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OPTIMIZING ADAPTABILITY AND RATIONAL CONTROL STRATEGIES
FOR CYCLOGYRO SYSTEMS

The cyclogyro, due to its potential applications in aviation and complex dynamic characteristics, has become
the focus of our research. Although traditional PID control iseffective in many cases, it may struggle in handling
the complex nonlinear dynamics often encountered in cyclogyro systems. Therefore, the objective of this study
was to design and implement a control system for the cyclogyro based on optimized strategies to i mprove the
system stability and response speed. The proposed approach integrates mathematical modeling, optimization
algorithms, real-time data analysis, and feedback mechanisms to predict and adjust the system behavior. The
performance of traditional PID control was compared with that of Model Predictive Control (MPC) in a dual -
target speed control system. The numerical simulation results demonstrated that the MPC-based optimized
control significantly outperformed PID control, achieving higher stability and faster response speed when deal-
ing with external disturbances and nonlinear dynamic changes, with the average response time reduced by
92.5% (p < le-10). This enhanced performance is due to the system’s ability to dynamically adjust its control
strategiesin response to varying environmental conditions. The conclusions of this research highlight the sub-
stantial advantages of optimized control strategies for cyclogyro systems, offering new insights into the devel-
opment of complex aviation control systems and demonstrating the potential of these strategiesto enhance both
performance and adaptability.
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1. Introduction

1.1 Motivation

With the continuous development of low-altitude
aircraft technology [1], the cyclogyro [2], as a new type
of flying platform, is gradually demonstrating its appli-
cation potential in various fields [3], especially in urban
air mobility, drones, and military reconnaissance. Thanks
to its unique rotating wing design [4], the cyclogyro can
generate lift while also providing thrust, which enables it
to perform exceptionally well in tasks such as vertical
takeoff and landing (VTOL), low-speed flight, and hov-
ering [5].

The semi-empirical analytical model proposed by
Leger Monteiro J.A. et al. [6] provides more accurate
structural and aerodynamic predictions for cyclogyro de-
sign. In practical aerodynamic design, optimizing the bal-
ance between thrust generation and power consumption
is crucial. This balance enables the rotorcraft to quickly
adjust thrust during rapid maneuvers, while minimizing
excessive energy consumption and avoiding instability,
critical factors for achieving high maneuverability in
flight. Despite the promising advantages ofcyclogyros in
various mission scenarios, including their potential for
exceptional maneuverability in complex environments,

significant challenges persist in the design and imple-
mentation of their control systems. Du F. etal. [7] devel-
oped a cyclogyro featuring two circumferential propel-
lers and a tail propeller. The two circumferential propel-
lers, which rotate in the same direction, generate lift and
control roll, while the tail propeller adjusts the pitch mo-
ment and also contributes to lift, as well as pitch and yaw
control. However, flight tests with roll step inputs re-
vealed that the cyclogyro exhibited poor stability and
controllability.

In the design of a cyclogyro, especially in systens
with two coaxial propellers rotating in the same direction,
the gyroscopic effect [8] can be significant. Kou, H. et al.
[9] established arotor model considering rub-impact, ge-
ometric nonlinearity, local vibrations, and the gyroscopic
effect, and analyzed the dynamic behavior of wide-chord
blades under different operating conditions. They inves-
tigated the impact of rub-impact on rotor stability. By
comparing with similar physical models, it can be
drawled the conclusion that the gyroscopic effect gener-
ates additional torque during flight when the aircraft un-
dergoes roll or other attitude changes, which can signifi-
cantly affect the stability of the aircraft. Specifically, the
gyroscopic effect refers to the phenomenon where the
axis of rotation of a rotating object resists changes in di-
rection, and its angular momentum remains fixed during
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high-speed rotation. To change the direction of its rota-
tional axis, an external torque is required [10]. Therefore,
when the aircraft undergoes attitude changes [11], such
as rolling, pitching, or yawing, the rotating propellers
generate a counteracting torque that resists the attitude
change, thus affecting the aircraft's stability [12].

1.2. State of the art

Existing research indicates that the design of cyclo-
gyro requires optimizing the balance between thrust gen-
eration and energy consumption to ensure rapid thrust ad-
justments during quick maneuvers while avoiding exces-
sive energy expenditure and instability. Researchers have
proposed various models and methods to analyze the dy-
namic behavior of cyclogyro, including considerations of
gyroscopic effects, geometric nonlinearity, and local vi-
brations. While conventional PID control techniques are
successful in numerous applications, their effectiveness
is constrained in complex nonlinear dynamic environ-
ments, especially in scenarios involving rapid maneuvers
and external disturbances.

In the application of cyclogyro, the gyroscopic ef-
fect is particularly prominent because two counter-rotat-
ing propellers generate coupled torques. When the air-
craft performs rapid roll or aggressive maneuvers, the gy-
roscopic effect of the propellers can cause coupling be-
tween the roll [13], pitch, and yaw axes, thereby increas-
ing the complexity of'the aircraft’s control. This coupling
effect [14] is especially significant during rapid control
inputs and can lead to delayed or exaggerated responses,
which negatively impacts flight stability. Dominik Saile
et al. [15] found that the resonant frequency induced by
the coupling effect appears to amplify the unfavorable
fluctuations in the base region, thereby exacerbating the
magnification of unstable loads, which in turn introduces
significant stability issues during the flight process. In
otherword, when attempting a quick roll, the counteract-
ing torque generated by the propellers may suppress the
roll response, causing a lag effect [16]. This lag, particu-
larly in complex flight environments, can exacerbate the
aircraft's instability, leading to control responses thatare
notas expected, and thus affecting the aircraft's handling
performance. In designing cyclogyro, factors such as the
distribution of the aircraft's mass, the rotational direction
and speed of the propellers, and other parameters influ-
ence the degree of the gyroscopic effect. Therefore, pre-
cise dynamic analysis is required to optimize the control
system [17], ensuring that the aircraft maintains stable
handling performance undervarious flight conditions.

In the process of optimizing control systems, reduc-
ing the response time of the systemis crucial [18]. This
notonly helps to effectively compensate for adverse fac-
tors such as gyroscopic effects and lag effect, butalso en-
hances the system's adaptability in complex flight envi-
ronments. The response time of the control system

directly affects the aircraft's ability to react to external
disturbances, especially during high-speed flight or rapid
attitude changes. The challenge lies in how to instantane-
ously adjust the control inputs to counteract the inertial
effects caused by the gyroscopic effect and the delay ef-
fects due to control latency. By optimizing control strat-
egies to reduce systemlag and inertial effects, the stabil-
ity and maneuverability of the aircraft can be signifi-
cantly improved, ensuring efficient and precise control
performance evenunder extreme flight conditions.
Aircraft are exposed to multiple external disturb-
ances during flight, including changes in airflow, load
variations, and environmental conditions. While tradi-
tional PID control [19] generally delivers effective con-
trol in most scenarios, its performance may be con-
strained in complex nonlinear dynamic environments.
For example, Kim J.et al. [20] studied the shock-captur-
ing strategy based on PID control and found that, alt-
hough PID control can effectively capture and stabilize
shock waves, it is highly dependent on the selection of
parameters and may exhibit excessive sensitivity to high-
frequency noise or delayed response when dealing with
complex flow. One year later, they investigated the ap-
plication of the PID-based SPID method in multidimen-
sional compressible flows and found that PID faces chal-
lenges in selecting gain parameters, insufficient anti-
windup mechanisms, and poor controller adaptability
when capturing shock waves [21]. These issues can fur-
ther lead to increased response delays and enhanced lag
effects, ultimately resulting in a series of instabilities.

1.3. Objectives and the approach

Rational control [22] refers to the use of systematic
and theoretical methods in control systemdesign to opti-
mize controlstrategies and achieve desired controlobjec-
tives. It integrates mathematical modeling, optimization
algorithms, real-time dataanalysis, and feedback mecha-
nisms to precisely control the target by understanding
system dynamics and environmental changes [23]. Ra-
tional control aims to predict and adjust systembehavior,
enhancing robustness, response speed [24], and adapta-
bility. The ability to update control models and parame-
ters in real time further improves systemstability and re-
liability [25]. This real-time adaptability is crucial for
complex, dynamic systems, where environmental condi-
tions and system behaviors may change unpredictably.
By continuously refining control strategies, rational con-
trol can mitigate performance degradation and reduce the
impact of disturbances oruncertainties. Given these ben-
efits, implementing rational control strategies in aircraft
control systems is highly significant [26], as it ensures
not only optimal performance under various conditions
but also long-term systemstability and safety in highly
dynamic environments.
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Fig. 1. Control block diagram of the PID controller

In complex nonlinear dynamic environments, such
as cyclogyro control systemdesign, traditional PID con-
trol methods, while effective in many applications, face
limitations when confronted with high nonlinearity [27],
time-varying characteristics [28], and factors like the gy-
roscopic effect and control delays in systems like cyclo-
gyros. Particularly during fast maneuvers, external dis-
turbances, and complex flight environments with multi-
degree-of-freedom coupling [29], PID control often fails
to provide sufficient accuracy and response speed [30],
compromising stability and maneuverability. Therefore,
a key challenge of this research is to overcome the limi-
tations of traditional PID control and develop an opti-
mized controlstrategy using rational methods. This strat-
egy should enhance rotorcraft performance and improve
response times. By leveraging advanced algorithms and
real-time data processing, rational control can provide
more precise and adaptive solutions, ensuring better sys-
tem performance in unpredictable environments.

2. Rational control methods of cyclogyro

Rational control refers to the use of systematic and
theoretical methods in control systemdesign to optimize
control strategies and achieve desired control objectives.
It typically integrates mathematical  modeling,
optimization algorithms, real-time data analysis, and
feedback mechanisms to precisely control the target by
understanding system dynamics and environmental
changes. Rational control emphasizes predicting and
adjusting system behavior to enhance robustness and
response speed [31].

Implementing rational control strategies in aircraft
controlsystems is highly significant. Aircraft are exposed
to multiple external disturbances during flight, including
changes in airflow, load variations, and environmental
conditions. While traditional PID control [32] generally
delivers effective control in most scenarios, its
performance may be constrained in complex nonlinear
dynamic environments. Rational control enhances
adaptability to changes through real-time updates of
control models and parameters, thereby boosting system

stability and reliability.
For the dual-target speed control system of
cyclogyro, it expected the current velocities mlc and o2

to be regulated by the controller, progressively
approaching or achieving the desired speeds. For each
speed control system, the transfer function G(s) of the

PID controller is expressed as follows:

G(s):Kp+5+KVs : )
S

In this case, K represents the proportional gain,

K, represents the integral gain, and K represents the

derivative gain.

In Fig. 1, the signal begins at the input error e on
the left side, passes through the proportional controller
K, , and then flows into an addition node. At this

moment, the outputs from the integral controller K, /s
and the derivative controller K,s also feed into the

addition node, where all input signals are computed
together. The final output signal is (PP , which

represents the system’s control output.

Rational control significantly enhances robustness,
allowing adaptive handling of uncertainties and external
disturbances in the system, enabling the control system
to remain stable under various complex environmental
conditions. Additionally, by leveraging advanced
optimization algorithms and real-time data analysis,
rational control boosts systemresponse speed, enabling
quicker adaptation to changes, minimizing delays, and
improving control accuracy. Rational control also
features powerful adaptability, dynamically adjusting
control strategies according to real-world conditions,
adapting to shifts in systembehavior, and enhancing the
overall adaptability of the control system. Utilizing
methods like Model Predictive Control (MPC) [33],
rational control can predict future system behavior with
higher precision, allowing proactive control adjustments
to optimize systemperformance [34].
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The fundamental concept of MPC control is to
predict the systemoutputover a future time horizon and
determine the control inputs using optimization
algorithms. Assuming the prediction horizon is N, the

optimization objective function can be formulated as:

N . 2., N .
=3 (Y Vi ) A2 Ut @
where y(t+i[t) is the predicted outputat future time step
i from time t, y_ . is the target output,and j is the

weighting coefficient of the control input.
The system receives two reference input signak
r,(t) and r,(t), which represent the setpoint or desired

state of the system at time t, forming the input signal
vector r(t)=[r, (t) rz(t)]T-
The error signals e, (t) and e,(t) are determined

by calculating the difference between the current
reference inputs and the actual outputs:

e ()=r.()-o, ).
e,([0)=r,(1)-w,(t) -

Theseerror signals constitute the error vector
T
e®=[e.(t) e,®] -
The weighting matrix \W is employed to regulate

the weighting of each error signal to accommodate
various control needs:

W o0
W= :
0 W,
The weighted error signals are:

e (=We(t) -

Perform PID control on the weighted error signak
to derive the PID control signals u?™®(t) and uf'"®(t)

The MPC controller uses the system model for
prediction and optimization, resulting in the calculation

of MPC control signals u*°(t) and u}*(t) . Generally,

MPC derives the control signals by solving the following
optimization problem [35]:

J_N;(ew (k)" ey, (t+k>+], -

0 | +y(t+k) TRU(t+K)

where N, is the prediction horizon length, Q is the
error weighting matrix, and R is the control input
weighting matrix  The control input vector is
u(t):[ul(t) uz(t)]T- Optimize this function to obtain

the optimal solution u(t)z[ul“ﬂpc(t) ugﬂpc(t)]T under

constraints.
By integrating the PID control signals with the
MPC control signals, the final control outputis formed:

U, ()=ouf™ (O+(L-ul™° @)
U, (D=0l ©+1-c)ul e 1) -

Where o represents the weighting factor for the
combination of control signals.
The final control signal u(t):[ul(t) uz(t)]T acts

on the system, generating outputs o, (t) and o, (t) , with

feedback  creating the
o®=[o,t) ©,®] -

As shown in Fig. 2, the dual-objective aileron
controlblock diagram illustrates a hybrid controlstrategy
that combines the advantages of PID and MPC
controllers, aiming for efficient control system design.
The PID controller can respond quickly to error signals
and make corrections, effectively reducing transient
errors. In contrast, the MPC controller, utilizing the
system's mathematical model, predicts future system
states and optimizes current control inputs, considerably
enhancing the system's steady-state performance and
overall robustness. This hybrid control strategy offers
key benefits, including fast response, optimized control,
robustness, and flexible adjustment capabilities. The PID
controller ensures rapid error correction, whereas the
MPC controller enhances the control system's steady-
state performance and its ability to handle complex
operating conditions through future prediction and
optimization. Moreover, by modulating the weighting of
PID and MPC controllers in the overall controlsignal, the
systemcan flexibly adaptto varying control demands.

In this hybrid control strategy, the essence of
rational control is represented by the MPC controller.
The MPC controller leverages the system model for
prediction and decides on the optimal control inputs
through solving optimization problems. This process
encompasses several aspects, including predictive
capability, optimization computation, and preventive
adjustments. First, the MPC controller forecasts the

closed-loop control



Aepoounamika, ounamika, 6anicmuka ma KepyeaHHsa NO1bOMOM HiMANbHUX ANAPAmMie 19

I S—

()

n(t)

IJP]DI(I) uMPCl{t} wy (%) -
T
¥

wPy(0) FCq w (£)

7

Fig. 2. Dual-degree-of-freedom control block diagram for cyclogyro

system behavior for a future time frame based on the
system model and future reference trajectories,
establishing an optimized control strategy. Secondly, the
MPC controller ensures that the control inputs minimize
errors while satisfying the physicalsystemconstraints by
solving optimization problems with constraints. Finally,
the MPC controller anticipates potential deviations and
changes in the system, adjusting the control strategy in
advance to minimize  these deviations, thus
demonstrating the superiority of rational control.

The cyclogyro systemis a typical MIMO system
[36] where precise control is critical for industrial and
aerospace applications. The goal is to ensure that the two
rotational speed variables track the reference signals
quickly and accurately. To evaluate the performance of
PID versus MPC control, had developed a case study
comparing the control effectiveness of both PID and
MPC for controlling the two rotational speeds in the
cyclogyro system.The system is represented as a dual-
input dual-output model consisting of two independent
first-order systems, expressed as:

1-Ts O Ts O
A= , B= .
0 1-Ts 0 Ts
The sampling time is set to Ts=0.1s, with the

reference signals being w,=1 and ®,=2, respectively.

Two PID controllers have been designed to individually
control the two target rotational speeds. For the first
output, the PID controller parameters are set as:
proportional gain Kp,=1, integral gain Ki,=0.1, and
derivative gain Kd,=0.01. For the second output, the

PID controller parameters are set as: proportional gain
Kp,=1.5, integral gain Ki,=0.15, and derivative gain

Kd,=0.02 . When designing the MPC controller, the
prediction horizon is set to H=10 , meaning that the

controller will predict the system behavior for the next
10-time steps. The state weighting matrix Q is setto |,

(a unit matrix of size HxH ), meaning that the state errors

within the prediction horizon are penalized equally. The
control weighting matrix R is setto 0.01l1,, which is a
unit matrix of size HxH multiplied by 0.01. This means
that while changes in control input are penalized to
maintain smooth control actions, the penalty applied is
less significant than that for state errors. Consequently,
the optimization places a higher priority on minimizing
state deviations, allowing for more flexibility in control
input adjustments without compromising overall system
performance.

In terms of control performance, the PID controller
demonstrates slower response speed and considerable
steady-state error (Fig. 3). The PID1 controller rises
quickly but fails to reach the target reference value within
20 seconds, showing poor steady-state performance.
Although PID1 responds quickly, it does not eliminate
steady-state error, resulting in long-term deviation. In
comparison, PID2 has a faster dynamic response than
PID1 but also experiences overshoot and steady-state
error within about 25 seconds, indicating shortcomings in
both dynamic performance and steady-state control.
Overall, the PID controller struggles to maintain high-
precision control, with non-negligible error.

Compared to the PID controller, the MPC controller
demonstrates significant advantages in dynamic response
(Fig. 4). The MPC1 controller outperforms the PID
controller in the speed ofapproaching the target reference
value. Although it does not fully stabilize within 20s, its
dynamic performance is clearly better. MPC1’s control
signal can quickly follow the changes in the reference
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value, reflecting its strong dynamic response ability,
although there are still some limitations in steady-state
accuracy. However, the MPC2 controller exhibited the
best performance, stabilizing rapidly and maintaining a
steady control signal throughout the entire process,
suggesting thatitnotonly has a faster response speed but
also surpasses other controllers in both stability and
steady-state accuracy. Through optimized control of the
system, MPC2 minimizes steady-state error and
fluctuations to the greatest extent, further improving the
system’s control performance.
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In terms of error performance, the MPC controller
outperforms the PID controller, especially in terms of
error convergence speed and steady-state accuracy (as
illustrated in Fig. 5). The errors in PID1 and PID2
controllers are initially large and converge slowly.
Although they eventually decrease, considerable residual
error remains during the steady-state phase, limiting
system performance during prolonged control. In
contrast, the MPC controller has a smaller initial error
and significantly faster convergence speed. Particularly
for the MPC2 controller, it maintains near-zero error
throughout the entire control process, showing its

exceptional steady-state accuracy and rapid error
convergence ability. MPC2 not only effectively
suppresses the accumulation of errors but also maintains
extremely small steady-state error, showcasing its
advantages in precise control and efficient response.
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From the perspective of accumulated error (as
illustrated in Fig. 6), the PID controller shows larger
cumulative error over long-term operation, especially in
PID1 and PID2 controllers. Although the error decreases
gradually, significant residual error remains during the
steady-state phase. This suggests that while the PID
controller can offer relatively fast response in the short
term, its error may progressively accumulate in long-term
steady-state control, ultimately impacting the overall
system performance. In comparison, the MPC controller
has considerably smaller accumulated error during long-
term operation, particularly MPC2, which is capable of
maintaining an error closeto zero for an extended period,
showing more stable and precise control performance.
Therefore, the MPC controller, especially MPC2,
demonstrates stronger competitiveness within the entire
control system, owing to its superior dynamic response,
steady-state accuracy, and error suppression capability.
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Overall, the MPC controller outperforms the PID
controller in all aspects, particularly in dynamic response,
steady-state accuracy, and error convergence, with
MPC2 being undoubtedly the best choice. While the PID
controller has some advantages in the short term, its long-
term performance is constrained by steady-state and
accumulated errors, making it challenging to fulfill high-
precision and stability demands.

The average response time [37] for PID and MPC
control can be calculated as:

TPID: v TPID,i '
n i=1
PID
= _ 1 Nvirc T
MPC — § MPC,i !
n i=1
MPC

where T, and T, . represent the average response
time for PID and MPC control, respectively, and n, g
i and

represent the individual response times for each

and n,,,. are the sample sizes for each group. T,
T,

MPC,i
sample.
The average reduction [38] in responsetime R is

calculated as:

R=Teo T,

MPC .100% - @)

PID

The confidence interval M [39] is the range in
which the true value of the parameter is included. For the
PID control systemresponse time:

_ Jn El (TPID,i _-T—PID)Z
Moo =Tpp £Zx 2 :

PID — TPID

For the confidence interval of the MPC control
systemresponse time:

1 Nvec =
\/ P (TMPc,i -TMPC)Z
+zx

i=1
n MPC

\lnMPC

The results presented in Fig. 3 - 6 indicate a
significant advantage of MPC over PID control in terms
of stabilization time. Specifically, with the error
threshold set to 0.05, both PID1 and PID2 achieved
systemstabilization in 45.1s. In stark contrast, MPC1 and
MPC2 managed to stabilize the systemin a mere 0.6s.
This observation demonstrates a substantial reduction in
stabilization time for MPC, with a remarkable decrease

M MPC :-T—M

PC —

of 44.5s for PID1 compared to MPC1 and 44.4s for PID2
compared to MPC2. Consequently, the average reduction
in stabilization time for MPC relative to PID is calculated
to be an impressive 99.7%. This highlights the superior
efficiency of MPC in rapidly achieving system
stabilization, making it an effective control strategy.
These findings underscore the potential of MPC for
applications requiring fast and precise control responses,
enhancing the performance, efficiency, and reliability of
control systems.

3. Comparison of PID and MPC control
systems with disturbances

The study ofthe comparison between PID and MPC
control systems in the presence of disturbances is
essential for understanding how these two control
strategies perform under real-world conditions, where
disturbances are inevitable. While PID controllers are
widely used for their simplicity and ease of
implementation, their effectiveness diminishes when
confronted with large or time-varying disturbances,
particularly in complex systems with multiple variables.
MPC, with its ability to predict and optimize, offers a
more robust solution but requires careful tuning and
reliable systemmodels. Investigating this comparison is
crucial for selecting the most appropriate controlstrategy
for a given application, especially in dynamic
environments where disturbances can significantly affect
performance. This analysis also helps identify potential
trade-offs between simplicity and precision in control
design.

Consider a discrete-time linear time-invariant (LTI)
system[40] described by the following equations:
X(k+1)=Ax(K)+Bu(k)+Ed(k) )
{y(k):Cx(k)+Du(k)+n(k) '

where x(k) denotes the state vector at time step | .
u(k) is the control input. y(k) is the systemoutput. d(k)
represents the disturbance signal. n(k) is the
measurement noise. A B,C,D,E are systemmatrices of
appropriate dimensions.

3.1. PID Controller

PID controller is defined by the following control
law (see Fig.1):

Upio (K=K, €()+K, 3 e(i)+K, (e(k)-e(k-1))

where: e(k)=r(k)-y(k) is the control error, with r(k)
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being the reference signal; K  , K, , and K, are the
proportional, integral, and derivative gains, respectively.

3.2. Model Predictive Controller (MPC)

MPC optimizes control action by solving a finite
horizon optimization problem at each time step. The
optimization problem can be formulated as:

(v, (ctilk)-r(iei) ) x
Minyg | Q(¥, (krilk)-r(k+i)+ |,
+Au(k+i-1)"RAu(k+i-1)

where: 'y, (k+ilk) is the predicted output at time |+

based on information available at

UKK)=[Au(k),Au(k+1),---,Au(k+N-1)]"
sequence of future control input changes.
Au(k)=u(k)-u(k-1) denotes the change in control input.
Q and R are weighting matrices for the output error

time
represents the

and control effort, respectively. N is the prediction
horizon.

3.3. Impact of Disturbances

The impact of disturbances on control systems [41]
refers to the effect that external or internal disruptions
have on the performance of a systemand its ability to
maintain desired outputs. Disturbances can arise from
various sources, such as environmental changes, sensor
noise, modeling errors, or unanticipated system
dynamics. These disturbances can cause deviations from
the intended trajectory, leading to performance
degradation, instability, or even system failure if not
properly managed.

Disturbances d(k) can be either known or unknown

signals affecting the system's state and output in Eq.(5).
During control, disturbances d(k) and noise n(k)
influence the systemoutput y(k) , thereby affecting the
control error e(k) . Both PID and MPC controllers adjust

their control actions based on the current error and
system model to minimize this error and achieve the
control objective.

According to natural statistical laws, external
disturbance d(k) and measurement noise n(k) are

typically independent Gaussian white noise [42]:

d(k)~N(0,62) .
n(k)~N(0,62) ,

where: N(0,62) denotes a Gaussian distribution with a
mean of 0 and a variance of o2 - N(0,62) denotes a

Gaussian distribution with a mean of 0 and a variance of

2
G,

3.4. Cumulative Error

To evaluate the performance of the controllers over
the simulation period, compute the cumulative error [43]
denoted as € defined by:

.
&= e(k)*\2 (6)

=0
where T is the total simulation duration; g(k) is the

control error.

The error variance of the MPC controller is
significantly smaller than that of the PID controller,
especially for the MPC2 controller, whose error variance
shows almost no fluctuation, demonstrating excellent
stability and precision (Fig. 7). In contrast, the error
variance of the PID controller fluctuates more
significantly, especially in the PID1 controller, where the
fluctuation range reaches 0.02 to 0.04, indicating system
instability. The error variance fluctuation range of the
PID1 controller is from 0.02 to 0.04, showing substantial
variability and indicating significant instability in the
system.

Especially in the early stages, the controller fails to
effectively reduce the error, and the system response
exhibits strong oscillations. Although the error variance
gradually decreases to some extent, the fluctuation
amplitude remains large, reflecting the limitations of the
PID controller in handling disturbances. Compared to the
PID1 controller, the error variance of the PID2 controller
is reduced, with a fluctuation range from 0.015 to 0.035.
Although the fluctuation amplitude has decreased, the
error variance remains large, indicating that the PID2
controller still has significant deficiencies in system
stability. In particular, when tracking the target value, the
PID2 system shows significant overshoot and slower
convergence, failing to effectively achieve the ideal
steady-state performance. This indicates that although
the precision of the PID2 controller has improved, its
overall performance is still inferior to that of the MPC
controller.

In the case of the MPC1 controller , the error
variance fluctuation is small, ranging from 0.01 to 0.02.
The MPC1 controller effectively suppresses error
fluctuations, with its fluctuation amplitude significantly
lower than that of the PID controller, showing better
stability. This indicates that the MPC controller, when
facing disturbances, can effectively maintain stable
operation of the system through model prediction and
optimization control strategies, with more precise control
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of error fluctuations. The MPC2 controller shows the
smallest error variance, with a fluctuation range of only
0.005 to 0.015, exhibiting almost no fluctuation and
demonstrating outstanding stability and precision. This
suggests that the MPC2 controller has a clear advantage
in systemstability and accuracy, effectively suppressing
error accumulation and fluctuations during system
operation, thus showing the best control performance.

Furthermore, MPC demonstrates better stability and
accuracy in tracking the reference value (Fig. 8). The
output of the MPC2 controller consistently follows the
target value closely, with very small errors and almost no
fluctuation. In contrast, the PID controller, especially
PID1, fails to effectively track the target value, showing
significant deviation and instability. For the PID1
controller , its output fluctuates within a range of 0.5 to
1.0 when tracking the target value, failing to stabilize at
the target value. This indicates that the PID1 controller
has significant deviation and instability in tracking the
target value, and the system fails to adjust promptly to
reduce errors, showing poor tracking accuracy and
stability. The output of the PID2 controller fluctuates
within a range of 1.0 to 1.8 and frequently overshoots the
target value, showing significant overshoot and
instability. This indicates that the PID2 controller has
significant deviation during the tracking process, and the
system is more sensitive to disturbances, failing to
stabilize near the target value.

Although the performance of PID2 has improved
compared to PID1, its accuracy and stability are still poor.
In contrast, the output of the MPC1 controller fluctuates
within a range of 0.8 to 1.0, which is relatively close to
the target value, with smaller fluctuation, indicating good
tracking accuracy and stability. The MPC1 controller is
able to quickly adapt to systemchanges during tracking
and effectively adjust control signals, ensuring the
system output remains stable near the target value,
demonstrating good control performance. The output of
the MPC2 controller fluctuates within a range of 1.8 to
2.2, closely tracking the target value, demonstrating
outstanding steady-state performance and minimal error.
The MPC2 controller experiences almost no fluctuation
when tracking the target value and can maintain stable
output underdisturbances, demonstrating extremely high
control accuracy and good adaptability. Compared to the
PID controller, MPC2 can track the target value more
accurately, showing a more ideal control performance.

The MPC controller effectively mitigates error
accumulation (Fig. 9). Both MPC1 and MPC2 maintain
cumulative errors below 0.1, with MPC2 demonstrating
almost negligible error accumulation. In contrast, the PID
controller shows increasing cumulative errors over time.
PID1 reaches an error of 0.5 after 30 seconds, while PID2
reaches 0.7, with the latter exhibiting more significant
error fluctuations. The cumulative error of PID1

increases steadily without effective correction, indicating
a failure toadjust and preventerror accumulation during
long-term operation, resulting in poor steady-state
performance. PID2 has a cumulative error peak of 0.7,
with substantial fluctuation, showing slight improvement
over PID1 but still experiencing significant error
accumulation. The control performance of PID2 is
severely impacted by system disturbances, leading to
sustained error accumulation. In the MPCL1 controller ,
the cumulative error is consistently maintained around
0.1, demonstrating good error control capabilities. The
MPC1 controller can relatively stably keep the error
within a low range and effectively reduce error
accumulation during long-term operation, demonstrating
excellent error suppression ability. The cumulative error
of the MPC2 controller is below 0.05, with almost no
error accumulation, showing outstanding precision and
stability. This controller can achieve almost error-free
control during operation, demonstrating extremely high
control precision and strong error correction ability,
making it the most outstanding among all controllers.

Then, although the MPC controller requires higher
control effort, especially MPC2, its precision and
stability far exceed those of the PID controller (Fig. 10).
The PID2 controller shows greater fluctuations in control
effort, indicating that its control system is unstable and
requires more adjustments. The cumulative control effort
of PID1 controller ranges from 20 to 30, indicating that
the controller requires less control effort and remains
relatively stable during system operation. Although the
control signal fluctuates significantly, overall, the PID1
controller's controleffort is relatively low, and the system
stability is good. The cumulative control effort of PID2
controller fluctuates significantly, ranging from 45 to 55,
indicating larger system fluctuations and a marked
increase in controleffort. This reflects PID2’s instability,
which requires higher control effort to compensate for
systemfluctuations, thus increasing the system’s burden.
The cumulative control effort of MPC1 is concentrated
around 30, indicating lower control effort while
maintaining good stability. Although MPC1’s control
effort is slightly higher than PID1, it demonstrates clear
advantages in control precision and stability, achieving
better performance with relatively low effort. The
cumulative control effort of MPC2 ranges from 55 to 60,
with higher values reflecting stronger control strategies
that achieve higher precision and smaller errors.
Although MPC2 demands more control effort, it
compensates forsystemfluctuations effectively, showing
significant advantages in stability and precision.

The MPC controller demonstrates rapid
adjustments in the initial phase, ensuring stable control
(Fig. 11). Although the control signals for MPC1 and
MPC2 are initially substantial, they quickly stabilize
within a narrower range, indicating superior adaptability
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and control precision. In contrast, the Proportional-
Integral-Derivative (PID) controller, particularly PID1,
exhibits a smaller initial control signal but suffers from
poor system stability and significant fluctuations. The
control signal for PID1 oscillates between 0 and 2,
reflecting lower control effort yet better stability.
However, due to considerable errors in the PID1 control
strategy, the signal fails to adjust effectively, leading to a
large steady-state error. The PID2 controller starts with
a high initial value of approximately 12, which rapidly
decreases and stabilizes around 2. This controller
necessitates larger initial adjustments to address system
disturbances, but it ultimately adapts over time.
Nevertheless, the instability of the system requires PID2
to maintain a higher initial control signal for stability.
The MPCL1 controller shows arapid initial increase in the
control signal, stabilizing between 1 and 2,
demonstrating strong adaptability and minimal
fluctuations. The MPC2 controller begins with a higher
initial controlsignal of around 12, stabilizing between 2
and 3. While MPC2 requires a larger initial adjustment,
it exhibits lower fluctuations post-stabilization,
indicating enhanced stability and precision. Overall,
MPC2 effectively stabilizes in later stages and responds
adeptly to disturbances.

The MPC controller shows a clear advantage in
error variation (Fig. 12). The error of the MPC2
controller remains between 0 and 0.2, with almost no
fluctuation, showing optimal precision and steady-state
performance. In contrast,the error of the PID controllers
fluctuates more, especially in PID1, where the error
fluctuates between 0.5 and 1.0, indicating poor precision.
After prolonged operation, the PID1 controller accum-
showing a large error deviation. The data shows that,
after 100s, the error deviation of the PID1 controller
reaches 0.035, which is significantly higher than the
stable values of the other controllers. At this stage, the
system fails to control error accumulation, leading to
significant long-term errors.
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Further analysis reveals that the PID1 controller
does not respond quickly enough to external disturbances,
exhibiting noticeable oscillations during adjustment,
which prevent it from converging effectively to the target
value. In contrast, PID2 shows some improvement with
a reduced error deviation. At 100 seconds, the error
deviation of PID2 is 0.025, lower than PID1 but still
higher than the MPC controller. Despite this
improvement, PID2 still exhibits some overshoot. When
disturbances are present, PID2 has a slower response and
a slower error convergence rate, preventing it from
reaching the ideal steady-state value. The MPC1
controller shows the best performance (Fig. 12),
maintaining a stable, small error deviation over a long
period. The data indicates that after 100 seconds, the
MPC1 error deviation is 0.015, demonstrating high
precision and minimal error accumulation. This
advanced controller exhibits superior robustness in
disturbed environments, effectively suppressing error
fluctuations and showing no significant overshoot during
adjustments, indicating a strong dynamic response.
Compared to MPC1, MPC2 offers a slight improvement
in error control, with error deviation stabilizing at 0.012
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after 100 seconds of operation. This shows minimal error
accumulation and enhanced stability, suggesting MPC2
optimizes  performance through more accurate
predictions, reducing long-term errors and enhancing
systemreliability and efficiency.

The comparison between the PID and MPC control
systems shows notable differences in both cumulative
errors and settling times. For cumulative errors, PID1 has
a value of 8.7532, PID2 is 11.787, MPC1 is 2.8101, and
MPC2 is 3.0101, indicating that MPC controllers
generally achieve lower cumulative errors than PID
controllers. Regarding settling times, PID1 has a settling
time of 7.3 seconds, and PID2 takes 16.2 seconds,
whereas MPC1 settles in 0.7 seconds and MPC2 in just
0.5 seconds. This shows that MPC controllers are
significantly faster in achieving stability compared to
PID controllers.

To compare the settling times of the PID and MPC
control systems, firstly calculate the average settling time
for each. For PID, the average settling time is 11.75s,
while for MPC, the average settling time is 0.6 s.
Applying the formula for relative improvement in
settling time

_11.75-0.6
11.75

x100% =~ 94.9% .

MPC control achieves a 94.9% improvement in
settling time over PID control, reducing stabilization
from 11.75s to just 0.6s. This significant reduction
demonstrates MPC’s superior ability to respond quickly
to disturbances and system changes. The faster response
is essential in applications where real-time stability and
performance are critical. By anticipating future states and
adjusting control inputs accordingly, MPC handles
disturbances more effectively, making it ideal for
systems requiring rapid, precise control. MPC controlnot
only offers improved settling time but also enhances
systemstability by minimizing overshoot, ensuring that
the system reaches its desired state without excessive
fluctuations.

4. Reliability of PID and MPC

The purpose of studying the reliability of PID and
MPC control systems is to evaluate their performance,
stability, and adaptability across various applications.
The research compares response time, steady-state error,
disturbance rejection, and tracking accuracy, while also
assessing each method’s ability to maintain stability
under disturbances or uncertainties. Additionally, the
study examines the scalability, resource consumption,
and implementation complexity of both methods, with a
focus on the feasibility of deploying MPC in

computationally demanding applications. Ultimately, the
goal is to guide the selection of the most suitable control
strategy based on systemrequirements.

The Monte Carlo simulation [44] proceeds by
generating multiple random realizations of the uncertain
parameters o .

dynamics are simulated over a given time horizon, and
the control input is computed either using the PID or
MPC controller. The random variables are sampled from
predefined probability distributions that reflect the
inherent uncertainties in the system[45].

Let the set of uncertain parameters be denoted by
0, where j=1,2,--- M represents the number of Monte

For each realization, the system’s

Carlo trials. For each trial j, the corresponding system
trajectory x, (t) and control input u, (t) are computed
as:

X; (0)=F(x; (1).u; (8).6;) -

For example, the average steady-state error across
M simulations can be computed as:

where RT, is the responsetime of the systemin the i-th

trial.

Likewise, thetracking accuracy over the simulation
trials can be evaluated using the root mean square error
(RMSE):

RMSE= %iizﬂl(r(t)-xi(t))z ,

where r(t) is the reference trajectory and x,(t) is the

outputof the systemfor the i-th simulation.

Monte Carlo simulations are computationally
intensive, particularly when evaluating large-scale
systems or using long prediction horizons in the case of
MPC. The computational cost grows with both the
number of Monte Carlo trials M and the complexity of
the system model. Therefore, a key aspect of this
evaluation is to analyze the scalability and resource
consumption of both control strategies.

For MPC, the computational load is higher due to
the optimization problem solved at each time step,
requiring solving a quadratic programming problem over
the prediction horizon. In contrast, PID controllers are
simpler to implement and less demanding, making them
more suitable for real-time applications with limited
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resources. Conducted simulations to analyze the
performance of PID and MPC control algorithms. The
following section provides a description of response time,
disturbance rejection, steady-state error, tracking
accuracy, computation time, and performance scores for
both algorithms. Each chart presents performance
metrics and compares PID1, MPC1, PID2, and MPC2,
highlighting the strengths and weaknesses of each
algorithm. These results are based on Monte Carlo
simulations with repeated trials to account for variations
in system behavior, providing statistical averages for
understanding performance underdifferent conditions.

Through 100 trials, verified the reliability and
validity ofeach algorithm's performance. The calculation
results are shown in Figure 13-18. First, with regard to
steady-state error (Fig. 13), the MPC algorithm
demonstrates a significant advantage. Specifically, the
median steady-state errors for the PID controllers are
0.15 and 0.14, while the median steady-state errors for
the MPC controllers are notably lower, around 0.08 and
0.09. This result indicates that, under the experimental
conditions employed, the MPC algorithm outperforms
the traditional PID algorithm in reducing steady-state
error.
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The MPC controller, by predicting the system’s future
behavior and optimizing controlinputs, is able to adjust
the system output more accurately, thereby effectively
suppressing the accumulation of steady-state error.
Furthermore, the adaptive capability of the MPC
algorithm allows it to maintain relatively stable control
performance under varying operational conditions.
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In contrast, although the PID algorithm is simple and
easy to implement, its steady-state performance is
typically affected by parameter tuning and system
nonlinearity.

Next, in terms of Mean Squared Error (MSE)
performance (Fig. 14), the MPC algorithm again exhibits
superior performance. Specifically, the MSE values for
PID1 and PID2 are 0.12 and 0.23, whereas the MSE
values for MPC1 and MPC2 are 0.05 and 0.04,
respectively. This result clearly shows that the MPC
control algorithm has a significant advantage in terms of
system tracking accuracy. Notably, MPC2 achieves the
lowest MSE, nearly a quarter of the error observed with
the PID algorithm, further confirming the potential and
effectiveness of MPC in precise control. By
incorporating a system model for prediction and
optimization, the MPC algorithm can make decisions
based on the current state and future behavior at each
time step, thus effectively reducing the accumulation and
fluctuations of control errors. In contrast, the traditional
PID controller relies on simple error feedback, and its
adjustment method is limited by a simplistic estimate of
the system dynamics, making it difficult to achieve the
same level of accuracy in complex or time-varying
systems. Therefore, MPC is better suited to handle
nonlinear, constrained, or multivariable control problems,
providing more precise and stable control performance.

However, there is a difference in terms of
computational cost. Firstly, regarding computation time
(Fig. 15), the PID algorithms maintain a nearly constant
computation time, ranging between 0 and 0.01 seconds.
This indicates that PID algorithms have low
computational complexity, allowing them to complete

tasks in a short time, making them suitable for real-time
control applications. In contrast, the MPC algorithms
have longer computation times, fluctuating between 0.08
and 0.12 seconds, suggesting that MPC algorithms are
relatively more complex in terms of computation. This
longer computation time may pose alimitation in certain
real-time systems, especially in scenarios with high-
frequency control demands. However, it is important to
note that MPC typically excel in control precision and
system stability, particularly when dealing with
multivariable and constrained optimization problems.

In terms of performance scores (Fig. 16), the PID
algorithms demonstrate superior performance in control
tasks. The median performance score for PID1 is 0.25,
while for PID2 it is 0.35, indicating that both PID
algorithms can achieve high control precision within a
short computation time. In comparison, the median
performance scores for the MPC algorithms are lower,
with MPC1 at 0.10 and MPC2 at 0.12. Although they
may exhibit high precision in specific control tasks, such
as in the case of cyclogyro system, their higher
computational complexity and longer computation times
may hinder their ability to fully leverage their advantages.

Additionally, from the comparison of response
times (Fig. 17), the MPC algorithm clearly demonstrates
superior performance. The response times for MPC1 and
MPC2 are concentrated around zero seconds, with a high
peak probability density, indicating that these controllers
can react swiftly, exhibiting high response speed and
accuracy. In contrast, the response times for the PID
controllers are more dispersed, with slower response
speeds and greater variability, indicating some instability.
This suggeststhat MPC can adapt more rapidly to system
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changes, ensuring precise control, while PID is slower to
respond to complex system disturbances and is more
susceptible to external influences.

Finally, in the disturbance response analysis (see
Fig. 18), the MPC algorithm significantly outperforms
the traditional PID control algorithm. Specifically,
between 0 and 30 seconds, the systemoutput for MPC1
and MPC2 shows a much smoother trend, with the
systemstate remaining at a stable level. In contrast, the
system output for PID1 and PID2 exhibits noticeable
fluctuations and more intense responses. This difference
clearly indicates that the MPC algorithm is more
effective in mitigating systemoscillations in responseto
external disturbances, avoiding the excessive responses
and stability issues that the PID algorithm is prone to.
Therefore, the MPC algorithm demonstrates superior
performance in disturbance suppression and system
stability, especially in complex dynamic environments,
providing more reliable control outcomes.

Despite the challenges that MPC algorithms face
regarding computation time in certain applications, this
does not imply that their prospects in real-time systems
are limited. By optimizing the solving process of the
MPC algorithm, such as employing real-time
optimization techniques, like fast gradient methods [46]
or heuristic algorithms [47], parallel computing, or
utilizing hardware acceleration, like GPUs [48] or
FPGAs [49]. It is possible to effectively reduce
computation time and enhance their feasibility in real-
time control. Additionally, model simplification and
dynamic adjustment of the prediction horizon are also
effective methods to alleviate computational burdens.

Overall, the MPC algorithm performs excellently in
control systems requiring precision and adaptability. It
can effectively reduce errors and improve stability.
Although it has higher complexity, MPC remains the
superior choice for demanding scenarios.

5. Discussion and recommendations

This research demonstrates the substantial benefits
of optimized control in cyclogyro systems. Through
comparative analysis of PID controllers and Model
Predictive Control (MPC), have identified key
performance differences under various disturbance
conditions. PID controllers, recognized for their
simplicity and ease of implementation, exhibit
limitations when dealing with large or time-varying
disturbances, especially in systems with multiple
variables. Conversely, MPC shows superior performance
in terms of control accuracy, disturbance rejection, and
response speed due to its predictive and optimization
capabilities. However, MPCs high computational
demands present a notable challenge, requiring further
research into optimization techniques.

Here are some recommendations for future research:

- Enhanced Computational Efficiency: Future
research should prioritize the development of methods to
reduce the computational burden of MPC. This can
include algorithmic improvements, hardware
acceleration, and efficient coding practices to ensure real-
time applicability;

- Robust System Modeling: Accurate and reliable
models are crucial for the effectiveness of MPC. Efforts
should be directed towards improving model accuracy
and robustness, particularly in dynamic and complex
environments;

- Hybrid Control Strategies: BExploring hybrid
control strategies that combine the simplicity of PID with
the predictive power of MPC could offer a balanced
approach, leveraging the strengths of both methods;

- Application-Specific Tuning: Given the varying
requirements of different applications, tailored control
strategies should be developed. This involves fine-tuning
control parameters specific to the operational context of
the cyclogyro systems;

- Field Testing and Validation: Extensive field
testing under real-world conditions is essential to validate
the theoretical advantages of optimized control strategies.
This will help in understanding practical limitations and
refining the control systems accordingly.

Through these recommendations, aimed to
accelerate the development of more efficient, adaptive,
and resilient control systems specifically designed for
cyclogyro applications. By integrating advanced control
strategies, our goal is to improve their responsiveness,
accuracy, and robustness, enabling better performance
under a wide range of operating conditions. This will
ultimately enhance the reliability and functionality of
cyclogyros in complex, dynamic, and challenging
environments.

6. Conclusion

This work compares the performance of MPC with
traditional PID controllers in terms of dynamic response,
steady-state accuracy, error convergence speed, and
disturbance rejection in application of cyclogyro.

In terms of dynamic response, MPC demonstrates
superior adaptability compared to PID. It can maintain
faster response speeds when dealing with complex and
rapidly changing systems, effectively addressing
multivariable control problems. While PID exhibits a
quicker initial response, MPC shows greater precision
and stability when dealing with complex dynamic
behaviors, allowing for more accurate tracking of
setpoints and preventing excessive oscillations.

MPC also holds a clear advantage in steady-state
accuracy. Since MPC relies on system mathematical
models to predict future states, it effectively suppresses
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steady-state errors, ensuring that the system maintains
precise control during long-term operation. In contrast,
PID controllers often experience small, persistent errors
at steady-state, which can affect the long-term stability
and controlaccuracy of the system, especially in complex
or nonlinear systems where PID struggles to achieve
perfect tracking.

Error convergence speed is another key area where
MPC outperforms PID. MPC can rapidly reduce system
error to near-zero, especially in the presence of
disturbances or changes in system parameters,
demonstrating strong robustness and adaptability. By
performing real-time optimization, MPC predicts and
adjusts control inputs to eliminate errors. In comparison,
PID controllers often require frequent parameter
adjustments and have slower error convergence,
particularly when disturbances are significant, which can
lead to system instability.

MPC's ability to handle complex, multi-variable
control problems through predictive modeling allows it
to maintain optimal performance and quickly correct
errors, ensuring system stability and efficiency. This
advanced control strategy continuously evaluates the
future impact of current control actions, making it
exceptionally proficient at managing dynamic and
unpredictable environments. Consequently, MPC is often
the preferred choice for applications requiring high
precision and rapid error correction, outperforming
traditional PID controllers in both robustness and
adaptability.

MPC's adaptability allows it to anticipate future dis
turbances by leveraging its predictive model, adjusting ¢
ontrol actions proactively to maintain optimal performa
nce. Furthermore, its ability to handle multi-variable sys
tems and constraints makes MPC a superior choice in co
mplex industrial applications where precise disturbance
rejection is critical. In contrast,PID controllers, with the
ir reactive nature, often struggle to cope with dynamic ¢
hanges and interactions in such scenarios, leading to sub
optimal control and increased maintenance efforts. Addi
tionally, MPC's ability to incorporate systemconstraints
and optimize control inputs over a defined horizon allo
ws for more efficient and robust responses to disturbanc
es, ensuring minimal performance degradationevenin ¢
hallenging operating conditions.

Although MPC shows significant advantages in
terms of accuracy, stability, error convergence speed, and
disturbance rejection, especially in the control of
complex, nonlinear, and multivariable systems, its
computational burden in real-time control remains a
challenge. MPC requires real-time systemmodeling and
optimization calculations, which increase computation
time. This can create performance bottlenecks in high-
frequency real-time control applications. Therefore,
improving the computational efficiency of MPC is a

major direction for future work. Techniques such as fast
gradient methods and heuristic algorithms can effectively
shorten computation time and reduce computational load.
Additionally, parallel computing and hardware
acceleration (such as GPUs or FPGAS) are widely used
in real-time MPC control. These methods can
significantly improve real-time response capabilities and
computational efficiency while maintaining accuracy.

Future research in ModelPredictive Control (MPC)
should concentrate on optimizing its application in
controlling complex systems to enhance real-time control
performance in high-precision and high-demand
environments. Despite its substantial benefits, such as
high control accuracy, robust disturbance rejection, and
fast response times, the computational burden remains a
significant challenge. This complexity hinders MPC’s
widespread use in real-time applications. To address this,
future studies should focus on developing advanced
optimization techniques for both hardware and software.
Hardware acceleration, like specialized processors or
parallel computing, could reduce the time for solving
MPC optimization problems. Software improvements,
such as more efficient algorithms and model reduction
techniques, are also crucial. Additionally, researchers
should explore MPC’s broader applicability in fields like
robotics, energy systems, aerospace, and autonomous
vehicles to unlock new possibilities and drive innovation.
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ONITUMBAIIISA AJTATITUBHOCTI TA PAIIOHAJIbHI CTPATEI'Ti KEPYBAHHS
JJIS IUKJIOT TPOCKOIIMY HUX CUCTEM

Beit Cubei

Hukoripockomiyna cucTeMa, 3aBIIKA CBOIM MOTEHIIIHHUM 3aCTOCYBaHHSM B aBiallil Ta CKIQJIHUM JAHAMIY -
HUM XapaKTepUCTHKAM, CTajia 00'€KTOM HAIIOro JOCIiKeHHsA. Xoua Tpamumiiauii PID-perynsrop ehekTUBHHUN Yy
0araThOX BUIAIKAaX, BiH MOJXKE MaTH TPYIHOLI 3 00POOKOI0 CKIAHOT HENMHIMHOT AMHAMIKH, SIKYy YacTO 3yCTPi4aroTh
Yy IMKJIOTIPOCKOMIYHUX CHUCTeMax. TOMY MeTOI LBOTO NOCITIDKEHHS OyJo CIPOEKTYBAaTH Ta peajlidyBaTH CHCTEMY
KepyBaHHs WIS IUKIOTIPOCKOMIYHOI CUCTEMHU Ha OCHOBI ONTHMi30BaHUX CTPATETiid, 1100 MOJIMIIATA CTAOiIBHICTH
CHCTeMH Ta IMIBHAKICTh peakilii. 3ampoNOHOBAHUH MiAXA HTErpye MaTeMaTUIHE MOJIETIOBAHHS, AITOPUTMH ONTHMi-
3allii, aHaJi3 JaHWX y peaJbHOMY Yaci Ta 3BOPOTHI MEXaHI3MHU UL IPOTHO3YBAHHS Ta KOPUI'YBAaHHS MOBEIHKA CHC-
temu. [lopiBHsum edextuBHICTs TpamumiiHoro PID-perymsaropa 3 Monemno nporaosytodoro koHTpomo (MPC) B cu-
CTEeMi KOHTPOJIIO MIBUAKOCTI 3 HOJBIHHOIO METOI0. Pe3yIbTaTH 4YMCIOBUX CHUMYJISLIA MPOJIECMOHCTPYBAJIH, IO OTITH-
Mi3oBaHe kepyBaHHS Ha ocHOBI MPC 3nauHo nepesepiuye PID-perynsitop, gocsiratoun BUIIOT CTAOUIBHOCTI Ta IIBU-
Juroi peaxiii Ipu 06poOIIi30BHINIHIX 30ypeHb Ta HEMHIMHUX AMHAMIYHUX 3MiH, 3 CepeAHIM 4acoM peaxilii, 3MeHIIe-
HUM Ha 92,5% (p < le-10). Ll mimBumeHa NpoOIyKTUBHICT 3yMOBJICHA 3ATHICTIO CHCTEMH JMHAMIYHO KOPHUTYBaTH
CBOI cTpaTerii KepyBaHHS y BIOBIIp Ha 3MIHIOBaHI YMOBH HaBKOJHMIITHHOTO CepeNOoBHUIIa. BHCHOBKH IHOTO JOCIHTi-
JDKEHHSI TIAKPECIIOI0Th CYTTEBI MEpeBard ONTHMI30BAHUX CTpaTeTiil KepyBaHHS I ITUKJIOTIPOCKOMIYHHX CHCTEM,
MPOIMOHYIOYH HOBI MOTIIIIM HAa PO3BUTOK CKIAJHHX aBIAIlIfHUX CUCTEM KEpyBaHHS Ta JeMOHCTPYIOYH HOTEHITIAT X
CTpaTerid Wi MIBUIIEHHS SK MPOJYKTUBHOCTI, TaK 1 aJaNTHBHOCTI.

KmouoBi cioBa: mukioripockon; cucteMma kepyBasHs, PID-perymsrop; Monens mMpOrHO3yHOUOTo KOHTPOIIO
(MPC); omtumizoBaHa cTpaterii KepyBaHHsS; HEJiHiiHA JMHAMIKA, CTAOUIBHICTh CHCTEMU; IIBHIKICTh PEAKIil; Yuc-
JIOBE MOJICITIOBAHHS, aalITHBHICTb.
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