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The subject of this work is the phenomenon of a water hammer in a liquid that contains a small volume of gas 

bubbles. Historically, this phenomenon began to be studied as the dynamics of gas bubbles (Rayleigh-Pleset 

equation). Today, thanks to progress in computer technology, this phenomenon is studied at the level of bubble 

deformation during hydraulic shock. Another approach is to consider the dynamics of a multiphase (two-phase) 

medium in the form of a bubbly liquid. After several assumptions, the main one being a relatively small gas 

content in the liquid, the model consists of two differential equations with respect to the shock wave propagation 
speed and the resulting pressure perturbations. The specified system of equations differs from the corresponding 

classical water hammer equations: they consider the convection of the velocity field. In addition, the friction of 

the liquid against the wall according to the Weisbach-Darcy model is considered. Because of the small content 

of gas bubbles, the Weissbach-Darcy friction is approximated in the same way as in a homogeneous liquid, i.e., 

in a certain sense, greater than the real friction. Maybe that is why more or less physical results are obtained 

only for small values of the dimensionless parameter responsible for the friction of the liquid against the wall. It 

concerns the non-contradiction of the assumptions and the results obtained on their basis. Thus, in the front 

region of the shock pulse, where the pressure increases, the radial velocity of the bubbles is negative; however, 

for relatively large values of the friction parameter, the maximum pressure disturbance moves from the center 

of the shock pulse. This contradicts the assumption about compression: after passing the maximum pressure, gas 

bubbles expand due to a decrease in pressure. The graphical dependence obtained in this study are compared 
with the results related to a homogeneous liquid. They agree, but the shock pulse in a bubbly liquid is not as 

concentrated in space as that in a homogeneous liquid. Its length is 10-12 times greater than the corresponding 

value in a homogeneous liquid. Research methods are purely theoretical. The well-known bubble liquid model 

is used as a single-speed model continuum. Differential equations are solved analytically, approximately (series 

expansion), and numerically. In addition, the original approach of obtaining an analytical solution of an auton-

omous system is used-finding the function of pressure disturbances from the velocity of propagation of the shock 

pulse (and vice versa). Conclusions. A simple one-dimensional hydraulic model of shock wave (impulse) prop-

agation in a bubbly liquid is proposed. In contrast to classical ideas (solutions) about a water hammer, which 

consists of two waves of opposite directions of propagation, a shock pulse is a region of pressure disturbances 

in which the speed of motion of fluid particles is also variable – from the maximum value to almost zero. 

 

Keywords: aircraft; helicopter; structural element; hydraulic shock; two-phase flow; stress; surface defor-
mation; fatigue. 

 

Introduction 

 

The motion of liquid in the hydraulic system of air-

planes and helicopters is accompanied by the phenome-

non of cavitation, which leads to the appearance of gas 

bubbles in the liquid. Since the seals are not perfect, air 

gets into the region of almost zero absolute pressure. This 

air dissolves inside the droplet liquid. The presence of gas 

in the liquid, in turn, is dangerous, as it leads to the oc-

currence of water hammer in the system. Therefore, the 

phenomenon of the propagation of a shock pulse (water 

hummer) in a bubbly liquid is of both scientific and prac-

tical interest. 

When calculating the propagation, reflection and 

other processes related to the shock wave, it is very im-

portant to have as accurate information as possible about 

the initial distribution of hydrodynamic characteristics in 

order to further use this information in the numerical cal-

culations of surface deformation and its possible fatigue. 

The fact is that the physical nature of shock pulse propa-

gation is significantly non-linear and this enables the ex-

istence of different types of motion. Therefore, in order 

to study the desired type of motion (mode), the initial 

profile of the shock pulse should be set correctly (appro-

priately) - the corresponding fields of pressure and prop-

agation velocity disturbances. 

The main feature of shock wave propagation in a 

two-phase medium consisting of liquid and gas is that the 

volume mass is concentrated in the liquid phase, while 

the compressibility of the medium is completely deter-

mined by the compressibility of the gas in the bub-

bles [1]. The cited paper has important experimental data 
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for comparison. Thus, in the second chapter [1] in Fig. 2 

there is a close to square parabolic dependence of the di-

mensionless velocity (Mach number) on the normalized 

pressure value. Approximately such a dependence as a 

part of the exponential function is also obtained in this 

work (see Fig. 1). 

The work [2] is devoted to the equations proposed 

in [3], and more precisely to how these equations can be 

obtained from microscopic equations in a special analyt-

ical limit, which is considered in detail. Among others, 

the mathematical model uses differential equations for 

the growth of the bubble radius. The task at the micro-

scopic level is formulated in the cited work on the basis 

of a number of assumptions about the physical character-

istics of fluid motion.  

1. The center of the bubble does not move.  

2. Bubbles have a spherical shape with a uniform 

distribution of internal pressure.  

3. Surface pressure, viscosity, or thermal conductiv-

ity are not explicitly included.  

4. The liquid is almost compressible, has a constant 

density and speed of sound, and the flow itself is vortex-

free, although in modern papers the formation of a vortex 

structure in a bubble is observed. 

The work [4] is a continuation of studies in [2]. As 

the authors of the paper [4] note in the introduction, they 

are interested in the physical refinement of the model, its 

features, such as interphase friction or mutual interaction 

of bubbles. At the same time, the main interest is to in-

vestigate how far the model mathematically corresponds 

to the first order of the volume concentration of the gas 

and can explain the observed behavior of bubbly liquids. 

A laboratory and numerical experiment to study the 

propagation of a shock wave in a liquid containing bub-

bles is presented in [5]. The reason for writing the cited 

work was that the theoretical and experimental results 

were very different. The reason for these discrepancies, 

as it turned out, is the significant influence of the spatial 

distribution of bubbles on the structure of the shock 

wave. The cited work indicates that the theoretical results 

correspond to the uniform distribution of bubbles in the 

liquid volume. While in many experiments this condition 

was not met: the bubbles filled the volume in a chaotic 

manner, far from being homogeneous. 

More specific studies on the transformation of the 

momentum into a shock wave to a bubbly liquid are pre-

sented in [6]. The photographs presented in the cited 

work indicate a fairly uniform distribution of bubbles in 

the liquid volume, which indicates the possibility of com-

parison with the theoretical results of this work. 

The work [7] is also devoted to the study of shock 

wave propagation in bubbly liquids. This is how the ideas 

of articles [2,5] are developed in the cited work. But the 

authors went further - they already took into account the 

heat and mass exchange between the liquid and the  

bubble. The energy equation for the gas inside the bubble 

is solved analytically. The results of the numerical exper-

iment on the attenuation of oscillations behind the shock 

wave front obtained in the paper are in good agreement 

with [5]. 

A relatively early paper [1] contains a comprehen-

sive physical description of the process of the shock wave 

propagation in a liquid with gas bubbles. The main focus 

of research in this papaer is the physical analysis of shock 

wave saturation depending on the volume concentration 

of bubbles. 

Experimental studies of the dynamics and structure 

of pressure waves of moderate intensity in a liquid with 

gas bubbles of one or two sizes in a wide range of waves, 

as well as studies of the behavior of a gas bubble during 

the passage of a wave - all this is presented in the pa-

per [8]. 

The passage of a shock wave through a liquid with 

a significant (10%) volume content of gas bubbles was 

studied numerically in [9]. Special attention is paid there 

to bubble interaction and bubble deformation. 

Attempts to analytically describe the shock wave in 

a liquid with gas bubbles include the work [10]. In it, in 

particular, the passage of a shock wave is modeled using 

the Kordeweg-de-Fries-Burgers equation. An interesting 

point is the introduction of effective viscosity. If we com-

bine modern data on molecular viscosity in the boundary 

layer, it becomes clear that the viscosity will really de-

pend on the size of the bubbles. 

Another one of the first theoretical works on the 

study of shock waves in liquids with bubbles is the pa-

per [3]. The studies in the cited paper are mainly based 

on equations describing the radius of the bubble. In this 

article, there is a reference to the report [11], in which the 

ratio of conservation of mass and the momentum  across 

the shock wave is established. 

The quasi-homogeneous model of Zvik [12] was 

used to study long-wave disturbances in a gas-liquid mix-

ture with a small volumetric gas content in work [13]. 

The work [14] is devoted to the experimental study 

of the formation of a shock wave by increasing the steep-

ness of compression waves. 

 

1. Problem formulation 

 
On the basis of a nonlinear model of unsteady flow 

in a liquid containing a small amount of gas bubbles, for-

mulate and solve the problem of water hammer, in par-

ticular, find analytical and numerical solutions to this 

problem. 

Study the effect of bubble fraction on the process of 

propagation of the shock pulse. 

Carry out a comparative analysis of the obtained so-

lution with a similar solution in a homogeneous liquid. 
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2. Unsteady flow of a drop liquid in the 

presence of a small fraction of gas bubbles 

 
Further research is based on such assumptions [15]: 

- weak disturbances; 

- homogeneous monodisperse mixture; 

- the liquid is not compressible; 

- a single-speed scheme with a polytropic gas 

and an effective viscosity is used for calculations. 

The system of differential equations consists 

of [15]: 

 momentum conservation equation 

 

0
1 1

V V p
ρ +V 0,     ρ ρ α ;

t x x

   
   

   
         (1) 

 

 mass conservation equation 

 

0 0
0 02 11 1
1 1

1

3α wρ ρ V
+V ρ = ρ ;

t x x α

   
 

    

a

a
         (2) 

 

 equation of the acoustic compressibility of the 

carrier fluid: 

 

0 0 0
1 10 2

1

p p
.

c


                               (3) 

 

In equations (1) - (3) there are six parameters: 
1α , 2α  – 

concentration of phases, a , 1aw , 1с – radius of the bub-

ble, radial velocity in the bubble, speed of sound in the 

liquid, 
o
10ρ  – undisturbed density of the main phase (liq-

uid).  More details are in [15], equation (6.2.1). Although 

these equations are specified in [15] as corresponding to 

small perturbations (see first assumption above), it fol-

lows from equation (3) only that 

 

00
102

1

p p
.

c


                             (4) 

 

Therefore, inequality (4) is valid for typical values 

0 3
10 O(10 )  and 

3
1c 1.5 10  gives 

9
0p p 2 10  

20000 atm. Disturbances in pressure during a shock 

wave are of the order of one hundred to two hundred of 

atmosphere pressure and they correspond to "small" ones 

relatively to 20 000 atm. (within 1-2%). 

Substitute the second equation (1) into the first, and 

equation (3) into equation (2), we obtain: 

 

0
1 1

V V p
α ρ +V 0,

t x x

   
  

   
                 (5) 

0 0
102 2

1 1

02 1 0
10 2

1 1

p p1 p p V
+V ρ =

t x xc c

3α p p
= ρ .

α c

    
          

 
 

 
 

aw

a

        (6) 

 

It should be noted that from (5), (6) in the case of a ho-

mogeneous liquid, we have [16, 17]: 

 

V V p
ρ +V 0,

t x x

   
  

   
 

2
1

1 p V
ρ =0.

t xc

 


 
 

 

This is important because it is easy to make a mis-

take and leave the term corresponding to the convection 

of the pressure field, but it appeared only due to the inho-

mogeneity of the fluid and, therefore, has no relevance 

when considering shock wave in a homogeneous fluid. 

Hereafter, it is more convenient to consider not the 

pressure itself, but its disturbance 0p p p   . At the 

same time, the following ratio is valid: 

 

 0p pp p
.

x x x

   
 

  
                     (7) 

 

The system of equations (5), (6), taking into account (7), 

transforms to such the form: 

 

p' V V p'oα ρ V 0,1 10 2 t x xc
1

 
             

 

          (8) 

 

1

wαp' V 1 p' p'o 1a2ρ + -3 + V + =0.
10 2 2x α x tc c

1 1

 
     
         

 
a

 

(9) 

 

3. Derivation of dimensionless equations  

in self-similar variables 

 
Let's make the system of equations (8), (9) dimen-

sionless. This leads to simplification of the mathematical 

formulation of the problem. 

Introduce the scales of length, speed, time and den-

sity as follows: 

 

     
 
 

 1
1

x L ox L,  V c ,   t ,   ρ =ρ .
10V c

     



Аеродинаміка, динаміка, балістика та керування польотом літальних апаратів 
 

7 

Substituting these ratios into equation (1), we obtain 

the following relation: 

 

      

 
2c p'p' V V p'o 1ρ α 1 V 0.110 2 L t x x Lc

1

 
             

 

  (10) 

 

It follows from equation (10) that 

 

                             
  0 2

10 1 1p c .   
                              

(11) 

                 

 
V V p'

1 α p' V 0.1 t x x

   
    

   
             (12) 

 

Equation (12), however, does not contain viscous 

effects. This applies primarily to wall friction, which can 

be described by the Weissbach-Darcy model [18, 19]. 

Taking into account the scales just introduced, the corre-

sponding term in the equation for the conservation of mo-

mentum has the following form: 

 

0
10

H

λ 2ρ (1+α p )c V V .1 14R
                   (13) 

 

In (13) HR is the hydraulic radius. 

Since when dimensioning (8) we divided by 

1
o 2ρ α c /L
10 1

, we will perform the same procedure with ex-

pression (13). As a result, we get another new dimension-

less parameter 
 

H

λL
λ= .

4R
                               (14) 

 

Taking into account the effect of friction against the 

wall, now equation (12) turns into the following: 

 

   1
V V p'

1 α p' V 1 p' V V 0.
t x x

   
      

   
  (15) 

 

Let's highlight the scales of all motions in equation 

(9) and rewrite it in the following form: 

 

  11 2

1

2 2
1 1

1 102 2
1 1

c αVoρ 1+p' -3 L +
10 L x α c1

c c1 p' 1 p'o o+ c ρ V + ρ =0.
10 L x L tc c

 
   

 

 

aw

a
 

 
After simplifications, we obtain: 

 

          

  2

1

αV L p' p'1a1+p' -3 + V + =0.
x α c x t1

    
        

w

a
 

We will also introduce a new parameter 
 

2

1 1

wα L1aBb=3
α c a

.                         (16) 

 

The parameter Bb in expression (16) is obviously 

responsible for the influence of bubbles on the flow dy-

namics. Therefore, the second dimensionless equation 

(conservation of mass), taking into account (7), will be: 
 

 
V p' p'

1+p' Bb + V + =0.
x x t

    
   

             

(17) 

 

The system of equations (15), (17) is the desired 

one. It contains three dimensionless parameters: 

α ,  λ, Bb1 . At the same time, two of them refer to the 

content of bubbles in the liquid, and the third corresponds 

to taking into account the friction against the wall. It is 

also assumed that the friction against the wall is approx-

imately the same as without the content of bubbles, since 

this parameter is small (several percent). 

The system of equations (6), (8) should be supple-

mented with initial and, if there are boundaries, boundary 

conditions. Therefore, as in previous studies [16, 17], to 

simplify the mathematical problem and formulate the 

specified conditions, it is convenient to come to the self-

similar variable. Recall that 1c  is the speed of sound in 

the carrier phase, that is, the liquid. Let's change (x, t)  

for self-similar variable 
 

1(x, t) x c t   , 

 

or in dimensionless quantities 
 

(x, t ) x t   .                            (18) 

 

In self-similar variables, the system of equations 

(15), (17) takes the following form: 

 

   1
dV V dp'

1 α p' V 1 p' V V 0,
dη dη dη

 
       

 


 

(19) 

 

              

 
dV dp' dp'

1+p' -Bb + V =0.
dη dη dη

   
   

               

(20) 

 

4. Solution of the problem 

 
4.1. Propagation of a shock wave in a bubbly 

liquid without taking into account  

the friction against the walls 
 

For a clear understanding of the influence of various 

physical factors on the process of shock wave propaga-

tion, let's start with a model where friction against the 
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wall is not taken into account. We immediately rewrite 

the system of equations (19), (20), without taking into ac-

count the Weisbach-Darcy friction relatively unknowns 

dp / d ,   dV / d    

 

  1
dV dp'

1 α p' V 1 0,
dη dη

   

              

(21) 

 

                    

  1
dV dp'

1 α p' V 1 0,
dη dη

                   (22) 

 

We use Kramer's method. The system matrix (21), 

(22) has the form: 

 

  

     

11+ p V-1            1      0

Bb 1+p1+p                V-1       

  
 

  

.     (23) 

 

The determinant of matrix (23) is equal to: 

 

    
2

11+ p V-1 1+p .       

 

There are two other determinants 

 

   
 1

0                   1
Bb 1+p

Bb 1+p      V-1
   


, 

 

  
   

   
1

2 1

1+ p V-1      0 
Bb 1+ p 1+p V-1 .

1+p             Bb 1+p


    

 
 

 

Applying Kramer's method, we obtain a solution in 

the form of the following autonomous system of differ-

ential equations: 

 

 

    
2

1

Bb 1+pdV
,

dη 1+α p V 1 1+p


 

  

           (24) 

 

   

    
2

Bb V 1 1+α p' 1+p'dp' 1
= .

dη 1+α p' V 1 1+p'1



 
                 

(25) 

 

The system of equations (24), (25) can be solved di-

rectly, but there is a special approach. Due to the auton-

omy of this system, it is possible to use the phase plane 

and consider the pressure disturbance as a function of 

speed: 

 

  
dp'

= V 1 1+α p' .1dV
 

                      
(26) 

 

The general solution of equation (26) is as follows: 

 

    1 1 1p' V C exp α V V 2 1/ α .            (27) 

 
Obviously, for a compression wave, the pressure 

perturbation must be positive, so in the solution (27) 

1С 0. The maximum pressure perturbation is reached 

for the value V 1 and corresponds to 

 

   1 1 1p' V=1 C exp α 1/ α .                  (28) 

 

From relation (28), it is quite easy to understand 

what the unknown constant of integration is. Indeed, we 

recall that the scale of pressure disturbances was chosen 

to be its maximum. This means that 

 

   1 1 1p' V=1 C exp α 1/ α 1.    

 

Here  1 1 1C 1 1/ exp( ).     

Therefore, the final form of the pressure disturbance 

function is as follows: 

 

    
      2

1 1 1p' V 1 1/ α exp α V 1 1/1/ α .         (29) 

 

Expression (29) clearly indicates that everywhere 

outside the shock pulse maximum, where V 1 , pres-

sure disturbances are smaller than the maximum value. 

In addition, from Fig. 1, a it can also be seen that the 

graph of the curve of pressure dependence on velocity is 

qualitatively similar to Fig. 2 [1], as well as Fig. 2-4 [4]. 

However, pressure disturbances cannot take any value. 

Therefore, the range of possible values of the shock wave 

propagation speed is limited. These restrictions are deter-

mined by the maximum possible negative value of gauge 

pressure disturbances: they should not, in absolute terms, 

exceed the value of the working pressure in the pipeline, 

because the absolute pressure cannot take negative val-

ues. Even more – for a liquid, it is the pressure threshold 

at which the phenomenon of cavitation occurs. There-

fore, one should look for a limit on the speed of shock 

wave propagation from the following inequality: 

 

        2
1 w ssp' p' V p' 2exp α V 1 / 2 1 p p .

 
       

 
 

 

In the last ratio w ssp ,  p , respectively, the working pres-

sure in the pipeline and the pressure of saturated steam. 

From the system of equations (24), (25) it is possi-

ble to find  V  and  p  . Let's start with equation (24) 

and substitute solution (29) into it. As a result, the fol-

lowing equation is obtained relative to  V  : 
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2
1

1 1

2 2
1 1

1

1

dV 1 1
Bb 1 1 exp α V 1 /

dη α α

1
  / exp α V 1 1 α V 1 1

α

1
  1 1 .

α

  
         

  

  
         

  

 
  

 

 (30) 

 
Ratio (30) clearly indicates the complex nature of 

the solution for the velocity function in the case of direct 

integration of equation (30). On the basis of equation 

(30), an analytical solution can be obtained if we consider 

equation (30) in its inverse form: 

 

     

  

2 2
1 1

1

2
1

1 1 1

dη 1
exp α V 1 1 α V 1 1

dV α

1 1 1
1 1 / Bb 1 1 exp α V 1 .

α α α

 
         

 

    
           
    

 

 

After algebraic transformations, it is possible to ob-

tain a solution in the form 

 

 
 

  

    

3

1
1

2
1 1

2
1 1 1

V 1α V
η V C

Bb 3 Bb

α α 1 V 1
dv.

Bb 1 α exp α V 1 α 1


    

 


 
     

 


   (31)

 

 

To evaluate the significance of the term in (31) con-

taining the integral, we should return to the definition of 

the parameter Bb . Let's make an assessment: 

 

1 1 1 1 1 1

2

α 1 α 1 α c α c
=

Bb 3α 1 w L 3 w L1a 1a

 


a a
.        (32) 

 

The right-hand side in (32) is the product of three 

ratios, two of which have the order of unity, but the third, 

the ratio of the bubble radius to the shock wave length, is 

obviously very small. Indeed, taking into account the 

speed of wave propagation (about 1000 m/s) and the fre-

quency of the hydraulic shock wave (tens to few hun-

dreds of Hertz), we have a wavelength of the order of 

meters or more, which is obviously many times greater 

than the radius of the bubble (millimeters). So, with fairly 

high accuracy, it can be assumed 

 

 
 

3

1
1

V 1α V
η V C .

Bb 3 Bb


               (33) 

 

The integration constant 1C  in the solution (33) is 

easily determined from the boundary condition: 

 

 V 1 0.                           (34) 

 

It follows from relations (33) and (34) that 

 

   
311

V V 1 V 1 .
Bb 3

 
      

 
         (35) 

 

From equation (35) it is already easy to find the in-

verse function  V V  . The only one of the three solu-

tions (35) is real: 

 

     1V Bb, / 1/ Bb,        ,         (36) 

 

with  

 

1/3
2 2

21
1

1

9Bb 41
Bb, 12Bb 4 .

2

          
  
  

 

 

But it does not exist for all values of  . The solution (36) 

is obtained by Cartano's formulas. In the case when the 

expression inside the square root is negative, one can use 

the trigonometric approach to the solution [20, see 

(1.8.8)]. We will briefly indicate how to do it. Equation 

(35) can be rewritten as  

 

3
1 1u pu q 0,  u=V-1, p 3 / ,  q 3Bb / .           (37) 

 

Equation (37) has three valid solutions [20, see 

(1.8.8)]: 

 

                
 

 

1

2,3

u 2 p / 3 cos / 3 ,

u 2 p / 3 cos / 3 / 3 .

  

     
           (38) 

 

In formulars (38) 

 

   
3

cos q / (2 p / 3 .    

 

The graphical dependence  V V  , according to 

(38), is shown in Fig. 1, b. Comparing it with Fig. 11 of 

work [6] indicates a good correspondence. 

Obviously, the direct solution of the system (26), 

(27) will lead to too cumbersome expressions for the 

pressure disturbance function  p  . Therefore, it is nec-

essary to just numerically solve the system of equations 

(24), (25), which is done below as a particular case – 

without taking into account the friction of the liquid 

against the walls. 
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a 

 

 
b 

 

Fig. 1 a – Dependence of pressure disturbances  

on the speed of propagation of the shock pulse:  

the solid line corresponds to a homogeneous liquid, and 

the markers correspond to a bubble according to the 

value of the parameter 1 0.9  ;  

b – propagation velocity in the shock pulse 

 

4.2. Taking into account a friction  

against the pipe wall 
 

Let us now also take into account the friction of the 

liquid against the pipe wall – the classic Weissbach-

Darcy model [18, 19]. As mentioned above, with a small 

concentration of bubbles, this friction can be roughly ap-

proximated by the same model as in a homogeneous liq-

uid. The matrix of the system (21), (22) looks like this: 

 

  

   

 

 

11+ p V-1            1      1+p V V

1+p                V-1       Bb 1+p

  
 

  
    

(39) 

 

The determinant of the matrix has not changed, but 

1 they 2 already look different: 

 

    1 1+p V-1 V V Bb ,   

 
       2 11+p Bb 1+ p V-1 V V 1+p .       

 

According to Kramer's method, we obtain the fol-

lowing system of differential equations: 

 

   

    
2

1

V-1 V V Bb 1 pdV
,

d 1 p V-1 1 p

  


    

                  (40) 

       

    

1

2
1

1+p Bb 1+ p V 1 V V 1+pdp
.

d 1+ p V 1 1+p

    


    
  

(41) 

 

We use the experience of solving the previous  

problem and we find it first  p p V  , only later 

 V   . Dividing the left and right parts of equation 

(41) by correspondent ones of equation (40), we obtain: 

 

    

 

2

2

Bb 1+α p' V 1 +λV 1+p'dp' 1
= ,   V 0;

dV λ V 1 V Bb




  
    (42) 

    

 

2

2

Bb 1+α p' V 1 λV 1+p'dp' 1
= ,   V 0.

dV λ V 1 V Bb

 


 
   (43) 

 

The corresponding general solutions of equations 

(42) and (43) are as follows: 

 

 
2

1
1 1 13 2

λV BbV
p' V 0 φ dV C φ ,

-λV λV Bb

Bb 
  

    
   
 (44) 

 
2

1
1 1 13 2

λV BbV
p' V 0 φ dV C φ ,

λV λV Bb

Bb 
  

   
    


  

(45) 

 

with     
 1

1 3 2

V 1
V 0 dV,

V V Bb

  
  

  
  

           
 

 1
1 3 2

V 1
V 0 dV

V V Bb

  
  

  
 . 

 

In addition to solutions (44), (45) in the form of in-

tegrals, one can also find approximate solutions in the 

form of series for  V 1 0.5   . Given the smallness 

of the values Bb  and the boundary condition 

 p V 1 0   , the following approximation is obtained 

for V 0  

 

   
 

 
 

2
21

3

Bb 8 1 4 42
p V 1 V 1 V 1

1 Bb 2 1 Bb
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2 2

1 3

5

Bb 12 7 60 13 12 28 4
V 1

6 1 Bb

          


  


 

 
 

3 2
1 1

7

Bb 144 40 248 30 468 18

24 1 Bb

          


 


 


 

 
 

 


4
43 2

7

5 2 3 4
19

V 1
48 184 112 V 1

24 1 Bb

1
Bb 1440 248 512 240

120 1 Bb


       




         



 

2 3
1 1468 5828 1304 52 1558           

     5 521600 36 242 V 1 O V 1        .       (46) 

 

For the values V 0 and the boundary condition 

 p V 0 0    the following approximation is obtained: 

 

     2 3 4
1

1 1 1
p V BbV BbV Bb 1 V Bb 9 V

2 3 12
            

 2 2 5 6
1

1 Bb 3
Bb Bb V O V .

5 3 2

 
        

 
    (47) 

 

5. Comparative analysis of solutions  

for homogeneous and bubbly liquids 
 

As mentioned in the introduction, the presence of 

gas bubbles is responsible for the compressibility of bub-

bly liquid [1]. That is probably why in the models of wa-

ter hammer in bubbly liquid special attention is not paid 

to the elastic deformations of the pipeline. Although this 

topic can be discussed (see the Discussion section be-

low). Let us now focus on the results obtained by numer-

ical integration of the system of equations (40), (41). 

Fig. 2 presents the corresponding values of the functions 

 p  and  V  . The peculiarity of these curves is that 

their left parts correspond to the process of stretching 

bubbles, and the right parts correspond to compression. 

Significant displacement of the maximum  p  (see 

Fig. 2, d  from the center indicates the contradiction of 

the assumption of a decreasing function  p  for all 

positive values of the argument. By fitting, it was found 

that for 0.025  a fairly physical picture is obtained, 

when the maximum of the pressure disturbance field al-

most does not move, and the velocity distribution  V 

very well resembles its counterpart in the case of a ho-

mogeneous liquid (see Fig. 1 [17]). The only difference 

is that it became clear after comparing with the solution 

(23) (see [17]) that the integration constants in the cited 

solution can be chosen so that the graph  V  has a qual-

itative similarity with Fig. 3. 

 
a 

 
b 

 
c 

 
d 

Fig. 2. Dependencies of the velocity field  

and pressure disturbance. Bb 0.1 (everywhere):  

a – 0.01  ; b – 0.01  ;  

c – 0.05  ; d -- 0.1   
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Fig. 3. Distribution of pressure disturbances  
and the velocity field, which are most consistent  

with those obtained in previous work [17]. The parame-

ter data are as follows: Bb 0.1 , 0.025   

 

Discussion 

 
The phenomenon of water hammer is quite com-

plex. It refers to unsteady fluid flows. The peculiarity of 

the passage of a shock pulse in a bubbly liquid is that the 

compression of the medium occurs mainly due to the de-

formation of gas bubbles. The relations given in the work 

characterizing the bubbly liquid as a one-speed contin-

uum are well-known [15]. Mathematical complexity 

caused the consideration of small perturbations that cor-

responded to linear models. However, pressure changes 

occurring in flexible pipelines on airplanes and helicop-

ters reach 75% of the operating value. In such circum-

stances, the assumption of smallness has no place. So, 

nonlinear models are considered in the work. The pres-

ence of gas impurities in the liquid is quite likely, since 

cavitation phenomena occur in the hydraulic system, dur-

ing which a small amount of air may enter through the 

seal. Therefore, it is advisable to take into account the 

bubbliness of the liquid, which is confirmed by signifi-

cant differences of the investigated in the work processes, 

respectively, in homogeneous and bubble liquids. From 

the theoretical (physical) point of view, in the bubbly liq-

uid model, the radial deformation rate of the bubbles is 

considered a constant value. At first view, one may think 

that this is not the case, but the analysis of graphic infor-

mation in Fig. 2 and Fig. 3 shows that the divergence of 

the velocity field, which is physically responsible for 

fluid compressibility, is approximately constant (the ve-

locity graphs are quite close to straight lines). Hence, the 

compression-expansion rates are also approximately con-

stant, which validates the model. Another assumption 

used in this work is the slight difference in Weisbach-

Darcy friction for homogeneous and bubbly liquids. And 

indeed, physically consistent results are obtained only for 

rather small (0.025) dimensionless value of the friction 

parameter. 

 

Conclusions 

 
The paper formulated and solved the problem of un-

steady flow (shock wave propagation) of droplet liquid 

containing a small amount of bubbles (bubble liquid). 

The application of the original method for solving the 

nonlinear system of equations of the model made it pos-

sible to find an analytical solution - the dependence of the 

of pressure field disturbances on the speed of the shock 

pulse. Quantitative analysis indicates that pressure 

changes of 100-200 atm. do not exceed 1% of the theo-

retical maximum permissible (2GPa). 

Another possible unsteady flow can be one where 

the velocity distribution is significantly variable in space 

and can reach a zero value. In fact, this means "blurring" 

of the shock pulse. The obtained data are consistent with 

previous results [17]. The shape of the speed distribution 

(see Fig. 3) resembles the corresponding shape presented 

in Fig. 1 in [17] for a homogeneous liquid. The difference 

is that for a bubbly liquid, the area of the shock pulse is 

10-12 times longer than that for a homogeneous liquid. 

As further research, it is possible to improve the 

model, as well as use the results obtained in this work for 

more accurate modeling of the formation and propaga-

tion of a shock pulse in a multiphase medium, which is a 

bubbly liquid. 
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НЕСТАЦІОНАРНА ТЕЧІЯ БУЛЬБАШКОВОЇ РІДИНИ  

В ГІДРАВЛІЧНИХ СИСТЕМАХ ЛІТАКІВ І ВЕРТОЛЬОТІВ 

П. В. Лук’янов, К. С. Павлова 

Предметом даної роботи є явище гідравлічного удару в рідини, яка містить незначну за об’ємом частину 

бульбашок газу. Історично це явище почалося вивчатися як динаміка бульбашок газу (рівняння Релея-Пле-

сета). І сьогодні, завдяки прогресу у комп’ютерній техніки, це явище вивчається на рівні деформації бульба-

шки при проходженні гідравлічного удару. Інший підхід представляє собою розгляд динаміки багатофазного 

(двофазного) середовища у вигляді бульбашкової рідини. Після низки припущень, основним із яких є відно-

сно малий вміст газу в рідині, модель складається з двох диференціальних рівнянь відносно швидкості поши-

рення ударної хвилі та збурень тиску, які виникають внаслідок цього. У зазначеній системі рівнянь є відмін-

ність  від відповідних класичних рівнянь гідроудару: вони враховують конвекцію поля швидкості. Крім того, 
враховується тертя рідину о стінку за моделлю Вейсбаха-Дарсі. Зважаючи на невеликий вміст бульбашок  

газу, тертя Вейсбаха-Дарсі апроксимується так само як і в однорідній рідині, тобто в певному сенсі більшим 

ніж реальне. Може тому, лише за невеликих значень безрозмірного параметру, що відповідає за тертя рідини 

о стінку, отримуються більш-менш фізичні результати. Йдеться про несуперечність припущень и результатів, 

які отримуються на їх підставі. Так у передній області ударного імпульсу, де відбувається підвищення тиску, 

радіальна швидкість у бульбашок є від’ємною, але за відносно великих значень параметра тертя максимум 

збурень тиску переміщується з центру ударного імпульсу. І це протирічить припущенню про стиснення: після 

проходження максимуму тиску відбувається розширення бульбашок газу – за рахунок зменшення тиску. 

Отримані в роботі графічні залежності порівняні із результатами, що стосуються однорідної рідини. Вони 

узгоджуються, але ударний імпульс в бульбашковій рідині не такий концентрований у просторі як у однорід-

ній. Його протяжність у 10-12 разів перевищує відповідне значення у однорідній рідині. Методи досліджень 

є суто теоретичними. Використовується відома модель бульбашкової рідини як одношвидкістного контінуму.  

Диференціальні рівняння розв’язуються аналітично, наближено (розвиненням у ряди) та числено. Крім того, 

застосовується оригінальний підхід отримання аналітичного розв’язку автономної системи – знаходження фу-

нкції збурень тиску від швидкості поширення ударного імпульсу (та навпаки). Висновки. Запропонована про-

ста одновимірна гідравлічна модель поширення ударної хвилі (імпульсу) у бульбашковій рідині. На відміну 

від класичних уявлень (розв’язків) про гідравлічний удар, який складається із двох хвиль протилежних напря-

мків поширення, ударний імпульс являє собою область збурень тиску, в якій швидкість руху частинок рідини 

також є змінною – від максимального значення до майже нульового. 

Ключові слова: літак; вертоліт; елемент конструкції; гідравлічний удар; двофазна течія; напруження; 

деформація поверхні; втома. 
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