ABIAIIMHO-KOCMIMHA TEXHIKA ITEXHOJIOI'IS, 2024, Ne 4(196)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

UDC 629.735.064.3:532.542
Pavlo LUKIANQV, Kateryna PAVLOVA

National Aviation University, Kyiv, Ukraine

doi: 10.32620/aktt.2024.4.01

NONLINEAR MODEL OF INTERACTION OF UNSTEADY FLUID FLOW
WITH STRUCTURE IN HYDRAULIC SYSTEMS
OF AIRCRAFT AND HELICOPTERS

The subject of this work is the development of a nonlinear model of the interaction of an unsteady fluid flow
with a structure and finding analytical solutions for the system of equations that correspond to the specified
model. The convection effect of the fluid velocity field was already considered in the previous works of the au-
thors of this paper. These studies are devoted to the water hammer without considering the "flow-structure" in-
teraction. This work expandsthe possibilitiesofmodeling and considers four equationsinstead oftwo equations
of the theory of the water hammer (equations of conservation of mass and momentum), two of which relate to
the motion of particles of a solid body (pipes or structures). The novelty of this work lies in the considera-
tion of the model that describesthe interaction ofthe flow with the structure, the convection in the velocity field,
and the effect, together with the friction of the fluid against the solid wall, on the dynamics of the shock pulse
propagation processboth inthe fluid and in the solid body. It should be noted that the solution of the nonlinear
system of differential equations as a whole is carried out by an analytical method, which makes it possible to
obtain an exact (rather than numerical) solution of the problem. Since the effects of various factors should be
evaluated by comparison with the main components, dimensionless equations containing six parameters (dimen-
sionlesscombinations) were obtainedin this study. Two of these parameters were named after scientists— Darcy
and Weisbach (steady friction) and Bruno (unsteady friction). Particular cases of the general (full)
model were considered, and the effects of various factors on the dynamics of the interaction of the flow with the
structure during the propagation ofthe shock pulse were determined. Research methods are purely theoretical.
The conceptsof a self-similar equation and a system of equations, balances of forces acting on particles of a
fluid and a solid body, and a standard method of reducing a system of equationsto a single equivalent equation
are used. Conclusions. An extended model of the interaction between the unsteady fluid flow and the structure
is proposed. The transition to a self-similar variable makes it possible to solve a nonlinear system of differential
equationsand obtain an analytical (exact) solution. The functions oflongitudinal stressin a solid body, pressure
disturbance, and velocity of motion of particles in a solid body (pipe) are linearly expressed by the velocity of
shock pulse propagation in the fluid. It should also be noted that the results for the particular case of the linear
model completely agree with the already known ones. The advantage of using a self-similar solutionis thatit is
easy to obtain. The results of previous studieson the water hammer problem were qualitatively consistent.
As the fluid viscosity increases, the shock pulse domain becomes more concentrative.

Keywords: aircraft; helicopter; incompressible (droplet) fluid; flow-structure interaction; water hammer;
stress; surface deformation; fatigue.

In the works of the classics on water hammer [5]
and [6], the unsteady flow of fluid in an elastic shell is
considered, therefore, only one-sided influence of the

Introduction

The phenomenon of water hammer is closely

related to such concepts as stress, deformations of the
pipeline surface, which occurunderthe influence of these
stresses and lead to fatigue and destruction of the
material. This, in turn, affects flight safety. Modern
works already take into account the two-dimensionality
and turbulent nature of the flow [1], elastic deformations
of the pipeline surface [2], and the phenomenon of
cavitation, which arise in this case [3]. In the end, all this
leads to the fatigue destruction ofthe pipeline surface [4],
which is impermeable in the systems of aviation and
rocket and space technology.

elasticity of the pipe on the propagation of the shock
pulse in the fluid. The mutual propagation of shock
pulses in a fluid and a solid is considered in [7, 8], where
a system of four equations describing the interaction of
the flow with the structure is derived. The author of [7, 8]
found solutions corresponding to non-dispersive waves
propagating with two different speeds —in a pipe and in
a liquid. He did not find a general solution to the system
of four equations.

The exact solution of the linear hyperbolic system
of four equations was found in [9]. The author [9] man-
aged to find four values of speed, two positive and two

© Pavlo Lukianov, Kateryna Pavlova, 2024



Aepoounamika, ounamika, 6anicmuka ma KepyeaHHsa HolbOMOM AiMANbHUX ANAPaAmMie 5

negative. At the same time, the well-known method of
characteristics is used. In this case, we are talking only
about the longitudinal motion of a rigid body, and solu-
tions for lateral and torsional motions [10] were not con-
sidered in [9]. An analytical solution based on the same
model, taking into account the Poisson coupling and
junction coupling, was obtained in [11].

Works [12, 13] show the importance of taking into
account convective acceleration and steady friction in the
model of water hammer, as well as gas impurity in the
drop liquid [14]. By the way, in [5] convective accelera-
tion is taken into account as well.

When passing a shock impulse, and for unsteady
flow in general, friction between the fluid and a solid
wall, both steady [15, 16] and unsteady [17, 18], should
be taken into account. Therefore, it makes sense to con-
sider the nonlinear four-equation model and find out the
effects of the convection of the velocity field and also
friction on the process of propagation of shock pulse in
the fluid and structure.

The above review of literary sources indicates that
today unsteady fluid flow and its interaction with an elas-
tic pipeline are described by the following system of dif-
ferential equations [9, 10]:

CAAER @
ot Py oz
ﬁ+£i+(l—v2)§]@=zv@, @)
oz \K Ee ) ot oz
M 17 _q 3)
ot P, 0z
U 100, _ VROp (4)
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In the systemof equations (1) — (4) V,U,p,c, are
the velocities of motion of the fluid and the solid body,
pressure disturbance and longitudinal stress respectively,
t,zare time and longitudinal coordinate, respectively;

K, E, vare volume stiffness of the fluid, Young's modu-
lus and Poisson's ratio of the solid body respectively;
ps.pt, R, e are the densities of the liquid and the solid

body (pipe), the inner radius of the pipe and its thickness.

The systemof linear equations (1) — (4) can be ana-
lytically solved without applying the method of charac-
teristics, see section 2. As previous studies have shown,
taking into account the convection of the velocity field in
the fluid and the friction of the fluid againstthe pipe wall
is essential. Therefore, the modern friction model is con-
sidered further in the work [17].

1. Problem formulation

Develop anon-linear model of the interaction of un-
steady fluid flow with a flexible pipeline, which takes
into account the convection ofthe fluid velocity field, the
friction of the fluid againstthe wall (both stationary and
unsteady).

Obtain a self-similar solution containing analytical
expressions for the velocity fields of fluid and pipe, as
well as pressure disturbances and longitudinal stresses in
the pipe.

Based on the obtained solution, study:

— influence of convection of the fluid velocity
field;

— the effect of steady friction;

— the effect of unsteady friction.

2. Self-similar solution of the linear problem
of the interaction of an unsteady fluid
flow with an elastic shell

The systemof equations (1) — (4) is easily reduced
to four self-similar equations relative to the self-similar
variable

n(z,t)y=z-ct. ®)

We have the following system of equations

—ch+ 1 dp_

=By, Q)
dn p, dn
d—v—(£+(l—v2)§jcd—p:2vd—u, (7
dn \K Ee ) dn dn
QU 1de g ®)
dn p, dn
dU cdo, cvRdp

—t——t = ©)]
dn E dn  Ee dn
Let's exclude speed V from (6), (7) and stress o,

from (8), (9). We obtain the following systemof equa-
tions:

d R

U, cdo, ORdp (10)
dn E dn  Ee dn

(E )dU VR dp
—=Cpy |—=——".
c dn e dn

Pressure can be excluded from the systemof equa-
tions (10), (11) and then the following equation for the
velocity of motion of pipe particles is obtained:

(1)
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Equation (12) is interesting in that, on the one hand,
it indicates the possibility of the existence of a constant
speed of the propagation of disturbances inside a solid
body (pipe), and on the otherhand, it provides an oppor-
tunity to find these speeds. In mathematical language,
(12) is equivalent to the following two independent equa-
tions:

If we analyze the set of solutions of system(13), it
turns out that the pipe can move at any constant speed.
This may be caused by the unsteady motion of the fluid
or rather its speed. The propagation of the shock pulse
causes the propagation of the pulse in the pipe. On the
otherhand, if the velocity of motion of the pipe particles
corresponds to the solution of the first equation (13), then
it can be different, that is, a function of the self-similar
variable. But this is not possible, because the first equa-
tion gives only a constant value forthe propagation of the
disturbance wave. So, all that remains is to find these val-
ues.

The first equation (13) can be written in a more
compact (convenient) form:

Bptc4 —{p—t vLBEJrch2 —EZO, (14)

Pf Pf

2
where B=i+(1—v2)2—R, p-2YR
K Ee e

Since the discriminant of the biquadratic equation
(14) has the form

2
Dis = (&—BE] +2[ﬁ+ BEJ D+D250,
Pf Pf

then the square of the velocity ¢? must be real. Theanal-

ysis of the values provides a basis for the assertion of the
presence of four values of speed:

two positive ones

1/2
o :Mﬁ+BE+DJ+ Disj/zBpt} ,
P

ca :{({&+BE+D]—\/DTSJ/2BPITZ,

Pt

and two negative ones

1/2
cz:—l:((p—t+BE+Dj+ Dis}/2Bpt} :
Pt

cq =—H[&+BE+DJ—»\/D_isJ/2BptT2.

Pt

Therefore, the motion of the pipe wall can occur
with two velocities in the direction of the pulse, as well
as in the opposite direction (negative values of the veloc-
ity) - with the same absolute values ofthe velocities. This
is entirely consistent with the theory of water hammer,
starting with work [19], as well as modern works [9],
where four different velocity values are also found. Let's
showit.

If we rewrite equation (14) in a form identical to
equation (24) [9], thatis, leaving the factor 1 at the term

¢t , we will have:

¢t [p—t +BE+Dleptcz - 0. (15

Pf Ps DBPt

It is easy to verify that in equation (15) the coeffi-

cientat ¢ is equal to:

2
&+i+(l—v2)2—R E+2V R
pr K Ee €

e pt +E, (16)

o {pt+1+(1_vz)2Rj Pt
pf K Ee

The right part of the expression (16) entirely coin-
cides with the expression (25) [9], except that p; = pg :the
tube index is replaced by a more general — structure.
There is also a complete coincidence for the factor with
an exponent-free term:

E E

prt(K ( V)Ee

17

For this, it is sufficient to compare expression (17)
with relations (23) and (24) [9]. So, it is clearly proven



Aepoounamika, ounamika, 6anicmuka ma KepyeaHHsa HolbOMOM AiMANbHUX ANAPaAmMie 7

that the obtained equation and its solution coincide with
the already known ones, but the method of obtaining it is
much simpler.

Now let's consider a more general model, which
makes it possible to study the influence of fluid convec-
tion and friction of the fluid againstthe wall onthe inter-
action of the fluid with the structure (pipe).

3. Extended model of flow interaction with
the structure: consideration of convection,
steady and unsteady friction

Previous studies [12-14] showed that for short pipe-
lines with a small longitudinal spatial scale, convection
is not negligibly small, and the friction of the fluid
against the wall can also change the flow pattern. To
take into account the influence of one or another factor,
it is convenientto use dimensionless quantities. At first,
let's give the equation of conservation of momentum,
which now has the form:

Vv,
ot 0z

Lo,

—v|v|+
P, 0z 4R
(18)

oV . oV
+kD| — +c¢¢ -sign(V)|— | =
(fﬁ r-siond )‘azD

The fourth term corresponds to the Weisbach-Darcy
steady friction component [15, 16], and the fifth term is
taken from the Vitkovsky-Bruno model [17]. According
to this model,

kD ( oV . oV
f=f,+——| —+¢ -sign(V)|—| |. 19

In formula (19) Disan inner diameter of the pipe; R is
a pipe radius; cis thespeed of sound ina fluid; ks the
coefficient, which is determined through the Vardy coef-

ficient C"[13]:

ﬁ

2

0.5«}0.00476, laminar flow;

k= —(log14.3/Re°-°5)

7.41-Re , turbulent flow.

A comparison of (19) with (18) indicates that

AL
97 4R

The remaining equations, ie. (2) — (4), are un-
changed. To move to dimensionless quantities, it is nec-
essary to highlight the balance terms in equations [12,
13]. Thus, in equation (19), the balance terms will be
those that make up the simplified model, i.e., equation

(1), without taking into account convection and friction.

So,
[ﬂ} _| Lo
ot P 0z
In equation (20), and also below, the square brack-

ets mean the magnitude scale. Equation (20) is equiva-
lent

(20)

M_VF_ 1]
[t [z er 2]
whence
[p]=p [VI. @

Let's divide all the terms of equation (18) by the

scale of the balance terms, that is, by [V]2 /[z] . We ob-
tain the following equation:

NGV P o+
ot o0z oz

oV oV @
+Br| — +sign(V)|—| [=0.

ot 0z
In equation (22), a dash above a value means it is
dimensionless. In honor of those who studied the corre-

sponding processes, we introduce the Darcy-Weisbach
(DW) and Bruno (Br) numbers:

DW = .
4R’ L

Let us now proceed to obtaining the dimensionless
analogue of equation (2). There is a new unknown in fit,
the velocity of motion of the particles of the pipe U. We
will consider the speed of sound in the pipe as the scale
of this speed c; . Taking into accountwhat has just been

said, equation (2) has the following dimensionless form:

ou

p
—+Nu =Nu .
15 2 = 07

23

0z ot @)

The following dimensionless parameters are used in
equation (23):

2\ 2R 2 2vc
NU]_ =|:%+(1—V )E:|pfcf’ NU2 th.

The dimensionless analogue of equation (3) has the
form:
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There are only two terms in equation (24), so they
make a balance and have the same order of values. From
these considerations, the scale of longitudinal stresses is
obtained:

[0,]=picsCt. (25)

If we use the expression for the scale of longitudinal
stresses (25) and substitute, together with the above-men-
tioned scales, into equation (4), we obtain:

(26)

The dimensionless parameters in (26) have the fol-
lowing form:

vR Cf Cf pf
e Cy E

2

PtCt
Nu, = ——, Nuy=
3¢ Ug=

Therefore, the system of dimensionless equations
(22), (23), (24), (26) is obtained, which takes into account
both the convection ofthe fluid velocity field and the fric-
tion of the fluid against the wall, steady togetherwith un-
steady.

4. Shock pulse formation: self-similar
equations and their solutions

As already mentioned in the introduction, for the
numerical solution of the problem of shock pulse propa-
gation in domains with complex geometry and in simple
domains, buttaking into account the reflection and inter-
action of waves, it is extremely important to know the
structure of the fields of all characteristics at the conven-
tionally initial moment of time when a shock pulse was
formed. In this case, it is convenient to use the self-sim-
ilar variable, butnow in dimensionless form:

nzt)=z-t. 27)

Substituting expression (27) into equations (22),

(23), (24), (26) turns them into the following system:

v, d—v+d—p+ DW - V|V|+

dn dn dn (28)

VN LIV 4 (29)
dn dn dn
4 _do; (30
dqn dn
O N 22 -y, @
dn dn d

System of equations (28) — (31) should be added by
four more conditions regarding the unknown. It is con-
venient to use the values of the functions on the charac-
teristics, that is, when the value of the self-similar  vari-
able is equal to zero. This will be done after finding the
general solution of the system(28) — (31).

The solution method for system(28) —(31) is usual:
exclusion of unknown functions and reduction of the sys-
tem to one equation. The advantage of using a self-simi-
lar variable is that there is no need to rise the order of the
system, that is, to additionally take partial derivatives of
the equations.

The first step is to express pressure in terms of ve-
locities from equation (29):

p_ 1 (adv U
PV g, (@)
dn Nul dn dn
Substituting (32) into (28), we obtain:
_z_\_/+\7i—v Ni[i—V—Nuzi—U} DW -V |V|+
u
n n 1.dn n (33)

+Br(—d—\_/ + sign(\7)‘d—\_/ J =0.
dn dn

As asecond step, itis convenient to exclude the lon-
gitudinal stresses in the pipe from equations (30), (31),
togetherwith the use of relation (32):

d_L_J_Nu du Nu4 dV Nuzd—l_J,
dn dn Nul dn dn

or, aggregating terms with identical derivatives, we have:

(1— NU3 +

The systemof equations (33), (34) already contains
only two unknown functions, the velocities of fluid par-
ticles andthe pipe ones. Since the process of wave prop-
agation in the pipe is described by a linear equation, it is
convenient to exclude the velocity of the pipe particles.
In a compact form, one can write:

Nu4Nu2]d_U=Nu4d_V )

Nu; Jdq Nuy dn
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du _NU *dV

dn i’

Nug 44— Nug - NugNug )
Nu, Nu,

where Nu™ =

Combining equations (35) and (33), we have:

o (1-NuyNu™) 4o
Loy o
Nul dT] (36)

+Br[—d—\_/+sign(V)‘dV j =0.
dn dn

Equation (36) already contains only one unknown
function and is essentially equivalent to the system of
equations (31) — (33). Inorder to finally obtain the "work-
ing" equation, let's add two "switches" of signs to (36),
thatare multipliers SW1 and SW2. So, we have:

(sw1. B +\7)‘;—\_/+swz- DW-V2 0.
n

(37)

Bxpressions for SW1 and SW2 are easily obtained
by comparing (36) with (37). Their explicit form as fol-
lows:

1- Nu,Nu” o .8V g,
Nul dn

M—ZBr, for \7~d—\_/<0.
Nul d'l’]
R (R VEN
SW2 =sign(V) = _
-1, V<O.

-1+
SW1.B" =
-1+

The general solution of equation (37) is as follows:

V(7) =exp[ -DW-SW2(C; +7) +
* (38)
+LambertW (SW1- B” exp[ DW-SW2(C; +ﬁ)m.
The fact that the order of the differential equations

has not been increased now makes it easy to find the rest
of the unknown functions. They are:

U(7) = Nu"V/(7) +Consty,
5, (1) =—Nu"V(7)+Const,, (39)
5(ﬁ):N11(1 Nu, ) V() + Const,

with  Consty, Const,, Const; to be integrating con-

stants.

It is convenient to determine the integration con-
stants in (38), (39) starting from particular cases, thatis,
simpler models. Therefore, the use of a self-similar var-
iable made it possible to obtain the simplest form of solv-
ing the nonlinear problem of shockpulse propagation in
an elastic shell with an incompressible fluid in unsteady
motion (water hammer).

5. The effects of convection and friction
on the interaction of the unsteady flow
with the structure

5.1. Only convection is taken into account

In this case, the parameters in equation (28)
DW =0, Br=0.

Equation (36), which is equivalent to the system of
equations (28) — (31), is simplified to the following:

Y _d\7+(1—N“2N“ )d\7
an Ny dj

orto a form convenientfor solving:

(2 NuNu*) av
Nuy dn

V-1+ =0. (40)

The solution of equation (40) can only be a constant
value of the shock pulse propagation speed in the fluid. It
is obvious that

~ (1— NuzNu”)
v=1l--—" (41)
Nu,

As shown by formula (41), the speed of propagation
of an impulse in a fluid differs, in dimensionless quanti-
ties, by a certain value that depends on three parameters,
which are functions of the characteristics of the "fluid-
pipe" system. The remaining characteristics of the system
are found by formulas (39). As you can easily see, they
also have constant values. Therefore, convection in the
fluid velocity field only changes the value of the shock
pulse propagation speed, but the functional character
(constantvalue) does not.

Let us dwell on one more interesting question: does
the velocity function, expression (41),
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V= \_/(Nul,Nuz,Nu*)

reach local or global extreme? According to the theory
[20], the necessary conditions for the extreme of a func-
tion of several variables are:

oV 1-Nu,Nu"

= 0’
ONuy Nuf
oV _Nu o, @2)
ONu,  Nug
oV Nu,
oNu™  Nug

Since the third equation (42) is never met, this is
enough to conclude that there is no extreme of the shock
pulse propagation velocity function in the fluid.

5.2. Considering only unstedy friction

If the convective term and unsteady friction are not
taken into account, then equation (36) will have the fol-
lowing form:

1-Nu,Nu™) 4 .
+gd—\_/+DW-V|V|:O. (43)
Nul dT]

The solution of equation (43) is the following func-
tion:

exp|[ —fc(Cy +7)+

(1— NuzNu*) B
+LW ™ -exp[ fe(Cr+m) ] ||,
\7@ >0;
_ dn

exp| —fc(Cy+7)+

(1~ NuzNu"— 2Ny )

LW . fc(Cy +1m ,
+ N, exp[ c( 1+n)J
Vd—v<0.

dn

44

In (44) fc=DW:-sign(V), LW = Lambertw .

5.3. Consideration of unsteady friction
or convection and steady friction

If both steady and unsteady friction of the fluid

against the pipe are taken into accountat the same time,
butthe convective term is neglected, we have:

T (1-NuyNu™) 4
dV+—( 2 )d—\_/+DW-\_/|\7|+
Nuyy dn

i (45)

+ Br(—d—\_/+ c~sign(\7)‘d—\_/D =0.
dn dn

Equation (40), which is more convenient to use
now, will turn into the following:

SW1~B*d—\_/+SW2-DW~\_/2 =0.

ar (46)

The general solution of equation (46) is:

1
)= Cy+DW-SW2/(SWL-B”)-7

V(n

Although this solution has an already known hyper-
bolic distribution (compare with (13) from work [8]),
however, there is a problem with its use. If the condition

V(n=0)=1
is met then we obtain the explicit form:

1
:1+DW-SW2/(SW1-B*)-ﬁ'

V(n) 47

With the calculated values of the parameters in for-
mula (47), a negative value is obtained for the self-similar
variable, which leads to a contradiction with the condi-
tion from which (47) was obtained: when the self-similar
variable increases, the velocity does not decrease, as it
corresponds to the general solution, and on the contrary
the velocity grows. A simple conclusion can be drawn
from this: it is impossible to discard convective acceler-
ation and keep only friction in the model.

Finally, we will answerthe question about the influ-
ence of unsteady friction. For this, we consider another
partial case (36), when steady friction and convection are
taken into account and compare the obtained results with
the general solution. Equation (36) turns into the follow-
ing in this case:

v _dv (1-NuyNuT) 4y
4 gav [Ny
dn dn Nuy dn

+Dw.\7|\7|=0.

(49)
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The solution of equation (48) is a partial case of (38)
with. The results calculated according to (48) are pre-
sented in Fig. 1.

0 0.2 04 06 08 o

Fig. 1. Dimensionless velocity of shock pulse
propagation in water: | — general solution
(formula (38)); Il —without taking into account un-
steady friction (formula (39)); Il — without taking
into account friction (formula (41))

The following values were used for calculations:

DW =125 SW-B" =-0.2543, SW-B" =-0.21,
Nu, =1.0825, Nu,=1.7233, Nu,=0.10456,

Nu, =0.096, Nu" =0.08462, C, =-0.18.

It can be seen that according to the model, which
takes into accountonly convection and does not take into
account friction, an underestimated constant value (curve
I11) is obtained for the speed of propagation of the shock
pulse (water hammer shock). Neglecting the unsteady
component of friction gives a slightly larger value (curve
1) than compared to the complete model.

Since the lubricant itself is under high pressure in
aviation equipment, calculations were also made for it.
The following values of dimensionless parameters are
obtained for AMG-10 aviation oil:

DW =6.4; SW1.B" =-0.210; C, =-0.033.

The functional dependence ofthe distribution of the
speed of propagation of the shock pulse in the lubricant
(see Fig. 2) indicates a significant, in comparison with
water, concentration of the domain of non-zero values,
approximately four times. Therefore, the combination of
viscosity and convection in the case of an unsteady flow
can lead to the concentration of energy in a finite region.

Discussion

The propagation of a water hammer, or more pre-
cisely a shock pulse, as an example of an unsteady flow
can be considered within the framework of various mod-
els. For long pipelines, where the spatial scale is large,
the convective term in the momentum conservation equa-
tion of fluid motion is insignificant. But in a technical
devices, in particular in aviation equipment, the length of
the pipeline is not significant. Therefore, consideration
of convection is appropriate. In addition, the pipelines
through which the fluid flows are not completely rigid
and the pressure pulse causes the motion of the pipeline
particles. From a physical point of view, we have the
problem of the interaction of the flow with the structure.
Available sources indicate the absence of models that
simultaneously take into account the convection of the
fluid velocity field and modern models for describing the
friction of the fluid against the pipe. In addition, the ap-
proach used to solve the mathematical problem is based
on additional differentiation ofthe equations, which leads
(may lead) to the expansion of the set of solutions to the
problem. These constraints may be unphysical, or rather,
may not correspond to the original system of differential
equations. An alternative to this approach is the use of
self-similar equations. Although this use has atime limit
(atime limit for the initial propagation ofshockpulse un-
til it encounters a boundary on it’s way), the resulting
functional dependences are very important for specifying
conditionally initial distributions of all quantities for fur-
ther numerical solution of the problem.

Conclusions

The paper considers the problem of the interaction
of an unsteady flow (shock pulse) of a fluid with a struc-
ture (pipe). An analytical solution to this problem was
obtained. The novelty is the simultaneous consideration
of three factors: convection of the velocity field in the
fluid, steady and unsteady friction of the fluid againsta
solid surface. If convection is not taken into account, then
the disturbances of all fields propagate with constant ve-
locities. The analytical solution of the problem by ne-
glecting both convection and friction coincides with the
already known one, but the method of obtaining it is sim-
pler. Taking friction into account in the model, and ac-
cordingly in the solution of the problem, leads to a differ-
ent from a constant value of the functional dependence of
the velocity of propagation of the shock pulse, as well as
othercharacteristics that are linear functions ofthe veloc-
ity in the fluid. At beginning (at 0 <7 <0.5), an approx
imately linear law of decreasing velocity is observed,
which is consistent with previous studies [13, 14]. When
approaching i — 1, the speed goes to zero according to a
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non-linear law. The effect of the unsteady friction com-
ponent is that, without taking this component into ac-
count, higher values of velocity are obtained. In addition,
with an increase in viscosity, the shock pulse domain is
concentrated.

Trv

0.2 0.3 0.4 1r|025

0 0.1

Fig. 2. Dimensionless propagation speed
of shock pulse in aircraft lubricant

As further research, it is possible to use the obtained
analytical solutions for numerical modeling of propaga-
tion processes, reflection of shock waves in pipelines,
and more complex structures.
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HEJTIHIHHA MOJEIb B3AEMO/Ii HECTAI[IOHAPHOI TEYIi PIIAHA
31 CTPYKTYPOIO B I'TIPABJIMHUX CHUCTEMAX JIITAKIB TA BEPTOJIbOTIB

II. B. JIyk’anoe, K. C. Ilasnosa

IIpeqmMeToM maHoi podoTH € po3poOKa HETIHIHHOT MOAEi B3a€MO/Iii HECTAIIOHAPHOT Teii PiMHK 31 CTPYKTY -
POIO Ta 3HAXO/DKEHHSI aHAJITUYHUX PO3B’A3KIB CUCTEMHU PIBHSIHD, KA BiANOBiNa€e 3a3HaueHil Moneni. BB koHBe-
KIii OIS IIBUAKOCTI PIIMHM Bxke OyJI0 BpaxoBaHO y MONEpeIHiX poboTax aBTopiB miei cTatri. Lli poGoTH mpucBsAdeHi
TiIPaBIiYHOMY yZapoBi 6e3 ypaxyBaHHS B3a€MOJIi «piquHa-cTpykTypa». JlaHa po6oTa po3MIMPIOE MOKIMBOCTI MO-
JIeTMOBAaHHS 1 PO3IVIAJAE BKE 3aMICTh ABOX PIBHSAHB TeOpii TimpaBiigHOro yaapy (piBHSHHA 30epeXeHHS MacH Ta Ki-
JBKOCTI PYXy) YOTHPH PIBHAHHS, ABA 3 AKX BITHOCATHCS O PYXy YaCTHHOK TBEPJOTO Tima (TpyOH abo CTIpy KTypH).
HoBusHoro nanoi po0oTH € caMme ypaxyBaHHsS B MOJICHI, IO ONMUCY€ B3aEMOJIIIO Teii i3 CTPYKTypOI0, KOHBEKIIil OIS
IIBUKOCTI Ta BIUIMB, Pa3oM i3 TEPTAM PIAMHU O TBEPIy CTIHKY, Ha JUHAMIKY MPOLECY MOMIMPEHHS yAAPHOTO MITy-
JbCY SIK y pimvHI Tak i B TBepAoMY Tim. Ciix 0coOIMBO BiA3HAYMTH, IO PO3B’S3aHHA B LUIOMY HEMHIHHOI cUCTeMH
T epeHiabHIX PIBHAHD 3IMCHIOETHCS aHATITHIHIM METOJIOM, IO JIa€ 3MOTY OTPUMATH TOUHHH (2 HE YHCETbHUH )
po3B’s130K 3a7a4i. OCKUIbKM OIHKY BIUIMBY Pi3HUX YHHHHUKIB CIIJ 3[IHCHIOBATH IUITXOM TOPIBHSHHS i3 OCHOBHHUMH
CKJIaIOBUMH, B poOOTi OTpuMaHa cucTteMa Oe3pO3MipHUX PIBHSIHB, SKa MICTUTh HICTh TMapaMeTpiB (0e3po3MipHUX
koMOiHaii). J[Boe 3 1ux mapaMeTpiB Ha3BaHO Ha 4yecTh BueHMX — Jlapci Ta BelicOaxa (ctamionapue tepts)i bpyHo
(HecTamioHapHe TepTs). PO3IIIHYTO YacTHHHI BUIAJIKU 3arayibHOI (IIOBHOT) MOJENi: BU3HAYCHO BIUIMB PI3HUX YHH-
HUKIB Ha JUHAMIKy B3a€MOJil Teyil 31 CTpyKTypoOIo Ml 4ac MOIUPEHHS yAapPHOTO iMIyjbcy. MeToau A0cCail:KeHb €
CyTO TEOPETUIHUMHU. BUKOPUCTOBY€THCS HMOHSATTSA aBTOMOJEIBHOTO PIBHAHHS Ta CHCTEMH PIiBHSIHB, OaJaHCIB CHIIL, L0
JHIOT HA YACTHHKW PIIMHH Ta TBEPJOTO Tila, a TAKOX CTAHJAPTHHN METOJX 3BEICHHS CHCTEMH PIBHSHB JO OJHOTO —
€KBIBAJICHTHOTO pIBHAHHA. BHCHOBKH. 3amponoHOBaHa y3arajlbHEHAa MOJENb B3a€MOJil HecTamioHapHOI Tedil pi-
JIMHU 31 CTpYKTyporo. [lepexin 10 aBTOMOACIBHOT 3MIHHOT IO3BOJIMB PO3B’SI3aTH HEIHIHHY CUCTEMY AU epeHINaTb-
HUX PIBHSHB 1 OTPUMATH aHATITAUYHUN (TOYHUI) po3B’sa30K. DYHKINI MOB3IOBXHHOTO HAMPYKECHH S B TBEPAOMY Tili,
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30ypeHHs TUCKY Ta MIBHIKOCTI PYXy YaCTHHOK TBEpPJOTO Tula (TPyOH) JIHIHHO BHPa)KaroThCs 3a INBUAKICTIO TOIIH-
PEHHS yAApHOTO iMMyabcy B pimuHi. Clim TaKoX BII3HAYHTH, IO PE3yIbTATH 32 YACTHHHHUM BHIAJAKOM JHHIAHOT
MOJIeJI MOBHICTIO 30ira€ThCsl 3 BKe BITOMHUMH. AJle IepeBara BUKOPUCTAHHS aBTOMOJEIFHOTO PO3B 3Ky OUEBHIHA —
Ie MPOCTOTa HOTO OTpuMaHHA. OTpUMAaHO TAaKOX SKICHUH 301r i3 pe3yibTaTaMy MONepeIHiX AOCHIPKeHb 3aaadi rij-
paBmigHOTO yaapy. [lopiBHSHHS pe3yJbTaTiB, OTPUMAaHUX Ul BOJM 1 aBiallifHOTO MacTHJa, BKa3ylOTh Ha KOHIICHT-
parifo eHepril yIapHOTO IMITyJIbCY 31 3pOCTAaHHAM B’S3KOCTI PifMHM.

KmiouoBi cioBa: nitak; BepTOJIT; HECTUCIMBA (KpamilbHA) PilMHA; B3aEMOJS Tedil 31 CTPYKTYyPOKO; TimpaBJIi-
YHUH yaap; HapysKeHHs; AedopMallis MOBEPXHi; BTOMA.
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