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Digital images are increasingly used to analyze different types of objects and their localization and 

classification. There are many areas for using this information; it is often employed for surveillance systems, 

automatic driving of vehicles, or exploration of new territories. At the same time, there are a fairly large 
number of neural networks that allow implementation of this functionality by training them using data sets of 

various types and classifications. Often, data sets created with the help of unmanned aerial vehicles are 

frequently used for research tasks. Such datasets allow the recognition of various types of objects without 

direct access to them, which allows safe exploration of different territories. The use of unmanned aerial 

vehicles is quite common nowadays, especially in the fields of photography and videography. Many 

photographers use unmanned aerial vehicles to take pictures of landscapes and use automatic tracking systems 

for movement. Automatic movement systems and object search systems are quite sensitive to the size of the 

object and the quality of the search algorithm. Because of the wide applicability of this task, as well as the 

small amount of initial data, the topic of our work is the study of the dependence of the accuracy of localization 

and classification of objects on their area in images obtained using unmanned aerial vehicles. The main 

subject of this study is the quality of neural networks that allow obtaining information about objects, as well as 
research by obtaining statistical data and a test set of data on the dependence of detection accuracy on the size 

of the object. The goal of this study was to obtain statistics on the accuracy of localization and classification 

depending on the size of the object and to determine the accuracy thresholds using the obtained statistics. The 

task of this study is to train common neural networks with an open architecture on a set of data obtained using 

unmanned aerial vehicles and to determine their characteristics, particularly the dependence of recognition 

accuracy on the size of the object. The expected result of the work is the threshold values of the size of the 

object, which are permissible for a sufficiently accurate classification and localization of objects, as well as the 

metrics of the quality of the work of the studied neural networks. Because of this work, conclusions are given 

that reflect the threshold values of object sizes, on which the recognition accuracy depends. 
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Introduction 
 

Motivation 

 

The scope of object recognition and localization 

tasks is quite wide. These tasks arise in many areas of 

research and practice. Recognition systems can be of 

different types and use different devices to acquire 

images. Most systems work with conventional images 

obtained with the help of optical systems [1]. But in 

some areas, images acquired by radar [2], sonar [3], or 

infrared [4] systems are also employed.  

More and more often, unmanned aerial vehicles 

are used to explore the Earth surface [5]. They allow 

acquiring images of the Earth surface without direct 

access. But obtaining high-quality images using 

unmanned aerial vehicles (UAV) is quite a challenge. 

When using them, there are problems with the weight of 

the device, its energy independence and energy 

efficiency, and its design [6]. The use of high-resolution 

sensors is quite problematic because they require a large 

amount of energy, which negatively affects the weight 

of the UAV. By using efficient image processing using 

neural networks for object localization [7], it is possible 

to detect even small objects in high definition (HD) 

images. 

At the same time, the dependence of object 

detection accuracy on the size of these objects in the 

photo remains unknown. Obtaining such dependences 

for different types of objects will allow designing 

unmanned aerial vehicles and the corresponding 

equipment for the required tasks, knowing the required 

sensor parameters in advance. 

 

State-of-the-art 
 

Analyzing studies on the dependence of 

localization accuracy on the size of the object, it 

becomes clear that the use of UAV images is quite new, 

but is becoming widespread. Analyzing our previous 

study [8] intended on obtaining the dependence of 

people localization on UAV images, we have already 
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got some statistics. This publication is aimed at 

confirming or refuting, as well as expanding the 

conclusions made in the previous work.  

The studies of other authors [9, 10] show mostly 

the general accuracy of neural networks for object 

localization. The information provided in these studies 

shows that neural networks can locate transport with a 

fairly high accuracy.  

The speed of neural networks for localization and 

classification also plays an important role [11, 12]. With 

sufficient performance, high speed allows neural 

networks to be used in real-life devices, making such 

systems more productive. The speed of a neural network 

also affects the ability to process images in real time. 

Fast neural networks can now be utilized to control 

vehicles and, in the case of UAVs, for their control and 

guidance[13]. 

Also, when studying available publications [14, 

15], a set of metrics was obtained to display the 

accuracy of the neural network for localization and 

classification. So, to determine the accuracy of 

localization, intersection over union (IoU) [16] is often 

used. When evaluating the classification accuracy, 

Precision and Recall [17] are employed. 

 

Objectives and the approach 

 

Our work is devoted to determining the 

dependence of the accuracy of localization and 

classification of the object, which will be combined into 

a single accuracy parameter, on the size of this object 

expressed in pixels. To do this, several neural networks 

were trained, these are YOLO v5 [18], YOLO v8 [19] 

and FasterRCNN [20]. These neural networks are quite 

widely exploited in the considered sphere. For trained 

neural networks, the metrics specified in the previous 

subsection will be calculated. These metrics will allow 

assessing the quality of the trained model and compare 

the result with the results of the metrics given in other 

studies. Using the obtained weights of neural networks, 

localization and classification will be evaluated on a test 

dataset having pre-created annotations, and, based on 

the obtained data, the localization accuracy statistics 

will be built depending on the size of the object. Then, 

conclusions will be drawn. 

 

1. Train and test data 
 

One of the most important aspects in the training 

of a neural network is the choice of a training dataset. 

The quality of annotations in the training dataset affects 

the accuracy of the neural network, as well as the size of 

objects that will be localized. That is why it is important 

to study the training dataset before using it. 

Investigating the work of other authors [21], the 

VisDrone dataset was chosen, which has a sufficient 

number of images for training. Analyzing this data set, 

statistics were obtained on the distribution of objects by 

size and classes. In total, the dataset has 6 classes, these 

are people, cars, buses, trucks, bicycles, tricycles. The 

main thing for our task is the amount of data in 

categories related to transport. 

In general, the selected dataset is concealed from 

7019 images, of which 6471 images belong to the 

training sample and 648 to the validation one. The 

training part contains 343205 objects, of which about 

65% is different types of transport. Figure 1 shows the 

distribution of the number of objects in each of the 

dataset classes in the training sample, and Figure 2 

shows the distribution of the number of objects for each 

of the classes in the validation part of the dataset. When 

analyzing the number of objects, it is noticeable that 

most of the objects in the dataset belong to the category 

of cars, which meets our requirements when choosing a 

data set. 

 

 
 

Fig. 1. Distribution of object categories  

in the training subset in VisDrone dataset 
 

 
 

Fig. 2. Distribution of object categories  

in the validation subset in VisDrone dataset 

 

The size of objects also has an important role in 

learning, as noted above, so the statistics of the 
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distribution of objects relative to their size was also 

summarized. To determine this characteristic, the size of 

objects for all annotations in the dataset was calculated 

and the distribution of the number of objects from their 

size was built. The obtained statistics are presented in 

Figure 3. Given the data obtained, it is noticeable that 

the main part of the objects has a size of up to 300 

pixels, and the median distribution is a value of 50 

pixels. The statistics obtained fully meets the needs for 

research. 

 

 
 

Fig. 3. Distribution of object sizes  

in training dataset 

 

To determine the metrics of the accuracy of the 

trained models, a data set (named UAVDT [22]) was 

selected consisting of 4000 images, which are divided 

into 3 categories. Given that the study focuses on 

vehicle localization and classification, the dataset was 

chosen to contain the largest number of vehicle-related 

categories. In the selected dataset, 130168 objects are 

annotated, which are divided into 3 classes: cars, trucks 

and buses. For the dataset, statistics on the distribution 

of annotated objects by categories were built, which is 

presented in Figure 4. Analyzing the data obtained, it is 

noticeable that the bulk of the objects are cars.  
 

 
 

Fig. 4. Distribution of object categories  

in test dataset 
 

Also, for the selected data set, statistics on the 

distribution of objects by size are constructed, in 

accordance with the training part, which is presented in 

Figure 5,a. When analyzing the results obtained, it is 

noticeable that the median of the sizes distribution is 

slightly to the right of the test sample and has a value 

close to 650 pixels, this differs significantly from the 

expected parameters of the data set. Considering this 

factor, the data were annotated using labelImg marking 

program. During the labeling process, 40,000 small 

objects were added to obtain more detailed statistics 

when analyzing the trained model. The obtained 

statistical data for the test dataset, after additional data 

collection, are presented in Figure 5,b. The median of 

the statistics obtained is in the region of 50 pixels, 

which corresponds to the training dataset and fully 

satisfies our needs. 

 

 
a 

 
b 

 

Fig. 5. Distribution of objects size  

in test dataset with default annotation (a)  

and with added annotations (b) 

 

2. Neural network training 
 

To study the influence of the size of the object on 

the accuracy of its localization and segmentation, 

several architectures of neural networks were chosen, 

which should correspond to the following 

characteristics: 

- popularity at the time of the study; 

- prevalence of use; 

- the ability to scale or change backbones, layers. 

Many architectures correspond to these 

characteristics, but we chose YOLO v5, YOLO v8, 

FasterRCNN. YOLO v5 has been a widely studied and 
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used architecture for recent years. YOLO v8 is the latest 

architecture and continuation of a series of models from 

ultralitics. FasterRCNN is a fairly classical neural 

network architecture for localizing and classifying 

objects. In view of these factors, we can expect that the 

given comparison will be quite objective. 

 

2.1. YOLO v5 

 

To train the model with the YOLO v5 architecture, 

the optimal implementation of the model in time and 

quality was chosen - YOLO v5 small (hereinafter 

YOLO v5s). Also, the entire learning process was 

conducted using the official implementation and 

infrastructure from ultralitics. Training continued 

through 300 epochs, each of which was validated on a 

validation dataset. Indicators of loss functions and 

metrics obtained for the validation dataset were used to 

assess the quality of training during its implementation. 

In the learning process, mean squared error (MSE) 

(1) [23] was used as a regression loss function to 

localize object frames: 

 

n
2

i i
i 0

1 ˆMSE (Y Y )
n



  , (1) 

 

where n  is a length of samples, 

          Y  is a true vector, 

          Ŷ  is a predicted vector.   

Binary cross-entropy (BCE) loss (2) [24] was used 

to display the loss function of objectivity, which reflects 

the confidence of the model that there is an object in the 

frame: 

 

n n n n n nl w [y log (x ) (1 y )log(1 (x ))],     
 (2) 

 

where xn is the input classification vector, 

           yn is the true classification vector, 

           (xn) is the probability of each class. 

Cross-Entropy loss (3) [25] was also used as a loss 

function for classification: 
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(3) 

 

where xn is the true classification data for the object, 

           yn is the classification vector provided by this 

method, 

           wc is the weight for each class, 

           C is the number of classes. 

For training, the stochastic gradient descent (SGD) 

[26] optimizer was used, the parameter values of which 

are the following: lr = 0.01, momentum = 0.937,  

16 images per batch. Graphs obtained during the 

training of the model are presented in Figure 6, for loss 

of objectivity (Figure 6, a), for loss of classification 

(Figure 6, b) and for loss of localization (Figure 6, c). 

Analyzing the obtained data, it is noticeable that, by the 

end of the training, the model reached a plateau and the 

loss function almost does not change. 

 

 
a 

 
b 

 
c 

Fig. 6. Loss functions for YOLO v5 training process, 

which include objectness loss (a), object localization 

loss (b) and localization loss (c) 
 

2.2. YOLO v8 
 

YOLO v8 is a continuation of the development of 

the YOLO architecture, therefore, a small version was 

also chosen to obtain comparable results with the 

version described in the previous part. The training was 

also conducted using an official repository from 

ultralitics. BCE loss is used as a loss function for 

classification, which is calculated for each class, the 

implementation is presented in the previous subsection. 

As a loss function for localization, the so-called 

boundary box (BBOX) loss is used, which is the inverse 

of the intersection over union (IoU) metric, which 

reflects the localization accuracy of the predicted frames 

relative to the annotated ones: 

To calculate the loss of objectivity, the third loss 

function is used - Distribution Focal Loss (DFL) [27]. It 

reflects the accuracy of localization and confidence of 

the neural network, which is an object in the frame 

(objectness). 
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For training, the stochastic gradient descent (SGD) 

optimizer was used, the parameters of which are the 

following: lr = 0.01, momentum = 0.9, 16 images per 

batch. In accordance with YOLO v5, YOLO v8 also 

employed 300 epoches. Figure 7 shows graphs of loss 

functions as described above, so that Figure (7,a) shows 

the classification loss function, Figure (7,b) - the 

localization loss function, and the data for the DFL loss 

function are given in Figure (7, c). Analyzing the data 

obtained, it is noticeable that the loss functions at the 

end of training have a rather low value. 

 

 
a 

 
b 

 
c 

Fig. 7. Loss functions for YOLO v8 training process, 

which include classification loss (a), object localization 

loss (b) and DFL loss (c) 

 

2.3. Faster RCNN 

 

Faster RCNN architecture is based on RCNN 

architecture, which has three levels. The first level is the 

extraction of features from an image using one of the 

neural networks (backbones), for example, it can be 

Mobilenet, Resnet, Retina or other architectures. The 

speed and accuracy of the resulting neural network 

depends on the network used. The second level that 

receives feature input from the first level is called the 

region proposal network (RPN), which offers a set of 

regions given the value in the features. The third level is 

called region of interest (ROI) pooling, dedicated to 

localization and classification of regions proposed at 

level 2. As information used for classifications and 

definition of objectivity, an array of features obtained at 

the first level is utilized. Thus, the reuse of features 

allows speeding-up the model. 

Taking into account the information about the 

structure of the neural network, we chose a fast model 

using mobilenet v3 as a backbone. This version of the 

network is quite fast and has good localization accuracy 

indicators. 

For Faster RCNN training, smoothed L1 (4) loss 

function is used to calculate localization loss for RPN 

and for localization loss at model output:  

 

2
n n

n n
n

n n

0.5(x y )
,  if x y beta,

l beta

x y 0.5*beta,   otherwise,

 
 

 
  

         (4) 

 

where xn is the true information about the object, 

           yn is the predicted information about the object, 

           beta is the threshold of change between L1 and 

L2 loss (hyperparameter, non-negative, default is 1.0). 

The loss function for classification is cross-entropy 

loss, as already described for other models. For training, 

the Adam optimizer was used, with the parameters lr = 

0.001, weight_decay=0.0005. The batch size during the 

training was 16 images. Validation was carried out once 

in an epoch, in total, the training lasted 300 epochs, 

according to the previous models. The results obtained 

for the loss functions are shown in Figure 8, for 

localization losses in RPN (Figure 8, a), total 

localization losses (Figure 8, b) and classification losses 

(Figure 8, c). 

 

3. Performance of trained networks 
 

To check the quality of the models, metrics were 

used, which are the most often exploited in localization 

and classification tasks. They allow displaying the 

accuracy of localization and classification for models, as 

well as obtaining the information about the threshold 

that is used to filter out objects with a low score. 

As a basic localization metric, we used intersection 

over union (IoU), which allows obtaining accurate 

parameters of the intersection of predicted and 

annotated blocks. The IoU calculation algorithm can be 

visually represented as shown in Figure 9. The shaded 

area is an indicator of the IoU metric, an annotated 

frame is highlighted in green, and a model is provided 

in red. 

Precision (5) and Recall (6) metrics were used to 

calculate classification accuracy, the calculation 

formulas of which are presented below: 

 

TP
P ,

FP TP



 (5) 

 



ISSN 1814-4225 (print) 
АВІАЦІЙНО-КОСМІЧНА ТЕХНІКА І ТЕХНОЛОГІЯ, 2024, № 3(195)   ISSN 2663-2012 (online) 

 

94 

TP
R .

FN TP



 (6) 

 

 

 
a 

 
b 

 
c 

 

Fig. 8. Loss functions for Faster RCNN training process, 

which include box regression loss  
in RPN (a), overall box regression loss (b)  

and classification loss (c) 

 

 

 
Fig. 9. Visual represented of IoU 

 

To calculate the above parameters, the distribution 

indicators of the provided blocks are required. Among 

them, true positive rates (TP) display the number of 

correctly provided frames for the class for which it is 

calculated, true negative rates (TN) display the number 

of frames that have been annotated for other classes, 

against which it is calculated, false positive rates (FP) - 

the number of frames provided by the network, but not 

annotated in the dataset, false negative rates (FN) - the 

number of frames annotated in the dataset, but not 

provided by the network. 

Validation was carried out for all data from the 

validation part of the dataset, the data from which are in 

no way involved in the training of the neural network. 

In view of this, network comparison is objective and can 

be relied to select a model to use. Validation results are 

presented in Table 1 for all neural networks. 

 

Table 1 
Precision, recall, and IoU metrics for the trained models 

Model Precision Recall IoU 

YOLO v5 0.540 0.928 0.672 

YOLO v8 0.527 0.667 0.683 

Faster RCNN 0.528 0.627 0.645 

 

Analyzing the obtained metrics, it is noticeable 

that the models from the YOLO architecture work are 

on about the same level, but YOLO v5 is still preferable 

in terms of the considered metrics. Faster RCNN also 

has a small gap from competitors, but the resulting 

metrics are quite consistent with the needs for 

localization tasks. 

 

4. Vehicle localization study 
 

To conduct research on the characteristics of the 

localization of transport, the framework was predicted 

using the neural networks described in the previous part. 

All the obtained results were saved in a file and the 

value of the localization accuracy metric was obtained 

relative to each of the predicted objects. Comparison of 

the predicted frames with annotated ones was carried 

out by counting the IoU metric, as a result, the frames 

passing the threshold were selected for comparison. For 

each of the compared frames, the area was calculated, 

based on the data provided by the network. These data 

are approximate, because they use only the provided 

frame, and the object may not occupy the entire area of 

this frame. Given this, the result may have a bias. 

First, let us analyze the data obtained using the 

YOLO v5 neural network, because, as shown above, it 

has the best characteristics. The obtained dependence of 

work accuracy is shown in Figure 10. Analyzing the 

results obtained, it is noticeable that the best accuracy 

(more than 0.8) is achieved with an object size of 265 

pixels, the threshold is highlighted with a red dotted 

line. The average accuracy, which is sufficient to 
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localize most types of objects (more than 0.6), is 

achieved with the object size of more than 100 pixels, 

highlighted in the Figure with a yellow dotted line. 

Also, objects that are localized with less accuracy, but 

can be taken into account when using a neural network, 

were assigned to the zone from 0.4 to 0.6 (highlighted 

by a red dotted line). The size of this type of objects 

should exceed 75 pixels. Objects having a smaller size 

can be recognized by the neural network, but have a low 

level of accuracy and confidence of the neural network, 

respectively, when lowering the threshold, a large 

number of incorrect objects can be localized. 

Conducting research for the objects provided by 

the YOLO v8 neural network, we got the dependence 

that is depicted in Figure 11. Analyzing the graph, it is 

noticeable that, with respect to the results for YOLO v5, 

we have a slightly biased dependence. Thus, sufficient 

accuracy is achieved with the object size of 310 pixels, 

which is significantly larger than for the previous 

model. The object size has also increased, which is 

necessary for sufficient classification accuracy. For 

YOLO v8, it is 130 pixels. The size of the object for 

uncertain classification has not changed significantly, it 

is 80 pixels. 

 

 
 

Fig. 10 Dependence of localization accuracy  

and classification on boundary box size for YOLO v5 

 

 

 
 

Fig. 11 Dependence of localization accuracy  

and classification on boundary box size for YOLO v8 

 

For Faster RCNN, the dependence of classification 

accuracy on the object area was also calculated, but in 

the case of this neural network, the statistics are much 

worse than for the previous ones. The results are shown 

in Figure 12. Analyzing the statistics obtained, it is 

noticeable that high accuracy is achieved with the object 

area of 1350 pixels, which is a fairly high value and 

considerably larger than for the previous models. Also, 

the level of sufficient accuracy is achieved with the 

object size of 920 pixels, which is too large. A low level 

of accuracy is achieved at 550 pixels, which is much 

higher than the level of high accuracy for previous 

models. 

 

 
 

Fig. 12 Dependence of localization accuracy  
and classification on boundary box size  

for Faster RCNN 

 

Taking into account the obtained statistics and 

analyzing the results, we can understand that Faster 

RCNN has worse results compared to other models. To 

reduce the variation in results, the results of Faster 

RCNN will not be used in determining the overall score. 

Summarizing the overall assessment, one can determine 

the average threshold of high accuracy of localization 

and classification, it ranges from 260 to 320 pixels, 

depending on the used neural. Thus, it can be 

determined that the average value of the object area, 

which is sufficient to achieve high localization and 

classification accuracy, is about 290 pixels. Also, the 

analysis determines that the size of the object for 

sufficient accuracy of localization and classification 

should be from 100 to 130 pixels, which is about 0.03% 

of the size of the studied image, which has size 640x640 

pixels. The area value for minimum localization and 

classification accuracy is 75 pixels and is approximately 

the same for models with YOLO architecture. Objects 

having an area of less than 75 pixels are recognized with 

low accuracy, which makes it impossible to classify 

them. 

 

Conclusions 
 

As a result of the research, the statistics of the 

accuracy of localization and classification of objects 

were determined depending on their size. The parameter 
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of estimation accuracy was chosen as an indicator, 

which reflects the confidence of the neural network in 

the predicted object. Also, for trained neural networks, 

localization accuracy metrics and classification 

accuracy metrics such as IoU, Precision and Recall were 

determined. 

Analyzing the results, it can be noted that the 

Faster RCNN architecture is quite good in terms of 

metrics, but it has much worse accuracy in localizing 

small objects, so its results were not used. YOLO v5 

and YOLO v8 have similar indicators for work quality 

metrics, as well as for the indicators of the studied 

dependence. 

When analyzing the dependencies of the accuracy 

of localization and classification of objects on their area 

in pixels, several threshold values   of the areas of 

objects can be distinguished: 

- with an area of   the object from 290 pixels, it 

can be calculated that the object is localized and 

classified with great accuracy (larger than 0.8); 

- when the area of the object is more than 130 

pixels - the object can be localized with sufficient 

accuracy, which is more than 0.6; 

- to achieve the minimum permissible accuracy 

(more than 0.4), the minimum permissible size of the 

object is 75 pixels; 

- if the area of the object is less than 75 pixels, 

the object is localized and classified with low accuracy, 

which leads to unreliable results. 
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ДОСЛІДЖЕННЯ ЗАЛЕЖНОСТІ ТОЧНОСТІ ПОШУКУ АВТОМОБІЛІВ  

ВІД РОЗМІРІВ ОБ’ЄКТА ЗА ЗОБРАЖЕННЯМИ БПЛА 

Р. В. Цехмистро, О. С. Рубель, В. В. Лукін 

Цифрові зображення все частіше використовуються для задач аналізу різних типів об’єктів, їх 

локалізації та класифікації. Сфер використання цієї інформації досить багато, часто її використовують для 

систем спостереження, автоматичного водіння транспорту чи дослідження нових територій. Разом з цим 
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існує досить велика кількість нейронних мереж, що дозволяють реалізувати даний функціонал шляхом їх 

навчання використовуючи набори даних різних типів та класифікацій. Дуже часто для задач дослідження 

використовують набори даних, що зроблені за допомогою безпілотних літальних апаратів. Такі набори даних 

дозволяють розпізнавати різного роду об’єкти, не маючи до них прямого доступу, що дає змогу безпечно 

досліджувати різні території. Використання безпілотних літальних апаратів досить поширено в наш час, 

особливо в задачах фотографії та відео, багато фотографів використовують безпілотні літальні апарати для 

отримання знімків краєвидів, а також системи автоматичного стеження для переміщення. Системи 

автоматичного переміщення, а також системи пошуку об’єктів, досить чутливі до розміру об’єкта, а також 

якості алгоритму пошуку. Саме через широку застосовуваність даної задачі, а також малої кількості 

початкових даних, темою роботи є дослідження залежності точності локалізації та класифікації об’єктів від 

їх площі на знімках, що отримані за допомогою безпілотних літальних апаратів. Основну увагу привернуто 

до якості роботи нейронних мереж, що дозволяють отримувати інформацію про об’єкти, а також 

дослідження за допомогою отримання статистичних даних та тестовому наборі даних залежності точності 

детектування від розміру об’єкта. Метою роботи є отримання статистичних даних щодо точності локалізації 

та класифікації в залежності від розміру об'єкта, а також визначення порогів точності з використанням 

отриманих статистичних даних. Задача роботи - це навчання розповсюджених нейронних мереж з 

відкритою архітектурою на наборі даних, що отримані за допомогою безпілотних літальних апаратів, та 

визначення їх характеристик, зокрема залежності точності розпізнавання від розміру об’єкта. Очікуваний 

результат роботи - це порогові значення розміру об’єкта, що допустимі для достатньо точної класифікації та 

локалізації об’єктів, а також метрики якості роботи досліджуваних нейронних мереж. В результаті роботи 

буде наведено висновки, що відображають порогові значення розмірів об’єктів, від якого залежить точність 

розпізнавання.  

Ключові слова: локалізація об’єктів; YOLOv5s, SSD, FasterRCNN, класифікація техніки, безпілотні 

літальні апарати. 
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