefficients (see Figures 14, 17, 22, 25, 29, 

and 31), which means that the produced clusters have 

nearly the same quality measured by the indicator SC.  

Besides, the proposed methods perform faster than 

k-means++, which is shown in Figures 13, 16, 21, and 

24. Specifically, k-means (P) guarantees a significantly 

higher acceleration compared to k-means (I). 

Second, an analysis of the behavior of the similarity 

metrics Simk−means (I) and Simk−means (P) shows that 

they cannot be considered homogeneous with respect to 

k. There is a significant dependence of these indicators 

on the content of the clustered image. However, a de-

creasing trend is obvious with an increase in the number 

of clusters, which is illustrated by Figures 28 and 30 that 

visualize aggregated data. At the same time, the silhou-

ette coefficient demonstrates a more robust behavior (less 

decrease). 

 

 
 

Fig. 28. Clustering images  

from the USC-SIPI Aerials dataset using  

k-means (I): the metric Simk−means (I) 

 
Table 5 

Clustering images from the USC-SIPI Aerials dataset 

using k-means (I) 

k 

Mean simi-

larity, % 

Median simi-

larity, % 

Mean Silhouette co-

efficient 

DAT Haar DAT Haar DAT Haar 
Kmeans 

++ 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

98 

97 

95 

95 

93 

90 

86 

83 

81 

78 

75 

76 

75 

75 

74 

73 

73 

75 

70 

99 

98 

96 

95 

94 

90 

88 

85 

85 

78 

79 

77 

75 

76 

72 

73 

72 

73 

73 

99 

99 

98 

99 

97 

96 

89 

86 

82 

76 

76 

74 

74 

73 

74 

73 

71 

75 

69 

99 

99 

98 

98 

97 

93 

92 

87 

88 

74 

78 

74 

74 

76 

71 

72 

72 

72 

73 

0.57 

0.51 

0.45 

0.42 

0.40 

0.38 

0.36 

0.35 

0.33 

0.32 

0.31 

0.30 

0.30 

0.29 

0.29 

0.28 

0.28 

0.28 

0.27 

0.57 

0.49 

0.44 

0.43 

0.40 

0.38 

0.36 

0.34 

0.33 

0.32 

0.31 

0.30 

0.30 

0.30 

0.28 

0.28 

0.28 

0.27 

0.27 

0.57 

0.50 

0.45 

0.42 

0.39 

0.37 

0.36 

0.34 

0.34 

0.32 

0.32 

0.31 

0.30 

0.30 

0.29 

0.29 

0.29 

0.28 

0.28 
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Table 6 

Clustering images from the USC-SIPI  

Aerials dataset using k-means (P) 

k 

Mean simi-

larity, % 

Median simi-

larity, % 

Mean Silhouette co-

efficient 

DAT Haar DAT Haar DAT Haar 
Kmeans 

++ 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

93 

88 

82 

79 

79 

78 

76 

72 

71 

70 

67 

67 

66 

66 

66 

65 

63 

63 

62 

93 

82 

76 

74 

71 

73 

70 

70 

69 

67 

65 

65 

64 

62 

62 

61 

61 

61 

61 

95 

93 

86 

80 

82 

80 

78 

73 

71 

70 

67 

68 

66 

65 

66 

66 

64 

65 

65 

95 

88 

77 

75 

72 

74 

70 

72 

70 

70 

65 

66 

65 

64 

64 

63 

63 

61 

62 

0.56 

0.50 

0.46 

0.41 

0.39 

0.37 

0.35 

0.33 

0.31 

0.31 

0.30 

0.29 

0.28 

0.27 

0.27 

0.27 

0.25 

0.26 

0.26 

0.56 

0.48 

0.42 

0.41 

0.37 

0.34 

0.33 

0.32 

0.30 

0.29 

0.27 

0.27 

0.26 

0.25 

0.25 

0.24 

0.23 

0.22 

0.23 

0.57 

0.50 

0.45 

0.42 

0.39 

0.37 

0.36 

0.34 

0.34 

0.32 

0.32 

0.31 

0.30 

0.30 

0.29 

0.29 

0.29 

0.28 

0.28 

 
Fig. 29. Clustering images from the USC-SIPI Aerials 

dataset using k-means (I): the silhouette coefficient 

 

 
 

Fig. 30. Clustering images from the USC-SIPI Aerials 

dataset using k-means (P): the metric Simk−means (P) 

 
 

Fig. 31. Clustering images from the USC-SIPI Aerials 

dataset using k-means (P): the silhouette coefficient 

 

Next, comparing the use of DAT- and Haar-based 

transforms, the following conclusions can be drawn: 

­ On average, DAT provides better results than 

discrete Haar wavelet transform with respect to the simi-

larity metrics (see Figures 28, 30). However, the differ-

ence is not significant. Moreover, in some particular 

cases, Haar-based representation is more efficient; 

­ In most cases, DAT guarantees a higher value of 

the silhouette coefficient, but the difference is insignifi-

cant; 

­ Generally, DAT ensures better time perfor-

mance, especially when it is applied in the scope of k-

means (P) technique. 

Despite the minor differences between the DAT- 

and Haar-based transforms in terms of the similarity 

measure, we have noticed that they produce non-coincid-

ing clusters. If we compare them to clusters provided by 

k-means++, we notice the following: the Haar-based 

clustering produces greater distinctions at object bound-

aries, while distinctions produced by the DAT-based 

technique are more concentrated within objects. Figures 

32 and 33 illustrate this phenomenon. 

In the next Section, we further discuss the obtained 

results from different viewpoints. Also, we consider pos-

sible applications of the introduced methods and atomic 

embeddings of digital images. 

 

4.6. Discussion 

 

The proposed modifications of the k-means algo-

rithm can be considered a special heuristic for the initial-

ization of clusters’ centroids. By design, the k-means (P) 

technique is the restricted version of k-means (P). De-

spite the simplicity of k-means (P), the results of the test 

data analysis show that it provides an acceptable approx-

imation of clusters produced by the k-means++ method. 

This feature is due to good approximation properties of 

atomic functions and confirms the hypothesis that the im-

age representation by atomic embeddings is ML/CV-ori-

ented with respect to the k-means clustering.  
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The highest difference between clusters, produced 

by the basic method and the suggested modifications, ap-

pears at object boundaries. This is a consequence of the 

aggregating features of the applied discrete transforms.  

 

 
a 

 
b 

Fig. 32. The difference between clusters provided by k-

means++ and k-means (P) for the image shown in 

Figure 9 for k = 12: (a) Haar-based clustering, 

Simk−means (P)(12) = 76%; (b) DAT-based clustering, 

Simk−means (P)(12) = 75%. The Haar-based clustering 

produces greater distinctions at object boundaries, 

while distinctions produced by the DAT-based 

technique are more concentrated within objects. Scaled 

images are given. Original size: 3556 x 3486 pixels 

 

Indeed, in both k-means (I) and k-means (P), the 

wavelet coefficients corresponding to the lowest-level 

frequency band are applied. However, they contain poor 

or no information on object boundaries, especially if the 

depth of the wavelet transform is large. The use of a 

higher number of blocks of wavelet coefficients could 

reduce the deviation, but it would increase the size of the 

processed image preview and, hence, computations. 

 

 
a 

 
b 

Fig. 33. The difference between clusters provided by 

the k-means++ and k-means (P) for the image shown in 

Figure 18 for k = 13: (a) Haar-based clustering, 

Simk−means (P)(13) = 79%; (b) DAT-based clustering, 

Simk−means (P)(13) = 76%. The Haar-based clustering 

produces greater distinctions at object boundaries, 

while distinctions produced by DAT-based technique 

are more concentrated within objects. Scaled images 

are given. Original size: 8973 x 9429 pixels 

 

In this research, we use the proposed similarity 

measure and silhouette coefficient. Their main advantage 

is that these indicators do not require labeled data and can 

be evaluated in an unsupervised manner. Meanwhile, 

they do not assess the relationship between particular 

clusters. The intersection over union (IoU) metric might 
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be more suitable for this purpose [25]. This classic indi-

cator is widely used in image segmentation analysis and 

provides the comparison of two clusters of pixels. So, 

IoU is more local than Simk−means (I) and Simk−means (P) 

that analyze the whole cluster maps. We plan to use it in 

the future.  

Next, this paper considers unsupervised methods 

for image analysis and processing. In particular, the DAT 

transform produces image embeddings, eliminating the 

need for any model training. We apply them in combina-

tion with only one of the wide range of clustering algo-

rithms. We expect that the use of atomic embeddings in 

other methods might improve their efficiency.  

Further, the matrix transform DAT1 has flexible set-

tings. By varying its hyperparameters, including the 

depth of the array DAT, one may get the desired custom-

ization. Moreover, various mixtures of the atomic func-

tions ups(x) can be used in this transform. Besides, other 

function systems, for instance, generalized atomic wave-

lets, can be applied for the construction of image repre-

sentation that is similar to the one considered in this pa-

per [43]. 

Finally, the obtained results show a slight advantage 

of atomic wavelets over the Haar wavelet. The difference 

is insignificant since a tiny subset of wavelet coefficients 

is applied (currently, the ratio is about 1 to 1024). It is 

expected that using more coefficients will make this ad-

vantage more noticeable due to approximation properties 

of spaces of atomic functions [23]. 

 

5. Conclusions 

 

In this research, we have considered image repre-

sentation, which is built using the atomic functions 

ups(x) and called atomic embeddings, from the image 

analysis perspective. Discrete atomic transform was ear-

lier developed mainly for solving image compression 

tasks [26, 29]. It is the core of the DAC algorithm, which 

provides both compression and encryption features [21]. 

In this paper, we have proposed applying atomic embed-

dings to solve machine learning and computer vision 

tasks.  

The potential of the proposed approach has been 

demonstrated with respect to the k-means clustering al-

gorithm. This classic unsupervised learning technique is 

widely applied as a part of complex image analysis pipe-

lines [44] aimed to solve applied problems of innovate 

agriculture [45, 46] and medicine [47, 48]. 

We have introduced two modifications of the k-

means algorithm. Both proposed approaches leverage a 

minor part of atomic embeddings. Their efficiency has 

been evaluated using acceleration ratio and clusterization 

map similarity metrics. The analysis of test remote sens-

ing images has demonstrated a significantly faster ap-

proach to achieving nearly the same clustering results. 

Hence, image representation by atomic functions ups(x) 

is ML/CV-oriented in terms of k-means clustering. 

Meanwhile, we expect that image representation by 

atomic functions ups(x) might be useful in a considera-

bly wider range of ML/CV methods. In particular, it 

could be useful in semantic and instance segmentation 

[25, 44], where the proposed modifications of k-means 

could be performed as a preprocessing step. This can be 

one of the tasks to be solved in the future.  

We have also compared the atomic and Haar wave-

lets. It follows that, in general, atomic wavelets perform 

better. However, the obtained results do not provide a 

comprehensive comparison in terms of their usability in 

image analysis. Moreover, other wavelet systems have 

not been considered. This aspect will be addressed in fu-

ture research. 

 

Contributions of authors: conception – Vladimir 

Lukin, Viktor Makarichev; methodology – Vladimir 

Lukin; problem formulation – Vladimir Lukin, Viktor 

Makarichev; analysis – Viktor Makarichev, Vladimir 

Lukin, Sergii Kryvenko, Iryna Brysina; model devel-

opment – Viktor Makarichev; software – Viktor Ma-

karichev; validation – Vladimir Lukin, Sergii Kryv-

enko; analysis of results – Viktor Makarichev, Vladi-

mir Lukin, Sergii Kryvenko, Iryna Brysina; visualiza-

tion – Iryna Brysina; writing –Viktor Makarichev; re-

vision and editing – Vladimir Lukin, Sergii Kryvenko, 

Iryna Brysina.  

 
Conflict of interest 

The authors declare that they have no conflict of in-

terest in relation to this research, whether financial, per-

sonal, authorship, or otherwise, that could affect the re-

search and its results presented in this paper. 

 

Acknowledgments 

The authors are personally grateful to V.A. Rvachev 

for his attention and support of this research. The authors 

sincerely appreciate J. Koloda for inspiring the initiation 

of this research. 

 

Financing 

The study was conducted without financial support. 

 

Data availability 

The results of the analysis of the test data presented 

in the paper are given in the set of CSV files available at 

the following link to Google Drive folder:  

https://drive.google.com/drive/folders/1WA8YCiK-

https://drive.google.com/drive/folders/1WA8YCiK-Xwq33Kxe5NtnWcWb9kIv5JDR?usp=sharing


ISSN 1814-4225 (print) 
АВІАЦІЙНО-КОСМІЧНА ТЕХНІКА І ТЕХНОЛОГІЯ, 2025, № 4(ХХХ)   ISSN 2663-2012 (online) 

92 

Xwq33Kxe5NtnWcWb9kIv5JDR?usp=sharing (ac-

cessed on 12 May 2025). The original data presented in 

the study are openly available in the following resources: 

https://sipi.usc.edu/database/database.php?volume=aeri-

als (USC-SIPI Aerials, accessed on 12 May 2025), 

https://www.kaggle.com/datasets/adrianbo-

guszewski/landcoverai (the LandCover.ai dataset, ac-

cessed on 12 May 2025), and 

https://www.esa.int/ESA_Multimedia (the European 

Space Agency, accessed on 12 May 2025). The results of 

processing and analyzing the USC-SIPI Aerials dataset 

are available at the following link to the Google Drive 

folder: 

https://drive.google.com/drive/fold-

ers/1NyB7TWCjTT2K4s02CB1k7mAM-

FqB76G7H?usp=sharing (accessed on 12 May 2025). 

The results of the analysis of the image from ESA can be 

found at: 

https://drive.google.com/drive/fold-

ers/115fGW8rcD9fJvNtAn7Trq_E0TdTx82Jf?usp=driv

e_link  (accessed on 12 May 2025). The results of the 

LandCover.ai image 

is available at https://drive.google.com/drive/fold-

ers/1rP12eB1QTW8vgZM4iveyEor-

Zobp_an59?usp=sharing (accessed on 12 May 2025). 

 

Use of Artificial Intelligence 

The authors confirm that they did not use artificial 

intelligence technologies when creating the current work. 

 

All authors have read and agreed to the published 

version of this manuscript. 

 

References 
 

1. Wang, R., Sun, Y., Zong, J., Wang, Y., Cao, X., 

Wang, Y., Cheng, X., & Zhang, W. Remote Sensing Ap-

plication in Ecological Restoration Monitoring: A Sys-

tematic Review. Remote Sensing, 2024, vol. 16, article 

no. 2204. DOI: 10.3390/rs16122204. 

2. Wasehun, E. T., Hashemi Beni, L., & Di Vitto-

rio, C. A. UAV and satellite remote sensing for inland wa-

ter quality assessments: a literature review. Environmen-

tal Monitoring and Assessment, 2024, vol. 196, article 

no. 277. DOI: 10.1007/s10661-024-12342-6. 

3. Wang, J., Wang, Y., Li, G., & Qi, Z. Integration 

of Remote Sensing and Machine Learning for Precision 

Agriculture: A Comprehensive Perspective on Applica-

tions. Agronomy, 2024, vol. 14, iss. 9, article no. 1975. 

DOI: 10.3390/agronomy14091975. 

4. Mehedi, I. M., Hanif, M. S., Bilal, M., Vellingiri, 

M. T., & Palaniswamy, T. Remote Sensing and Decision 

Support System Applications in Precision Agriculture: 

Challenges and Possibilities. IEEE Access, 2024, vol. 12, 

pp. 44786-44798. DOI: 10.1109/ACCESS.2024. 

3380830. 

5. Koukiou, G. SAR Features and Techniques for 

Urban Planning—A Review. Remote Sensing, 2024, vol. 

16, iss. 11, article no. 1923. DOI: 10.3390/rs16111923. 

6. Al Shafian, S., & Hu, D. Integrating Machine 

Learning and Remote Sensing in Disaster Management: 

A Decadal Review of Post-Disaster Building Damage 

Assessment. Buildings, 2024, vol. 14, iss. 8, article no. 

2344. DOI: 10.3390/buildings14082344. 

7. Yang, Y., Ju, Y., Gao, Y., Zhang, C., & Lam, K.-

M. Remote sensing insights into ocean fronts: a literature 

review. Intelligent Marine Technology and Systems, 

2024, vol. 2, article no. 10. DOI: 10.1007/s44295-024-

00024-5. 

8. Ye, Q., Wang, Y., Liu, L., Guo, L., Zhang, X., 

Dai, L., Zhai, L., Hu, Y., Ali, N., Ji, X., et al. Remote 

Sensing and Modeling of the Cryosphere in High Moun-

tain Asia: A Multidisciplinary Review. Remote Sensing, 

2024, vol. 16, iss. 10, article no. 1709. DOI: 

10.3390/rs16101709. 

9. Kadhim, I., & Abed, F. M. A Critical Review of 

Remote Sensing Approaches and Deep Learning Tech-

niques in Archaeology. Sensors, 2023, vol. 23, iss. 6, ar-

ticle no. 2918. DOI: 10.3390/s23062918. 

10. Avtar, R., Kouser, A., Kumar, A., Singh, D., 

Misra, P., Gupta, A., Yunus, A. P., Kumar, P., Johnson, B. 

A., Dasgupta, R., et al. Remote Sensing for International 

Peace and Security: Its Role and Implications. Remote 

Sensing, 2021, vol. 13, iss. 3, article no. 439. DOI: 

10.3390/rs13030439. 

11. Sayood, K. Introduction to Data Compression, 

5th ed. Morgan Kaufman: Cambridge, MA, USA, 2017. 

12. Kussul, N., Lavreniuk, M., Skakun, S., & 

Shelestov, A. Deep learning classification of land cover 

and crop types using remote sensing data. IEEE Geosci-

ence and Remote Sensing Letters, 2017, vol. 14, no. 5, 

pp. 778-782. DOI: 10.1109/LGRS.2017.2681128. 

13. Wang, L., Zhang, M., Gao, X., & Shi, W. Ad-

vances and Challenges in Deep Learning-Based Change 

Detection for Remote Sensing Images: A Review through 

Various Learning Paradigms. Remote Sensing, 2024, vol. 

16, iss. 5, article no. 804. DOI: 10.3390/rs16050804. 

14. Vasile, C.-E., Ulmămei, A.-A., & Bîră, C. Image 

Processing Hardware Acceleration – A Review of Oper-

ations Involved and Current Hardware Ap-

proaches. Journal of Imaging, 2024, vol. 10, iss. 12, arti-

cle no. 298. DOI: 10.3390/jimaging10120298. 

15. Iqbal, U., Davies, T., & Perez, P. A Review of 

Recent Hardware and Software Advances in GPU-Accel-

erated Edge-Computing Single-Board Computers 

(SBCs) for Computer Vision. Sensors, 2024, vol. 24, iss. 

15, article no. 4830. DOI: 10.3390/s24154830. 

16. Hua, H., Li, Y., Wang, T., Dong, N., Li, W., & 

Cao, J. Edge Computing with Artificial Intelligence: A 

https://drive.google.com/drive/folders/1WA8YCiK-Xwq33Kxe5NtnWcWb9kIv5JDR?usp=sharing
https://sipi.usc.edu/database/database.php?volume=aerials
https://sipi.usc.edu/database/database.php?volume=aerials
https://www.kaggle.com/datasets/adrianboguszewski/landcoverai
https://www.kaggle.com/datasets/adrianboguszewski/landcoverai
https://www.esa.int/ESA_Multimedia
https://drive.google.com/drive/folders/1NyB7TWCjTT2K4s02CB1k7mAMFqB76G7H?usp=sharing
https://drive.google.com/drive/folders/1NyB7TWCjTT2K4s02CB1k7mAMFqB76G7H?usp=sharing
https://drive.google.com/drive/folders/1NyB7TWCjTT2K4s02CB1k7mAMFqB76G7H?usp=sharing
https://drive.google.com/drive/folders/115fGW8rcD9fJvNtAn7Trq_E0TdTx82Jf?usp=drive_link
https://drive.google.com/drive/folders/115fGW8rcD9fJvNtAn7Trq_E0TdTx82Jf?usp=drive_link
https://drive.google.com/drive/folders/115fGW8rcD9fJvNtAn7Trq_E0TdTx82Jf?usp=drive_link
https://drive.google.com/drive/folders/1rP12eB1QTW8vgZM4iveyEorZobp_an59?usp=sharing
https://drive.google.com/drive/folders/1rP12eB1QTW8vgZM4iveyEorZobp_an59?usp=sharing
https://drive.google.com/drive/folders/1rP12eB1QTW8vgZM4iveyEorZobp_an59?usp=sharing


Моделювання та цифровізація 
 

93 

Machine Learning Perspective. ACM Computing Sur-

veys, 2023, vol. 55, no. 9, article no. 184. DOI: 

10.1145/3555802. 

17. Jouini, O., Sethom, K., Namoun, A., Aljohani, 

N., Alanazi, M. H., & Alanazi, M. N. A Survey of Ma-

chine Learning in Edge Computing: Techniques, Frame-

works, Applications, Issues, and Research Direc-

tions. Technologies, 2024, vol. 12, iss. 6, article no. 81. 

DOI: 10.3390/technologies12060081. 

18. Shi, Y.-Q., & Sun, H. Image and Video Com-

pression for Multimedia Engineering: Fundamentals, Al-

gorithms, and Standards, 3rd ed. CRC Press, 2021. 

19. Bull, D., & Zhang, F. Intelligent Image and 

Video Compression: Communicating Pictures, 2nd ed. 

Academic Press, 2021. 

20. Gonzalez, R. C., & Woods, R. E. Digital Image 

Processing, 2nd ed. Prentice Hall: Upper Saddle River, 

NJ, USA, 2002. 

21. Makarichev, V., Lukin, V., Illiashenko, O., & 

Kharchenko, V. Digital Image Representation by Atomic 

Functions: The Compression and Protection of Data for 

Edge Computing in IoT Systems. Sensors, 2022, vol. 22, 

iss. 10, article no. 3751. DOI: 10.3390/s22103751. 

22. Rvachev, V. A. Compactly supported solutions 

of functional-differential equations and their applica-

tions. Russian Mathematical Surveys, 1990, vol. 45, no. 

1, pp. 87-120. DOI: 

10.1070/RM1990v045n01ABEH002324. 

23. Makarichev, V. A. Approximation of periodic 

functions using mups (x). Mathematical Notes, 2013, vol. 

93, pp. 858-880. DOI: 10.1134/S0001434613050258. 

24. Makarichev, V., Lukin, V., & Brysina, I. On the 

Impact of Discrete Atomic Compression on Image Clas-

sification by Convolutional Neural Networks. Computa-

tion, 2024, vol. 12, iss. 9, article no. 176. DOI: 

10.3390/computation12090176. 

25. Szeliski, R. Computer Vision: Algorithms and 

Applications, 2nd ed. Springer: Cham, Switzerland, 

2022. 

26. Makarichev, V., Vasilyeva, I., Lukin, V., Vozel, 

B., Shelestov, A., & Kussul, N. Discrete Atomic Trans-

form-Based Lossy Compression of Three-Channel Re-

mote Sensing Images with Quality Control. Remote 

Sensing, 2022, vol. 14, iss. 1, article no. 125. DOI: 

10.3390/rs14010125. 

27. Chui, C. K., & Jiang, Q. Applied Mathematics: 

Data Compression, Spectral Methods, Fourier Analysis, 

Wavelets, and Applications. Atlantis Press: Paris, France, 

2013. 

28. Makarichev, V., & Kharchenko, V. Application 

of dynamic programming approach to computation of 

atomic functions. Radioelectronic and Computer Sys-

tems, 2021, no. 4, pp. 36-45. DOI: 

10.32620/reks.2021.4.03. 

29. Makarichev, V., Lukin, V., & Brysina, I. On the 

Applications of the Special Class of Atomic Functions: 

Practical Aspects and Perspectives. In Integrated Com-

puter Technologies in Mechanical Engineering; 

Nechyporuk, M., Pavlikov, V., Kritskiy, D., Eds.; 

Springer: Cham, Switzerland, 2021; vol. 188, pp. 42-54. 

DOI: 10.1007/978-3-030-66717-7_4. 

30. Berkolaiko, M., & Novikov, I. On infinitely 

smooth compactly supported almost-wavelets. Mathe-

matical Notes, 1994, vol. 56, pp. 877-883. DOI: 

10.1007/BF02362405. 

31. Welstead, S. Fractal and Wavelet Image Com-

pression Techniques. SPIE Publications: Bellingham, 

WA, USA, 1999. 

32. Bryant, R. E., & O'Hallaron, D. R. Computer 

Systems: A Programmer's Perspective, 3rd ed. Pearson: 

London, UK, 2015. 

33. Robey, R., & Zamora, Y. Parallel and High Per-

formance Computing. Manning: NY, USA, 2021. 

34. Chen, S., & Guo, W. Auto-Encoders in Deep 

Learning—A Review with New Perspectives. Mathemat-

ics, 2023, vol. 11, iss. 8, article no. 1777. DOI: 

10.3390/math11081777. 

35. Huang, C.-H., & Wu, J.-L. Unveiling the Future 

of Human and Machine Coding: A Survey of End-to-End 

Learned Image Compression. Entropy, 2024, vol. 26, iss. 

5, article no. 357. DOI: 10.3390/e26050357. 

36. Xu, Q., Xiang, Y., Di, Z., Fan, Y., Feng, Q., Wu, 

Q., & Shi, J. Synthetic Aperture Radar Image Compres-

sion Based on a Variational Autoencoder. IEEE Geosci-

ence and Remote Sensing Letters, 2022, vol. 19, article 

no. 4015905. DOI: 10.1109/LGRS.2021.3097154. 

37. Alves de Oliveira, V., Chabert, M., Oberlin, T., 

Poulliat, C., Bruno, M., Latry, C., Carlavan, M., Henrot, 

S., Falzon, F., & Camarero, R. Reduced-Complexity 

End-to-End Variational Autoencoder for on Board Satel-

lite Image Compression. Remote Sensing, 2021, vol. 13, 

iss. 3, article no. 447. DOI: 10.3390/rs13030447. 

38. Ahmed, M., Seraj, R., & Islam, S. M. S. The k-

means Algorithm: A Comprehensive Survey and Perfor-

mance Evaluation. Electronics, 2020, vol. 9, iss. 8, article 

no. 1295. DOI: 10.3390/electronics9081295. 

39. Arthur, D., & Vassilvitskii, S. K-means++: the 

advantages of careful seeding. Proceedings of the eight-

eenth annual ACM-SIAM symposium on Discrete algo-

rithms, 7-9 January 2007, pp. 1027-1035. 

40. Pedregosa, F., Varoquaux, G., Gramfort, A., 

Michel, V., Thirion, B., Grisel, O., Blondel, M., Pret-

tenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Pas-

sos, A., Cournapeau, D., Brucher, M., Perrot, M., & 

Duchesnay, E. Scikit-learn: Machine Learning in Py-

thon. Journal of Machine Learning Research, 2011, vol. 

12, pp. 2825-2830. 



ISSN 1814-4225 (print) 
АВІАЦІЙНО-КОСМІЧНА ТЕХНІКА І ТЕХНОЛОГІЯ, 2025, № 4(ХХХ)   ISSN 2663-2012 (online) 

94 

41. Kaufman, L., & Rousseeuw, P. J. Finding 

Groups in Data: An Introduction to Cluster Analysis. 

John Wiley & Sons: Hoboken, NJ, USA, 1990. 

42. Boguszewski, A., Batorski, D., Ziemba-Jan-

kowska, N., Dziedzic, T., & Zambrzycka, A. Land-

Cover.ai: Dataset for Automatic Mapping of Buildings, 

Woodlands, Water and Roads from Aerial Imagery. Pro-

ceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR) Workshops, 20-25 

June 2021, Nashville, TN, USA, pp. 1102-1110. 

43. Brysina, I., & Makarichev, V. Generalized 

Atomic Wavelets. Radioelectronic and Computer Sys-

tems, 2018, no. 1, pp. 23-31. DOI: 

10.32620/reks.2018.1.03. 

44. Yu, Y., Wang, C., Fu, Q., Kou, R., Huang, F., 

Yang, B., Yang, T., & Gao, M. Techniques and Chal-

lenges of Image Segmentation: A Review. Electronics, 

2023, vol. 12, iss. 5, article no. 1199. DOI: 10.3390/elec-

tronics12051199. 

45. Omia, E., Bae, H., Park, E., Kim, M. S., Baek, 

I., Kabenge, I., & Cho, B.-K. Remote Sensing in Field 

Crop Monitoring: A Comprehensive Review of Sensor 

Systems, Data Analyses and Recent Advances. Remote 

Sensing, 2023, vol. 15, iss. 2, article no. 354. DOI: 

10.3390/rs15020354. 
46. Orchi, H., Sadik, M., & Khaldoun, M. (2022). 

On Using Artificial Intelligence and the Internet of 

Things for Crop Disease Detection: A Contemporary Sur-

vey. Agriculture, 2022, vol. 12, iss. 1, article no. 9. DOI: 

10.3390/agriculture12010009. 

47. Arabahmadi, M., Farahbakhsh, R., & Rezaza-

deh, J. Deep Learning for Smart Healthcare – A Survey 

on Brain Tumor Detection from Medical Imaging. Sen-

sors, 2022, vol. 22, iss. 5, article no. 1960. DOI: 

10.3390/s22051960. 

48. Xu, Y., Quan, R., Xu, W., Huang, Y., Chen, X., 

& Liu, F. Advances in Medical Image Segmentation: A 

Comprehensive Review of Traditional, Deep Learning 

and Hybrid Approaches. Bioengineering, 2024, vol. 11, 

iss. 10, article no. 1034. DOI: 10.3390/bioengineer-

ing11101034. 

 

 

Надійшла до редакції 15.03.2025, розглянута на редколегії 20.05.2025 

 

 

ЦИФРОВЕ ПРЕДСТАВЛЕННЯ ЗОБРАЖЕНЬ ЗА ДОПОМОГОЮ АТОМНИХ ФУНКЦІЙ:  

ОСОБЛИВОСТІ ДЛЯ КОМП'ЮТЕРНОГО ЗОРУ ТА МАШИННОГО НАВЧАННЯ 

В. О. Макаричев, В. В. Лукін,  

С. С. Кривенко, І. В. Брисіна 

Цифрові зображення, отримані за допомогою систем дистанційного зондування (ДЗ), стали важливими 

в численних технологічних застосуваннях у різних галузях, включаючи моніторинг навколишнього середо-

вища, сільське господарство, міське планування та оборону. Порівняно з іншими типами даних, їхній значний 

розмір створює труднощі для ефективного застосування методів машинного навчання (МН) та комп'ютерного 

зору (КЗ). Зокрема, обробка таких великомасштабних даних може бути обчислювально ресурсоємною та тру-

домісткою, що ускладнює розгортання традиційних методів МН та КЗ у сценаріях, що вимагають реагування 

в режимі реального часу, або в системах з обмеженими ресурсами обробки, таких як автономні платформи. 

Одним з ключових питань у цьому контексті є розробка компактних представлень зображень, які зберігають 

важливі характеристики для подальшого аналізу. Ці представлення повинні зменшувати розмірність даних 

без втрати критичної інформації, необхідної для класифікації, кластеризації та інших завдань МН/КЗ. У цьому 

дослідженні ми досліджуємо дискретне атомарне перетворення (DAT), яке базується на атомарних функціях, 

як потенційне рішення цієї проблеми. Попередні дослідження показали, що DAT надає цінні переваги з точки 

зору стиснення та шифрування даних, забезпечуючи безпечне та ефективне зберігання та передачу. Метою 

цієї роботи є оцінка придатності DAT для застосувань машинного навчання (ML) та когерентної діагностики 

(CV), зокрема в контексті кластеризації зображень. Ми оцінюємо продуктивність відомого алгоритму класте-

ризації k-середніх при застосуванні до зображень, представлених за допомогою DAT. Експериментальні ре-

зультати показують, що використання DAT значно скорочує час обчислення, досягаючи багатократного при-

скорення, без шкоди для якості кластеризації. Це свідчить про те, що DAT не тільки мінімізує розмір даних, 

але й зберігає структурні та статистичні особливості, важливі для завдань, заснованих на навчанні. 

Ключові слова: представлення зображення; атомарна функція; дискретне атомне перетворення; атомні 

вбудовування; кластеризація зображень. 
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