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OPTIMIZATION OF PARTICLE ACCELERATION PARAMETERS
OF SPECIAL COLD SPRAY NOZZLES VIA
NEURAL NETWORK AND GENETIC ALGORITHM

Cold spray technology isa new technology that deposits supersonic solid particles on the surface of materials.
There are many factors that affect particle acceleration, such as the geometric structure of the cold spray noz-
zle (contraction section, throat, expansion section, special nozzle angle, etc.), the parameters of the propellant
gas (gas type, gas temperature, gas pressure, etc.), the material properties of particles (metal and non -metal),
particle size (generally 10...50 microns), and particle morphology (spherical, irregular shape, etc.). The objec-
tive of this study was to investigate the influence of particle acceleration parameters on cold spraying. This
work aims to predict and optimize the particle velocity at the outlet of the special nozzle to meet the critical ve-
locity requirements of various metal particlesand thus meet the deposition conditions. The task to be solved is
to optimize the particle parameters of the special nozzle and obtain the particle velocity at the outlet of the
special nozzle. The methods used are as follows: Three key parameters that affect particle velocity were se-
lected as research objects: helium gas temperature and pressure when selecting helium gas, and titanium par-
ticle diameter as the third parameter. First, 30 sets of particle exit velocity data were sampled using Latin Hy-
percube Sampling, of which 24 were training data and 6 were prediction data. Then, the neural network was
analyzed to obtain the minimum neuronal error value, thereby determining the number of hid den layers. At the

same time, the parameters were normalized, and finally, the nozzle exit particle parameters were optimized us-
ing genetic algorithm. The results showed that after three rounds of optimization and taking the average val-
ue, the particle velocity at the outlet of the special nozzle was 591m/s. The optimized parameters were: helium
temperature of 694...865 K, a helium pressure of 3.3...3.7 MPa, and a titanium particle diameter of 12...20 mi-
crons. When the optimized parameters were input into the numerical simulation software, the result was close
to the predicted value. Therefore, the neural network and genetic algorithm optimized the parameters with
high accuracy (with an error of 4%) and can be used as a reference for relevantworkers.

Keywords: cold spray technology; particle acceleration; special nozzle; neural network; genetic algorithm.

Although there are many parameters in the field of
cold spraying technology, there are many researchers on
single factor [4, 5]. Obviously, multi-parameter research

1. Introduction

Supersonic cold gas dynamic spraying technology

(cold spraying) is a method of forming coatings by sol-
id-state deposition [1], which is mainly used in the
fields of protective coatings, repair coatings, and addi-
tive manufacturing [2].

The parameters of cold spraying technology are
relatively complex, because there are too many parame-
ters that affect the deposition effect, there are three ma-
jor categories. The first category is mainly about the
structural parameters of parts in the cold spraying sys-
tem and equipment; the second category is mainly the
fluid dynamics and other parameters of the powder
flowing through the nozzle path, including temperature,
pressure, propulsion inherent gas characteristics; the
third category is mainly the process parameters of pow-
der deposition on the surface of the substrate [3], etc.

is closer to the real value.

Hence, this work on muti-parameter will provide a
new idea and theoretical guidance for cold spraying
technology. This work chooses special rectangular noz-
zle [6] as the structural model (Fig. 1), aiming to opti-
mize and explore its influencing parameters with the
goal of maximum exit velocity, the particle select pure
titanium, the gas select He.

a b

Fig. 1. The initial model of the muti-channel nozzle:
a— 3D model; b — rectangular section [6]
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2. Latin Hypercube Sampling y, =4xX,+1, @
Before applying neural networks and genetic algo- y, =40x X, +10. 3)

rithms in this article, Latin square sampling was used.
Latin Hypercube Sampling (LHS) is a method of ap-
proximating random sampling from a multivariate pa-
rameter distribution and belongs to stratified sampling
techniques. It was first proposed by McKay et al. in
1979, and its main advantages include the characteristic
of uniform stratification, which can obtain tail sample
values with fewer samples, making it particularly effec-
tive in processing large-scale data. In addition, com-
pared to Monte Carlo sampling, Latin hypercube sam-
pling reduces the number of iterations because it uses
uniform sampling to sample variables. In practical ap-
plications, Latin hypercube sampling is widely used in
various fields. In short, by uniformly sampling in each
dimension, the correlation between input variables is
reduced, thereby improving the accuracy and efficiency
of model prediction.

This work study 30 groups of samples needs to be
used to obtain numerical results for each group of sam-
ples and record the data in Table 1. Among them, 24
groups are used for training the BP neural network, and
the remaining 6 groups are used for prediction. The
temperature (X1), pressure (X2), and particle size (X3)
ranges are 473..873k, 1..5MPa, 10..50 u m. Different
types of units can be encoded using the following sim-
ple formulas (1) — (3), respectively. In order to facilitate
the acquisition of particle exit velocity, the input param-
eters are rounded to one decimal place or rounded to the
nearest integer.

Combining Table 1, Figure 2, and Figure 3, alt-
hough the gas temperature, gas pressure, and particle
size selected in this article are key factors affecting the
acceleration of cold spray particles, for multi-channel
special nozzles, particle size has a significant impact.

y, =400x X, +473, 1)
Table 1
Latin hypercube sampling testscheme and numerical results
He T, K He P, MPa Powder size, um Outlet V, m/s

617 17 26 378
721 3 18 623
843 13 13 480
729 24 32 384
593 3.3 29 447
758 4.6 35 471
770 35 26 492
701 3.6 39 410
477 2 28 343
785 15 46 262
748 2.6 44 351
Input training ggg zlli gg Outputtraining jig
654 2.8 21 481
588 4.1 41 405
560 4 16 595
826 2.2 49 298
688 1.9 14 493
497 3 11 613
668 5 33 482
812 39 43 404
547 4.3 45 391
856 3.2 18 584
625 2.7 37 363
635 37 24 502
579 2.2 20 438
Input prediction 222 ‘1"? jg Output prediction ;’88
865 4.8 11 806
532 12 31 278
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Fig. 2. The movement path of titanium particles (training results): a — 378mvs; b — 623n/s;
c—480m/s; d—384mVs; e — 447nvs; f—471m/s; g —492m/s; h — 410m/s; i— 343nVs;
j—262m/s; k — 351m/s; | —356m/s; m — 410m/s; n —481m/s; o — 405nVs;

p —595mVs; q — 298mV/s; r—493nVs; s— 613nV/s; t — 482m/s;
u—404mvs; v — 391m/s; w —584m/s; x — 363m/s

Fig. 3. The movement path of titanium particles (prediction results):
a—502m/s; b —438m/s; ¢ —409nv/s; d — 200m/s; e — 806m/s; f— 278m/s

For example, when the particle size exceeds 25 microns,
even if the gas temperature is high, the particle outlet
velocity still cannot reach 500m/s, which makes it im-
possible for titanium particles to reach the critical depo-
sition velocity. The maximum outlet velocity in Table 1
is 806 m/s, with the following parameters: gas tempera-
ture of 865 K, gas pressure of 4.8 MPa, and particle size
of 11 microns. These parameters further indicate that for
special multi-channel nozzles, it is recommended to
consider small-sized particles, then pressure and tem-
perature parameters.

3. BP neural network + genetic
algorithm optimization

BP neural network (Back Propagation) was pro-
posed by D. E. Rumelhart and J. L. McClelland in 1986,
which is a neural network trained using error backprop-
agation algorithm. Including input layer, hidden layer,
and output layer, information is propagated forward and
backward between layers through connection
weights [7]. The basic principle of the algorithm is the
gradient steepest descent method, and its central idea is
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to adjust the weights and thresholds of the network so
that the mean square error between the actual output
value and the expected output value of the network is
minimized, the GA+BP neural network prediction
method is widely used in materials and manufacturing.
Such as Surface hardness prediction model [8] and flow
stress prediction model [9].

Research has shown that a three-layer neural net-
work has sufficient accuracy to approximate any con-
tinuous function [10]. Therefore, this article adopts a 3-
layer neural network, with 3 neurons in the input layer
and 1 neuron in the output layer. The transfer functions
of the hidden layer and output layer are hyperbolic tan-
gent function (tansig) and linear function (purelin), re-
spectively. The training algorithm is gradient descent
method.

When the number of hidden layer neurons is 9, the
mean square error of training and prediction is mini-
mized, as the Figure 4 show. Therefore, the final deter-
mined network structure is shown in Figure 5.

In order to prevent the impact of singular experi-
mental sample data on neural network training, it is nec-
essary to normalize the data and limit it to the range of
[-1 1]. The normalization formula 4 is as follows

Xi = Xmin

yi = 2x
X

_1 ’ (4)

max ~ Xmin

where, % (i=1, 2 ... 30) is the training sample, Xmax and
Xmin are the maximum and minimum values of the train-
ing sample respectively, and yi is the normalized train-
ing sample.

0.0 -MSE of prediction
0.45 MSE of sample training
0.40

MSE

Number of neurons

Fig. 4. Mean square error of different number of neurons

Input layer

Propulsion T
Propulsion P

Powder sizes

hidden layer

outlet layer

Fig. 5. Three layer neural network model
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The genetic algorithm is used to optimize the ini-
tial weight and threshold of the BP neural network to
improve the training and prediction accuracy of the BP
neural network. In addition, it is necessary to determine
the fitness of the individual, which is defined as the
formula 5 show.

m 9

. 1 2
fltness:EZZ(yi -t)°, (5)

=1 i=1

where, mis the number of samples, q is the number of
neurons in the output layer, y; is the output, and ti is the
expected output. Using the roulette strategy to select
individuals, the smaller the individual fitness value, the
greater the probability of being selected. The crossover
method is actual recombination, and the mutation meth-
od is a real-valued mutation. In this paper, the crossover
probability is 0.9, the mutation probability is 0.01, the
population size is 30, and the maximum number of it-
erations is 200.

Taking the exit maximum velocity as the target,
the parameters optimized by the genetic algorithm are:
The He temperature is 694...865 K, helium pressure is
3.3..3.7MPa, and titanium particle diameter is 12...20
microns, numerical verification of the parameters are
close to predict value of optimization, error is 4 %, and
the results values of variable parameters three times are
shown in Table 2.

The error using BP+GA method is within the al-
lowable range. The interest points of future research can
consider the model establishment of more factors. If the
model is adjusted appropriately, it can be further pro-
moted in the cold spray multi-parameter targets field.
Therefore, the BP+GA method are feasible for cold
spray multi-parameter target optimization and are worth
learning from.

4. Conclusions

This paper analyzes the application of BP+GA op-
timization methods in cold spraying multi-parameters.
Furthermore, It gives meaningful conclusions and pro-
spects for reference.

1. BP+GA methods are feasible for multi-
parameter target optimization of cold spraying technol-
ogy and have apparent effects on obtaining the optimal
value. The errors of BP+GA is 4 % in this paper.

2. Although the genetic algorithm can optimize
multiple parameters, it adopts the roulette betting meth-
od, so the results of each parameter are different. There-
fore, it is recommended to take the average value of
multiple optimization to further reduce the error.

3. There are many optimization methods in the en-
gineering field, and the neural network + genetic algo-
rithm introduced in this paper is not the only method.
the method requires a specific programming foundation.
Therefore, in the field of cold spraying, multi-
disciplinary integration is the research trend in the fu-
ture.
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Table 2
Results of the BP+GA optimization methods
T (K) P (Mpa) Powder size, um Voptimal, VS | Vactual, MV/s erg/f)) . ::/rgrr?%z
BP+GA 694 35 12 604 618 2.3
BP+GA 728 33 20 604 569 6.2 4
BP+GA 865 3.7 15 564 584 34
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ONTUMIBBANIA NAPAMETPIB NMPUCKOPEHHSA YACTHHOK B CIIEHIAJIBHUX COILTAX
JJI1 XOJIOJHOI'O TASOAMHAMIMHOI'O HAIIMIIOBAHHSA
3 BAKOPUCTAHHSM HEAPOMEPEXEBOI'O TA TEHETUYHU AJITOPUTMIB

Benvuysze Xy, O. B. Illopinos

TexHOTOTISl XOJOHOTO HANMIIOBAaHHS — BIJHOCHO HOBAa TEXHOJIOTIS HA/3BYKOBOTO HAHECEHHS TBEPIMX YaCTH-
HKH Ha TOBepxHi MaTepiamiB. IcHye Garato ¢akropis, sSKi BIUIMBAIOTh HA MPUCKOPEHHS YAaCTUHOK, HAI PUKJIAM, Ieo-
MeTpis COIUla I HaNWIOBaHHA (HOTO 3BYyXyBaJbHA Ta PO3IIUPEHA YACTHHH, KPUTHYHMI AiaMeTp, KyT PO3KPUTTA
TOIIO), TApaMeTpH Ta3y-HOCIsI (TUM Ta3y, TeMIepaTypa i THCK Ta3y TOIIO), BIACTHBOCTI MaTepiady YaCTHHOK (MeTa-
JIYHUX 1 HEMETAIYHUX), po3Mip YacTHHOK (3a3Buuail Big 10 mo 50 MmkMm), iXx mopdooris (cheprudHa, HEMpaBUIIbHA
¢dopma Tomo). MeTor0 moCTiIsKeHHsS] € BH3HAUCHHS BIUIMBY NapaMeTpiB HAIWIFOBAHHS Ha NMPHUCKOPECHHS YaCTHHOK
B Ha/3ByKoBoMY corul. L[ poGoTa cnpssMoBaHa Ha NPOTHO3YBaHHS Ta ONTUMI3ALl0 MIBUJIKOCTI YACTUHOK HA BUXO-
i 31 CHeIiabHOTO COTUIA, MI00 BiANOBIAATH BUMOTAaM MIOJO0 KPUTUYHOI MIBUAKOCTI HANMIIOBAHHS I PI3HUX MeTa-
JB I 3afaHUX YMOB HANWIIOBaHHA. 3aB/aHHSA, SKE BUPINIyEThCS, IOJSMTAa€ B MONIYKYy ONTUMAaJbHUX PEKHMIB
HAWTIOBAaHHA U 3a0e3ledeHHs HeoOXimHoi mBHAKOCTI. MeTOoAM AOCTiAMKEHHS: TpPH KIFOYOBI ImapamMeTpH, SKi
HaMOUTHIN BIUIMBAIOTH HA IIBHIKICTH YAaCTHHOK — TEMIIEpaTypa Ta THCK rasy (Ieliio) Ta JiaMeTp YaCTHHOK ITOPOIIKY
(TnTany). Ilo-mepme, 30 HaOOPIB JaHWX DIBHAKOCTI BIJIBOTY YaCTHHOK OyJH BimiOpaHi 3a JOMOMOTOIO JIATHHC BKOTO
rinepKyOHOTO BimOOPY, 3 SKUX 24 OyJIM HaBYAJbHUMH MAHUMH, & pellTa IICTh — JaHHI MPOTHO3YBaHH:A. [T0TiM HeW-
POHHY MEpEexXy aHall3yBaJi, 00 OTpUMAaTH MiHIMaJbHE 3HAYCHHS MOMMJIKM HEHPOHA, TAKUM YMHOM BHU3HAYHBIIN
KUIbKICTh MPUXOBAHUX IIapiB. Y TOH ke yac mapaMeTpH OyiM HOpMali30BaHi, i, HApelITi, TapaMeTpy YaCTUHOK Ha
BUXOJI 3 COIUIa Oy/IM ONTHMi30BaHi 3a AOTIOMOTOI0 T€HETHYHOTO aIropuTMy. Pe3ynbTaTn moxasamm, o miciist TphoX
IUKIIB ONMTUMI3aIlil Ta B3ATTS CEPEIHBOTO 3HAYCHHS MIBUJKICTh YACTHHOK Ha BHXOJ 3i CTEIMIAILHOTO COIJIa CTAHO-
Bmia 591 m/c. OTpuMaHi HaCTYIHI ONTHMI30BaHI MapaMeTpu: TeMIlepaTypa rasy Bim 694 no 865 K, tuck Bin 3,3 10
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3,7 MIla, niameTp 4acTHHOK THTaHy Bia 12 no 20 mxMm. Komm onTuMmizoBaHi mapaMeTpu OyJd BUKOPHUCTaHi MPH YH-
CEJILHOMY MOJIEIIOBaHHI, pe3yIbTaT OyB OJM3bKHH 10 MPOTHO30BAaHOTO 3HA4YECHHS. TakuM 4MHOM, HEHpOHHA Mepe-
’Ka Ta TEHETHYHHUH alrOpUTM ONTUMI3yBalu MapaMeTpH 3 BUCOKOIO TOUHICTIO, 3 MOXHOKOI0 4 %.

Kiio4oBi c/10Ba: TEXHOJOTISI XOJIOJHOTO Ta30AMHAMIYHOTO HAMMIIIOBAHHS; NPHCKOPEHHS YaCTUHOK; CIelia-
JIbHE COILIO; HEMPOHHA MEepeKa; TCHETUYHUIN aJITOPUTM .
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