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STUDY OF THE DEPENDENCE OF ACCURACY IN VEHICLES SEARCH
ON THE SIZE OF THE OBJECT USING UAV IMAGES

Digital images are increasingly used to analyze different types of objects and their localization and
classification. There are many areas for using this information; it is often employed for surveillance systems,
automatic driving of vehicles, or exploration of new territories. At the same time, there are a fairly large
number of neural networks that allow implementation of this functionality by training them using data sets of
various types and classifications. Often, data sets created with the help of unmanned aerial vehicles are
frequently used for research tasks. Such datasets allow the recognition of various types of objects without
direct access to them, which allows safe exploration of different territories. The use of unmanned aerial
vehicles is quite common nowadays, especially in the fields of photography and videography. Many
photographers use unmanned aerial vehicles to take pictures of landscapes and use automatic tracking systems
for movement. Automatic movement systems and object search systems are quite sensitive to the size of the
object and the quality of the search algorithm. Because of the wide applicability of this task, as well as the
small amount of initial data, the topic of our work is the study of the dependence of the accuracy of localization
and classification of objects on their area in images obtained using unmanned aerial vehicles. The main
subject of this study is the quality of neural networks that allow obtaining information about objects, as well as
research by obtaining statistical data and a test set of data on the dependence of detection accuracy on the size
of the object. The goal of this study was to obtain statistics on the accuracy of localization and classification
depending on the size of the object and to determine the accuracy thresholds using the obtained statistics. The
task of this study is to train common neural networks with an open architecture on a set of data obtained using
unmanned aerial vehicles and to determine their characteristics, particularly the dependence of recognition
accuracy on the size of the object. The expected result of the work is the threshold values of the size of the
object, which are permissible for a sufficiently accurate classification and localization of objects, as well as the
metrics of the quality of the work of the studied neural networks. Because of this work, conclusions are given
that reflect the threshold values of object sizes, on which the recognition accuracy depends.
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amount of energy, which negatively affects the weight
of the UAV. By using efficient image processing using

Introduction

Motivation

The scope of object recognition and localization
tasks is quite wide. These tasks arise in many areas of
research and practice. Recognition systems can be of
different types and use different devices to acquire
images. Most systems work with conventional images
obtained with the help of optical systems [1]. But in
some areas, images acquired by radar [2], sonar [3], or
infrared [4] systems are also employed.

More and more often, unmanned aerial vehicles
are used to explore the Earth surface [5]. They allow
acquiring images of the Earth surface without direct
access. But obtaining high-quality images using
unmanned aerial vehicles (UAV) is quite a challenge.
When using them, there are problems with the weight of
the device, its energy independence and energy
efficiency, and its design [6]. The use of high-resolution
sensors is quite problematic because they require a large

neural networks for object localization [7], it is possible
to detect even small objects in high definition (HD)
images.

At the same time, the dependence of object
detection accuracy on the size of these objects in the
photo remains unknown. Obtaining such dependences
for different types of objects will allow designing
unmanned aerial vehicles and the corresponding
equipment for the required tasks, knowing the required
sensor parameters in advance.

State-of-the-art

Analyzing studies on the dependence of
localization accuracy on the size of the object, it
becomes clear that the use of UAV images is quite new,
but is becoming widespread. Analyzing our previous
study [8] intended on obtaining the dependence of
people localization on UAV images, we have already
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got some statistics. This publication is aimed at
confirming or refuting, as well as expanding the
conclusions made in the previous work.

The studies of other authors [9, 10] show mostly
the general accuracy of neural networks for object
localization. The information provided in these studies
shows that neural networks can locate transport with a
fairly high accuracy.

The speed of neural networks for localization and
classification also plays an important role [11, 12]. With
sufficient performance, high speed allows neural
networks to be used in real-life devices, making such
systems more productive. The speed of a neural network
also affects the ability to process images in real time.
Fast neural networks can now be utilized to control
vehicles and, in the case of UAVS, for their control and
guidance[13].

Also, when studying available publications [14,
15], a set of metrics was obtained to display the
accuracy of the neural network for localization and
classification. So, to determine the accuracy of
localization, intersection over union (loU) [16] is often
used. When evaluating the classification accuracy,
Precision and Recall [17] are employed.

Obijectives and the approach

Our work is devoted to determining the
dependence of the accuracy of localization and
classification of the object, which will be combined into
a single accuracy parameter, on the size of this object
expressed in pixels. To do this, several neural networks
were trained, these are YOLO v5 [18], YOLO v8 [19]
and FasterRCNN [20]. These neural networks are quite
widely exploited in the considered sphere. For trained
neural networks, the metrics specified in the previous
subsection will be calculated. These metrics will allow
assessing the quality of the trained model and compare
the result with the results of the metrics given in other
studies. Using the obtained weights of neural networks,
localization and classification will be evaluated on a test
dataset having pre-created annotations, and, based on
the obtained data, the localization accuracy statistics
will be built depending on the size of the object. Then,
conclusions will be drawn.

1. Train and test data

One of the most important aspects in the training
of a neural network is the choice of a training dataset.
The quality of annotations in the training dataset affects
the accuracy of the neural network, as well as the size of
objects that will be localized. That is why it is important
to study the training dataset before using it.

Investigating the work of other authors [21], the
VisDrone dataset was chosen, which has a sufficient
number of images for training. Analyzing this data set,
statistics were obtained on the distribution of objects by
size and classes. In total, the dataset has 6 classes, these
are people, cars, buses, trucks, bicycles, tricycles. The
main thing for our task is the amount of data in
categories related to transport.

In general, the selected dataset is concealed from
7019 images, of which 6471 images belong to the
training sample and 648 to the validation one. The
training part contains 343205 objects, of which about
65% is different types of transport. Figure 1 shows the
distribution of the number of objects in each of the
dataset classes in the training sample, and Figure 2
shows the distribution of the number of objects for each
of the classes in the validation part of the dataset. When
analyzing the number of objects, it is noticeable that
most of the objects in the dataset belong to the category
of cars, which meets our requirements when choosing a
data set.

Tricycles: 8047
Buses: 5925
1

] Bicycles: 10476
/ Vo Trucks: 12853

People: 106309

Cars: 199177 -

Fig. 1. Distribution of object categories
in the training subset in VisDrone dataset
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Fig. 2. Distribution of object categories
in the validation subset in VisDrone dataset

The size of objects also has an important role in
learning, as noted above, so the statistics of the
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distribution of objects relative to their size was also
summarized. To determine this characteristic, the size of
objects for all annotations in the dataset was calculated
and the distribution of the number of objects from their
size was built. The obtained statistics are presented in
Figure 3. Given the data obtained, it is noticeable that
the main part of the objects has a size of up to 300
pixels, and the median distribution is a value of 50
pixels. The statistics obtained fully meets the needs for
research.
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Fig. 3. Distribution of object sizes
in training dataset

To determine the metrics of the accuracy of the
trained models, a data set (named UAVDT [22]) was
selected consisting of 4000 images, which are divided
into 3 categories. Given that the study focuses on
vehicle localization and classification, the dataset was
chosen to contain the largest number of vehicle-related
categories. In the selected dataset, 130168 objects are
annotated, which are divided into 3 classes: cars, trucks
and buses. For the dataset, statistics on the distribution
of annotated objects by categories were built, which is
presented in Figure 4. Analyzing the data obtained, it is
noticeable that the bulk of the objects are cars.

Buses: 1304 — Trucks: 3567

Cars: 125297

Fig. 4. Distribution of object categories
in test dataset

Also, for the selected data set, statistics on the
distribution of objects by size are constructed, in

accordance with the training part, which is presented in
Figure 5,a. When analyzing the results obtained, it is
noticeable that the median of the sizes distribution is
slightly to the right of the test sample and has a value
close to 650 pixels, this differs significantly from the
expected parameters of the data set. Considering this
factor, the data were annotated using labellmg marking
program. During the labeling process, 40,000 small
objects were added to obtain more detailed statistics
when analyzing the trained model. The obtained
statistical data for the test dataset, after additional data
collection, are presented in Figure 5,b. The median of
the statistics obtained is in the region of 50 pixels,
which corresponds to the training dataset and fully
satisfies our needs.
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Fig. 5. Distribution of objects size
in test dataset with default annotation (a)
and with added annotations (b)

2. Neural network training

To study the influence of the size of the object on
the accuracy of its localization and segmentation,
several architectures of neural networks were chosen,
which  should correspond to the following
characteristics:

- popularity at the time of the study;

- prevalence of use;

- the ability to scale or change backbones, layers.

Many architectures  correspond to these
characteristics, but we chose YOLO v5, YOLO v8,
FasterRCNN. YOLO v5 has been a widely studied and
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used architecture for recent years. YOLO V8 is the latest
architecture and continuation of a series of models from
ultralitics. FasterRCNN is a fairly classical neural
network architecture for localizing and classifying
objects. In view of these factors, we can expect that the
given comparison will be quite objective.

2.1. YOLO V5

To train the model with the YOLO v5 architecture,
the optimal implementation of the model in time and
quality was chosen - YOLO v5 small (hereinafter
YOLO v5s). Also, the entire learning process was
conducted using the official implementation and
infrastructure from ultralitics. Training continued
through 300 epochs, each of which was validated on a
validation dataset. Indicators of loss functions and
metrics obtained for the validation dataset were used to
assess the quality of training during its implementation.

In the learning process, mean squared error (MSE)
(1) [23] was used as a regression loss function to
localize object frames:

MSE =%im %)%, M

i=0

where n is a length of samples,
Y is atrue vector,

Y is a predicted vector.

Binary cross-entropy (BCE) loss (2) [24] was used
to display the loss function of objectivity, which reflects
the confidence of the model that there is an object in the
frame:

In =—Wplyn logo(x,) +@A-yp)logd-o(x, ). (2)
where X, is the input classification vector,

yn is the true classification vector,

o(Xn) is the probability of each class.

Cross-Entropy loss (3) [25] was also used as a loss
function for classification:

C
Iy == We IOQM nc 3
ot > exp(Xn i)

i=1

where X is the true classification data for the object,
yn is the classification vector provided by this
method,
wc is the weight for each class,
C is the number of classes.
For training, the stochastic gradient descent (SGD)
[26] optimizer was used, the parameter values of which

are the following: Ir = 0.01, momentum = 0.937,
16 images per batch. Graphs obtained during the
training of the model are presented in Figure 6, for loss
of objectivity (Figure 6, a), for loss of classification
(Figure 6, b) and for loss of localization (Figure 6, c).
Analyzing the obtained data, it is noticeable that, by the
end of the training, the model reached a plateau and the
loss function almost does not change.
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Fig. 6. Loss functions for YOLO V5 training process,
which include objectness loss (a), object localization
loss (b) and localization loss (c)

2.2.YOLO V8

YOLO v8 is a continuation of the development of
the YOLO architecture, therefore, a small version was
also chosen to obtain comparable results with the
version described in the previous part. The training was
also conducted using an official repository from
ultralitics. BCE loss is used as a loss function for
classification, which is calculated for each class, the
implementation is presented in the previous subsection.
As a loss function for localization, the so-called
boundary box (BBOX) loss is used, which is the inverse
of the intersection over union (loU) metric, which
reflects the localization accuracy of the predicted frames
relative to the annotated ones:

To calculate the loss of objectivity, the third loss
function is used - Distribution Focal Loss (DFL) [27]. It
reflects the accuracy of localization and confidence of
the neural network, which is an object in the frame
(objectness).
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For training, the stochastic gradient descent (SGD)
optimizer was used, the parameters of which are the
following: Ir = 0.01, momentum = 0.9, 16 images per
batch. In accordance with YOLO v5, YOLO v8 also
employed 300 epoches. Figure 7 shows graphs of loss
functions as described above, so that Figure (7,a) shows
the classification loss function, Figure (7,b) - the
localization loss function, and the data for the DFL loss
function are given in Figure (7, c). Analyzing the data
obtained, it is noticeable that the loss functions at the
end of training have a rather low value.
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Fig. 7. Loss functions for YOLO v8 training process,
which include classification loss (a), object localization
loss (b) and DFL loss (c)

2.3. Faster RCNN

Faster RCNN architecture is based on RCNN
architecture, which has three levels. The first level is the
extraction of features from an image using one of the
neural networks (backbones), for example, it can be
Mobilenet, Resnet, Retina or other architectures. The
speed and accuracy of the resulting neural network
depends on the network used. The second level that
receives feature input from the first level is called the
region proposal network (RPN), which offers a set of
regions given the value in the features. The third level is
called region of interest (ROI) pooling, dedicated to
localization and classification of regions proposed at
level 2. As information used for classifications and
definition of objectivity, an array of features obtained at

the first level is utilized. Thus, the reuse of features
allows speeding-up the model.

Taking into account the information about the
structure of the neural network, we chose a fast model
using mobilenet v3 as a backbone. This version of the
network is quite fast and has good localization accuracy
indicators.

For Faster RCNN training, smoothed L1 (4) loss
function is used to calculate localization loss for RPN
and for localization loss at model output:

0-5(Xn _yn)z
Iy = beta
Xy —Yn|—0.5*beta, otherwise,

i |X, —yp| < beta,

@)

where X, is the true information about the object,

yn is the predicted information about the object,

beta is the threshold of change between L1 and
L2 loss (hyperparameter, non-negative, default is 1.0).

The loss function for classification is cross-entropy

loss, as already described for other models. For training,
the Adam optimizer was used, with the parameters Ir =
0.001, weight_decay=0.0005. The batch size during the
training was 16 images. Validation was carried out once
in an epoch, in total, the training lasted 300 epochs,
according to the previous models. The results obtained
for the loss functions are shown in Figure 8, for
localization losses in RPN (Figure 8, a), total
localization losses (Figure 8, b) and classification losses
(Figure 8, c).

3. Performance of trained networks

To check the quality of the models, metrics were
used, which are the most often exploited in localization
and classification tasks. They allow displaying the
accuracy of localization and classification for models, as
well as obtaining the information about the threshold
that is used to filter out objects with a low score.

As a basic localization metric, we used intersection
over union (loU), which allows obtaining accurate
parameters of the intersection of predicted and
annotated blocks. The loU calculation algorithm can be
visually represented as shown in Figure 9. The shaded
area is an indicator of the loU metric, an annotated
frame is highlighted in green, and a model is provided
in red.

Precision (5) and Recall (6) metrics were used to

calculate classification accuracy, the calculation
formulas of which are presented below:
TP
= ) (®)
FP+TP
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of frames that have been annotated for other classes,
against which it is calculated, false positive rates (FP) -
the number of frames provided by the network, but not
annotated in the dataset, false negative rates (FN) - the
number of frames annotated in the dataset, but not
provided by the network.

Validation was carried out for all data from the
validation part of the dataset, the data from which are in
no way involved in the training of the neural network.
In view of this, network comparison is objective and can
be relied to select a model to use. Validation results are
presented in Table 1 for all neural networks.

E Table 1
Zo2) | Precision, recall, and loU metrics for the trained models
0N Model Precision | Recall loU
0 100 200 gt‘;‘; 400 500 600 YOLO v5 0.540 0.928 0.672
A b YOLO V8 0.527 0.667 | 0.683
= H
£ Faster RCNN 0.528 0.627 | 0.645
g°
gn_z Analyzing the obtained metrics, it is noticeable
3 5 == 55 o5 o] o . that the models from the YOLO architecture work are
Step on about the same level, but YOLO V5 is still preferable
c in terms of the considered metrics. Faster RCNN also

Fig. 8. Loss functions for Faster RCNN training process,
which include box regression loss
in RPN (a), overall box regression loss (b)
and classification loss ()

]
Fig. 9. Visual represented of loU

To calculate the above parameters, the distribution
indicators of the provided blocks are required. Among
them, true positive rates (TP) display the number of
correctly provided frames for the class for which it is
calculated, true negative rates (TN) display the number

has a small gap from competitors, but the resulting
metrics are quite consistent with the needs for
localization tasks.

4. Vehicle localization study

To conduct research on the characteristics of the
localization of transport, the framework was predicted
using the neural networks described in the previous part.
All the obtained results were saved in a file and the
value of the localization accuracy metric was obtained
relative to each of the predicted objects. Comparison of
the predicted frames with annotated ones was carried
out by counting the loU metric, as a result, the frames
passing the threshold were selected for comparison. For
each of the compared frames, the area was calculated,
based on the data provided by the network. These data
are approximate, because they use only the provided
frame, and the object may not occupy the entire area of
this frame. Given this, the result may have a bias.

First, let us analyze the data obtained using the
YOLO v5 neural network, because, as shown above, it
has the best characteristics. The obtained dependence of
work accuracy is shown in Figure 10. Analyzing the
results obtained, it is noticeable that the best accuracy
(more than 0.8) is achieved with an object size of 265
pixels, the threshold is highlighted with a red dotted
line. The average accuracy, which is sufficient to
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localize most types of objects (more than 0.6), is
achieved with the object size of more than 100 pixels,
highlighted in the Figure with a yellow dotted line.
Also, objects that are localized with less accuracy, but
can be taken into account when using a neural network,
were assigned to the zone from 0.4 to 0.6 (highlighted
by a red dotted line). The size of this type of objects
should exceed 75 pixels. Objects having a smaller size
can be recognized by the neural network, but have a low
level of accuracy and confidence of the neural network,
respectively, when lowering the threshold, a large
number of incorrect objects can be localized.

Conducting research for the objects provided by
the YOLO v8 neural network, we got the dependence
that is depicted in Figure 11. Analyzing the graph, it is
noticeable that, with respect to the results for YOLO v5,
we have a slightly biased dependence. Thus, sufficient
accuracy is achieved with the object size of 310 pixels,
which is significantly larger than for the previous
model. The object size has also increased, which is
necessary for sufficient classification accuracy. For
YOLO v8, it is 130 pixels. The size of the object for
uncertain classification has not changed significantly, it
is 80 pixels.
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Fig. 10 Dependence of localization accuracy
and classification on boundary box size for YOLO v5
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Fig. 11 Dependence of localization accuracy
and classification on boundary box size for YOLO v8

For Faster RCNN, the dependence of classification
accuracy on the object area was also calculated, but in

the case of this neural network, the statistics are much
worse than for the previous ones. The results are shown
in Figure 12. Analyzing the statistics obtained, it is
noticeable that high accuracy is achieved with the object
area of 1350 pixels, which is a fairly high value and
considerably larger than for the previous models. Also,
the level of sufficient accuracy is achieved with the
object size of 920 pixels, which is too large. A low level
of accuracy is achieved at 550 pixels, which is much
higher than the level of high accuracy for previous
models.
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Fig. 12 Dependence of localization accuracy
and classification on boundary box size
for Faster RCNN

Taking into account the obtained statistics and
analyzing the results, we can understand that Faster
RCNN has worse results compared to other models. To
reduce the variation in results, the results of Faster
RCNN will not be used in determining the overall score.
Summarizing the overall assessment, one can determine
the average threshold of high accuracy of localization
and classification, it ranges from 260 to 320 pixels,
depending on the used neural. Thus, it can be
determined that the average value of the object area,
which is sufficient to achieve high localization and
classification accuracy, is about 290 pixels. Also, the
analysis determines that the size of the object for
sufficient accuracy of localization and classification
should be from 100 to 130 pixels, which is about 0.03%
of the size of the studied image, which has size 640x640
pixels. The area value for minimum localization and
classification accuracy is 75 pixels and is approximately
the same for models with YOLO architecture. Objects
having an area of less than 75 pixels are recognized with
low accuracy, which makes it impossible to classify
them.

Conclusions

As a result of the research, the statistics of the
accuracy of localization and classification of objects
were determined depending on their size. The parameter
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of estimation accuracy was chosen as an indicator,
which reflects the confidence of the neural network in
the predicted object. Also, for trained neural networks,
localization accuracy metrics and classification
accuracy metrics such as loU, Precision and Recall were
determined.

Analyzing the results, it can be noted that the
Faster RCNN architecture is quite good in terms of
metrics, but it has much worse accuracy in localizing
small objects, so its results were not used. YOLO v5
and YOLO v8 have similar indicators for work quality
metrics, as well as for the indicators of the studied
dependence.

When analyzing the dependencies of the accuracy
of localization and classification of objects on their area
in pixels, several threshold values  of the areas of
objects can be distinguished:

- with an area of the object from 290 pixels, it
can be calculated that the object is localized and
classified with great accuracy (larger than 0.8);

- when the area of the object is more than 130
pixels - the object can be localized with sufficient
accuracy, which is more than 0.6;

- to achieve the minimum permissible accuracy
(more than 0.4), the minimum permissible size of the
object is 75 pixels;

- if the area of the object is less than 75 pixels,
the object is localized and classified with low accuracy,
which leads to unreliable results.
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JOCJIIKEHHSA 3AJIEXKHOCTI TOYHHOCTI ITOITYKY ABTOMOBLIIB
BIJI PO3MIPIB OB’€EKTA 3A 306PA’KEHHSIMU BILVIA

P. B. Ilexmucmpo, O. C. Pyoens, B. B. JIykin

Hudpori 300pakeHHS BCE YACTille BUKOPUCTOBYIOThCS IS 3aJad aHANI3Yy pi3HUX THIIB 00 €KTIB, IX
mokaizarii Ta xnacudikarmii. Chep Bukopuctanus 1iei iHGopmarii 1ocuTh 6arato, 9acTo ii BUKOPUCTOBYIOTH IS
CHCTEM CIIOCTEPEKEHHS, aBTOMAaTHYHOTO BOIHHS TPAHCHOPTY YM IOCIHIIPKCHHS HOBHX TepHTOpid. Pasom 3 1M
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ICHye JOCHThH BENWKa KUTbKICTh HEHPOHHHX MEPEXK, II0 O3BOJSIOTH pPeaji3yBaTH NaHWH (YHKIIIOHAT IUIIXOM iX
HaBYaHHS BUKOPHCTOBYIOYM HA0OpW JaHUX PI3HMX THIIB Ta Kiacudikamiil. [[yke dacto mis 3amad JOCIiIKEHHS
BHUKOPHCTOBYIOTh HA0OpH AaHUX, 10 3pOOJIeH] 3a JOIIOMOT0I0 OE3IJIOTHUX JIITANBHUX anapartiB. Taki Habopu 1aHuX
JIO3BOJISIIOTH PO3ITI3HABATU PI3HOTO POAY 00 €KTH, HE MAlOUM IO HUX IMPSIMOTO JIOCTYIY, IIO /A€ 3MOry Oe3IedHO
JOCII/PKYBaTH pi3HI TepuTopii. BukopucTaHHS O€3MIOTHHUX JIITAJBHUX arnapaTiB JOCHTH IOLIMPEHO B HAll dac,
oco0mBO B 3ama4ax ¢ororpadii ta Bigeo, 6arato ¢ororpadiB BUKOPHCTOBYIOTH OC3IMIJIOTHI JITAIBHI amapaTH JyIs
OTpPUMaHHS 3HIMKIB KpaeBHIIB, a TaKOXX CHCTEMH AaBTOMAaTHYHOTO CTEXEHHS Ui mepeMimeHHs. Cucremu
ABTOMATHYHOT'O MEPEMIIIICHHS, a TAKOX CHCTEMH IIOIIYKY 00 €KTiB, IOCUTh YYTIUBI IO PO3MIipy 00’€KTa, a TaKOXK
sKocTi anroputMmy nomyky. Came dyepe3 IIMPOKY 3aCTOCOBYBAHICTh JaHOI 3ajadi, a TakoK Malloi KUTBKOCTI
ITOYATKOBUX JaHUX, TEMOK POOOTH € MOCIIKCHHS 3aJICKHOCTI TOUHOCTI JIOKaTi3aIlii Ta kiacuikariii 00’ €KTiB Bif
X IUTOIII Ha 3HIMKAaX, IO OTPUMaHI 33 JTOMIOMOTOK0 OS3MUTOTHUX JITAIFHUX arapariB. OCHOBHY yBary mMpUBepPHYTO
J0 SKOCTI pOOOTHM HEWPOHHHX MEpeX, L0 JO03BOISIOTH OTPUMYBATH 1H(GOPMAII0 TPO O0’€KTH, a TaKOXK
JIOCITIJDKEHHS 32 JIONIOMOI'OI0 OTPUMAaHHSI CTaTHCTUYHHUX AaHUX Ta TECTOBOMY Ha0OOpi JaHMX 3aJIeKHOCTI TOYHOCTI
JICTEKTYBaHHI Bifl po3Mipy 00’ekTa. MeTo podoTH € OTpUMaHHS CTATUCTUYHUX JAHUX MIOIO0 TOYHOCTI JIOKATi3aIil
Ta Kiacudikaimii B 3aJeKHOCTI BiJl po3Mipy 00'€kTa, a TaKOX BU3HAYCHHS MOPOTIB TOYHOCTI 3 BUKOPHUCTAHHIM
OTPUMaHUX CTAaTUCTUYHHMX JaHHUX. 3agadya PpoOOTH - 1I€¢ HaBYaHHS PO3IMOBCIOPKEHMX HEHPOHHHX MEpex 3
BIJIKPUTOIO apXiTEKTYpOIO Ha HaOOpi JaHWX, IO OTPHMaHi 3a JOMOMOro Oe3MiIOTHHUX JITANLHUX anapariB, Ta
BH3HAYEHHS 1X XapaKTEPUCTHK, 30KpeMa 3aJIeKHOCTI TOYHOCTI PO3IMi3HaBaHHS Bil po3Mipy 00’ekra. OuikyBaHWi
pe3yJabTaT podoTH - II¢ TIOPOroBi 3HAYECHHsI PO3Mipy 00’ €KTa, IO JOMYCTHMI JUIs JOCTaTHLO TOUHOI Kiacudikamii ta
JIoKautizalii 00’€KTiB, a TAKOK METPHKU SKOCTI POOOTH JOCIIKYBaHMX HEWPOHHUX Mepex. B pesynbrari poboru
Oyze HaBeJICHO BUCHOBKH, 1[0 BiJ0Opa)KaroTh MOPOrOBi 3HAYCHHS PO3MIPIB 00 €KTIB, BiJl AKOTO 3aJCKUTh TOYHICTH
pO3Mi3HABAHHS.

Karwuosi ciaoBa: nokamizamis 00’exriB; YOLOVSs, SSD, FasterRCNN, knmacudikaris TexHikd, Oe3MijIOTHI
JIITAJbHI armapaTu.
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