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The cyclogyro, due to its potential applications in aviation and complex dynamic characteristics, has become 

the focus of our research. Although traditional PID control is effective in many cases, it may struggle in handling 

the complex nonlinear dynamics often encountered in cyclogyro systems. Therefore, the objective of this study 

was to design and implement a control system for the cyclogyro based on optimized strategies to i mprove the 

system stability and response speed. The proposed approach integrates mathematical modeling, optimization 

algorithms, real-time data analysis, and feedback mechanisms to predict and adjust the system behavior. The 

performance of traditional PID control was compared with that of Model Predictive Control (MPC) in a dual -

target speed control system. The numerical simulation results demonstrated that the MPC-based optimized 

control significantly outperformed PID control, achieving higher stability an d faster response speed when deal-

ing with external disturbances and nonlinear dynamic changes, with the average response time reduced by 

92.5% (p < 1e-10). This enhanced performance is due to the system’s ability to dynamically adjust its control 

strategies in response to varying environmental conditions. The conclusions of this research highlight the sub-

stantial advantages of optimized control strategies for cyclogyro systems, offering new insights into the devel-

opment of complex aviation control systems and demonstrating the potential of these strategies to enhance both 

performance and adaptability.  
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1. Introduction 

 

1.1 Motivation 

With the continuous development of low-altitude 

aircraft technology [1], the cyclogyro [2], as a new type 

of flying platform, is gradually demonstrating its appli-

cation potential in various fields [3], especially in urban 

air mobility, drones, and military reconnaissance. Thanks 

to its unique rotating wing design [4], the cyclogyro can 

generate lift while also providing thrust, which enables it 

to perform exceptionally well in tasks such as vertical 

takeoff and landing (VTOL), low-speed flight, and hov-

ering [5]. 

The semi-empirical analytical model proposed by 

Leger Monteiro J.A. et al. [6] provides more accurate 

structural and aerodynamic predictions for cyclogyro de-

sign. In practical aerodynamic design, optimizing the bal-

ance between thrust generation and power consumption 

is crucial. This balance enables the rotorcraft to quickly  

adjust thrust during rapid maneuvers, while minimizing  

excessive energy consumption and avoiding instability, 

critical factors for achieving high maneuverability in 

flight. Despite the promising advantages of cyclogyros in 

various mission scenarios, including their potential for 

exceptional maneuverability in complex environments, 

significant challenges persist in the design and imple-

mentation of their control systems. Du F. et al. [7] devel-

oped a cyclogyro featuring two circumferential propel-

lers and a tail propeller. The two circumferential propel-

lers, which rotate in the same direction, generate lift and 

control roll, while the tail propeller adjusts the pitch mo-

ment and also contributes to lift, as well as pitch and yaw 

control. However, flight tests with roll step inputs re-

vealed that the cyclogyro exhibited poor stability and 

controllability. 

In the design of a cyclogyro, especially in systems 

with two coaxial propellers rotating in the same direction, 

the gyroscopic effect [8] can be significant. Kou, H. et al. 

[9] established a rotor model considering rub-impact, ge-

ometric nonlinearity, local vibrations, and the gyroscopic 

effect, and analyzed the dynamic behavior of wide-chord 

blades under different operating conditions. They inves-

tigated the impact of rub-impact on rotor stability. By 

comparing with similar physical models, it can be 

drawled the conclusion that the gyroscopic effect gener-

ates additional torque during flight when the aircraft un-

dergoes roll or other attitude changes, which can signifi-

cantly affect the stability of the aircraft. Specifically, the 

gyroscopic effect refers to the phenomenon where the 

axis of rotation of a rotating object resists changes in di-

rection, and its angular momentum   remains fixed during 
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high-speed rotation. To change the direction of its rota-

tional axis, an external torque is required [10]. Therefore, 

when the aircraft undergoes attitude changes [11], such 

as rolling, pitching, or yawing, the rotating propellers 

generate a counteracting torque that resists the attitude 

change, thus affecting the aircraft's stability [12]. 
 

1.2. State of the art 
 

Existing research indicates that the design of cyclo-

gyro requires optimizing the balance between thrust gen-

eration and energy consumption to ensure rapid thrust ad-

justments during quick maneuvers while avoiding exces-

sive energy expenditure and instability. Researchers have 

proposed various models and methods to analyze the dy-

namic behavior of cyclogyro, including considerations of 

gyroscopic effects, geometric nonlinearity, and local vi-

brations. While conventional PID control techniques are 

successful in numerous applications, their effectiveness 

is constrained in complex nonlinear dynamic environ-

ments, especially in scenarios involving rapid maneuvers 

and external disturbances. 

In the application of cyclogyro, the gyroscopic ef-

fect is particularly prominent because two counter-rotat-

ing propellers generate coupled torques. When the air-

craft performs rapid roll or aggressive maneuvers, the gy-

roscopic effect of the propellers can cause coupling be-

tween the roll [13], pitch, and yaw axes, thereby increas-

ing the complexity of the aircraft’s control. This coupling 

effect [14] is especially significant during rapid control 

inputs and can lead to delayed or exaggerated responses, 

which negatively impacts flight stability. Dominik Saile 

et al. [15] found that the resonant frequency induced by 

the coupling effect appears to amplify the unfavorable 

fluctuations in the base region, thereby exacerbating the 

magnification of unstable loads, which in turn introduces 

significant stability issues during the flight process. In 

other word, when attempting a quick roll, the counteract-

ing torque generated by the propellers may suppress the 

roll response, causing a lag effect [16]. This lag, particu-

larly in complex flight environments, can exacerbate the 

aircraft's instability, leading to control responses that are 

not as expected, and thus affecting the aircraft's handling 

performance. In designing cyclogyro, factors such as the 

distribution of the aircraft's mass, the rotational direction 

and speed of the propellers, and other parameters influ-

ence the degree of the gyroscopic effect. Therefore, pre-

cise dynamic analysis is required to optimize the control 

system [17], ensuring that the aircraft maintains stable 

handling performance under various flight conditions. 

In the process of optimizing control systems, reduc-

ing the response time of the system is crucial [18]. This 

not only helps to effectively compensate for adverse fac-

tors such as gyroscopic effects and lag effect, but also en-

hances the system's adaptability in complex flight envi-

ronments. The response time of the control system  

directly affects the aircraft's ability to react to external 

disturbances, especially during high-speed flight or rapid 

attitude changes. The challenge lies in how to instantane-

ously adjust the control inputs to counteract the inertial 

effects caused by the gyroscopic effect and the delay ef-

fects due to control latency. By optimizing control strat-

egies to reduce system lag and inertial effects, the stabil-

ity and maneuverability of the aircraft can be signifi-

cantly improved, ensuring efficient and precise control 

performance even under extreme flight conditions. 

Aircraft are exposed to multiple external disturb-

ances during flight, including changes in airflow, load 

variations, and environmental conditions. While tradi-

tional PID control [19] generally delivers effective con-

trol in most scenarios, its performance may be con-

strained in complex nonlinear dynamic environments. 

For example, Kim J.et al. [20] studied the shock-captur-

ing strategy based on PID control and found that, alt-

hough PID control can effectively capture and stabilize 

shock waves, it is highly dependent on the selection of 

parameters and may exhibit excessive sensitivity to high-

frequency noise or delayed response when dealing with 

complex flow. One year later, they investigated the ap-

plication of the PID-based SPID method in multidimen-

sional compressible flows and found that PID faces chal-

lenges in selecting gain parameters, insufficient anti-

windup mechanisms, and poor controller adaptability 

when capturing shock waves [21]. These issues can fur-

ther lead to increased response delays and enhanced lag 

effects, ultimately resulting in a series of instabilities.  

 

1.3. Objectives and the approach 

 

Rational control [22] refers to the use of systematic 

and theoretical methods in control system design to opti-

mize control strategies and achieve desired control objec-

tives. It integrates mathematical modeling, optimization  

algorithms, real-time data analysis, and feedback mecha-

nisms to precisely control the target by understanding 

system dynamics and environmental changes [23]. Ra-

tional control aims to predict and adjust system behavior, 

enhancing robustness, response speed [24], and adapta-

bility. The ability to update control models and parame-

ters in real time further improves system stability and re-

liability [25]. This real-time adaptability is crucial for 

complex, dynamic systems, where environmental condi-

tions and system behaviors may change unpredictably. 

By continuously refining control strategies, rational con-

trol can mitigate performance degradation and reduce the 

impact of disturbances or uncertainties. Given these ben-

efits, implementing rational control strategies in aircraft  

control systems is highly significant [26], as it ensures 

not only optimal performance under various conditions 

but also long-term system stability and safety in highly 

dynamic environments. 
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Fig. 1. Control block diagram of the PID controller 

 

In complex nonlinear dynamic environments, such 

as cyclogyro control system design, traditional PID con-

trol methods, while effective in many applications, face 

limitations when confronted with high nonlinearity [27], 

time-varying characteristics [28], and factors like the gy-

roscopic effect and control delays in systems like cyclo-

gyros. Particularly during fast maneuvers, external dis-

turbances, and complex flight environments with multi-

degree-of-freedom coupling [29], PID control often fails 

to provide sufficient accuracy and response speed [30], 

compromising stability and maneuverability. Therefore, 

a key challenge of this research is to overcome the limi-

tations of traditional PID control and develop an opti-

mized control strategy using rational methods. This strat-

egy should enhance rotorcraft performance and improve 

response times. By leveraging advanced algorithms and 

real-time data processing, rational control can provide 

more precise and adaptive solutions, ensuring better sys-

tem performance in unpredictable environments . 

 

2. Rational control methods of cyclogyro 

 
Rational control  refers to the use of systematic and 

theoretical methods in control system design to optimize 

control strategies and achieve desired control objectives. 

It typically integrates mathematical modeling, 

optimization algorithms, real-time data analysis, and 

feedback mechanisms to precisely control the target by 

understanding system dynamics and environmental 

changes. Rational control emphasizes predicting and 

adjusting system behavior to enhance robustness and 

response speed [31]. 

Implementing rational control strategies in aircraft  

control systems is highly significant. Aircraft are exposed 

to multiple external disturbances during flight, including 

changes in airflow, load variations, and environmental 

conditions. While traditional PID control [32] generally 

delivers effective control in most scenarios, its 

performance may be constrained in complex nonlinear 

dynamic environments. Rational control enhances 

adaptability to changes through real-time updates of 

control models and parameters, thereby boosting system 

stability and reliability. 

For the dual-target speed control system of 

cyclogyro, it expected the current velocities 
C

1ω  and 2

cω  

to be regulated by the controller, progressively 

approaching or achieving the des ired speeds. For each 

speed control system, the transfer function G(s)  of the 

PID controller is expressed as follows: 

 

i

p v

K
G(s)=K + +K s

s
.                    (1) 

 

In this case, 
pK  represents the proportional gain, 

iK  represents the integral gain, and 
vK  represents the  

derivative gain. 

In Fig. 1, the signal begins at the input error e  on 

the left side, passes through the proportional controller 

PK , and then flows into an addition node. At this 

moment, the outputs from the integral controller 
iK /s  

and the derivative controller 
dK s  also feed into the 

addition node, where all input signals are computed 

together. The final output signal is PIDu , which 

represents the system’s control output. 

Rational control significantly enhances robustness, 

allowing adaptive handling of uncertainties and external 

disturbances in the system, enabling the control system 

to remain stable under various complex environmental 

conditions. Additionally, by leveraging advanced 

optimization algorithms and real-time data analysis, 

rational control boosts system response speed, enabling 

quicker adaptation to changes, minimizing delays, and 

improving control accuracy. Rational control also 

features powerful adaptability, dynamically adjusting 

control strategies according to real-world conditions, 

adapting to shifts in system behavior, and enhancing the 

overall adaptability of the control system. Utilizing  

methods like Model Predictive Control (MPC) [33], 

rational control can predict future system behavior with 

higher precision, allowing proactive control adjustments 

to optimize system performance [34]. 
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The fundamental concept of MPC control is to 

predict the system output over a future time horizon and 

determine the control inputs using optimization  

algorithms. Assuming the prediction horizon is N , the 

optimization objective function can be formulated as: 

 

 
2N N 2

target
i=1 i=1

J= y(t+i|t)-y +λ u(t+i|t)  ,         (2) 

 

where y(t+i|t)  is the predicted output at future time step 

i  from time t , 
targety  is the target output, and λ  is the 

weighting coefficient of the control input. 

The system receives two reference input signals 

1r (t)  and 
2r (t) , which represent the setpoint or desired 

state of the system at time t , forming the input signal 

vector  
T

1 2r(t)= r (t) r (t) . 

The error signals 
1e (t)  and 

2e (t)  are determined  

by calculating the difference between the current 

reference inputs and the actual outputs: 

 

1 1 1e (t)=r (t)-ω (t) , 

2 2 2e (t)=r (t)-ω (t) . 

 

These error signals constitute the error vector  

 

 
T

1 2e(t)= (t e) (t)e . 

 

The weighting matrix W  is employed to regulate 

the weighting of each error signal to accommodate 

various control needs: 

 

1

2

W 0
W=

0 W

 
 
 

. 

 

The weighted error signals are: 

 

We (t)=We(t) . 

 

Perform PID control on the weighted error signals 

to derive the PID control signals PID

1u (t)  and PID

2u (t)  

 

PID it
0i p i i i d

de (t)
u (t)=K e (t)+K e (τ)dτ+K

dt
 . 

 

The MPC controller uses the system model for 

prediction and optimization, resulting in the calculation 

of MPC control signals MPC

1u (t)  and MPC

2u (t) . Generally , 

MPC derives the control signals by solving the following 

optimization problem [35]: 

p

T
N

T

-1
W W

k=0

e (t+k) Qe (t+k)+
J=

+u(t+k) Ru(t+k)


 
  
 

,                 (3) 

 

where 
pN  is the prediction horizon length, Q  is the 

error weighting matrix, and R  is the control input 

weighting matrix. The control input vector is 

 
T

1 2u(t)= u (t) u (t) . Optimize this function to obtain 

the optimal solution 
T

MPC MPC

1 2u(t)= u (t) u (t)  
 under 

constraints. 

By integrating the PID control signals with the 

MPC control signals, the final control output is formed: 

 
PID MPC

1 1 1u (t)=αu (t)+(1-α)u (t) , 

PID MPC

2 2 2u (t)=αu (t)+(1-α)u (t) . 

 

Where α  represents the weighting factor for the 

combination of control signals. 

The final control signal  
T

1 2u(t)= u (t) u (t)  acts 

on the system, generating outputs 
1ω (t)  and 

2ω (t) , with 

feedback creating the closed-loop control 

 
T

1 2ω(t)= ω (t ω) (t) . 

As shown in Fig. 2, the dual-objective aileron  

control block diagram illustrates a hybrid control strategy 

that combines the advantages of PID and MPC 

controllers, aiming for efficient control system design. 

The PID controller can respond quickly to error signals 

and make corrections, effectively reducing transient 

errors. In contrast, the MPC controller, utilizing the 

system's mathematical model, predicts future system 

states and optimizes current control inputs, considerably 

enhancing the system's steady-state performance and 

overall robustness. This hybrid control strategy offers 

key benefits, including fast response, optimized control, 

robustness, and flexible adjustment capabilities. The PID 

controller ensures rapid error correction, whereas the 

MPC controller enhances  the control system's steady-

state performance and its ability to handle complex 

operating conditions through future prediction and 

optimization. Moreover, by modulating the weighting of 

PID and MPC controllers in the overall control signal, the 

system can flexibly adapt to varying control demands. 

In this hybrid control strategy, the essence of 

rational control is represented by the MPC controller. 

The MPC controller leverages the system model for 

prediction and decides on the optimal control inputs 

through solving optimization problems. This process 

encompasses several aspects, including predictive 

capability, optimization computation, and preventive 

adjustments. First, the MPC controller forecasts the  
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Fig. 2. Dual-degree-of-freedom control block diagram for cyclogyro 

 

system behavior for a future time frame based on the 

system model and future reference trajectories, 

establishing an optimized control strategy. Secondly, the 

MPC controller ensures that the control inputs minimize 

errors while satisfying the physical system constraints by 

solving optimization problems with constraints. Finally, 

the MPC controller anticipates potential deviations and 

changes in the system, adjusting the control strategy in 

advance to minimize these deviations, thus 

demonstrating the superiority of rational control. 

The cyclogyro system is a typical MIMO system 

[36] where precise control is critical for industrial and 

aerospace applications. The goal is to ensure that the two 

rotational speed variables track the reference signals 

quickly and accurately. To evaluate the performance of 

PID versus MPC control, had developed a case study 

comparing the control effectiveness of both PID and 

MPC for controlling the two rotational speeds in the 

cyclogyro system.The system is represented as a dual-

input dual-output model consisting of two independent 

first-order systems, expressed as: 

 

1-Ts 0 Ts 0
A= , B=

0 1-Ts 0 Ts

   
   
   

. 

 

The sampling time is set to Ts 0.1s , with the 

reference signals being 
1ω =1  and 

2ω =2 , respectively. 

Two PID controllers have been designed to individually 

control the two target rotational speeds. For the first 

output, the PID controller parameters are set as: 

proportional gain 
1Kp =1 , integral gain 

1Ki =0.1 , and 

derivative gain 
1Kd =0.01 . For the second output, the 

PID controller parameters are set as: proportional gain 

2Kp =1.5 , integral gain 
2Ki =0.15 , and derivative gain 

2Kd =0.02 . When designing the MPC controller, the 

prediction horizon is set to H=10 , meaning that the 

controller will predict the system behavior for the next 

10-time steps. The state weighting matrix Q  is set to 
HI  

(a unit matrix of size H×H ), meaning that the state errors 

within the prediction horizon are penalized equally. The 

control weighting matrix R  is set to 
H0.01I , which is a 

unit matrix of size H×H  multiplied by 0.01. This means 

that while changes in control input are penalized to 

maintain smooth control actions, the penalty applied is 

less significant than that for state errors. Consequently, 

the optimization places a higher priority on minimizing  

state deviations, allowing for more flexibility in control 

input adjustments without compromising overall system 

performance. 

In terms of control performance, the PID controller 

demonstrates slower response speed and considerable 

steady-state error (Fig. 3). The PID1 controller rises 

quickly but fails to reach the target reference value within  

20 seconds, showing poor steady-state performance. 

Although PID1 responds quickly, it does not eliminate 

steady-state error, resulting in long-term deviation. In 

comparison, PID2 has a faster dynamic response than 

PID1 but also experiences overshoot and steady-state 

error within about 25 seconds, indicating shortcomings in 

both dynamic performance and steady-state control. 

Overall, the PID controller struggles to maintain high-

precision control, with non-negligible error. 

Compared to the PID controller, the MPC controller 

demonstrates significant advantages in dynamic response 

(Fig. 4). The MPC1 controller outperforms the PID 

controller in the speed of approaching the target reference 

value. Although it does not fully stabilize within 20s, its 

dynamic performance is clearly better. MPC1’s control 

signal can quickly follow the changes in the reference 
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value, reflecting its strong dynamic response ability, 

although there are still some limitations in steady-state 

accuracy. However, the MPC2 controller exhibited the 

best performance, stabilizing rapidly and maintaining a 

steady control signal throughout the entire process, 

suggesting that it not only has a faster response speed but 

also surpasses other controllers in both stability and 

steady-state accuracy. Through optimized control of the 

system, MPC2 minimizes steady-state error and 

fluctuations to the greatest extent, further improving the 

system’s control performance. 

 

 

Fig. 3. Output vs Time (seconds) 

 

 

Fig. 4. Control Signal vs Time (seconds) 

 

In terms of error performance, the MPC controller 

outperforms the PID controller, especially in terms of 

error convergence speed and steady-state accuracy (as 

illustrated in Fig. 5). The errors in PID1 and PID2 

controllers are initially large and converge slowly. 

Although they eventually decrease, considerable residual 

error remains during the steady-state phase, limiting  

system performance during prolonged control. In 

contrast, the MPC controller has a smaller initial error 

and significantly faster convergence speed. Particularly  

for the MPC2 controller, it maintains near-zero error 

throughout the entire control process, showing its 

exceptional steady-state accuracy and rapid error 

convergence ability. MPC2 not only effectively  

suppresses the accumulation of errors but also maintains 

extremely small steady-state error, showcasing its 

advantages in precise control and efficient response. 

 

 

Fig. 5. Error vs Time (seconds) 

 

 

Fig. 6. Cumulative Error vs Time (seconds) 

 

From the perspective of accumulated error (as 

illustrated in Fig. 6), the PID controller shows larger 

cumulative error over long-term operation, especially in 

PID1 and PID2 controllers. Although the error decreases 

gradually, significant residual error remains during the 

steady-state phase. This suggests that while the PID 

controller can offer relatively fast response in the short 

term, its error may progressively accumulate in long-term 

steady-state control, ultimately impacting the overall 

system performance. In comparison, the MPC controller 

has considerably smaller accumulated error during long-

term operation, particularly MPC2, which is capable of 

maintaining an error close to zero for an extended period, 

showing more stable and precise control performance.  
Therefore, the MPC controller, especially MPC2, 

demonstrates stronger competitiveness within the entire 

control system, owing to its superior dynamic response, 

steady-state accuracy, and error suppression capability. 
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Overall, the MPC controller outperforms the PID 

controller in all aspects, particularly in dynamic response, 

steady-state accuracy, and error convergence, with 

MPC2 being undoubtedly the best choice. While the PID 

controller has some advantages in the short term, its long-

term performance is constrained by steady-state and 

accumulated errors, making it challenging to fulfill high-

precision and stability demands. 

The average response time [37] for PID and MPC 

control can be calculated as: 

 

PIDn

PID PID,i
i=1

PID

1
T = T

n
 , 

MPCn

MPC MPC,i
i=1

MPC

1
T = T

n
 , 

 

where 
PIDT  and 

MPCT  represent the average response 

time for PID and MPC control, respectively, and 
PIDn  

and 
MPCn  are the sample sizes for each group. 

PID,iT  and 

MPC,iT  represent the individual response times for each 

sample.  
The average reduction [38] in response time R  is 

calculated as: 

 

PID MPC

PID

T -T
R= 100%

T
 .                     (4) 

 

The confidence interval M  [39] is the range in 

which the true value of the parameter is included. For the 

PID control system response time: 

 

PIDn
2

PID,i PID
i=1

PID

PID PID

PID

1
(T -T )

n
M =T z .

n




 

 

For the confidence interval of the MPC control 

system response time: 

 

MPCn
2

MPC,i MPC
i=1

MPC

MPC MPC

MPC

1
(T -T )

n
M =T z .

n




 

 

The results presented in Fig. 3 - 6 indicate a 

significant advantage of MPC over PID control in terms 

of stabilization time. Specifically, with the error 

threshold set to 0.05, both PID1 and PID2 achieved 

system stabilization in 45.1s. In stark contrast, MPC1 and 

MPC2 managed to stabilize the system in a mere 0.6s. 

This observation demonstrates a substantial reduction in 

stabilization time for MPC, with a remarkable decrease 

of 44.5s for PID1 compared to MPC1 and 44.4s for PID2 

compared to MPC2. Consequently, the average reduction 

in stabilization time for MPC relative to PID is calculated 

to be an impressive 99.7%. This highlights the superior 

efficiency of MPC in rapidly achieving system 

stabilization, making it an effective control strategy. 

These findings underscore the potential of MPC for 

applications requiring fast and precise control responses, 

enhancing the performance, efficiency, and reliability of 

control systems. 

 

3. Comparison of PID and MPC control 

systems with disturbances 

 

The study of the comparison between PID and MPC 

control systems in the presence of disturbances is 

essential for understanding how these two control 

strategies perform under real-world conditions, where 

disturbances are inevitable. While PID controllers are 

widely used for their simplicity and ease of 

implementation, their effectiveness diminishes when 

confronted with large or time-varying disturbances, 

particularly in complex systems with multiple variables. 

MPC, with its ability to predict and optimize, offers a 

more robust solution but requires careful tuning and 

reliable system models. Investigating this comparison is 

crucial for selecting the most appropriate control strategy 

for a given application, especially in dynamic 

environments where disturbances can significantly affect 

performance. This analysis also helps identify potential 

trade-offs between simplicity and precision in control 

design. 

Consider a discrete-time linear time-invariant (LTI) 

system [40] described by the following equations: 

 

x(k+1)=Ax(k)+Bu(k)+Ed(k)
,

y(k)=Cx(k)+Du(k)+n(k)





          (5) 

 

where x(k)  denotes the state vector at time step k  . 

u(k)  is the control input. y(k) is the system output. d(k)  

represents the disturbance signal. n(k)  is the 

measurement noise. , , , ,A B C D E  are system matrices of 

appropriate dimensions. 
 

3.1. PID Controller 

 

PID controller is defined by the following control 

law (see Fig.1): 

 

 
k

PID p i d
i=0

u (k)=K e(k)+K e(i)+K e(k)-e(k-1) , 

 

where: e(k)=r(k)-y(k)  is the control error, with r(k)  
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being the reference signal; 
pK  , 

iK  , and 
dK  are the 

proportional, integral, and derivative gains, respectively. 

 

3.2. Model Predictive Controller (MPC) 

 

MPC optimizes control action by solving a finite 

horizon optimization problem at each time step. The 

optimization problem can be formulated as: 

 

 

 

T

p

N

U(k) p
i=1

T

y (k+i|k)-r(k+i)

min Q y (k+i|k)-r(k+i) +

+Δu(k+i-1) RΔu(k i-1)

×

+



 
 
 
 
 
  

, 

 

where: 
py (k+i|k)  is the predicted output at time k+i  

based on information available at time k . 

TU(k)=[Δu(k),Δu(k+1), ,Δu(k+N-1)]  represents the 

sequence of future control input changes. 

Δu(k)=u(k)-u(k-1)  denotes the change in control input. 

Q  and R  are weighting matrices for the output error 

and control effort, respectively. N  is the prediction 

horizon. 

 

3.3. Impact of Disturbances 

 

The impact of disturbances on control systems [41] 

refers to the effect that external or internal disruptions 

have on the performance of a system and its ability to 

maintain desired outputs. Disturbances can arise from 

various sources, such as environmental changes, sensor 

noise, modeling errors, or unanticipated system 

dynamics. These disturbances can cause deviations from 

the intended trajectory, leading to performance 

degradation, instability, or even system failure if not 

properly managed. 

Disturbances d(k)  can be either known or unknown 

signals affecting the system's state and output in Eq.(5). 

During control, disturbances d(k)  and noise n(k)  

influence the system output y(k) , thereby affecting the 

control error e(k) . Both PID and MPC controllers adjust 

their control actions based on the current error and 

system model to minimize this error and achieve the 

control objective. 

According to natural statistical laws, external 

disturbance d(k)  and measurement noise n(k)  are 

typically independent Gaussian white noise [42]: 

 
2

dd(k)~N(0,σ ) , 

2

nn(k)~N(0,σ ) , 

where: 2

dN(0,σ )  denotes a Gaussian distribution with a 

mean of 0 and a variance of 2

dσ  . 2

nN(0,σ )  denotes a 

Gaussian distribution with a mean of 0 and a variance of 
2

nσ . 

 

3.4. Cumulative Error 

 

To evaluate the performance of the controllers over 

the simulation period, compute the cumulative error [43] 

denoted as 
Ce , defined by: 

T
2

C
k=0

e e 2= (k)                              (6) 

where T is the total simulation duration; e(k)  is the 

control error. 

The error variance of the MPC controller is 

significantly smaller than that of the PID controller, 

especially for the MPC2 controller, whose error variance 

shows almost no fluctuation, demonstrating excellent 

stability and precision (Fig. 7). In contrast, the error 

variance of the PID controller fluctuates more 

significantly, especially in the PID1 controller, where the 

fluctuation range reaches 0.02 to 0.04, indicating system 

instability. The error variance fluctuation range of the 

PID1 controller  is from 0.02 to 0.04, showing substantial 

variability and indicating significant instability in the 

system.  
Especially in the early stages, the controller fails to 

effectively reduce the error, and the system response 

exhibits strong oscillations. Although the error variance 

gradually decreases to some extent, the fluctuation 

amplitude remains large, reflecting the limitations of the 

PID controller in handling disturbances. Compared to the 

PID1 controller, the error variance of the PID2 controller  

is reduced, with a fluctuation range from 0.015 to 0.035.  

Although the fluctuation amplitude has decreased, the 

error variance remains large, indicating that the PID2 

controller still has significant deficiencies in system 

stability. In particular, when tracking the target value, the 

PID2 system shows significant overshoot and slower 

convergence, failing to effectively achieve the ideal 

steady-state performance. This indicates that although 

the precision of the PID2 controller has improved, its 

overall performance is still inferior to that of the MPC 

controller.  

In the case of the MPC1 controller , the error 

variance fluctuation is small, ranging from 0.01 to 0.02.  

The MPC1 controller effectively suppresses error 

fluctuations, with its fluctuation amplitude significantly 

lower than that of the PID controller, showing better 

stability. This indicates that the MPC controller, when 

facing disturbances, can effectively maintain stable 

operation of the system through model prediction and 

optimization control strategies, with more precise control 
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of error fluctuations. The MPC2 controller shows the 

smallest error variance, with a fluctuation range of only 

0.005 to 0.015, exhibiting almost no fluctuation and 

demonstrating outstanding stability and precision. This 

suggests that the MPC2 controller has a clear advantage 

in system stability and accuracy, effectively suppressing 

error accumulation and fluctuations during system 

operation, thus showing the best control performance. 

Furthermore, MPC demonstrates better stability and 

accuracy in tracking the reference value (Fig. 8). The 

output of the MPC2 controller consistently follows the 

target value closely, with very small errors and almost no 

fluctuation. In contrast, the PID controller, especially 

PID1, fails to effectively track the target value, showing 

significant deviation and instability. For the PID1 

controller , its output fluctuates within a range of 0.5 to 

1.0 when tracking the target value, failing to stabilize at 

the target value. This indicates that the PID1 controller 

has significant deviation and instability in tracking the 

target value, and the system fails to adjust promptly to 

reduce errors, showing poor tracking accuracy and 

stability. The output of the PID2 controller  fluctuates 

within a range of 1.0 to 1.8 and frequently overshoots the 

target value, showing significant overshoot and 

instability. This indicates that the PID2 controller has 

significant deviation during the tracking process, and the 

system is more sensitive to disturbances, failing to 

stabilize near the target value.  

Although the performance of PID2 has improved  

compared to PID1, its accuracy and stability are still poor. 
In contrast, the output of the MPC1 controller  fluctuates 

within a range of 0.8 to 1.0, which is relatively close to 

the target value, with smaller fluctuation, indicating good 

tracking accuracy and stability. The MPC1 controller is 

able to quickly adapt to system changes during tracking 

and effectively adjust control signals, ensuring the 

system output remains stable near the target value, 

demonstrating good control performance. The output of 

the MPC2 controller  fluctuates within a range of 1.8 to 

2.2, closely tracking the target value, demonstrating 

outstanding steady-state performance and minimal error.  

The MPC2 controller experiences almost no fluctuation 

when tracking the target value and can maintain stable 

output under disturbances, demonstrating extremely high 

control accuracy and good adaptability. Compared to the 

PID controller, MPC2 can track the target value more 

accurately, showing a more ideal control performance. 

The MPC controller effectively mitigates error 

accumulation (Fig. 9). Both MPC1 and MPC2 maintain  

cumulative errors below 0.1, with MPC2 demonstrating 

almost negligible error accumulation. In contrast, the PID 

controller shows increasing cumulative errors over time. 

PID1 reaches an error of 0.5 after 30 seconds, while PID2 

reaches 0.7, with the latter exhibiting more significant 

error fluctuations. The cumulative error of PID1  

increases steadily without effective correction, indicating 

a failure to adjust and prevent error accumulation during 

long-term operation, resulting in poor steady-state 

performance. PID2  has a cumulative error peak of 0.7, 

with substantial fluctuation, showing slight improvement 

over PID1 but still experiencing significant error 

accumulation. The control performance of PID2 is 

severely impacted by system disturbances, leading to 

sustained error accumulation. In the MPC1 controller , 

the cumulative error is consistently maintained around 

0.1, demonstrating good error control capabilities. The 

MPC1 controller can relatively stably keep the error 

within a low range and effectively reduce error 

accumulation during long-term operation, demonstrating 

excellent error suppression ability. The cumulative error 

of the MPC2 controller  is below 0.05, with almost no 

error accumulation, showing outstanding precision and 

stability. This controller can achieve almost error-free 

control during operation, demonstrating extremely high 

control precision and strong error correction ability, 

making it the most outstanding among all controllers. 

Then, although the MPC controller requires higher 

control effort, especially MPC2, its precision and 

stability far exceed those of the PID controller (Fig. 10). 

The PID2 controller shows greater fluctuations in control 

effort, indicating that its control system is unstable and 

requires more adjustments. The cumulative control effort 

of PID1 controller  ranges from 20 to 30, indicating that 

the controller requires less control effort and remains  

relatively stable during system operation. Although the 

control signal fluctuates significantly, overall, the PID1 

controller's control effort is relatively low, and the system 

stability is good. The cumulative control effort of PID2 

controller  fluctuates significantly, ranging from 45 to 55, 

indicating larger system fluctuations and a marked  

increase in control effort. This reflects PID2’s instability, 

which requires higher control effort to compensate for 

system fluctuations, thus increasing the system’s burden. 

The cumulative control effort of MPC1  is concentrated 

around 30, indicating lower control effort while 

maintaining good stability. Although MPC1’s control 

effort is slightly higher than PID1, it demonstrates clear 

advantages in control precision and stability, achieving 

better performance with relatively low effort. The 

cumulative control effort of MPC2  ranges from 55 to 60, 

with higher values reflecting stronger control strategies 

that achieve higher precision and smaller errors. 

Although MPC2 demands more control effort, it 

compensates for system fluctuations effectively, showing 

significant advantages in stability and precision. 

The MPC controller demonstrates rapid 

adjustments in the initial phase, ensuring stable control 

(Fig. 11). Although the control signals for MPC1 and 

MPC2 are initially substantial, they quickly stabilize 

within a narrower range, indicating superior adaptability  



ISSN 1814-4225 (print) 

АВІАЦІЙНО-КОСМІЧНА ТЕХНІКА І ТЕХНОЛОГІЯ, 2024, № 6(200)       ISSN 2663-2012 (online) 

 

24 

 

 
Fig. 7. Output Responses 

 

 
Fig. 8. Control Errors 

 

 
Fig. 9. Cumulative Errors 

 



Аеродинаміка, динаміка, балістика та керування польотом літальних апаратів 
 

 

25 

 

Fig. 10. Control Signals 

 

and control precision. In contrast, the Proportional-

Integral-Derivative (PID) controller, particularly PID1, 

exhibits a smaller initial control signal but suffers from 

poor system stability and significant fluctuations. The 

control signal for PID1  oscillates between 0 and 2, 

reflecting lower control effort yet better stability. 

However, due to considerable errors in the PID1 control 

strategy, the signal fails to adjust effectively, leading to a 

large steady-state error. The PID2 controller  starts with 

a high initial value of approximately 12, which rapidly 

decreases and stabilizes around 2. This controller 

necessitates larger initial adjustments to address system 

disturbances, but it ultimately adapts over time. 

Nevertheless, the instability of the system requires PID2 

to maintain a higher initial control signal for stability. 

The MPC1 controller  shows a rapid initial increase in the 

control signal, stabilizing between 1 and 2, 

demonstrating strong adaptability and minimal 

fluctuations. The MPC2 controller  begins with a higher 

initial control signal of around 12, stabilizing between 2 

and 3. While MPC2 requires a larger initial adjustment, 

it exhibits lower fluctuations post-stabilization, 

indicating enhanced stability and precision. Overall, 

MPC2 effectively stabilizes in later stages and responds 

adeptly to disturbances. 

The MPC controller shows a clear advantage in 

error variation (Fig. 12). The error of the MPC2 

controller remains between 0 and 0.2, with almost no 

fluctuation, showing optimal precision and steady-state 

performance. In contrast, the error of the PID controllers 

fluctuates more, especially in PID1, where the error 

fluctuates between 0.5 and 1.0, indicating poor precision. 

After prolonged operation, the PID1 controller accum-

showing a large error deviation. The data shows that, 

after 100s, the error deviation of the PID1 controller 

reaches 0.035, which is significantly higher than the 

stable values of the other controllers. At this stage, the 

system fails to control error accumulation, leading to 

significant long-term errors. 

 

Fig. 11. Cumulative Errors 

 

 

Fig. 12. Cumulative Errors 

 

Further analysis reveals that the PID1 controller 

does not respond quickly enough to external disturbances, 

exhibiting noticeable oscillations during adjustment, 

which prevent it from converging effectively to the target 

value. In contrast, PID2 shows some improvement with 

a reduced error deviation. At 100 seconds, the error 

deviation of PID2 is 0.025, lower than PID1 but still 

higher than the MPC controller. Despite this 

improvement, PID2 still exhibits some overshoot. When 

disturbances are present, PID2 has a slower response and 

a slower error convergence rate, preventing it from 

reaching the ideal steady-state value. The MPC1 

controller shows the best performance (Fig. 12), 

maintaining a stable, small error deviation over a long 

period. The data indicates that after 100 seconds, the 

MPC1 error deviation is 0.015, demonstrating high 

precision and minimal error accumulation. This 

advanced controller exhibits superior robustness in 

disturbed environments, effectively suppressing error 

fluctuations and showing no significant overshoot during 

adjustments, indicating a strong dynamic response. 

Compared to MPC1, MPC2 offers a slight improvement  

in error control, with error deviation stabilizing at 0.012 
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after 100 seconds of operation. This shows minimal error 

accumulation and enhanced stability, suggesting MPC2 

optimizes performance through more accurate 

predictions, reducing long-term errors and enhancing 

system reliability and efficiency. 

The comparison between the PID and MPC control 

systems shows notable differences in both cumulative 

errors and settling times. For cumulative errors, PID1 has 

a value of 8.7532, PID2 is 11.787, MPC1 is 2.8101, and 

MPC2 is 3.0101, indicating that MPC controllers 

generally achieve lower cumulative errors than PID 

controllers. Regarding settling times, PID1 has a settling 

time of 7.3 seconds, and PID2 takes 16.2 seconds, 

whereas MPC1 settles in 0.7 seconds and MPC2 in just 

0.5 seconds. This shows that MPC controllers are 

significantly faster in achieving stability compared to 

PID controllers. 

To compare the settling times of the PID and MPC 

control systems, firstly calculate the average settling time 

for each. For PID, the average settling time is 11.75s , 

while for MPC, the average settling time is 0.6 s . 

Applying the formula for relative improvement in 

settling time 

 

11.75-0.6
R= 100% 94.9%

11.75
  . 

 

MPC control achieves a 94.9% improvement in 

settling time over PID control, reducing stabilization  

from 11.75s to just 0.6s. This significant reduction 

demonstrates MPC’s superior ability to respond quickly 

to disturbances and system changes. The faster response 

is essential in applications where real-time stability and 

performance are critical. By anticipating future states and 

adjusting control inputs accordingly, MPC handles 

disturbances more effectively, making it ideal for 

systems requiring rapid, precise control. MPC control not 

only offers improved settling time but also enhances 

system stability by minimizing overshoot, ensuring that 

the system reaches its desired state without excessive 

fluctuations. 

 

4. Reliability of PID and MPC 
 

The purpose of studying the reliability of PID and 

MPC control systems is to evaluate their performance, 

stability, and adaptability across various  applications. 

The research compares response time, steady-state error, 

disturbance rejection, and tracking accuracy, while also 

assessing each method’s ability to maintain stability 

under disturbances or uncertainties . Additionally, the 

study examines the scalability, resource consumption, 

and implementation complexity of both methods, with a 

focus on the feasibility of deploying MPC in 

computationally demanding applications. Ultimately, the 

goal is to guide the selection of the most suitable control 

strategy based on system requirements. 

The Monte Carlo simulation [44] proceeds by 

generating multiple random realizations of the uncertain 

parameters θ . For each realization, the system’s 

dynamics are simulated over a given time horizon, and 

the control input is computed either using the PID or 

MPC controller. The random variables are sampled from 

predefined probability distributions that reflect the 

inherent uncertainties in the system [45]. 

Let the set of uncertain parameters be denoted by 

iθ , where i=1,2, ,M  represents the number of Monte 

Carlo trials. For each trial i , the corresponding system 

trajectory 
ix (t)  and control input 

iu (t)  are computed 

as: 

 

i i i ix (t)=f(x (t),u (t),θ ) . 

 

For example, the average steady-state error across 

M simulations can be computed as: 

 

M

RT i
i=1

1
μ = RT

M
 , 

 
M 22

RT i RT
i=1

1
σ = RT -μ

M
 , 

 

where 
iRT  is the response time of the system in the i-th 

trial.  

Likewise, the tracking accuracy over the simulation  

trials can be evaluated using the root mean square error 

(RMSE): 

 

 
M 2

i
i=1

1
RMSE= r(t)-x (t)

M
 , 

 

where r(t)  is the reference trajectory and 
ix (t)  is the 

output of the system for the i-th simulation. 

Monte Carlo simulations are computationally 

intensive, particularly when evaluating large-scale 

systems or using long prediction horizons in the case of 

MPC. The computational cost grows with both the 

number of Monte Carlo trials M and the complexity of 

the system model. Therefore, a key aspect of this 

evaluation is to analyze the scalability and resource 

consumption of both control strategies. 

For MPC, the computational load is higher due to 

the optimization problem solved at each time step, 

requiring solving a quadratic programming problem over 

the prediction horizon. In contrast, PID controllers are 

simpler to implement and less demanding, making them 

more suitable for real-time applications with limited  
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resources. Conducted simulations to analyze the 

performance of PID and MPC control algorithms. The 

following section provides a description of response time, 

disturbance rejection, steady-state error, tracking 

accuracy, computation time, and performance scores for 

both algorithms. Each chart presents performance 

metrics and compares PID1, MPC1, PID2, and MPC2, 

highlighting the strengths and weaknesses of each 

algorithm. These results are based on Monte Carlo 

simulations with repeated trials to account for variations 

in system behavior, providing statistical averages for 

understanding performance under different conditions.  

Through 100 trials, verified the reliability and 

validity of each algorithm's performance. The calculation 

results are shown in Figure 13-18. First, with regard to 

steady-state error (Fig. 13), the MPC algorithm 

demonstrates a significant advantage.  Specifically,  the 

median steady-state errors for the PID controllers are 

0.15 and 0.14, while the median steady-state errors for 

the MPC controllers are notably lower, around 0.08 and 

0.09. This result indicates that, under the experimental 

conditions employed, the MPC algorithm outperforms 

the traditional PID algorithm in reducing steady-state 

error.  

 

 

 

Fig. 13. Steady-State Error Statistics 

 

 

 

Fig. 14. Tracking Error Comparison 

 

 

Fig. 15. Computation Time of PID and MPC 

 

 

 

Fig. 16. System Performance Comparison 
 

 

 

Fig. 17. Response Time Distribution of Different 

Control Algorithms 

 

The MPC controller, by predicting the system’s future 

behavior and optimizing control inputs, is able to adjust 

the system output more accurately, thereby effectively  

suppressing the accumulation of steady-state error. 

Furthermore, the adaptive capability of the MPC 

algorithm allows it to maintain relatively stable control 

performance under varying operational conditions.  
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In contrast, although the PID algorithm is simple and 

easy to implement, its steady-state performance is 

typically affected by parameter tuning and system 

nonlinearity. 

Next, in terms of Mean Squared Error (MSE) 

performance (Fig. 14), the MPC algorithm again exhibits  

superior performance. Specifically, the MSE values for 

PID1 and PID2 are 0.12 and 0.23, whereas the MSE 

values for MPC1 and MPC2 are 0.05 and 0.04, 

respectively. This result clearly shows that the MPC 

control algorithm has a significant advantage in terms of 

system tracking accuracy. Notably, MPC2 achieves the 

lowest MSE, nearly a quarter of the error observed with 

the PID algorithm, further confirming the potential and 

effectiveness of MPC in precise control. By 

incorporating a system model for prediction and 

optimization, the MPC algorithm can make decisions 

based on the current state and future behavior at each 

time step, thus effectively reducing the accumulation and 

fluctuations of control errors. In contrast, the traditional 

PID controller relies on simple error feedback, and its 

adjustment method is limited by a simplistic estimate of 

the system dynamics, making it difficult to achieve the 

same level of accuracy in complex or time-varying  

systems. Therefore, MPC is better suited to handle 

nonlinear, constrained, or multivariable control problems, 

providing more precise and stable control performance. 

However, there is a difference in terms of 

computational cost. Firstly, regarding computation time  

(Fig. 15), the PID algorithms maintain a nearly constant 

computation time, ranging between 0 and 0.01 seconds. 

This indicates that PID algorithms have low 

computational complexity, allowing them to complete 

tasks in a short time, making them suitable for real-time 

control applications. In contrast, the MPC algorithms  

have longer computation times, fluctuating between 0.08 

and 0.12 seconds, suggesting that MPC algorithms are 

relatively more complex in terms of computation. This 

longer computation time may pose a limitation in certain 

real-time systems, especially in scenarios with high-

frequency control demands. However, it is important to 

note that MPC typically excel in control precision and 

system stability, particularly when dealing with 

multivariable and constrained optimization problems. 

In terms of performance scores  (Fig. 16), the PID 

algorithms demonstrate superior performance in control 

tasks. The median performance score for PID1 is 0.25, 

while for PID2 it is 0.35, indicating that both PID 

algorithms can achieve high control precision within a 

short computation time. In comparison, the median  

performance scores for the MPC algorithms are lower, 

with MPC1 at 0.10 and MPC2 at 0.12. Although they 

may exhibit high precision in specific control tasks, such 

as in the case of cyclogyro system, their higher 

computational complexity and longer computation times 

may hinder their ability to fully leverage their advantages. 

Additionally, from the comparison of response 

times (Fig. 17), the MPC algorithm clearly demonstrates 

superior performance. The response times for MPC1 and 

MPC2 are concentrated around zero seconds, with a high 

peak probability density, indicating that these controllers 

can react swiftly, exhibiting high response speed and 

accuracy. In contrast, the response times for the PID 

controllers are more dispersed, with slower response 

speeds and greater variability, indicating some instability. 

This suggests that MPC can adapt more rapidly to system 

 
Fig. 18. Distubance Rejection Comparison 
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changes, ensuring precise control, while PID is slower to 

respond to complex system disturbances and is more 

susceptible to external influences. 

Finally, in the disturbance response analysis (see 

Fig. 18), the MPC algorithm significantly outperforms 

the traditional PID control algorithm. Specifically , 

between 0 and 30 seconds, the system output for MPC1 

and MPC2 shows a much smoother trend, with the 

system state remaining at a stable level. In contrast, the 

system output for PID1 and PID2 exhibits noticeable 

fluctuations and more intense responses. This difference 

clearly indicates that the MPC algorithm is more 

effective in mitigating system oscillations in response to 

external disturbances, avoiding the excessive responses 

and stability issues that the PID algorithm is prone to. 

Therefore, the MPC algorithm demonstrates superior 

performance in disturbance suppression and system 

stability, especially in complex dynamic environments, 

providing more reliable control outcomes. 

Despite the challenges that MPC algorithms face 

regarding computation time in certain applications, this 

does not imply that their prospects in real-time systems 

are limited. By optimizing the solving process of the 

MPC algorithm, such as employing real-time 

optimization techniques, like fast gradient methods [46] 

or heuristic algorithms [47], parallel computing, or 

utilizing hardware acceleration, like GPUs [48] or 

FPGAs [49]. It is possible to effectively reduce 

computation time and enhance their feasibility in real-

time control. Additionally, model simplification and 

dynamic adjustment of the prediction horizon are also 

effective methods to alleviate computational burdens. 

Overall, the MPC algorithm performs excellently in 

control systems requiring precision and adaptability. It 

can effectively reduce errors and improve stability. 

Although it has higher complexity, MPC remains the 

superior choice for demanding scenarios. 

 

5. Discussion and recommendations 
 

This research demonstrates the substantial benefits 

of optimized control in cyclogyro systems. Through 

comparative analysis of PID controllers and Model 

Predictive Control (MPC), have identified key 

performance differences under various disturbance 

conditions. PID controllers, recognized for their 

simplicity and ease of implementation, exhibit  

limitations when dealing with large or time-varying  

disturbances, especially in systems with multiple 

variables. Conversely, MPC shows superior performance 

in terms of control accuracy, disturbance rejection, and 

response speed due to its predictive and optimization  

capabilities. However, MPC's high computational 

demands present a notable challenge, requiring further 

research into optimization techniques. 

Here are some recommendations for future research: 

- Enhanced Computational Efficiency: Future 

research should prioritize the development of methods to 

reduce the computational burden of MPC. This can 

include algorithmic improvements, hardware 

acceleration, and efficient coding practices to ensure real-

time applicability; 

- Robust System Modeling: Accurate and reliable 

models are crucial for the effectiveness  of MPC. Efforts  

should be directed towards improving model accuracy 

and robustness, particularly in dynamic and complex 

environments; 

- Hybrid Control Strategies: Exploring hybrid 

control strategies that combine the simplicity of PID with 

the predictive power of MPC could offer a balanced 

approach, leveraging the strengths of both methods ; 

- Application-Specific Tuning: Given the varying 

requirements of different applications, tailored control 

strategies should be developed. This involves fine-tuning 

control parameters specific to the operational context of 

the cyclogyro systems; 

- Field Testing and Validation: Extensive field  

testing under real-world conditions is essential to validate 

the theoretical advantages of optimized control strategies. 

This will help in understanding practical limitations and 

refining the control systems accordingly. 

Through these recommendations, aimed to 

accelerate the development of more efficient, adaptive, 

and resilient control systems specifically designed for 

cyclogyro applications. By integrating advanced control 

strategies, our goal is to improve their responsiveness, 

accuracy, and robustness, enabling better performance 

under a wide range of operating conditions. This will 

ultimately enhance the reliability and functionality of 

cyclogyros in complex, dynamic, and challenging 

environments. 

 

6. Conclusion 

 
This work compares the performance of MPC with  

traditional PID controllers in terms of dynamic response, 

steady-state accuracy, error convergence speed, and 

disturbance rejection in application of cyclogyro. 

In terms of dynamic response, MPC demonstrates 

superior adaptability compared to PID. It can maintain  

faster response speeds when dealing with complex and 

rapidly changing systems, effectively addressing 

multivariable control problems. While PID exhibits a 

quicker initial response, MPC shows greater precision 

and stability when dealing with complex dynamic 

behaviors, allowing for more accurate tracking of 

setpoints and preventing excessive oscillations. 

MPC also holds a clear advantage in steady-state 

accuracy. Since MPC relies on system mathematical 

models to predict future states, it effectively suppresses 
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steady-state errors, ensuring that the system maintains 

precise control during long-term operation. In contrast, 

PID controllers often experience small, persistent errors 

at steady-state, which can affect the long-term stability 

and control accuracy of the system, especially in complex 

or nonlinear systems where PID struggles to achieve 

perfect tracking. 

Error convergence speed is another key area where 

MPC outperforms PID. MPC can rapidly reduce system 

error to near-zero, especially in the presence of 

disturbances or changes in system parameters, 

demonstrating strong robustness and adaptability. By 

performing real-time optimization, MPC predicts and 

adjusts control inputs to eliminate errors. In comparison, 

PID controllers often require frequent parameter 

adjustments and have slower error convergence, 

particularly when disturbances are significant, which can 

lead to system instability. 

MPC's ability to handle complex, multi-variab le 

control problems through predictive modeling allows it 

to maintain optimal performance and quickly correct 

errors, ensuring system stability and efficiency. This 

advanced control strategy continuously evaluates the 

future impact of current control actions, making it 

exceptionally proficient at managing dynamic and 

unpredictable environments. Consequently, MPC is often 

the preferred choice for applications requiring high 

precision and rapid error correction, outperforming  

traditional PID controllers in both robustness and 

adaptability. 

MPC's adaptability allows it to anticipate future dis

turbances by leveraging its predictive model, adjusting c

ontrol actions proactively to maintain optimal performa

nce. Furthermore, its ability to handle multi-variable sys

tems and constraints makes MPC a superior choice in co

mplex industrial applications where precise disturbance 

rejection is critical. In contrast, PID controllers, with the

ir reactive nature, often struggle to cope with dynamic c

hanges and interactions in such scenarios, leading to sub

optimal control and increased maintenance efforts. Addi

tionally, MPC's ability to incorporate system constraints

 and optimize control inputs over a defined horizon allo

ws for more efficient and robust responses to disturbanc

es, ensuring minimal performance degradation even in c

hallenging operating conditions. 

Although MPC shows significant advantages in 

terms of accuracy, stability, error convergence speed, and 

disturbance rejection, especially in the control of 

complex, nonlinear, and multivariable systems, its 

computational burden in real-time control remains a 

challenge. MPC requires real-time system modeling and 

optimization calculations, which increase computation 

time. This can create performance bottlenecks in high-

frequency real-time control applications. Therefore, 

improving the computational efficiency of MPC is a 

major direction for future work. Techniques such as fast 

gradient methods and heuristic algorithms can effectively  

shorten computation time and reduce computational load. 

Additionally, parallel computing and hardware 

acceleration (such as GPUs or FPGAs) are widely used 

in real-time MPC control. These methods can 

significantly improve real-time response capabilities and 

computational efficiency while maintaining accuracy. 

Future research in Model Predictive Control (MPC) 

should concentrate on optimizing its application in 

controlling complex systems to enhance real-time control 

performance in high-precision and high-demand 

environments. Despite its substantial benefits, such as 

high control accuracy, robust disturbance rejection, and 

fast response times, the computational burden remains a 

significant challenge. This complexity hinders MPC’s 

widespread use in real-time applications. To address this, 

future studies should focus on developing advanced 

optimization techniques for both hardware and software. 

Hardware acceleration, like specialized processors or 

parallel computing, could reduce the time for solving 

MPC optimization problems. Software improvements, 

such as more efficient algorithms and model reduction 

techniques, are also crucial. Additionally, researchers 

should explore MPC’s broader applicability in fields like 

robotics, energy systems, aerospace, and autonomous 

vehicles to unlock new possibilities and drive innovation. 
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ОПТИМІЗАЦІЯ АДАПТИВНОСТІ ТА РАЦІОНАЛЬНІ СТРАТЕГІЇ КЕРУВАННЯ  

ДЛЯ ЦИКЛОГІРОСКОПІЧНИХ СИСТЕМ 

Вей Сибей 

Циклогіроскопічна система, завдяки своїм потенційним застосуванням в авіації та складним динаміч-

ним характеристикам, стала об'єктом нашого дослідження. Хоча традиційний PID-регулятор ефективний у 

багатьох випадках, він може мати труднощі з обробкою складної нелінійної динаміки, яку часто зустрічають 

у циклогіроскопічних системах. Тому метою цього дослідження було спроектувати та реалізувати систему 

керування для циклогіроскопічної системи на основі оптимізованих стратегій, щоб поліпшити стабільність 

системи та швидкість реакції. Запропонований підхід інтегрує математичне моделювання, алгоритми оптимі-

зації, аналіз даних у реальному часі та зворотні механізми для прогнозування та коригування поведінки сис-

теми. Порівняли ефективність традиційного PID-регулятора з моделлю прогнозуючого контролю (MPC) в си-

стемі контролю швидкості з подвійною метою. Результати числових симуляцій продемонстрували, що опти-

мізоване керування на основі MPC значно перевершує PID-регулятор, досягаючи вищої стабільності та шви-

дшої реакції при обробці зовнішніх збурень та нелінійних динамічних змін, з середнім часом реакції, зменше-

ним на 92,5% (p < 1e-10). Ця підвищена продуктивність зумовлена здатністю системи динамічно коригувати 

свої стратегії керування у відповідь на змінювані умови навколишнього середовища. Висновки цього дослі-

дження підкреслюють суттєві переваги оптимізованих стратегій керування для циклогіроскопічних систем, 

пропонуючи нові погляди на розвиток складних авіаційних систем керування та демонструючи потенціал цих 

стратегій для підвищення як продуктивності, так і адаптивності. 

Ключові слова: циклогіроскоп; система керування; PID-регулятор; модель прогнозуючого контролю  

(MPC); оптимізована стратегія керування; нелінійна динаміка; стабільність системи; швидкість реакції; чис-

лове моделювання; адаптивність. 
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