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The subject of this work is the phenomenon of a water hammer in a liquid that contains a small volume of gas
bubbles. Historically, this phenomenon began to be studied as the dynamics of gas bubbles (Rayleigh-Pleset
equation). Today, thanks to progress in computer technology, this phenomenon is studied at the level of bubble
deformation during hydraulic shock. Another approach is to consider the dynamics of a multiphase (two-phase)
medium in the form of a bubbly liquid. After several assumptions, the main one being a relatively small gas
content in the liquid, the model consists of two differential equations with respect to the shock wave propagation
speed and the resulting pressure perturbations. The specified system of equations differs from the corresponding
classical water hammer equations: they consider the convection of the velocity field. In addition, the friction of
the liquid against the wall according to the Weisbach-Darcy model is considered. Because of the small content
of gas bubbles, the Weissbach-Darcy friction is approximated in the same way as in a homogeneous liquid, i.e.,
in a certain sense, greater than the real friction. Maybe that is why more or less physical results are obtained
only for small values of the dimensionless parameter responsible for the friction of the liquid against the wall. It
concerns the non-contradiction of the assumptions and the results obtained on their basis. Thus, in the front
region of the shock pulse, where the pressure increases, the radial velocity of the bubbles is negative; however,
for relatively large values of the friction parameter, the maximum pressure disturbance moves from the center
of the shock pulse. This contradicts the assumption about compression: after passing the maximum pressure, gas
bubbles expand due to a decrease in pressure. The graphical dependence obtained in this study are compared
with the results related to a homogeneous liquid. They agree, but the shock pulse in a bubbly liquid is not as
concentrated in space as that in a homogeneous liquid. Its length is 10-12 times greater than the corresponding
value in a homogeneous liquid. Research methods are purely theoretical. The well-known bubble liquid model
is used as a single-speed model continuum. Differential equations are solved analytically, approximately (series
expansion), and numerically. In addition, the original approach of obtaining an analytical solution of an auton-
omous system is used-finding the function of pressure disturbances from the velocity of propagation of the shock
pulse (and vice versa). Conclusions. A simple one-dimensional hydraulic model of shock wave (impulse) prop-
agation in a bubbly liquid is proposed. In contrast to classical ideas (solutions) about a water hammer, which
consists of two waves of opposite directions of propagation, a shock pulse is a region of pressure disturbances
in which the speed of motion of fluid particles is also variable — from the maximum value to almost zero.

Keywords: aircraft; helicopter; structural element; hydraulic shock; two-phase flow; stress; surface defor-
mation; fatigue.

the initial distribution of hydrodynamic characteristics in
order to further use this information in the numerical cal-

Introduction

The motion of liquid in the hydraulic system of air-
planes and helicopters is accompanied by the phenome-
non of cavitation, which leads to the appearance of gas
bubbles in the liquid. Since the seals are not perfect, air
gets into the region of almost zero absolute pressure. This
air dissolves inside the droplet liquid. The presence of gas
in the liquid, in turn, is dangerous, as it leads to the oc-
currence of water hammer in the system. Therefore, the
phenomenon of the propagation of a shock pulse (water
hummer) in a bubbly liquid is of both scientific and prac-
tical interest.

When calculating the propagation, reflection and
other processes related to the shock wave, it is very im-
portant to have as accurate information as possible about

culations of surface deformation and its possible fatigue.
The fact is that the physical nature of shock pulse propa-
gation is significantly non-linear and this enables the ex-
istence of different types of motion. Therefore, in order
to study the desired type of motion (mode), the initial
profile of the shock pulse should be set correctly (appro-
priately) - the corresponding fields of pressure and prop-
agation velocity disturbances.

The main feature of shock wave propagation in a
two-phase medium consisting of liquid and gas is that the
volume mass is concentrated in the liquid phase, while
the compressibility of the medium is completely deter-
mined by the compressibility of the gas in the bub-
bles [1]. The cited paper has important experimental data
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for comparison. Thus, in the second chapter [1] in Fig. 2
there is a close to square parabolic dependence of the di-
mensionless velocity (Mach number) on the normalized
pressure value. Approximately such a dependence as a
part of the exponential function is also obtained in this
work (see Fig. 1).

The work [2] is devoted to the equations proposed
in [3], and more precisely to how these equations can be
obtained from microscopic equations in a special analyt-
ical limit, which is considered in detail. Among others,
the mathematical model uses differential equations for
the growth of the bubble radius. The task at the micro-
scopic level is formulated in the cited work on the basis
of a number of assumptions about the physical character-
istics of fluid motion.

1. The center of the bubble does not move.

2. Bubbles have a spherical shape with a uniform
distribution of internal pressure.

3. Surface pressure, viscosity, or thermal conductiv-
ity are not explicitly included.

4. The liquid is almost compressible, has a constant
density and speed of sound, and the flow itself is vortex-
free, although in modern papers the formation of a vortex
structure in a bubble is observed.

The work [4] is a continuation of studies in [2]. As
the authors of the paper [4] note in the introduction, they
are interested in the physical refinement of the model, its
features, such as interphase friction or mutual interaction
of bubbles. At the same time, the main interest is to in-
vestigate how far the model mathematically corresponds
to the first order of the volume concentration of the gas
and can explain the observed behavior of bubbly liquids.

A laboratory and numerical experiment to study the
propagation of a shock wave in a liquid containing bub-
bles is presented in [5]. The reason for writing the cited
work was that the theoretical and experimental results
were very different. The reason for these discrepancies,
as it turned out, is the significant influence of the spatial
distribution of bubbles on the structure of the shock
wave. The cited work indicates that the theoretical results
correspond to the uniform distribution of bubbles in the
liquid volume. While in many experiments this condition
was not met: the bubbles filled the volume in a chaotic
manner, far from being homogeneous.

More specific studies on the transformation of the
momentum into a shock wave to a bubbly liquid are pre-
sented in [6]. The photographs presented in the cited
work indicate a fairly uniform distribution of bubbles in
the liquid volume, which indicates the possibility of com-
parison with the theoretical results of this work.

The work [7] is also devoted to the study of shock
wave propagation in bubbly liquids. This is how the ideas
of articles [2,5] are developed in the cited work. But the
authors went further - they already took into account the
heat and mass exchange between the liquid and the

bubble. The energy equation for the gas inside the bubble
is solved analytically. The results of the numerical exper-
iment on the attenuation of oscillations behind the shock
wave front obtained in the paper are in good agreement
with [5].

A relatively early paper [1] contains a comprehen-
sive physical description of the process of the shock wave
propagation in a liquid with gas bubbles. The main focus
of research in this papaer is the physical analysis of shock
wave saturation depending on the volume concentration
of bubbles.

Experimental studies of the dynamics and structure
of pressure waves of moderate intensity in a liquid with
gas bubbles of one or two sizes in a wide range of waves,
as well as studies of the behavior of a gas bubble during
the passage of a wave - all this is presented in the pa-
per [8].

The passage of a shock wave through a liquid with
a significant (10%) volume content of gas bubbles was
studied numerically in [9]. Special attention is paid there
to bubble interaction and bubble deformation.

Attempts to analytically describe the shock wave in
a liquid with gas bubbles include the work [10]. In it, in
particular, the passage of a shock wave is modeled using
the Kordeweg-de-Fries-Burgers equation. An interesting
point is the introduction of effective viscosity. If we com-
bine modern data on molecular viscosity in the boundary
layer, it becomes clear that the viscosity will really de-
pend on the size of the bubbles.

Another one of the first theoretical works on the
study of shock waves in liquids with bubbles is the pa-
per [3]. The studies in the cited paper are mainly based
on equations describing the radius of the bubble. In this
article, there is a reference to the report [11], in which the
ratio of conservation of mass and the momentum across
the shock wave is established.

The quasi-homogeneous model of Zvik [12] was
used to study long-wave disturbances in a gas-liquid mix-
ture with a small volumetric gas content in work [13].

The work [14] is devoted to the experimental study
of the formation of a shock wave by increasing the steep-
ness of compression waves.

1. Problem formulation

On the basis of a nonlinear model of unsteady flow
in a liquid containing a small amount of gas bubbles, for-
mulate and solve the problem of water hammer, in par-
ticular, find analytical and numerical solutions to this
problem.

Study the effect of bubble fraction on the process of
propagation of the shock pulse.

Carry out a comparative analysis of the obtained so-
lution with a similar solution in a homogeneous liquid.



ISSN 1814-4225 (print)

ABIAIIMHO-KOCMIYHA TEXHIKA I TEXHOJIOT'IS, 2024, Ne 2(194)  1SSN 2663-2012 (online)

2. Unsteady flow of a drop liquid in the
presence of a small fraction of gas bubbles

Further research is based on such assumptions [15]:

- weak disturbances;

- homogeneous monodisperse mixture;

- the liquid is not compressible;

- asingle-speed scheme with a polytropic gas
and an effective viscosity is used for calculations.

The system of differential equations consists
of [15]:

— momentum conservation equation

p(a—v+\/ GVJ

ap _o,
ot OX

0
=0, p~prog; 1
x 107 @)
— mass conservation equation

apl 6p 00V |_30awia o
+V— —= =2, 2
( a x| Tap ™ @

— equation of the acoustic compressibility of the
carrier fluid:

0o_ 0 ,P—-Pp
Pi =pio + 20- @)
G

In equations (1) - (3) there are six parameters: o,, o, —
concentration of phases, a, wy, , c¢;— radius of the bub-
ble, radial velocity in the bubble, speed of sound in the

liquid, pfo — undisturbed density of the main phase (lig-
uid). More details are in [15], equation (6.2.1). Although
these equations are specified in [15] as corresponding to
small perturbations (see first assumption above), it fol-
lows from equation (3) only that

p-p 0
2 0 <<P10- (4)
C1
Therefore, inequality (4) is valid for typical values
P?o = 0(10%) and C zl.5-1039ives pP—pg ~ 2.10°

~ 20000 atm. Disturbances in pressure during a shock
wave are of the order of one hundred to two hundred of
atmosphere pressure and they correspond to "small" ones
relatively to 20 000 atm. (within 1-2%).

Substitute the second equation (1) into the first, and
equation (3) into equation (2), we obtain:

AN
+V =0, 5
0gP1 ( P ax] x (5)
p 6p] pP—pg |3V
+V + -—=
2 (at 5 [plo 2 |ox
(6)
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It should be noted that from (5), (6) in the case of a ho-
mogeneous liquid, we have [16, 17]:

p(a—v +V avj
ot oX

ap _o,
OX
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6t ax

This is important because it is easy to make a mis-
take and leave the term corresponding to the convection
of the pressure field, but it appeared only due to the inho-
mogeneity of the fluid and, therefore, has no relevance
when considering shock wave in a homogeneous fluid.

Hereafter, it is more convenient to consider not the
pressure itself, but its disturbance p’=p-pg. At the

same time, the following ratio is valid:

op_ a(p-po) op’
R )

OX OX OX
The system of equations (5), (6), taking into account (7),
transforms to such the form:
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3. Derivation of dimensionless equations
in self-similar variables

Let's make the system of equations (8), (9) dimen-
sionless. This leads to simplification of the mathematical
formulation of the problem.

Introduce the scales of length, speed, time and den-
sity as follows:

-

[{-L M-e [1-g- 2. ey
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Substituting these ratios into equation (1), we obtain
the following relation:

2 (0w o7 ol
P [a\_’u‘/a—\f}a—pm:o. (10)
ot oX

ol l+—
plo 1 ox L

2 L
It follows from equation (10) that

[p']= PR004CE. (11)

[V gov) o
(1+a1p)[at +Va;(j . =0. (12)

Equation (12), however, does not contain viscous
effects. This applies primarily to wall friction, which can
be described by the Weissbach-Darcy model [18, 19].
Taking into account the scales just introduced, the corre-
sponding term in the equation for the conservation of mo-
mentum has the following form:

A —n 2515
2 % (1+03p)e2 V[V, (13)
4Ry
In (13) Ry is the hydraulic radius.

Since when dimensioning (8) we divided by
pfoozlcl2 /L, we will perform the same procedure with ex-
pression (13). As a result, we get another new dimension-
less parameter

=L (14)
4Ry,

Taking into account the effect of friction against the
wall, now equation (12) turns into the following:

N —NVN) & =, _nolo
1 \ —+A(1+p")V|V|=0. (15
(+on1p)[at + 6YJ+W+ (1+p) | | (15)

Let's highlight the scales of all motions in equation
(9) and rewrite it in the following form:

0 (1.=nC1[ OV , 0p Wy,
1+p')—=| —-3———=L |+
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After simplifications, we obtain:

g aﬁ'j_o
Ve

We will also introduce a new parameter

Bh=3®2 Wia L
o0 ¢ a

(16)

The parameter BD in expression (16) is obviously
responsible for the influence of bubbles on the flow dy-
namics. Therefore, the second dimensionless equation
(conservation of mass), taking into account (7), will be:

NN —op )
(1+p)(§_8bj+(v§+ﬁj_o' 17)

The system of equations (15), (17) is the desired
one. It contains three dimensionless parameters:
01, A, Bb. At the same time, two of them refer to the
content of bubbles in the liquid, and the third corresponds
to taking into account the friction against the wall. It is
also assumed that the friction against the wall is approx-
imately the same as without the content of bubbles, since
this parameter is small (several percent).

The system of equations (6), (8) should be supple-
mented with initial and, if there are boundaries, boundary
conditions. Therefore, as in previous studies [16, 17], to
simplify the mathematical problem and formulate the
specified conditions, it is convenient to come to the self-
similar variable. Recall that c; is the speed of sound in

the carrier phase, that is, the liquid. Let's change (x,t)
for self-similar variable

nx,t) =x-cyt,

or in dimensionless quantities
nx1)=x-1. (18)
In self-similar variables, the system of equations

(15), (17) takes the following form:

o OV VY AP s —nolal
(1+a1p)(—E+Vdnj+ﬁ+ﬂ(1+p)v|v|—0, (19)

ool

4. Solution of the problem

vl dpj =0. (20)

dn dn

4.1. Propagation of a shock wave in a bubbly
liquid without taking into account
the friction against the walls

For a clear understanding of the influence of various
physical factors on the process of shock wave propaga-
tion, let's start with a model where friction against the
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wall is not taken into account. We immediately rewrite
the system of equations (19), (20), without taking into ac-
count the Weishach-Darcy friction relatively unknowns
dp’/dm, dV'/dn

dv dp'

(1+ap') (V-1 )Eer_‘ 0, (21)
(1+0;p)(V - )3\1: ‘31? 0, 22)

We use Kramer's method. The system matrix (21),
(22) has the form:

0
Bb (1+5’)J - (23

The determinant of matrix (23) is equal to:

[(l+oc1ﬁ’)(\_/—1) 1

(1+7) (V1)

A = (L+ayp')(V-1)° - (1+P)).

There are two other determinants

0 1 ~
= gp(147) (V-1) =-Bb(1+p),
) (I+oyP)(V-1) O ~ R
A, = 1p) B (1+7) =Bb(1+0yp') (14D )(v 1).

Applying Kramer's method, we obtain a solution in
the form of the following autonomous system of differ-
ential equations:

dV . Bb (1+ﬁ') (24)
dn (1+0yp") (V-1)* = (1+7)
dp'_ Bb(V -1)(1+01p)(1+7) 5)

G (1ragp) (V1 (149)

The system of equations (24), (25) can be solved di-
rectly, but there is a special approach. Due to the auton-
omy of this system, it is possible to use the phase plane
and consider the pressure disturbance as a function of
speed:

(26)

The general solution of equation (26) is as follows:

E'(\_/) = Cl eXp(—al\_/(\_/—Z))—l/(xl. (27)

Obviously, for a compression wave, the pressure
perturbation must be positive, so in the solution (27)
C; > 0. The maximum pressure perturbation is reached

for the value V =1and corresponds to

p'(V=1)=Crexp(ay )1/ ay. (28)

From relation (28), it is quite easy to understand
what the unknown constant of integration is. Indeed, we
recall that the scale of pressure disturbances was chosen
to be its maximum. This means that

p(V=1)=Cexp(ay)—1/03 =1.

Here C = (1+1/ oy )exp(—ay).

Therefore, the final form of the pressure disturbance
function is as follows:

TJ'(\_/) =(1+1/ al)exp(—al(\_/—l)z)—1/1/(11. (29)

Expression (29) clearly indicates that everywhere

outside the shock pulse maximum, where V =1, pres-
sure disturbances are smaller than the maximum value.
In addition, from Fig. 1, a it can also be seen that the
graph of the curve of pressure dependence on velocity is
qualitatively similar to Fig. 2 [1], as well as Fig. 2-4 [4].
However, pressure disturbances cannot take any value.
Therefore, the range of possible values of the shock wave
propagation speed is limited. These restrictions are deter-
mined by the maximum possible negative value of gauge
pressure disturbances: they should not, in absolute terms,
exceed the value of the working pressure in the pipeline,
because the absolute pressure cannot take negative val-
ues. Even more — for a liquid, it is the pressure threshold
at which the phenomenon of cavitation occurs. There-
fore, one should look for a limit on the speed of shock
wave propagation from the following inequality:

919(9) =01 2080 -oa(V 1) 12)-1 > s

In the last ratio p,,, pss , respectively, the working pres-

sure in the pipeline and the pressure of saturated steam.
From the system of equations (24), (25) it is possi-

ble to find V/(7j)and p'(7). Let's start with equation (24)

and substitute solution (29) into it. As a result, the fol-
lowing equation is obtained relative to V(7) :
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Z_Y:_Bb[l_i{Hijexp(_al(v-l)z)}

n o 01

/exp(—al(\_/—l)z )[(1+ o)(V-1)° —[1+iB— (30)

o0
_1[1_1)_
il
Ratio (30) clearly indicates the complex nature of
the solution for the velocity function in the case of direct
integration of equation (30). On the basis of equation

(30), an analytical solution can be obtained if we consider
equation (30) in its inverse form:

3—\@/ = —exp(—al(\_/—l)z)((1+u1)(\7—1)2 —l—ij—

1{10%1)/%(1ail+[1+ail]exp(al(\71;1)}

After algebraic transformations, it is possible to ob-
tain a solution in the form

2 3
. oy (0 ~1)(V -1) “ (31)

Bb((1+ al)exp(—al (\7—1)2 )+0c1 —l)

To evaluate the significance of the term in (31) con-
taining the integral, we should return to the definition of
the parameter Bb . Let's make an assessment:

(ll—l_(ll—l(ll C1 a_(ll C1 a
Bb 3(12 lwlaL

. 32
3W1aL 32)

The right-hand side in (32) is the product of three
ratios, two of which have the order of unity, but the third,
the ratio of the bubble radius to the shock wave length, is
obviously very small. Indeed, taking into account the
speed of wave propagation (about 1000 m/s) and the fre-
quency of the hydraulic shock wave (tens to few hun-
dreds of Hertz), we have a wavelength of the order of
meters or more, which is obviously many times greater
than the radius of the bubble (millimeters). So, with fairly
high accuracy, it can be assumed

The integration constant C; in the solution (33) is
easily determined from the boundary condition:

n(vV=1)=0 (34)
It follows from relations (33) and (34) that
o 1 (R 3
n(V):B—b[—?(V—l) +v—1j. (35)

From equation (35) it is already easy to find the in-
verse function V = V(7). The only one of the three solu-

tions (35) is real:
V(7)=o(Bb,7)/ a; -1/ ¢(Bb,7), (36)

with

¢(Bb,n)=

N~

5 5 1/3
[LlZBbﬁ+4 M}Xf _
o

But it does not exist for all values of n. The solution (36)
is obtained by Cartanao's formulas. In the case when the
expression inside the square root is negative, one can use
the trigonometric approach to the solution [20, see
(1.8.8)]. We will briefly indicate how to do it. Equation
(35) can be rewritten as

u +pu+q=0, u=V-1, p=-3/ay, q=3Bbn/ay. (37)

Equation (37) has three valid solutions [20, see
(1.8.8)]:

up =24—p/3cos(a/3),

(38)
Up 3 =—2—p/3cos(a/3+7/3).

In formulars (38)

cos(a):q/(Z«,—(p/3)3.

The graphical dependence V = V() , according to

(38), is shown in Fig. 1, b. Comparing it with Fig. 11 of
work [6] indicates a good correspondence.

Obviously, the direct solution of the system (26),
(27) will lead to too cumbersome expressions for the
pressure disturbance functionp'(7) . Therefore, it is nec-

essary to just numerically solve the system of equations
(24), (25), which is done below as a particular case —
without taking into account the friction of the liquid
against the walls.
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Fig. 1 a — Dependence of pressure disturbances
on the speed of propagation of the shock pulse:
the solid line corresponds to a homogeneous liquid, and
the markers correspond to a bubble according to the
value of the parameter oy =0.9;

b — propagation velocity in the shock pulse

4.2. Taking into account a friction
against the pipe wall

Let us now also take into account the friction of the
liquid against the pipe wall — the classic Weissbach-
Darcy model [18, 19]. As mentioned above, with a small
concentration of bubbles, this friction can be roughly ap-
proximated by the same model as in a homogeneous lig-
uid. The matrix of the system (21), (22) looks like this:

(1+ayp')(V-1) 1
(1+p") (V-1)

X(1+ﬁ’)\7|\7| 39)
Bb(1+p’)

The determinant of the matrix has not changed, but
Asthey A, already look different:

Ay =(1+9")(2(V-1) V|V|-Bb),
Ap = (1+P")(Bb(1+oyp") (V-1) AV |V|(1+7")).

According to Kramer's method, we obtain the fol-
lowing system of differential equations:

av _ (R(V-2)V V|- Bb)(1+ﬁ’)l @)

i (1+ 0@')(\7-1)2 @+ p)
dp _ (14)(Bb(1+eyP) (V1) ~AV|V|(1+9))

v — . (41)
(1+asp')(V-1)" —(1+p")

dn

We use the experience of solving the previous
problem and we find it first ﬁ’:ﬁ'(\_/), only later

n :ﬁ(\_/) . Dividing the left and right parts of equation
(41) by correspondent ones of equation (40), we obtain:

dp_ Bb(1+ogp)(V -1)+aV? (1+7)

L V<0 (42
dv —X(\"/—1)\72—Bb = 42)
d_ﬁ':Bb(1+a_1§?(\_/—_l)—7_p\_/2(l+§'), vr0. (@3
dv x(V—l)VZ—Bb

The corresponding general solutions of equations
(42) and (43) are as follows:

2V2 + BbV —Bb
(Plv
-AV° +AV- +Bb
AV2 _BbV +Bb

.[(Pl =3 T2
—AV~ +AV< +Bb

dv + clJ oL, (44)

dv + cl] oL, (45)

oy (\7 - l) _
A3 -aV? 1 Bb

agh (\_/ - 1)
W3 +AV2 +Bb

with ¢ (V<0)=|

o)<

In addition to solutions (44), (45) in the form of in-
tegrals, one can also find approximate solutions in the

<l

1

form of series for |\7—1| <(=0.5). Given the smallness
of the values Bb and the boundary condition
p'(V=1)=0, the following approximation is obtained

forV>0

Bb(al—sml)—;ﬁ? -4X(\7_1)2 B
2(1+Bb)
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T (Bb(lZXZ +7a; ~607-13)~1272 - 287 - 4) B
5 5 (V_l) -
6 (1+Bb)

T (Bb (14473 + 40a;% — 2487 + 3001, — 4687 +18)

24 (1+Bb)’
_ o 4
4873 — 18432 —112X)1(V;1)7(\7—1)4 -
24 (1+Bb)
by 1

—— ( Bb (1440%5 +248a,0.2 +512%° — 2400% +
120 (1+Bb)

+468a4 ). —5828).2 —13041> + 520, —1558) —

—160072 +36) - 242%)(\7—1)5 + o((\7—1)5) . (46)

For the values V <0and the boundary condition

p'(V =0)=0 the following approximation is obtained:

(V)= BbV—%BbVZ +§(Bb+1)x\73 _ésbmﬁg)w "
+é[BTma1 +BbAZ — 22 +§Bbxj\75 +o(\76). (47)

5. Comparative analysis of solutions
for homogeneous and bubbly liquids

As mentioned in the introduction, the presence of
gas bubbles is responsible for the compressibility of bub-
bly liquid [1]. That is probably why in the models of wa-
ter hammer in bubbly liquid special attention is not paid
to the elastic deformations of the pipeline. Although this
topic can be discussed (see the Discussion section be-
low). Let us now focus on the results obtained by numer-
ical integration of the system of equations (40), (41).
Fig. 2 presents the corresponding values of the functions
p’(n)and V(7). The peculiarity of these curves is that
their left parts correspond to the process of stretching
bubbles, and the right parts correspond to compression.
Significant displacement of the maximum p’(7) (see

Fig. 2,d from the center indicates the contradiction of
the assumption of a decreasing function p’(m)for all
positive values of the argument. By fitting, it was found
that for A =0.025a fairly physical picture is obtained,
when the maximum of the pressure disturbance field al-
most does not move, and the velocity distribution V()
very well resembles its counterpart in the case of a ho-
mogeneous liquid (see Fig. 1 [17]). The only difference

is that it became clear after comparing with the solution
(23) (see [17]) that the integration constants in the cited

solution can be chosen so that the graph V(7 hasa qual-
itative similarity with Fig. 3.

-5 o} 5

Fig. 2. Dependencies of the velocity field
and pressure disturbance. |Bb| = 0.1 (everywhere):
a-A=001;b- 1=0.01;
c-A=005;d--2=0.1
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Fig. 3. Distribution of pressure disturbances
and the velocity field, which are most consistent
with those obtained in previous work [17]. The parame-

ter data are as follows: |Bb| -0.1, A=0.025

Discussion

The phenomenon of water hammer is quite com-
plex. It refers to unsteady fluid flows. The peculiarity of
the passage of a shock pulse in a bubbly liquid is that the
compression of the medium occurs mainly due to the de-
formation of gas bubbles. The relations given in the work
characterizing the bubbly liquid as a one-speed contin-
uum are well-known [15]. Mathematical complexity
caused the consideration of small perturbations that cor-
responded to linear models. However, pressure changes
occurring in flexible pipelines on airplanes and helicop-
ters reach 75% of the operating value. In such circum-
stances, the assumption of smallness has no place. So,
nonlinear models are considered in the work. The pres-
ence of gas impurities in the liquid is quite likely, since
cavitation phenomena occur in the hydraulic system, dur-
ing which a small amount of air may enter through the
seal. Therefore, it is advisable to take into account the
bubbliness of the liquid, which is confirmed by signifi-
cant differences of the investigated in the work processes,
respectively, in homogeneous and bubble liquids. From
the theoretical (physical) point of view, in the bubbly lig-
uid model, the radial deformation rate of the bubbles is
considered a constant value. At first view, one may think
that this is not the case, but the analysis of graphic infor-
mation in Fig. 2 and Fig. 3 shows that the divergence of
the velocity field, which is physically responsible for
fluid compressibility, is approximately constant (the ve-
locity graphs are quite close to straight lines). Hence, the
compression-expansion rates are also approximately con-
stant, which validates the model. Another assumption
used in this work is the slight difference in Weishach-
Darcy friction for homogeneous and bubbly liquids. And
indeed, physically consistent results are obtained only for
rather small (0.025) dimensionless value of the friction
parameter.

Conclusions

The paper formulated and solved the problem of un-
steady flow (shock wave propagation) of droplet liquid
containing a small amount of bubbles (bubble liquid).
The application of the original method for solving the
nonlinear system of equations of the model made it pos-
sible to find an analytical solution - the dependence of the
of pressure field disturbances on the speed of the shock
pulse. Quantitative analysis indicates that pressure
changes of 100-200 atm. do not exceed 1% of the theo-
retical maximum permissible (2GPa).

Another possible unsteady flow can be one where
the velocity distribution is significantly variable in space
and can reach a zero value. In fact, this means "blurring"
of the shock pulse. The obtained data are consistent with
previous results [17]. The shape of the speed distribution
(see Fig. 3) resembles the corresponding shape presented
in Fig. 1 in [17] for a homogeneous liquid. The difference
is that for a bubbly liquid, the area of the shock pulse is
10-12 times longer than that for a homogeneous liquid.

As further research, it is possible to improve the
model, as well as use the results obtained in this work for
more accurate modeling of the formation and propaga-
tion of a shock pulse in a multiphase medium, which is a
bubbly liquid.
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HECTAIIIOHAPHA TEYIS BYJIbBAIIIKOBOI PITUHA
B I'TIPABJIIYHUX CUCTEMAX JIITAKIB I BEPTOJIbBOTIB

II. B. JIyx’anos, K. C. Ilagnosa

IIpeameTrom 1anoi poGOTH € SBUIIE IiAPaBIIYHOTO YAAPY B PIAMHH, sIKa MICTUTh HE3HAUHY 32 00’ €MOM YaCTHHY
OynpOarok rasy. IcTopuuHO 1€ sIBHIIIE 1TOYaNIOCsi BUBYATHCS SIK AWHaMika Oynb0amiok ra3y (piBHsHHs Penes-ITie-
cera). | cborozHi, 3aBAsSKN IPOrpecy y KOMIT IOTEPHil TeXHIKH, I1e SBUIIEC BUBYAETHCS Ha PiBHI Aedopmartii Oynsoa-
LIKH TIPH [TPOXOJKEHHI TipaBIigHOrO yaapy. [Hmmii miaxin npeacrasise coOO po3riisa AMHaMiKK OaraTtoasHoro
(mBothazHoro) cepenoBuina y BUrisi Oyiap0amkoBoi piauHu. [Ticis HU3KH MPUMYIIEHb, OCHOBHUM 13 SIKUX € BiJTHO-
CHO MaJIMi BMICT Ta3y B piAWHI, MOZIENb CKIIAJA€ThCs 3 IBOX AU(EPEHIIIAbHAX PiBHSHD BiJHOCHO IIBHKOCTI MOIIH-
PEHHS yIapHOi XBHJIi Ta 30ypeHb THCKY, SKi BHHUKAIOTh BHACIIIOK IIHOTO. Y 3a3HAYCHI CUCTEMi PiBHSHB € BiJMiH-
HICTH BIJI BIIOBIIHMX KJIACHYHUX PIBHSIHB TiApOYAapy: BOHM BPaxOBYIOTh KOHBEKIIIIO TT0Js BHAKOCTI. KpiM Toro,
BpaxoBYETHCS TEPTS PIIMHY O CTiHKY 3a Mojeiutio BeiicOaxa-/lapci. 3Baxkatoun Ha HEBEIMKUI BMICT Oyibp0amox
ra3y, TepTs Belicoaxa-Jlapci ampOKCUMYEThCS TaK CaMo SIK 1 B OJJHOPIHIH pifuHI, TOOTO B IEBHOMY CEHCI OLTBIIIMM
HiX peanbHe. Moxe TOMY, JIMIIE 32 HEBEINKUX 3HAUeHb 0€3p03MipHOro IapaMeTpy, 10 BiNOBIIAE 3a TEPTS PiAUHH
0 CTiHKY, OTPHMYIOThCS OiTbII-MEHII (Bi3HuHi pe3yTbTaTi. MIeThcs po HecylepedHicTh PUITYIIEHb U Pe3yNIbTATIB,
SIKI OTPUMYIOTBCS Ha iX mizicTaBi. Tak y nepeqHii o0nacTi yaapHOro iMmyiscy, 1€ BiiOyBaeThCs MiIBUILEHHS THUCKY,
paziaibHa MIBUIKICTH y OYy/Ib0AIoOK € BiI’€MHOIO, ajie 3a BiTHOCHO BEJMKHX 3HA4Y€Hb NapameTpa TepTsS MaKCUMyM
30ypeHb THCKY IEePEMIIIYEThCS 3 HEHTPY YAApPHOTO IMITYIIBCY. | 1ie IPOTHPIYNTD MPHITYIIEHHIO PO CTUCHEHHS: TICIs
MIPOXOJPKEHHS! MaKCUMyMY THCKY BiZOYBa€eThCsS PO3IIMPEHHs OynbOalloK ra3zy — 3a paxyHOK 3MEHILIEHHS THCKY.
OtpumaHni B po0OoTi rpadiyHi 3aJeKHOCTI MOPIBHSHI 13 pe3yibTaTaMy, IO CTOCYIOThCS OAHOPiAHOI pinuHu. BoHn
Y3TODKYIOThCS, alle yAapHUH IMITyNbC B OYyJIbOAIIKOBIH PiAMHI HE TaKHi KOHIIEHTPOBAHUH Y ITPOCTOPI SK y OAHOPII-
miit. Voro nporsukaicTs y 10-12 pasiB nepeBuIye BiAMOBiIHE 3HAUYCHHS y OXHOPIAHIH piuHi. MeToam J0cTiKeHDb
€ CYTO TEOpPETHYHUMH. BHKOPHCTOBYETHCS BiIoMa MOJIENb Oy Ib0aIIKOBOT PiIMHU SIK OTHOIIBU/IKICTHOTO KOHTIHYMY.
JudepeHiianbHi piBHSIHHS pO3B’A3yIOThCS aHAITUYHO, HAOIMKEHO (PO3BUHEHHSIM y psiay) Ta yncieHo. Kpim toro,
3aCTOCOBYETHCS OPUTTHAIBHUH ITiIX1/1 OTPUMaHHS aHAJITUYHOTO PO3B’A3KY aBTOHOMHOI CUCTEMH — 3HaXOJDKEHHS (y-
HKLi1 30ypeHb TUCKY BiJ MIBUIKOCTI NOIIMPEHHS YIapHOro IMITy/bCy (Ta HaBnaky). BucHoBkH. 3anponoHoBaHa po-
CTa OJHOBUMIpHA TipaBiiyHa MOJIEJb MOMIMPEHHs yaapHoi XxBuili (IMIynbcy) y OynbOamkoBiii piguni. Ha Bigminy
BiJl KJIACHYHUX YsIBJIEHB (PO3B’SI3KiB) PO TiIpaBIiyHUI yaap, sIKMi CKJIAIA€ThC 13 IBOX XBUIIb TPOTUIISKHUX HATIPSI-
MKIB TOLIMPEHHSI, YAAPHUI IMITYIIBC SIBIJISIE COOOI0 00J1aCTh 30ypEeHb THCKY, B SIKiH IIBHJKICTh PYXY YACTUHOK PiIMHH
TAKOX € 3MIHHOIO — BiJl MAaKCUMAaJIbHOTO 3HAYECHHSI J]O MaiKe HyJIbOBOIO.

KoarwuoBi ciioBa: yitak; BepTONiT; eeMEHT KOHCTPYKIIT; TinpaBiiuHuid yaap; ABodasHa Teuis; HalpyKeHHS,
nedopmatlisi HOBEpXHi; BTOMa.

Jlyk’sinoB I1aBino BonogumupoBuy — kaua. (i3.-MaT. HayK, CTapil. HayK. CIiBpoO., OI. Kad. riporazoBux
cucreM, HarionanbHuit aBiaiitnuii yHiBepcuter, KuiB, Ykpaina.

IMaBnoBa Karepuna CepriiBHa — marictp, acn. kad. rizporazoBux cucrem, HarioHapHUiA aBiaiiiHuil yHiBep-
curet, KuiB, Ykpaina.

Pavlo Lukianov — Candidate of Physics and Mathematics Sciences, Senior Researcher, Associate Professor of
Hydro-Gas Systems Department, National Aviation University, Kyiv, Ukraine,
e-mail: Pavlo.Lukianov@npp.nau.edu.ua, ORCID: 0000-0002-5043-6182.

Kateryna Pavlova — Master of Technical Sciences, PhD Student of Hydro-Gas Systems Department, National
Aviation University, Kyiv, Ukraine,
e-mail: pavlovadazv@gmail.com, ORCID: 0000-0001-8818-4358.



