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The subject of this paper is to demonstrate the capabilities of numerical-analytical method for solving prob-

lems of sound generation by helicopter and quadrocopter rotors. In particular, the finite difference schemes for 

the implementation of the numerical-analytical method for steady, non-steady 2-D potential flows describing 

the generation of noise of aerodynamic origin by a helicopter rotor blade are presented. Examples of the ap-

plication of the numerical-analytical method to the problems of sound generation by a 3-D unsteady potential 

flow for the aerodynamic noise of a quadrotor are presented. It should be noted that until recently there was 

no unified finite difference scheme for solving helicopter rotor acoustics problems for different levels of physi-

cal approximations. The numerical-analytical method developed by the author of this paper has been shown to 

be capable of solving the problems of helicopter and quadrotor blade aeroacoustics for both simplified poten-
tial and significantly non-potential flows. The research methods are based on numerical schemes for the aer-

odynamic near and far sound fields calculations. The paper gives examples of the solution of these problems, 

analyses the application of the numerical-analytical method and compares it with existing finite difference 

methods. In particular, the calculation templates of the method for a stationary 2-D flow and a transient 3-D 

flow are presented and the special features of the selection of the number of points in the calculation template 

are explained. Depending on the specifics of a particular problem, the number of calculation templates and 

points in the calculation mesh can vary. This makes it possible to set up a stable calculation for each of the 

problems to be solved using the numerical-analytical method. In this case, the convergence of the method oc-

curs automatically each time based on the idea of the numerical-analytical method itself. Results and conclu-

sions. The results of a comparative analysis of existing numerical methods for calculating the sound field of 

helicopter and quadrocopter rotors have shown that the numerical-analytical method developed in detail is ef-
fective both for the calculation of sound formation problems in the potential approximation based on the Kar-

man-Guderley equation and for the full system of sound generation equations based on the Navier-Stokes 

equation for the case of non-potential flow. The efficiency of the numerical-analytical method consists in the 

fact that it is implicit and allows to adjust the numerical scheme for each specific problem to be solved. 

 

Keywords: aerodynamic noise of helicopter and quadrotor rotors; numerical-analytical method. 

 

Introduction 
 

The diversity of problems in aeroacoustics leads 

researchers to search for optimal numerical methods 

and schemes suitable for solving the problems of sound 
generation by flow for the widest possible class of 

problems. Before analysing the numerical methods, it is 

necessary to clarify the following: What is the differ-

ence between the process of sound generation and the 

process of sound radiation? The choice of numerical 

schemes and methods depends on the type of sound 

generation considered for a particular problem. Aeroa-

coustics studies the problems of sound generation, 

while classical acoustics studies sound radiation. The 

models and equations of aeroacoustics and the classical 
theory of sound radiation are different. This is because 

the process of sound generation in aeroacoustics has a 

different physical nature than in the classical theory of 

sound radiation. When a solid body vibrates with a 

small amplitude, it generates small disturbances in the 
air that propagate into the environment as a sound wave 

- this is sound radiation, i.e. classical acoustics. How-

ever, when a stream of air flows around a solid body, 
certain areas of flow instability occur during this flow, 

causing the occurrence of small sound disturbances 

within the flow itself, where the sound is generated 
directly in the flow itself - this is the process of sound 

generation governed by the equations of aeroacoustics. 

This explains the most important physical difference 

between sound generation and radiation. Both process-

es, radiation and generation, have been demonstrated in 

experimental studies of helicopter rotors, aeroplane 

propellers and quadcopters. There is still no general 
model that can describe both processes simultaneously. 

As a rule, these two physical processes are analysed 

mathematically separately: Physical models are created 
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and equations are written down for each of them. This 

paper focuses on the difficulties encountered when ap-

plying numerical methods and schemes to solve the 

problems of helicopter and quadrotor aeroacoustics. 
The instability of the flow resulting from the in-

teraction of the blade with the airflow is reflected in the 

instability of the solutions of the equations and systems 
of equations describing the sound generation process. 

Therefore, numerical methods and design schemes 

should be able to take into account the areas of flow 
instability, as these areas are a source of intense noise 

generation. However, not every finite difference meth-

od is able to do this. Therefore, it is useful to emphasise 

those numerical schemes and methods that can numeri-

cally calculate the regions of physical instability of 

flows.  

The investigation of noise of aerodynamic origin is 

an important task in the improvement of modern ro-

torcraft, especially helicopters and quadrocopters. In 

order to successfully solve the problem of reducing aer-

odynamic noise, it is necessary to find out which of the 

existing numerical methods are suitable for calculating a 

specific type of flow in which aerodynamic noise is 

generated. This paper focuses on a comparative analysis 

of existing numerical methods and a description of a 

numerical-analytical method for solving problems of the 

generation of noise of aerodynamic origin by the rotor 

of a helicopter or quadrotor. Examples of the applica-

tion of the numerical-analytical method to solve specific 

problems of noise generation are given. The study of 

noise of aerodynamic origin is an important task in the 

process of improving modern rotorcraft, especially heli-

copters and quadrocopters. In order to successfully 

solve the problem of reducing noise of aerodynamic 

origin, it is necessary to find out which of the existing 

numerical methods are suitable for calculating a particu-

lar type of flow in which aerodynamic noise is generat-

ed. This paper focuses on a comparative analysis of ex-

isting numerical methods and a description of a numeri-

cal-analytical method for solving problems of the gen-

eration of noise of aerodynamic origin by the rotor of a 

helicopter or quadrotor. Examples of the application of 

the numerical-analytical method to solve specific prob-

lems of sound production are given. 

It should be noted that the first attempts to study 

noise of aerodynamic origin were made using simple 

theoretical models, the aim of which was to determine 

the dependence of rotational noise on rotor kinematics 

and blade geometry. However, the range of topics was 

then considerably expanded once it was established that 

noise of aerodynamic origin has various components: 

Rotational noise, high-speed impulsive noise and noise 

from the interaction between vortices and blades. The 

mathematical models and equations that describe this or 

that type of noise differ. Accordingly, the methods of 

numerical calculation also differ, e.g. for rotational 

noise and blade-vortex interaction noise (BVI noise). 

The more complex the physical model and the equations 

with which it is mathematically implemented, the more 

noise sources it contains. Therefore, we will analyse the 

main existing models and numerical approaches used to 

describe different types of noise of aerodynamic origin 

from helicopter and quadrotor rotors. 

 

1. Analysis of design schemes for sound 

generation by potential flow 
 

The first type of noise investigated was helicopter 

rotational noise. A successful theoretical model for the 

study of rotational noise was proposed by Gutin [1]. 

This model clearly states that the rotational noise de-

pends on the generated harmonics and the blade size. 

However, this model is only one-dimensional and does 

not provide any information about the type of noise 

generated directly in the environment. 

The next step in the study of noise of aerodynamic 

origin is, as a potential approximation, to model the 

generation and propagation of small disturbances from a 

thin blade, which is governed by the Karman-Guderley 

(K-G) equation [2, 3]: 

 

x xx yy(K ( 1) ) 0       ,                (1) 

 

where 2 2/3K (1 M )    is the transonic similarity 

parameter, p Vc / c   is the ratio of specific heat 

capacity. 

At the beginning of research, this equation was on-

ly considered as an equation for small aerodynamic dis-

turbances. Later, this model was considerably improved 

by many authors [4]. The complete three-dimensional 

unsteady equation for the generation of small sound 

disturbances was established in [5], where it was proved 

that the three-dimensional analogue of equation (1) is 

nothing but the equation for the generation of sound by 

a thin wing in the potential unsteady approximation. 

Since equation (1) is a nonlinear differential equa-

tion, the boundary value problems based on it require a 

numerical solution. Let us consider the existing numeri-

cal methods for solving the two-dimensional steady-

state and transient equation (1) and its three-

dimensional transient analogue from [5] and analyse 

them. 

It is known that equation (1), depending on the 

values of its parameters, allows the simultaneous exist-

ence of flow regions with subsonic and supersonic ve-

locities in the flow. For this reason, it was not easy to 

choose a calculation scheme for the numerical solution 

of the problem based on the K-G equation. 



ISSN 1814-4225 (print) 
АВІАЦІЙНО-КОСМІЧНА ТЕХНІКА І ТЕХНОЛОГІЯ, 2024, № 6(200)       ISSN 2663-2012 (online) 

 

36 

The first successful attempt to solve the K-G equa-

tion numerically was the Murman-Cole scheme [6]. For 

the numerical implementation of the scheme, the au-

thors write the equation (1) in a conservative form, 

which allows the use of a fully conservative scheme: 

 

2

x y
w

( ) v 0
2

  ,                         (2) 

 

where x xw ( 1) K       , y yv ( 1)      . 

Let (x, y)  be any element with a uniform spacing 

of the difference grid in the plane (x, y) , and the verti-

ces have indices (i, j) . Equation (2) can be written in 

conservative form for a cell centered on a point (i, j)  

(Fig. 1). This results in the following equation: 

 

2 2

i 1/2, j i 1/2, j i, j 1/2 i, j 1/2
w w

[( ) ( ) ] y (v v ) x 0
2 2

         . (3) 

 

Otherwise, equation (3) can be written as:   

 

i 1/2, j i 1/2, j i 1/2, j i 1/2, j
1

(w w )(w w ) y
2

        

i, j 1/2 i, j 1/2(v v ) x 0     .                    (4) 

 

 
 

Fig. 1.  Control cell 

 

Now, if we solve an equation in a domain where it is an 

elliptic equation, i.e. a Laplace-type equation, then cen-

tral finite differences are used to approximate both w  

and v : 

 

i, j 1 i, j i, j i, j 1
i, j 1/2 y i, j 1/2 i, j 1/2v ( ) , v

y y

 
  

   
      (5) 

 

i 1, j i, j i, j i, j 1c
i, j 1/2 x i 1/2, j i, j 1/2w ( ) , w

y y

 
  

   
     (6) 

Otherwise, equation (4) can be written as: 

 

i 1, j i 1, j i 1, j i, j i 1, j

2

2
( )( )

2 x ( x)

        
  

i, j 1 i, j i, j 1

2

2
( ) 0

( y)

    
  .                   (7) 

 

Equation (7) is a second-order central difference 

scheme, which is an approximation of the equation for 

the elliptic (subsonic) domain. The stability of this 

scheme, the fulfillment of the Courant-Friedrichs-Levy 

criterion, is described in detail in the monograph of one 

of the authors of this scheme [4]. 

 

 
 

Fig. 2. The calculation pattern in the elliptical domain 

 

This pattern is not suitable for the hyperbolic (son-

ic) flow region because it contains upstream points. To 

avoid such influence, the computational template for the 

first (nonlinear) term of Eq. 2, which is responsible for 

the formation of shock waves that are converted into 

sound waves, is shifted downstream by one point at in-

dex i + 1 → I (Fig.3): 

 

i, j i 2, j i, j i 1, j i 2, j

2

i, j 1 i, j i, j 1

2

2
( )( )

2 x ( x)

2
    ( ) 0

( y)

  

 

     


   
 

          (8) 

 

 
 

Fig. 3. Calculation pattern in the hyperbolic area 
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What happens in the region of the sound points 

where the flow is accelerated or decelerated to the speed 

of sound? In this region of the flow, a different pattern 

is proposed, which does not match either the hyperbolic 

or the elliptical pattern (Fig.4): 

 

i 1, j i, j i 1, j i 2, j

i 1, j i, j i 1, j i 2, j

2

i, j 1 i, j i, j 1

2

( )
2 x

  ( )
( x)

2
  ( ) 0.

( y)

  

  

 

   


   
 

   
 

          (9) 

 
As you can see from the example of the solution to 

the problem described above, it is not possible to get by 

with just one numerical template for different flow re-

gions. The finite difference scheme considered above is 

a first order accuracy scheme in the hyperbolic flow 

domain [6]. In the elliptic flow domain, this scheme has 

a second order accuracy. 

 

 
Fig. 4. Calculated operator pattern at one point  

of the shock wave 

 

The second-order accuracy difference schemes for 

the hyperbolic domain are given in [6], and the methods 

to derive them are discussed in the monograph [7]. An 

analysis of the coupled compression jumps, which sig-

nificantly affect the use of numerical schemes, was car-

ried out in [8]. Later works using this calculation meth-

od appeared [9], but for the equation in full potentials, 

without separating small perturbations from the flow. 

In [9] a plane unsteady flow was calculated. For the 

mixed time and coordinate derivatives, both the central 

and the mixed finite differences were used. The second 

time derivative is modelled by backward finite differ-

ences. All this allowed us to simulate the pressure shock 

on the shock wave to a certain degree. 

So far we have not discussed which flow proper-

ties are of interest when investigating a shock wave. To 

analyse the solution of the K-equation, which describes 

the propagation of small disturbances on a thin wing, 

the pressure coefficient pC is of interest. It is defined as 

the ratio 2
pC 2(p p ) / U    . The numerical meth-

ods mentioned above calculate the pressure coefficient 

in the form of a parabola when there is no shock wave 

in the flow. If there is a discontinuity in the pressure 

curve, i.e. a shock wave is realised, the profile looks like 

a deformed, ‘broken’ parabola [4] (Fig. 5): 

 

 
 

Fig. 5. Pressure distribution for k = 1.8 

 

It should be noted that the pressure coefficient for 

the propagation of small disturbances in an unsteady 

flow deviates significantly from the parabolic form, as 

experience from later studies on unsteady plane transon-

ic flow has shown. This discrepancy can be explained 

by the fact that the numerical schemes actually consid-

ered do not take into account the instability of the flow: 

In them, the shock wave is as if it were stopped with 

respect to time. Therefore, it makes sense to further 

consider the schemes for solving the unsteady case of 

the K-G equation. 

In the second half of the 70s of the last century, 

some authors resorted to an implicit calculation scheme 

with variable directions - ADI (alternating direction 

implicit) - to solve the plane unsteady problem for the 

equation of propagation of small disturbances on a thin 

wing. In [10], for example, this method is used for the 

case of a low-frequency unsteady two-dimensional 

flow. In this case, the K-G equation is solved in the fol-

lowing form: 

 

tt xt xx yyA 2B C      ,           (10) 

 

where 

 
2 2 2/3 2 2/3A k M / ,B kM / ,    

2 2/3 m
xC (1 M ) / ( 1)M        . 

 

In this expression, the parameter m is the function 

M . The parameter is a fitting parameter for the critical 

value of the pressure coefficient [11]. The time parame-

ter k c / U  is the Strouhal number. The coordinates 
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x, y  in (10) were used as a running coordinates: 

 at the coordinate x : 
1 n 1 n n

x j,k j,k x j,k yy j,k2B( t) ( ) D f        ;     (11) 

 

 at the coordinate y : 

1 n 1 n n 1 n
x j,k j,k yy j,k j,k

2 2/3

1
2B( t) ( ) ( ),B

2

      kM / ,

  



         

 

  (12) 

 
1

x j,k j,k j 1,k j 1 j 12( )(x x )          

1
j,k j 1,k j 2,k j 1 j 1(3 4 )(x x )         ,    (13) 

 
1

yy j,k j,k 1 j,k k 1 k 12[( )(y y )          

1 1
j,k j,k 1 k k 1 k 1 k 1( )(y y ) ](y y ) 

        ,   (14) 

 

j j

n n 1 2 n 2/3
j,k j,k x ,k x ,k

1
f [C (1 M ) / ]

2


      ,     (15) 

 

j 1/2 j 1 jx ,k x ,k x ,k j 1 j 1( )(x x )
        ,       (16) 

 
1

j,k j 1 j 1 j

j 1/2,k j 1/2,k

j 1 j 1/2,k j 3/2,k

Df 2(x x ) [(1 )

     (f f )

     (f f )],


 

 

  

    

  

  

          (17) 

 

here  

j 0  ,  if  n n
j 1/2,k j 1/2,kC C 0   ; 

j 1  ,  if   n n
j 1/2,k j 1/2,kC C 0   . 

 

Following this work, there are further publications 

that improve the methodology for modelling the flow at 

a compression jump (shock wave). In [12, 13], for ex-

ample, the method of jump separation and stretching of 

the grid coordinates is used. Shock waves are consid-

ered as discontinuities perpendicular to the flow direc-

tion. Somewhat later [14], the authors develop their ap-

proach for three-dimensional flows, but not for the K-G 

equation, but for the full streaming potential equation. 

In the early 1980s, the paper [15] was published, which 

solved the inverse problem: the flow field and the shape 

of the airfoil are determined from a given pressure. 

However, the variety of numerical schemes for the 

different cases of the K-H equation makes it inconven-

ient to solve the problems in general: It would be desir-

able to use a general numerical scheme that would solve 

the problem for each case of the K-H equation. This 

method was proposed by the author in 2005 [16] for 

simplified cases of the K-G equation and later devel-

oped for the full three-dimensional K-G equation. As it 

turned out later, the numerical-analytical method easily 

coped with the case of sound generation by non-

potential flow. Below you will find a diagram of the 

numerical-analytical method for solving the K-G equa-

tion and for the complete system of aeroacoustic equa-

tions for a non-potential flow. 

 

2. Numerical analytical method 
 

The numerical analytical method [17, 18] has been 

successfully tested on a series of solved problems of 

noise generation by a helicopter blade. The basic idea of 

the method is that the finite difference representation of 

the derivatives is not explicitly used in the equations to 

be solved. The reason for this is simple: it is not always 

known in advance which of the expansions will be the 

most stable during the calculation. According to the idea 

of the numerical-analytical method, we proceed as fol-

lows: At the n 1 points of the computational ‘template’ 

we perform a standard expansion into a multidimen-

sional Taylor series, and at the point we assume that the 

equation of small perturbation propagation is automati-

cally satisfied. In fact, we require that the equation for 

the generation of small transient K-G perturbations is 

satisfied at the n -th point. Under this condition, the 

convergence condition of the desired numerical solution 

is automatically satisfied. In this case, the coefficients of 

the Taylor series expansion are implicitly expressed 

from the system of equations. This scheme of the meth-

od is used for certain boundary value problems where 

the boundary condition allows integration. Therefore, 

the boundary condition is not added to the system of 

equations. However, this is only done in simple cases. 

If it is also necessary to satisfy a constraint, which 

is the case for most problems, the constraint is added to 

the equation system of the calculation. In this case we 

have the following: at the n 2  points of the calcula-

tion ‘template, we perform a multidimensional Taylor 

series expansion and require the automatic execution of 

the equation to be solved and the boundary condition. 

This reduces the number of points in the design scheme 

for which a Taylor series expansion is required by 2. 

In the following, we consider the implementation 

of the numerical-analytical method for the two-

dimensional stationary and three-dimensional unsteady 

K-G equation. 

 
2.1. The 2-dimensional case 

 
The Karman-Guderley equation (1) in dimension-

less variables x / c, y      has the form: 

 
2

2 2
1

1
[1 ( 1)f ]f f 0.

M M
  


             (18) 
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A 6-point scheme was proposed for the two-

dimensional case [17] (Fig. 6): 

 
 

Fig. 6. Calculated points of the 6-point pattern 

 

we expand the function at five points i if ( , )   in Tay-

lor's series ( 2f C ([0;1] [0;1])  ): 

 

i i 0 0 0 0 i 0

0 0 i 0

f ( , ) f ( , ) f ( , )( )

f ( , )( )





          

     

2
0 0 i 0

0 0 i 0 i 0

1
[f ( , )( )

2

2f ( , )( )( )





     

       

2
0 0 i 02f ( , )( ) ]       

2 2
i 0 i 0 i 0 i 0o(max{( ) ,( ) ,( )( )}),          

( i 1,...,5 ).                             (19) 

 

At the 6th calculation point 
0 0( , )  , we require the 

equation to be executed automatically: 

 

0 0 0 02

2

0 02
1

1
[1 ( 1)f ( , )]f ( , )

M

     f ( , ) 0.
M

 



          


   

(20) 

 

The boundary condition that there is no flow 

  

f g ,0 1                              (21) 

 

is automatically satisfied in this problem. The system of 

6 equations (19), (20) thus enables us to find all un-

known derivatives of the dimensionless sound potential 

i if ( , )   and the potential itself. It is not difficult to see 

how simple the idea of the numerical-analytical method 

is, but at the same time, as further calculations have 

shown, the method is very practical. 

The scheme of the numerical method described 

above enabled the direct fulfillment of the convergence 

condition of the method, and the implicit nature of the 

scheme, the choice of the required number of Taylor 

series terms, ensured the stability of the calculation. The 

curves of pressure coefficients at Mach numbers M 1  

presented in Fig.7 and Fig.8 show that the numerical-

analytical method successfully coped with the task of 

calculating the sound flow in a physically unstable re-

gion (Fig. 8). At the same time, the numerical scheme 

has not "collapsed", as is the case with most known fi-

nite difference representations. 

 

 
 

Fig. 7. Calculation of the pressure coefficient  
in the transonic flow area 

 

 
 

Fig. 8. Calculation of the pressure coefficient  

in the transonic flow area 

 

2.2. The 3-dimensional case 
 

The author of this paper has previously derived the 

full three-dimensional equation for the propagation of 

small perturbations on a thin wing [5] and performed a 

theoretical analysis of special cases. The numerical-

analytical method has also been used to solve the 

boundary value problem in the study of the generation 

and propagation of small unsteady disturbances from a 

helicopter blade. In this case, it is applied to a dimen-

sionless 3-dimensional equation for the propagation of 

small disturbances i i i if ( , , , )     from a thin blade: 

 

2

2
1

kc 1 2kc
f [1 (1 ) f ]f f

U UM
   

 
        

 
 

 
2 2

2 2
1 1

c c 1
f f 0,

RM M
 

  
   

 
            (22) 

 

where x / c, y, z / R, kt         - dimensionless 

coordinates and time. 
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Boundary conditions: 
 

kc
g g cf ,0 1, ( )

U   
 

           
 

.      (23) 

  
Then, in analogy to the above example for the two-

dimensional case, we choose the number of design 

points of the template according to the number of un-

known derivatives in the function represented in the 

Taylor series expansion, but by 2 less, since we still 

have to solve the equation (22) and the boundary condi-

tion (23). In this case, the dimensionless potential can 

be written as: 
 

i i i i o o o o i of ( , , , ) f ( , , , ) f ( )


              

i o i o i of ( ) f ( ) f ( )
            

2 2 2
i o i o i o

1
[f ( ) f ( ) f ( )

2             

2
i o i o i of ( ) ] f ( )( )

           

i o i o i o i of ( )( ) f ( )( )
 

            

i o i o i o i of ( )( ) f ( )( )
             

3
i o i of ( )( ) R( ),i 1,n 2          ,        (24) 

 

here 3R( ) is a residual term of Taylor’s series. 

For the three-dimensional transient case, we thus 

have n 15 . During the numerical calculation, the time 

step was adjusted according to the Courant-Friedrichs-

Levy criterion [19]: During a dimensionless time step, 

the sound wave was located in a cell in space. This con-

dition made it possible to perform a physically correct 

and stable calculation that takes into account the physi-

cal properties of the sound wave. Fig.9 shows the calcu-

lation of the pressure coefficient at the blade cross-

section. Since the pressure coefficient is a function of 

only small sound disturbances (see [5]), it obviously 

describes the zones of local sound generation near the 

blade surface. As can be seen from the figure, the pres-

sure distribution according to the transient model differs 

significantly from the pressure distribution according to 

the steady-state model (Fig. 9): The profile pC  no long-

er looks like a parabola, as observed for a flat steady-

state problem, but has the shape of a short-time impulse 

signal with local maxima, indicating the possible exist-

ence of a series of shock waves [18]. 

Recently, the problem of reducing energy con-

sumption and noise in small civil aviation has become 

more and more acute. The use of air cabs is one way to 

solve this problem. The author of this paper has calcu-

lated the rotor noise of a quadrotor air cab using a po-

tential model [20]. A 15-point scheme of the numerical-

analytical method was used for the numerical calcula-

tion. 

 
Fig. 9. Pressure coefficient on the surface  

of the helicopter blade 

 

The comparison of Fig. 10 and Fig. 11 shows that 

the distribution of the pressure coefficient in the area of 

the main fault is similar to a certain extent to Fig. 9. 

Nevertheless, there are certain differences in each calcu-

lation case. The obtained calculation data in the three-

dimensional approximation clearly show the existence 

of areas with intense sound generation, as described in 

detail in [20]. 
 

 
Fig. 10. Pressure coefficient on the surface  

of the quadcopter blade 
 

 
Fig. 11. Pressure coefficient on the surface  

of the quadcopter blade 
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3. Construction scheme  

of the non-potential flow 
 

The existing schemes for calculating sound dis-

turbances in the potential approach have been discussed 

above. Potential models are typically used in modelling 

blade noise for relatively high Mach numbers M>0.5, 

when rotational noise rather than vortex noise domi-

nates. At M<0.5, the vortex component of the flow con-

tributes significantly to the overall noise level, so that 

the potential approximation is no longer physically cor-

rect. In this case, equations or systems of equations that 

take into account the vortex component of the flow are 

used to model the noise generation of aerodynamic 

origin. 

Currently, a sufficient number of non-potential 

models [21, 22] are known to describe the generation of 

sound of aerodynamic origin. However, the best known 

models from this list are not physically accurate. In par-

ticular, when choosing a model to calculate helicopter 

noise, most researchers are guided by the most popular 

models Ffowc's Willams-Hawkins (FW-H) [23] and 

Farassat's 1A [24]. In some cases, Lighthill's acoustic 

analogy is also used [25]. However, this does not mean 

that the above models are physically correct: Lighthill's 

acoustic analogy and its application within the FW-H 

formula leaves open the question of the physical cor-

rectness of these approaches [26]. 

Let us consider the Ffowcs Willams-Hawkins 

equation: 

 

0

2
ij ij j2

0
i j r i rV S

T p n
4 ( ) [ ]d [ ]dS( )

x x r 1 M x r 1 M

 
     

     

 

0 0

2 2
0 i j0 i

i r i j rV V

v vv
[ ]d [ ]d

x r 1 M x x r 1 M

 
  
      .  (25) 

 

It is easy to see that equation (25) contains the 

Lighthill equation. However, in [25] Lighthill has ob-

tained his own equation artificially: by adding a certain 

term (derivative) on the left and right sides, which for-

mally gives it the appearance of a wave equation that 

seems to describe the generation of sound. The question 

arises: what kind of equation do we get if we add more 

derivatives on the left and right sides of the equation? 

This question implies that the approach used by 

Lighthill is not physically correct, because if we add and 

subtract certain derivatives to the equation without ex-

planation, we actually get equations that describe a 

completely different physical process. How can we be 

sure that this is the equation of sound generation? Add-

ing or subtracting does not help: if you take away these 

added terms, i.e. perform the same mathematical trans-

formation in the opposite direction, the resulting equa-

tion is no longer a wave equation. 

The added term on the right-hand side of the 

Lighthill equation actually introduced non-existent 

sound sources. On the other hand, if, for example, there 

is an equation of motion in terms of forces, then adding 

or subtracting a particular term will result in a change in 

the physical process, i.e. it will be an equation describ-

ing a different physical process (with different forces) 

than before the addition or subtraction of that term. The 

mathematical technique used by Lighthill is therefore 

physically incorrect. Since the Ffowcs-Willams-

Hawkins formula is derived directly from Lighthill's 

equation, the question of its physical correctness also 

arises. 

According to the formula derived by Farassat [24], 

the sound pressure is determined by a thickness source 

'
Tp (x, t)  and a load source '

Lp (x, t) : 

 

' ' ' 0 n
T L

rf 0

v
4 p (x, t) 4 (p (x, t) p (x, t)) [

t r(1 M )



     

   

ret ret2
r rf 0

pcos pcos
] dS [ ] dS

cr(1 M ) r (1 M )

 
 

 
 ,      (26) 

 

where i icos n r   is the local angle between the normal 

to the surface and the radiation direction. 

If you take a close look at equations (25) and (26), 

you will realise that these approaches say nothing about 

the determination of the near sound field. The methods 

for determining the sound field potential or the density 

in the sound wave is not mentioned either. However, 

these physical variables in the sound wave must be 

known and taken into account when calculating the far-

field integrals. 

The main drawback of Farassat's approach is that 

the sound sources are non-existent fictitious sources 

located inside a solid surface, a blade. And we are talk-

ing about sound of aerodynamic origin, i.e. that which is 

generated inside the air flow, and not in a solid body, 

where in principle it cannot occur. The question arises: 

why is such a strange approach used? The answer is 

simple: In classical acoustics, the Green's function in the 

form of a point source is used as an auxiliary solution 

(not as the main solution!) to represent the far sound 

field. This makes it possible to write down the specified 

representation of the far sound field for real sound 

sources in a mathematically correct way on the basis of 

Green's second formula. Farassat went even further: he 

assumed that it did not necessarily have to be real sound 

sources, but that it could also be imaginary sources. And 

these sources are located within a rigid surface that 

emits no sound at all. And this is precisely the main 

obstacle to the physical determination of aerodynami-
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cally generated sound: with this approach, there are no 

real sound sources at all. There are no real sound 

sources that can be included in the wave equation, only 

fictitious sources that appear to be contained in a rigid 

surface. But these fictitious sources do not actually pro-

duce any sound at all. This has been discussed in Fe-

dorchenko's work [26] as well as in [5]. Can such a 

model be considered physically correct? No, of course 

not. 

It is worth mentioning that new numerical schemes 

explaining the solution of aeroacoustic problems have 

appeared recently, e.g. [27, 28] and [29], but in reality 

the authors numerically model complete systems of aer-

odynamic-thermodynamic equations, trying to study the 

noise of jets. The aeroacoustic equations of Lighthill, 

Ffowc's Willams-Hawkins and Farassat are not men-

tioned at all. In these works, attention is drawn to the 

issue of the absence of dispersion in numerical schemes 

and non-reflection conditions are established  [29]. The 

problem of asynchrony of the time step [27] in a numer-

ical scheme is most likely to be considered when the 

speed of sound wave propagation is variable, i.e. de-

pends essentially on changes in thermodynamic parame-

ters. This is possible in the case of a non-isentropic 

flow. In this case, the speed of the sound wave and thus 

the Courant number is different in each calculation cell. 

For jet engines, the isentropic condition is not fulfilled. 

This can justify the use of different cell sizes for the 

time variable. In the case of an isentropic flow, whose 

model is sufficiently valid to describe the noise genera-

tion of helicopter and quadrotor propellers, the speed of 

sound can be approximated as a constant value, since 

thermodynamic changes are neglected. In this case, 

there is no need for an asynchronous time step of the 

calculation grid. 

In addition to the models mentioned above, there 

are a number of other models that describe sound of 

aerodynamic origin [26], but each of these models has 

certain physical limitations. The most complete physi-

cally correct theoretical model was previously proposed 

by the author of this paper [30]. The closed-form system 

of equations obtained based on this model in the case of 

isentropic flow is as follows: 

 
2 ' 2 ' 2 ' 2 '

2 2 2

2 2 2 2 2 2

1 1
a ( c )

M AR
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      
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' ' 2 ' 2 ' 2 ' 2 ' 2 '
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2 2 2 2
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(27) 
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R
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,                  (28)  

 

here , '  – are dimensionless sound potential and 

density; , u, v,w  – are the dimensionless density and 

components of the velocity vector of the main flow. 
 

' ' 2 ' 2 ' 2 ' 2 ' 2 '
'

2 2 2 2
R( , , , , , , ,..., )

           


     
 

 

contains all terms of the right-hand side (28) that de-

pend on the sound density and its derivatives. The right-

hand side of Eq.(28) contains only the terms that depend 

on the derivatives of the dimensionless sound potential:  
 

' ' 2 ' 2 ' 2 ' 2 ' 2 '
'

2 2 2 2
( , , , , , , ,..., )

           
 

     
. 

 

The system of differential equations (27), (28) al-

lows us to describe the process of sound generation with 

second�order accuracy and is physically correct, since 

its derivation is based on the classical Rayleigh ap-

proach [31, 32] to determine the wave equation. 

 

4. Examples of the application  

of the numerical-analytical method  

in the case of non-potential flows 
 

4.1. Noise generation during the landing  

of a helicopter 

 
Despite the mathematical complexity of the system 

of equations (27), (28), the author has succeeded in nu-

merically solving a number of interesting problems us-

ing the numerical-analytical method [33, 34]. The spe-

cial feature of the numerical-analytical method is the 

use of a non-uniform computational grid around the 

blade. For example, when solving the problem of noise 

generation by a double-curvature blade (Fig. 12 and 

Fig. 13), the grid spacing along the blade chord was 

about twice as small as that along the blade span and 

varied within [ ] [82 40]   . Such a difference in 

grid size had no influence on the detection of the transi-

ent effects shown in Fig. 12 and Fig. 13. However, the 

different step size along the spatial coordinates allowed 

us to save computer resources. The data obtained from 

the calculation of the near-field using the numerical-

analytical method were used to calculate the integral 

representation of the far-field. 
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Fig. 12. Acoustic density distribution  

over the surface of a helicopter blade 
 

 
Fig. 13. Acoustic density distribution  

over the surface of a helicopter blade 

 

4.2. Vortex Ring Mode 
 

One of the interesting problems solved by the nu-

merical-analytical method is the problem of generating 

the noise of the helicopter-rotor interaction in the “vor-

tex ring” mode of operation [35]. A 15-point scheme 

was also used in the numerical implementation of the 

method. The computational grid contained nodes. The 

peculiarity of the numerical-analytical method made it 

possible to “capture" local inhomogeneity in the behav-

ior of acoustic density fluctuations, Fig.14 and Fig.15. 

The general picture of these fluctuations helps us to 

identify areas of intense sound generation when we 

change the parameters of the problem and the blade 

geometry. This is very useful for finding optimal aero-

dynamic and acoustically quiet blade shapes.  

By recording the change in acoustic characteristics 

with external sensors and comparing it with the obtained 

graphical dependencies, it is possible to diagnose the 

helicopter's entry into the “vortex ring”, which allows 

the pilot to react in time and remove the helicopter from 

this mode to prevent a catastrophe. A more detailed de-

scription of the solution to this problem can be found 

in [35]. 

 
 

Fig. 14. Acoustic density distribution over the surface  
of a helicopter blade in “vortex ring” mode  

 

 
 

Fig. 15. Acoustic density distribution over the surface  

of a helicopter blade in “vortex ring” mode 

 

Discussion 

 
The results of a comparative analysis of numerical 

methods for solving problems of noise generation of 

aerodynamic origin of helicopter and quadrotor rotors 

have shown that the numerical-analytical method is an 

effective tool for this class of problems. In particular, 

the numerical-analytical method can be used for both 

two-dimensional stationary and three-dimensional non-

stationary noise generation problems. This is an essen-

tial feature of the method compared to other numerical 

schemes that are used exclusively for specific computa-

tional cases. In addition, the constructed scheme of the 

method is simple and constructive, so that the calcula-

tion template can be easily customised for each specific 

problem. 
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Conclusions 
 

1. In this paper, we analyses numerical methods to 

calculate the near-sonic field for the cases of potential 

and non-potential flow of helicopter and quadrotor ro-

tors. 

2. The analysis has shown that until recently there 

was no single finite difference scheme or method for 

different flow models of sound generation. This prob-

lem was solved using the numerical-analytical method. 

3. The special feature of the numerical-analytical 

method is that it is an implicit finite-difference represen-

tation that makes it possible to calculate the properties 

of both the sound field fluctuations and the main flow 

field itself on a control design surface near a body that 

interacts with the flow and generates sound during this 

interaction. The calculated data is also used in the inte-

gral representation previously proposed by the author. 

This generally allows the calculation time of the noise 

to be significantly reduced, as no calculation on a three-

dimensional volume is required. 

4. The ability of the numerical-analytical method 

to solve the problems of helicopter noise generation for 

both potential and non-potential flows allows us to con-

sider this method, to a certain extent, universal for vari-

ous problems of noise generation of aerodynamic origin 

by rotors. 
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ЧИСЕЛЬНО-АНАЛІТИЧНИЙ МЕТОД ДЛЯ ЗАДАЧ ГЕНЕРАЦІЇ АЕРОДИНАМІЧНИХ ШУМІВ 

РОТОРАМИ ГЕЛІКОПТЕРІВ ТА КВАДРОКОПТЕРІВ 

П. В. Лук’янов 

Предметом даної роботи  є демонстрація можливостей чисельно-аналітичного методу для розв'язання 

задач генерації звуку роторами гелікоптерів та квадрокоптерів. Зокрема, наведено скінченно-різницеві схе-

ми для реалізації чисельно-аналітичного методу для стаціонарних та нестаціонарних двовимірних потенціа-

льних течій, що описують генерацію шуму аеродинамічного походження лопаттю ротора гелікоптера. Наве-

дено приклади застосування чисельно-аналітичного методу до задач генерації звуку нестаціонарною триви-

мірною потенційною течією для аеродинамічного шуму квадрокоптера. Слід зазначити, що до недавніх пір 

не існувало єдиної скінченно-різницевої схеми розв'язання задач акустики ротора гелікоптера для моделей 

різних фізичних рівнів наближень. Показано, що чисельно-аналітичний метод, розроблений автором даної 

роботи, дозволяє розв'язувати задачі аероакустики лопаті гелікоптера та квадрокоптера як для спрощених 

потенціальних, так і для суттєво непотенціальних течій. Методи дослідження ґрунтуються на чисельних 
схемах розрахунку аеродинамічних  ближнього і дальнього звукового поля. У статті наведено приклади роз-

в'язання цих задач, проаналізовано застосування чисельно-аналітичного методу та проведено його порів-

няння з існуючими методами скінченних різниць. Зокрема, наведено розрахункові шаблони методу для ста-

ціонарної 2-вимірної течії та перехідної 3-вимірної течії і пояснено особливості вибору кількості точок у 

розрахунковому шаблоні. Залежно від специфіки конкретної задачі кількість розрахункових шаблонів і то-

чок в розрахунковій сітці може змінюватися. Це дає можливість налаштувати стабільний розрахунок для 

кожної з задач, що розв'язуються чисельно-аналітичним методом. При цьому збіжність методу відбувається 

щоразу автоматично, виходячи з ідеї самого чисельно-аналітичного методу. Результати та висновки. Ре-

зультати порівняльного аналізу існуючих чисельних методів розрахунку звукового поля роторів вертольотів 

і квадрокоптерів показали, що детально розроблений чисельно-аналітичний метод є ефективним як для роз-

рахунку задач звукоутворення в потенційному наближенні на основі рівняння Кармана-Гудерлі, так і для 

повної системи рівнянь звукоутворення на основі рівняння Нав'є-Стокса для випадку непотенційної течії. 
Ефективність чисельно-аналітичного методу полягає в тому, що він є неявним і дозволяє адаптувати чисе-

льну схему до кожної конкретної задачі, яка розв'язується. 

Ключові слова: аеродинамічний шум роторів вертольотів і квадрокоптерів; чисельно-аналітичний ме-

тод.  
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