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NUMERICAL-ANALITICAL METHOD FOR THE PROBLEMS OF AERODYNAMIC
NOISE GENERATIONS IN HELICOPTER AND QUADROTORS

The subject of this paper is to demonstrate the capabilities of numerical-analytical method for solving prob-
lems of sound generation by helicopter and quadrocopter rotors. In particular, the finite difference schemes for
the implementation of the numerical-analytical method for steady, non-steady 2-D potential flows describing
the generation of noise of aerodynamic origin by a helicopter rotor blade are presented. Examples of the ap-
plication of the numerical-analytical method to the problems of sound generation by a 3-D unsteady potential
flow for the aerodynamic noise of a quadrotor are presented. It should be noted that until recently there was
no unified finite difference scheme for solving helicopter rotor acoustics problems for different levels of physi-
cal approximations. The numerical-analytical method developed by the author of this paper has been shown to
be capable of solving the problems of helicopter and quadrotor blade aeroacoustics for both simplified poten-
tial and significantly non-potential flows. The research methods are based on numerical schemes for the aer-
odynamic near and far sound fields calculations. The paper gives examples of the solution of these problems,
analyses the application of the numerical-analytical method and compares it with existing finite difference
methods. In particular, the calculation templates of the method for a stationary 2-D flow and a transient 3-D
flow are presented and the special features of the selection of the number of points in the calculation template
are explained. Depending on the specifics of a particular problem, the number of calculation templates and
points in the calculation mesh can vary. This makes it possible to set up a stable calculation for each of the
problems to be solved using the numerical-analytical method. In this case, the convergence of the method oc-
curs automatically each time based on the idea of the numerical-analytical method itself. Results and conclu-
sions. The results of a comparative analysis of existing numerical methods for calculating the sound field of
helicopter and quadrocopter rotors have shown that the numerical-analytical method developed in detail is ef-
fective both for the calculation of sound formation problems in the potential approximation based on the Kar-
man-Guderley equation and for the full system of sound generation equations based on the Navier-Stokes
equation for the case of non-potential flow. The efficiency of the numerical-analytical method consists in the
fact that it is implicit and allows to adjust the numerical scheme for each specific problem to be solved.

Keywords: aerodynamic noise of helicopter and quadrotor rotors; numerical-analytical method.

sound radiation. When a solid body vibrates with a
small amplitude, it generates small disturbances in the

Introduction

The diversity of problems in aeroacoustics leads
researchers to search for optimal numerical methods
and schemes suitable for solving the problems of sound
generation by flow for the widest possible class of
problems. Before analysing the numerical methods, it is
necessary to clarify the following: What is the differ-
ence between the process of sound generation and the
process of sound radiation? The choice of numerical
schemes and methods depends on the type of sound
generation considered for a particular problem. Aeroa-
coustics studies the problems of sound generation,
while classical acoustics studies sound radiation. The
models and equations of aeroacoustics and the classical
theory of sound radiation are different. This is because
the process of sound generation in aeroacoustics has a
different physical nature than in the classical theory of

air that propagate into the environment as a sound wave
- this is sound radiation, i.e. classical acoustics. How-
ever, when a stream of air flows around a solid body,
certain areas of flow instability occur during this flow,
causing the occurrence of small sound disturbances
within the flow itself, where the sound is generated
directly in the flow itself - this is the process of sound
generation governed by the equations of aeroacoustics.
This explains the most important physical difference
between sound generation and radiation. Both process-
es, radiation and generation, have been demonstrated in
experimental studies of helicopter rotors, aeroplane
propellers and quadcopters. There is still no general
model that can describe both processes simultaneously.
As a rule, these two physical processes are analysed
mathematically separately: Physical models are created
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and equations are written down for each of them. This
paper focuses on the difficulties encountered when ap-
plying numerical methods and schemes to solve the
problems of helicopter and quadrotor aeroacoustics.

The instability of the flow resulting from the in-
teraction of the blade with the airflow is reflected in the
instability of the solutions of the equations and systems
of equations describing the sound generation process.
Therefore, numerical methods and design schemes
should be able to take into account the areas of flow
instability, as these areas are a source of intense noise
generation. However, not every finite difference meth-
od is able to do this. Therefore, it is useful to emphasise
those numerical schemes and methods that can numeri-
cally calculate the regions of physical instability of
flows.

The investigation of noise of aerodynamic origin is
an important task in the improvement of modern ro-
torcraft, especially helicopters and quadrocopters. In
order to successfully solve the problem of reducing aer-
odynamic noise, it is necessary to find out which of the
existing numerical methods are suitable for calculating a
specific type of flow in which aerodynamic noise is
generated. This paper focuses on a comparative analysis
of existing numerical methods and a description of a
numerical-analytical method for solving problems of the
generation of noise of aerodynamic origin by the rotor
of a helicopter or quadrotor. Examples of the applica-
tion of the numerical-analytical method to solve specific
problems of noise generation are given. The study of
noise of aerodynamic origin is an important task in the
process of improving modern rotorcraft, especially heli-
copters and quadrocopters. In order to successfully
solve the problem of reducing noise of aerodynamic
origin, it is necessary to find out which of the existing
numerical methods are suitable for calculating a particu-
lar type of flow in which aerodynamic noise is generat-
ed. This paper focuses on a comparative analysis of ex-
isting numerical methods and a description of a numeri-
cal-analytical method for solving problems of the gen-
eration of noise of aerodynamic origin by the rotor of a
helicopter or quadrotor. Examples of the application of
the numerical-analytical method to solve specific prob-
lems of sound production are given.

It should be noted that the first attempts to study
noise of aerodynamic origin were made using simple
theoretical models, the aim of which was to determine
the dependence of rotational noise on rotor kinematics
and blade geometry. However, the range of topics was
then considerably expanded once it was established that
noise of aerodynamic origin has various components:
Rotational noise, high-speed impulsive noise and noise
from the interaction between vortices and blades. The
mathematical models and equations that describe this or
that type of noise differ. Accordingly, the methods of

numerical calculation also differ, e.g. for rotational
noise and blade-vortex interaction noise (BVI noise).
The more complex the physical model and the equations
with which it is mathematically implemented, the more
noise sources it contains. Therefore, we will analyse the
main existing models and numerical approaches used to
describe different types of noise of aerodynamic origin
from helicopter and quadrotor rotors.

1. Analysis of design schemes for sound
generation by potential flow

The first type of noise investigated was helicopter
rotational noise. A successful theoretical model for the
study of rotational noise was proposed by Gutin [1].
This model clearly states that the rotational noise de-
pends on the generated harmonics and the blade size.
However, this model is only one-dimensional and does
not provide any information about the type of noise
generated directly in the environment.

The next step in the study of noise of aerodynamic
origin is, as a potential approximation, to model the
generation and propagation of small disturbances from a
thin blade, which is governed by the Karman-Guderley
(K-G) equation [2, 3]:

(K=(r+Ddx)dxx +byy =0, )

where K:(l—Mfo)éSz’3 is the transonic similarity
parameter, y=cp/cy is the ratio of specific heat

capacity.

At the beginning of research, this equation was on-
ly considered as an equation for small aerodynamic dis-
turbances. Later, this model was considerably improved
by many authors [4]. The complete three-dimensional
unsteady equation for the generation of small sound
disturbances was established in [5], where it was proved
that the three-dimensional analogue of equation (1) is
nothing but the equation for the generation of sound by
a thin wing in the potential unsteady approximation.

Since equation (1) is a nonlinear differential equa-
tion, the boundary value problems based on it require a
numerical solution. Let us consider the existing numeri-
cal methods for solving the two-dimensional steady-
state and transient equation (1) and its three-
dimensional transient analogue from [5] and analyse
them.

It is known that equation (1), depending on the
values of its parameters, allows the simultaneous exist-
ence of flow regions with subsonic and supersonic ve-
locities in the flow. For this reason, it was not easy to
choose a calculation scheme for the numerical solution
of the problem based on the K-G equation.
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The first successful attempt to solve the K-G equa-
tion numerically was the Murman-Cole scheme [6]. For
the numerical implementation of the scheme, the au-
thors write the equation (1) in a conservative form,
which allows the use of a fully conservative scheme:

W2

P

)x —Vy =0, )
where W=y =(y+Ddy —K, v=0y =(v+1)dy.

Let (x,y) be any element with a uniform spacing
of the difference grid in the plane (x,y), and the verti-
ces have indices (i,]j). Equation (2) can be written in
conservative form for a cell centered on a point (i, )
(Fig. 1). Thisresults in the following equation:

W2 2

[(7)i+]]2, i _(W7)i7112, 1AV = (Vi jay2 = Vi ju/2)A% =0 (3)

Otherwise, equation (3) can be written as:

1 _
> (Wisy2,j —Wi—y2,)(Wisy2,j + Wi_y2,j)AY —
—(Vi ja2 = Vi j12)Ax =0. 4)
i, j+l
°
v, jH/2 i+1/2, j+1/2
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I
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- i+, j
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i, j—1

Fig. 1. Control cell

Now, if we solve an equation in a domain where it is an
elliptic equation, i.e. a Laplace-type equation, then cen-
tral finite differences are used to approximate both W
and v:

P j+1 ~ Pi,j Pij —Pij1
Vijrz = (@y)ijiz = ————Vija2 = ~y ®)
Pir1,j — Pij Pi,j — Pij-1

W 172 = (0x)isns2,j = Wi j1/2 5 (6)

Otherwise, equation (4) can be written as:

Pis1,j — Pi-1,j ) Pist,j — 2Pij T Pivj,
24X (aX)?
Pi j+1 — 20i j +(Pi,j—l) _
(2y)?

(

(

0. @)

Equation (7) is a second-order central difference
scheme, which is an approximation of the equation for
the elliptic (subsonic) domain. The stability of this
scheme, the fulfillment of the Courant-Friedrichs-Levy
criterion, is described in detail in the monograph of one
of the authors of this scheme [4].

® i-itl -
Ay
o x ®
g=it 7] i+tl, j
o
i, j—1

1

Fig. 2. The calculation pattern in the elliptical domain

This pattern is not suitable for the hyperbolic (son-
ic) flow region because it contains upstream points. To
avoid such influence, the computational template for the
first (nonlinear) term of Eq. 2, which is responsible for
the formation of shock waves that are converted into
sound waves, is shifted downstream by one point at in-
dexi+1—1(Fig.3):

Qi j—Pi=2,j.,Pi.j—2Pi-1j T Pi2,j
Al Iy 9 j iy

24X (ax)?
)
®i,j+1 205 j + Pj j1
—( — )=0
(2Y)
x i, jt+l
o o X i,j
By 71, 7 Ay
x i, j—1

T

Fig. 3. Calculation pattern in the hyperbolic area
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What happens in the region of the sound points
where the flow is accelerated or decelerated to the speed
of sound? In this region of the flow, a different pattern
is proposed, which does not match either the hyperbolic
or the elliptical pattern (Fig.4):

Piy1,j — Pi,j T Pi-1,j +(Pi—2,j)><

( 2AX
. . — .. + 1 + i .
X((P|+1,J Pi,j (Plzl,j Di 2,1)_ )
(Ax)
~ ¢i,j+1_2(lf,j2+§0i,j—l)=ol
(2Y)

As you can see from the example of the solution to
the problem described above, it is not possible to get by
with just one numerical template for different flow re-
gions. The finite difference scheme considered above is
a first order accuracy scheme in the hyperbolic flow
domain [6]. In the elliptic flow domain, this scheme has
a second order accuracy.

i,jJrI x i
Ay
(@) (@] x (@)
-2, j i-1, ] i.j iHl.j —t—
i,j—1 %X

i

Fig. 4. Calculated operator pattern at one point
of the shock wave

The second-order accuracy difference schemes for
the hyperbolic domain are given in [6], and the methods
to derive them are discussed in the monograph [7]. An
analysis of the coupled compression jumps, which sig-
nificantly affect the use of numerical schemes, was car-
ried out in [8]. Later works using this calculation meth-
od appeared [9], but for the equation in full potentials,
without separating small perturbations from the flow.
In[9] a plane unsteady flow was calculated. For the
mixed time and coordinate derivatives, both the central
and the mixed finite differences were used. The second
time derivative is modelled by backward finite differ-
ences. All this allowed us to simulate the pressure shock
on the shock wave to a certain degree.

So far we have not discussed which flow proper-
ties are of interest when investigating a shock wave. To
analyse the solution of the K-equation, which describes
the propagation of small disturbances on a thin wing,
the pressure coefficient C, is of interest. It is defined as

the ratio Cp, =2(p—p.,)/ p,,U*. The numerical meth-

ods mentioned above calculate the pressure coefficient
in the form of a parabola when there is no shock wave
in the flow. If there is a discontinuity in the pressure
curve, i.e. a shock wave is realised, the profile looks like
a deformed, ‘broken’ parabola [4] (Fig. 5):

-4,0
-3,0
2,0
-1,0
0

1,0

2,0
0 0,5

Fig. 5. Pressure distribution for k = 1.8

It should be noted that the pressure coefficient for
the propagation of small disturbances in an unsteady
flow deviates significantly from the parabolic form, as
experience from later studies on unsteady plane transon-
ic flow has shown. This discrepancy can be explained
by the fact that the numerical schemes actually consid-
ered do not take into account the instability of the flow:
In them, the shock wave is as if it were stopped with
respect to time. Therefore, it makes sense to further
consider the schemes for solving the unsteady case of
the K-G equation.

In the second half of the 70s of the last century,
some authors resorted to an implicit calculation scheme
with variable directions - ADI (alternating direction
implicit) - to solve the plane unsteady problem for the
equation of propagation of small disturbances on a thin
wing. In [10], for example, this method is used for the
case of a low-frequency unsteady two-dimensional
flow. In this case, the K-G equation is solved in the fol-
lowing form:

Ayt + 2Byt = Cyx +¢yy , (10)

where

A=k>M?2 16%3 B=KkM2 /5°3,
C=01-M2)/8?R —(y+)MM¢, .

In this expression, the parameter m is the function
M, . The parameter is a fitting parameter for the critical
value of the pressure coefficient [11]. The time parame-
ter k=wc/ U, is the Strouhal number. The coordinates
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X,y in (10) were used as a running coordinates:
— atthe coordinate x:

2B(A) 3, (O] —01) = DyFjic +3yy 01 (11)
— atthe coordinate y:
_ - 1
2B(A) 8 (0] —0fk) = 58y (4K ~001).B= 1)
_ kM2 /52/3
Sxbjk = 2(djk —Pj-1k)Xjsr _Xj—l)_l =
= Bdjk —40j 1k +Oj2k) X1 —Xj1) T (19)
Syydik =201 —djk)Vicas — Vi) T
~(jk — ik )Yk — Vi) AWk — Vi) (14)
1
ik =5 Chud i+ A-ML)L | /8771, (15)
¢Xj+ﬂ2,k = (¢Xj+1'k _(I)Xj,k)(XjJrl_Xjfl) ’ (16)
Dfj = 2(Xjug ~Xj1) T —e)) x
x(Fa2k —Fivzk) + 17

+ej1(fyok — a2kl

here
H n n .
Sj =0, if Cj+1/2,k +Cj—l/2,k >0;

H n n
Sj =1, if Cj+1/2,k +Cj—l/2,k <0.

Following this work, there are further publications
that improve the methodology for modelling the flow at
a compression jump (shock wave). In [12, 13], for ex-
ample, the method of jump separation and stretching of
the grid coordinates is used. Shock waves are consid-
ered as discontinuities perpendicular to the flow direc-
tion. Somewhat later [14], the authors develop their ap-
proach for three-dimensional flows, but not for the K-G
equation, but for the full streaming potential equation.
In the early 1980s, the paper [15] was published, which
solved the inverse problem: the flow field and the shape
of the airfoil are determined from a given pressure.

However, the variety of numerical schemes for the
different cases of the K-H equation makes it inconven-
ient to solve the problems in general: It would be desir-
able to use a general numerical scheme that would solve
the problem for each case of the K-H equation. This
method was proposed by the author in 2005 [16] for
simplified cases of the K-G equation and later devel-
oped for the full three-dimensional K-G equation. As it
turned out later, the numerical-analytical method easily

coped with the case of sound generation by non-
potential flow. Below you will find a diagram of the
numerical-analytical method for solving the K-G equa-
tion and for the complete system of aeroacoustic equa-
tions for a non-potential flow.

2. Numerical analytical method

The numerical analytical method [17, 18] has been
successfully tested on a series of solved problems of
noise generation by a helicopter blade. The basic idea of
the method is that the finite difference representation of
the derivatives is not explicitly used in the equations to
be solved. The reason for this is simple: it is not always
known in advance which of the expansions will be the
most stable during the calculation. According to the idea
of the numerical-analytical method, we proceed as fol-
lows: At the n—1points of the computational ‘template’
we perform a standard expansion into a multidimen-
sional Taylor series, and at the point we assume that the
equation of small perturbation propagation is automati-
cally satisfied. In fact, we require that the equation for
the generation of small transient K-G perturbations is
satisfied at the n-th point. Under this condition, the
convergence condition of the desired numerical solution
is automatically satisfied. In this case, the coefficients of
the Taylor series expansion are implicitly expressed
from the system of equations. This scheme of the meth-
od is used for certain boundary value problems where
the boundary condition allows integration. Therefore,
the boundary condition is not added to the system of
equations. However, this is only done in simple cases.

If it is also necessary to satisfy a constraint, which
is the case for most problems, the constraint is added to
the equation system of the calculation. In this case we
have the following: at the n—2 points of the calcula-
tion ‘template, we perform a multidimensional Taylor
series expansion and require the automatic execution of
the equation to be solved and the boundary condition.
This reduces the number of points in the design scheme
for which a Taylor series expansion is required by 2.

In the following, we consider the implementation
of the numerical-analytical method for the two-
dimensional stationary and three-dimensional unsteady
K-G equation.

2.1. The 2-dimensional case

The Karman-Guderley equation (1) in dimension-
less variables & =x/c,n=2Ay has the form:

[1—i+s-(y+1)f 1f —)”—Zf
M2 g1EE M2

=0 (18)
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A 6-point scheme was proposed for the two-
dimensional case [17] (Fig. 6):

n

&=0

Fig. 6. Calculated points of the 6-point pattern

we expand the function at five pointsf(&;,n;) in Tay-

lor's series (f e C? ([0;2]x[0;1]) ):

£Eimi) =f(E0.no) + e (0. M0)(Ei—E0) +
+f,, (€0, Mo) (i) +

+ 2T (o mo)(& ~E0)” +
+2f¢, (€0.m0)(Ei —Eo)(Mj —Mo) +
+2f, (B0, m0)(Mi —Mo)* 1+

+o(max{(&; — o), (n; —Mo)?, (& —E0)(; —Mo) )
(19)

At the 6th calculation point (&,,m,), We require the
equation to be executed automatically:

[1—#+8'(Y+1)f§(§0vﬂo)]fgg(§0xﬂo)—
9 (20)

A
—— 1 (&o,mp) =0.
mz ™

The boundary condition that there is no flow

f,=069:,0<E<1 (22)
is automatically satisfied in this problem. The system of
6 equations (19), (20) thus enables us to find all un-
known derivatives of the dimensionless sound potential
f(&;,n;) and the potential itself. It is not difficult to see

how simple the idea of the numerical-analytical method
is, but at the same time, as further calculations have
shown, the method is very practical.

The scheme of the numerical method described
above enabled the direct fulfillment of the convergence
condition of the method, and the implicit nature of the
scheme, the choice of the required number of Taylor
series terms, ensured the stability of the calculation. The
curves of pressure coefficients at Mach numbers M ~1
presented in Fig.7 and Fig.8 show that the numerical-

analytical method successfully coped with the task of
calculating the sound flow in a physically unstable re-
gion (Fig. 8). At the same time, the numerical scheme
has not "collapsed™, as is the case with most known fi-
nite difference representations.

0.5 ¢
04 e _
03 .7
02 -
01"
0 M=0.98 §
_0.1 L 1 L 1 L 1 J
0 02 04 06 08
Fig. 7. Calculation of the pressure coefficient
in the transonic flow area

0.4 e
0.3 ! .
02 .-
0.1
0 — M=0.99

C i 1 " L n 1 " \-g
0 02 04 06 08

Fig. 8. Calculation of the pressure coefficient
in the transonic flow area

2.2. The 3-dimensional case

The author of this paper has previously derived the
full three-dimensional equation for the propagation of
small perturbations on a thin wing [5] and performed a
theoretical analysis of special cases. The numerical-
analytical method has also been used to solve the
boundary value problem in the study of the generation
and propagation of small unsteady disturbances from a
helicopter blade. In this case, it is applied to a dimen-
sionless 3-dimensional equation for the propagation of
small disturbances f(&;,n;,C;, ;) from a thin blade:

2
ke 1 2kc
2 e Qe y)ef I + S —
(UJ 1T [ Mlz ( “/)Sg]gg U £t
(rc)? ¢V 1
Tt 5] —7fe =0
M; R/ M;

where E=x/c,m=Ay,{=2/R,t=kt - dimensionless
coordinates and time.

(22)
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Boundary conditions:

6[%91 +9J:87»cfn10<§<1171:n(§) . @)

Then, in analogy to the above example for the two-
dimensional case, we choose the number of design
points of the template according to the number of un-
known derivatives in the function represented in the
Taylor series expansion, but by 2 less, since we still
have to solve the equation (22) and the boundary condi-
tion (23). In this case, the dimensionless potential can
be written as:

f(&mi G i) :f(io’no’govto)*‘f&(&i —&o)+
+H (M =) + 1 (G _Co)"'fr (ti—To) +

P20 (6 80+ —0)? T (G- Co)? +

oo (= 10)° 1+ (& —E&0)mi —mo) +
+f&_,g (& —&0)(Ei _Co)"'fng(Ci —Co)Mj —Mo) +
+f§r (& —€o)(Ti —70) + Ty (M —Mo)(ti —70) +

o (G —Co) (T —To) +R(A%)i=1n-2,  (24)

here R(A3) is a residual term of Taylor’s series.

For the three-dimensional transient case, we thus
have n=15. During the numerical calculation, the time
step was adjusted according to the Courant-Friedrichs-
Levy criterion [19]: During a dimensionless time step,
the sound wave was located in a cell in space. This con-
dition made it possible to perform a physically correct
and stable calculation that takes into account the physi-
cal properties of the sound wave. Fig.9 shows the calcu-
lation of the pressure coefficient at the blade cross-
section. Since the pressure coefficient is a function of
only small sound disturbances (see [5]), it obviously
describes the zones of local sound generation near the
blade surface. As can be seen from the figure, the pres-
sure distribution according to the transient model differs
significantly from the pressure distribution according to
the steady-state model (Fig. 9): The profile C, no long-

er looks like a parabola, as observed for a flat steady-
state problem, but has the shape of a short-time impulse
signal with local maxima, indicating the possible exist-
ence of a series of shock waves [18].

Recently, the problem of reducing energy con-
sumption and noise in small civil aviation has become
more and more acute. The use of air cabs is one way to
solve this problem. The author of this paper has calcu-
lated the rotor noise of a quadrotor air cab using a po-
tential model [20]. A 15-point scheme of the numerical-
analytical method was used for the numerical calcula-
tion.

0.6 -Cp

0.4

0.2

-0.2

¢ T2
Fig. 9. Pressure coefficient on the surface
of the helicopter blade

The comparison of Fig. 10 and Fig. 11 shows that
the distribution of the pressure coefficient in the area of
the main fault is similar to a certain extent to Fig. 9.
Nevertheless, there are certain differences in each calcu-
lation case. The obtained calculation data in the three-
dimensional approximation clearly show the existence
of areas with intense sound generation, as described in
detail in [20].

Fig. 10. Pressure coefficient on the surface
of the quadcopter blade

08 0.8
0. 0.6

0.2 0.4
C [0) 0.2 h

Fig. 11. Pressure coefficient on the surface
of the quadcopter blade
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3. Construction scheme
of the non-potential flow

The existing schemes for calculating sound dis-
turbances in the potential approach have been discussed
above. Potential models are typically used in modelling
blade noise for relatively high Mach numbers M>0.5,
when rotational noise rather than vortex noise domi-
nates. At M<0.5, the vortex component of the flow con-
tributes significantly to the overall noise level, so that
the potential approximation is no longer physically cor-
rect. In this case, equations or systems of equations that
take into account the vortex component of the flow are
used to model the noise generation of aerodynamic
origin.

Currently, a sufficient number of non-potential
models [21, 22] are known to describe the generation of
sound of aerodynamic origin. However, the best known
models from this list are not physically accurate. In par-
ticular, when choosing a model to calculate helicopter
noise, most researchers are guided by the most popular
models Ffowc's Willams-Hawkins (FW-H) [23] and
Farassat's 1A [24]. In some cases, Lighthill's acoustic
analogy is also used [25]. However, this does not mean
that the above models are physically correct: Lighthill's
acoustic analogy and its application within the FW-H
formula leaves open the question of the physical cor-
rectness of these approaches [26].

Let us consider the Ffowcs Willams-Hawkins
equation:

2, _0 Pl
4n*(p—po) = o j[|1 Ml]dn axii[l 19500~
PoVi & PoViVj
ax, I[ ri- |v|| 6xi6x I rL-m |]OI - @)

It is easy to see that equation (25) contains the
Lighthill equation. However, in [25] Lighthill has ob-
tained his own equation artificially: by adding a certain
term (derivative) on the left and right sides, which for-
mally gives it the appearance of a wave equation that
seems to describe the generation of sound. The question
arises: what kind of equation do we get if we add more
derivatives on the left and right sides of the equation?
This question implies that the approach used by
Lighthill is not physically correct, because if we add and
subtract certain derivatives to the equation without ex-
planation, we actually get equations that describe a
completely different physical process. How can we be
sure that this is the equation of sound generation? Add-
ing or subtracting does not help: if you take away these
added terms, i.e. perform the same mathematical trans-

formation in the opposite direction, the resulting equa-
tion is no longer a wave equation.

The added term on the right-hand side of the
Lighthill equation actually introduced non-existent
sound sources. On the other hand, if, for example, there
is an equation of motion in terms of forces, then adding
or subtracting a particular term will result in a change in
the physical process, i.e. it will be an equation describ-
ing a different physical process (with different forces)
than before the addition or subtraction of that term. The
mathematical technique used by Lighthill is therefore
physically incorrect. Since the Ffowcs-Willams-
Hawkins formula is derived directly from Lighthill's
equation, the question of its physical correctness also
arises.

According to the formula derived by Farassat [24],
the sound pressure is determined by a thickness source

p'T (x,t) and a load source p'|_(x,t) :

4np'(x.t)=4n(p’T(x,t)+p'L(x,t))_ f [_Po¥n (fo\llcl )
pcoso pcose
+m]ret + f“-o[rz(TMr)]ret ds, (26)

where cos0=n;¥ is the local angle between the normal

to the surface and the radiation direction.

If you take a close look at equations (25) and (26),
you will realise that these approaches say nothing about
the determination of the near sound field. The methods
for determining the sound field potential or the density
in the sound wave is not mentioned either. However,
these physical variables in the sound wave must be
known and taken into account when calculating the far-
field integrals.

The main drawback of Farassat's approach is that
the sound sources are non-existent fictitious sources
located inside a solid surface, a blade. And we are talk-
ing about sound of aerodynamic origin, i.e. that which is
generated inside the air flow, and not in a solid body,
where in principle it cannot occur. The question arises:
why is such a strange approach used? The answer is
simple: In classical acoustics, the Green's function in the
form of a point source is used as an auxiliary solution
(not as the main solution!) to represent the far sound
field. This makes it possible to write down the specified
representation of the far sound field for real sound
sources in a mathematically correct way on the basis of
Green's second formula. Farassat went even further: he
assumed that it did not necessarily have to be real sound
sources, but that it could also be imaginary sources. And
these sources are located within a rigid surface that
emits no sound at all. And this is precisely the main
obstacle to the physical determination of aerodynami-
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cally generated sound: with this approach, there are no
real sound sources at all. There are no real sound
sources that can be included in the wave equation, only
fictitious sources that appear to be contained in a rigid
surface. But these fictitious sources do not actually pro-
duce any sound at all. This has been discussed in Fe-
dorchenko's work [26] as well as in [5]. Can such a
model be considered physically correct? No, of course
not.

It is worth mentioning that new numerical schemes
explaining the solution of aeroacoustic problems have
appeared recently, e.g. [27, 28] and [29], but in reality
the authors numerically model complete systems of aer-
odynamic-thermodynamic equations, trying to study the
noise of jets. The aeroacoustic equations of Lighthill,
Ffowc's Willams-Hawkins and Farassat are not men-
tioned at all. In these works, attention is drawn to the
issue of the absence of dispersion in numerical schemes
and non-reflection conditions are established [29]. The
problem of asynchrony of the time step [27] in a numer-
ical scheme is most likely to be considered when the
speed of sound wave propagation is variable, i.e. de-
pends essentially on changes in thermodynamic parame-
ters. This is possible in the case of a non-isentropic
flow. In this case, the speed of the sound wave and thus
the Courant number is different in each calculation cell.
For jet engines, the isentropic condition is not fulfilled.
This can justify the use of different cell sizes for the
time variable. In the case of an isentropic flow, whose
model is sufficiently valid to describe the noise genera-
tion of helicopter and quadrotor propellers, the speed of
sound can be approximated as a constant value, since
thermodynamic changes are neglected. In this case,
there is no need for an asynchronous time step of the
calculation grid.

In addition to the models mentioned above, there
are a number of other models that describe sound of
aerodynamic origin [26], but each of these models has
certain physical limitations. The most complete physi-
cally correct theoretical model was previously proposed
by the author of this paper [30]. The closed-form system
of equations obtained based on this model in the case of
isentropic flow is as follows:

aﬂs’_iaz_p_a x226p+ 1 %
or> M2 o? m? AR o2
R, % o % % % % P, _
o€ on’ ae? on? oe? ‘ogom’ T ac?
e % op % % % b P

08 on’ ae? on? oe? 'ogom’ T ac? 4
(27)
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here ©®,p'— are dimensionless sound potential and
density; p,u,v,w — are the dimensionless density and
components of the velocity vector of the main flow.
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contains all terms of the right-hand side (28) that de-
pend on the sound density and its derivatives. The right-
hand side of Eq.(28) contains only the terms that depend
on the derivatives of the dimensionless sound potential:

% op % % % b P
08 on’ g% on? ae? ogom’ oc?

/5.

The system of differential equations (27), (28) al-
lows us to describe the process of sound generation with
second order accuracy and is physically correct, since
its derivation is based on the classical Rayleigh ap-
proach [31, 32] to determine the wave equation.

4. Examples of the application
of the numerical-analytical method
in the case of non-potential flows

4.1. Noise generation during the landing
of a helicopter

Despite the mathematical complexity of the system
of equations (27), (28), the author has succeeded in nu-
merically solving a number of interesting problems us-
ing the numerical-analytical method [33, 34]. The spe-
cial feature of the numerical-analytical method is the
use of a non-uniform computational grid around the
blade. For example, when solving the problem of noise
generation by a double-curvature blade (Fig. 12 and
Fig. 13), the grid spacing along the blade chord was
about twice as small as that along the blade span and
varied within [x{]=[82x40]. Such a difference in

grid size had no influence on the detection of the transi-
ent effects shown in Fig. 12 and Fig. 13. However, the
different step size along the spatial coordinates allowed
us to save computer resources. The data obtained from
the calculation of the near-field using the numerical-
analytical method were used to calculate the integral
representation of the far-field.
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Fig. 12. Acoustic density distribution
over the surface of a helicopter blade
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Fig. 13. Acoustic density distribution
over the surface of a helicopter blade

4.2. Vortex Ring Mode

One of the interesting problems solved by the nu-
merical-analytical method is the problem of generating
the noise of the helicopter-rotor interaction in the “vor-
tex ring” mode of operation [35]. A 15-point scheme
was also used in the numerical implementation of the
method. The computational grid contained nodes. The
peculiarity of the numerical-analytical method made it
possible to “capture" local inhomogeneity in the behav-
ior of acoustic density fluctuations, Fig.14 and Fig.15.
The general picture of these fluctuations helps us to
identify areas of intense sound generation when we
change the parameters of the problem and the blade
geometry. This is very useful for finding optimal aero-
dynamic and acoustically quiet blade shapes.

By recording the change in acoustic characteristics
with external sensors and comparing it with the obtained
graphical dependencies, it is possible to diagnose the
helicopter's entry into the “vortex ring”, which allows
the pilot to react in time and remove the helicopter from
this mode to prevent a catastrophe. A more detailed de-
scription of the solution to this problem can be found
in [35].

Fig. 14. Acoustic density distribution over the surface
of a helicopter blade in “vortex ring” mode

Fig. 15. Acoustic density distribution over the surface
of a helicopter blade in “vortex ring”” mode

Discussion

The results of a comparative analysis of numerical
methods for solving problems of noise generation of
aerodynamic origin of helicopter and quadrotor rotors
have shown that the numerical-analytical method is an
effective tool for this class of problems. In particular,
the numerical-analytical method can be used for both
two-dimensional stationary and three-dimensional non-
stationary noise generation problems. This is an essen-
tial feature of the method compared to other numerical
schemes that are used exclusively for specific computa-
tional cases. In addition, the constructed scheme of the
method is simple and constructive, so that the calcula-
tion template can be easily customised for each specific
problem.
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Conclusions

1. In this paper, we analyses numerical methods to
calculate the near-sonic field for the cases of potential
and non-potential flow of helicopter and quadrotor ro-
tors.

2. The analysis has shown that until recently there
was no single finite difference scheme or method for
different flow models of sound generation. This prob-
lem was solved using the numerical-analytical method.

3. The special feature of the numerical-analytical
method is that it is an implicit finite-difference represen-
tation that makes it possible to calculate the properties
of both the sound field fluctuations and the main flow
field itself on a control design surface near a body that
interacts with the flow and generates sound during this
interaction. The calculated data is also used in the inte-
gral representation previously proposed by the author.
This generally allows the calculation time of the noise
to be significantly reduced, as no calculation on a three-
dimensional volume is required.

4. The ability of the numerical-analytical method
to solve the problems of helicopter noise generation for
both potential and non-potential flows allows us to con-
sider this method, to a certain extent, universal for vari-
ous problems of noise generation of aerodynamic origin
by rotors.
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YUCEJbHO-AHAJITUYHUI METOJI 1151 3AJJAY T'EHEPAIIIl AEPOJJMHAMIYHUX IITYMIB
POTOPAMMU I'EJIIKONITEPIB TA KBAIPOKOIITEPIB
II. B. JIyk’anos

IIpenMeToM TaHOI POOOTH € JEMOHCTPAIliS MOXKJIMBOCTEH YUCEIbHO-aHATITHYHOTO METOMY JJIs PO3B'sI3aHHS
3a/1a4 TeHepallii 3ByKy poTOpaMH T'eIiKONTEePiB Ta KBaIPOKONTEPiB. 30KpeMa, HABEICHO CKIHUCHHO-PI3HHIICBI CXe-
MU IS peattizaiii yrcebHO-aHaIITHIHOIO0 METOLY JUIsl CTalliOHApHHUX Ta HECTAI[lOHAPHMX JIBOBUMIPHHUX MOTEHIlia-
JIBHUX TEYill, [0 OMUCYIOTh TEHEPALliio IIYMY aepOJIHHAMIYHOIO TIOXOKEHHS JIONMATTIO POTopa renikonrepa. Hase-
JICHO TIPUKJIAJIM 3aCTOCYBAHHS YHCEbHO-aHATITHYHOTO METOLY 10 3a/1a4 TeHepallil 3ByKy HECTaI[iOHAPHOK TPHBH-
MIPHOIO MOTEHILIIHHOI0 TeYi€lo /sl aepOIUHAMIYHOTO HIyMYy KBajpokomnTepa. Ciiiji 3a3HaYuTH, 110 10 HEJAaBHIX Mip
HE iICHYBaJO €IMHOI CKiHYEHHO-PI3HHUIICBOI CXEMHU PO3B'A3aHHS 3a/1a4 aKyCTHKH POTOpa TeiKONTepa sk MOJEIeH
pi3HUX (i3MYHMX piBHIB HaOmmkeHb. [lokazaHo, 1O YMCENbHO-aHANITUYHUNA METO, PO3pOOJIEHHH aBTOPOM JaHOi
poboTH, T03BOJISIE PO3B'SI3YBATH 3aadi aepOaKyCTUKH JIOMATI TeiKOMTepa Ta KBaPOKOITEpa SIK [UIS CIPOIICHUX
HOTEHIIaJIbHUX, TaK 1 JJIs CYITEBO HEMOTECHUIANbHUX Tewid. MeToau HOoC/IifKeHHs] IPYHTYIOThCSl Ha YHCEIbHHX
cxeMax pO3paxyHKy aepOIUHAMIYHMX OJMKHBOTO i JaTbHBOTO 3BYKOBOTO TOMS. Y CTATTiI HABEICHO MPHKIAIN PO3-
B'I3aHHS [IMX 3aja4, MPOAHAaTi30BaHO 3aCTOCYBAHHS YHCEHHO-aHATITHYHOTO METOAY Ta MPOBEACHO HOro mopis-
HSIHHS 3 ICHYIOYMMH METOJaMHU CKIHUYEHHHX Pi3HHUIb. 30KpeMa, HAaBEICHO PO3PaxXyHKOBI IIA0JIOHU METOY AJIsl CTa-
LioHapHOI 2-BUMIpHOI Teyil Ta nepexifHoi 3-BUMIpHOI Teuil i MOsSICHEHO OCOOIMBOCTI BUOOPY KiNIBKOCTI TOHOK Y
PO3paxyHKOBOMY MIA0JIOHI. 3aiexHO Bif crielu(iki KOHKPETHOI 3a/aui KUTbKICTh PO3PaxyHKOBHX IIAOJIOHIB 1 TO-
YOK B PO3pPaxXyHKOBIiH CITLi Moxke 3MiHIoBaTHCs. Lle lae MOXITMBICTh HaNAIITYBAaTH CTAOIIbHUI PO3PaxyHOK JUIst
KOXKHOT 3 3a/1a4, IO PO3B's3YIOTHCS YUCEIbHO-aHAIITUYHIM METOIoOM. [Ipu 1iboMy 301KHICTH METOJY BiZIOYBa€ThCS
I0pa3y aBTOMAaTHYHO, BUXOAAYHM 3 i€l caMoro 4uceiabHO-aHAIITHYHOrO MeTony. Pe3ysbTaTtn Ta BHCHOBKH. Pe-
3yJbTATH MTOPIBHILHOIO aHAJI3y ICHYIOUMX YHCEIBHUX METOJIB PO3PaXyHKy 3BYKOBOTO IOJIsl POTOPIB BEPTOJIHOTIB
1 KBaJJpOKOIITEPIB MOKAa3aJy, 10 JETAILHO PO3POOIICHUI YNCeNTbHO-aHAIITHIHUI MEeTO/I € e(DEKTUBHUM SIK JUTS PO3-
paxyHKy 3aJiad 3BYKOYTBOPEHHs B MOTEHIIHHOMY HaOJMXEeHHI Ha ocHOBI piBHsHHs Kapmana-I'ymepni, Tak 1 s
TIOBHOI CHUCTEMH PIiBHSHb 3BYKOYTBOPEHHsI Ha OCHOBI piBHsHHA Hap'e-Ctokca 1iisi BUNAAKy HEMOTEHIIHHOI Tedii.
EdexTuBHICTh YHCENBPHO-aHANITAYHOTO METOY IOJISITAE B TOMY, IO BiH € HESIBHUM 1 JI03BOJISIE aJalTyBaTH 4YKCe-
JBHY CXeMY 10 KO>KHOI KOHKPETHOI 3a/1a4i, SIKa PO3B's3YETHCS.

Karwouosi cjioBa: aepoimHaMiqHuUil IIyM POTOPIB BEPTOJIBOTIB I KBAPOKOINTEPIB; YUCENbHO-aHATITHYHAN Me-
TOZ.
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