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METHODS OF CLUSTERING PARAMETERS IN THE CREATION OF NEURAL
NETWORK MULTI-MODE DYNAMIC MODELS OF AIRCRAFT ENGINES

The presence on modern aviation gas-turbine engines of dozens and even hundreds of sensors for continuous
registration of various parameters of their operation makes it possible to collect and process large amounts of
information. This stimulates the development of monitoring and diagnostic systems. At the same time the pres-
ence of great volumes of information is not always a sufficient condition for making adequate managerial deci-
sions, especially in the case of evaluation of the technical condition of aviation engines. Thus it is necessary to
consider, that aviation engines it is objects which concern to individualized, i.e. to such which are in the sort
unique. Therefore, the theory of creating systems to assess the technical state of aircraft engines is formed on
the background of the development of modern neural network technology and requires the formation of specif-
ic methodological apparatus. From these positions in the article the methods which are used at carrying out
clustering of the initial information received at work of modern systems of an estimation and forecasting of a
technical condition of aviation gas-turbine engines are considered. This task is particularly relevant for creat-
ing neural network multimode models of aircraft engines used in technical state estimation systems for identifi-
cation of possible failures and damages. Metric, optimization and recurrent methods of input data clustering
are considered in the article. The main attention is given to comparison of clustering methods in order to
choose the most effective of them for the aircraft engine condition evaluation systems and suitable for imple-
mentation of systems with meta-learning. The implementation of clustering methods of initial data allows us to
breakdown diagnostic images of objects not by one parameter, but by a whole set of features. In addition, clus-
ter analysis, unlike most mathematical-statistical methods do not impose any restrictions on the type of objects
under consideration, and allows us to consider a set of raw data of almost arbitrary nature, which is very im-
portant when assessing the technical condition of aircraft engines. At the same time cluster analysis allows one
to consider a sufficiently large volume of information and sharply reduce, compress large arrays of paramet-
rical information, make them compact and visual.
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Introduction

In the last few years, various methods of creating
multi-mode dynamic models of aircraft engines for
evaluation and prediction of their technical condition
have been rapidly developed. Among them are deep
convolutional neural networks, recurrent neural net-
works, logistic regression, vector reference method, k-
means method, etc. One of the key distinguishing fea-
tures of the application of these methods is the ability to
master the solution of complex problems from scratch,
using quite a lot of time and data for training [1, 2].

But at creation of systems of an estimation of
technical condition of modern aviation gas-turbine en-
gines there is a problem of creation of such methods
which would allow to acquire new skills and to adapt to
various conditions of operation of engines without pos-
sibility to spend training of diagnostic system in each
situation from zero. Instead of this, the Condition Anal-
ysis system needs to be able to learn new tasks from
previous experiences rather than looking at each new
task in isolation. In this case it is necessary to use meta-

learning [3]. Systems for evaluating the technical condi-
tion of aircraft engines using meta-learning methods
should be able to learn with high quality from just a few
examples per class, as well as to adapt to new classes
that were not presented in the training sampling.

1. The problem statement

The methods used in modern aviation engines
condition estimation systems use neural network meth-
ods, as with supervised learning, as with unsupervised
learning.

The supervised learning algorithm uses data for
which there is a labeling: each set of engine perfor-
mance parameters has a label of the class to which it
belongs. These labels are then used in training to pro-
vide signals about how to change the parameters of the
trained model to improve the quality of the classifica-
tion. In the standard setting of the classification prob-
lem, the classes in supervised learning coincide with the
classes in the test. In this case, each data element corre-
sponds to a real number that is used to change the pa-
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rameters of the taught model so that to maximally ap-
proximate the number predicted by the model to the true
one, at least in a root-mean-square sense.

Self-learning algorithms work with data without
markup. The goal of methods in this category is to de-
termine some useful structure in the data. In particular,
such a structure may be an estimate of the probability
distribution that generated the input data, and partition-
ing the data into groups of similar examples in the case
of clustering problem.

Thus, in the case of a self-learning problem for an
input random vector x it is necessary to estimate the
probability distribution P(x) or some properties of this
distribution that are of interest. In supervised learning, a
number y (class label) is available for each x, and the
algorithm is trained to predict y for x by constructing an
estimate P(y|x). A separate category is reinforcement
learning, which teaches a sequence of actions in some
environment to achieve a goal, using the environment's
response to the actions [4].

Supervised learning algorithms when used with
neural networks are able to work qualitatively in various
tasks of classification, regression and pattern recogni-
tion within the framework of a complex system of eval-
uation of the technical condition of aircraft engines.
However, they require large amounts of marked-up data
for training. Without this, the accuracy of supervised
learning algorithms decreases significantly. Preparing
such data for each task is an extremely labor-intensive
operation requiring manual labor and much time. For
self-learning algorithms, on the contrary, such data
markup is not required. Standard classification methods
are not able to quickly and qualitatively adapt for new
classes of data, which were not in the training samples.
This property leads to the consideration of algorithms of
information classification by a small number of exam-
ples (few-shot learning).

Self-learning methods are used for obtaining some
useful information about data partitioning in contrast to
supervised learning methods where such indication is
the markup. An example of such useful information is
dividing data into groups of similar examples, as in the
case of the clustering problem. In the classical setting,
the goal of self-learning algorithms is to find the "best"
representation of data that preserves as much infor-
mation about the input data as possible while being
simpler than the original [5]. That is why the task of
clustering is to identify the groups in the input data that
will give this "best" representation.

2. The problem solution

If (Q,F,P) is a probability space, T is a c-algebra of
subsets of Q, P(X) is a probability distribution defined
on the set of input data

X={x, %% ..},
which is a subset of the Euclidean pro-space R* (d > 1).
We denote by 1...k the set of indices {1, 2, ..., k} and
suppose that input dataset X is divided into k unknown
subsets:

{xl,xz,...,xk}: X=[JX.
ielk
The probability distribution P(X) can be represent-
ed by a mixture of distributions:

k
P(X) =2 piP(X})

i=1
where p; (pi > 0) and P(X?), i=1k, are the corre-
sponding probabilities and distributions.

Thus, the clustering problem is to find the optimal

partition y of the input dataset X into k non-empty clus-
ters:

k
21(X) ={X1, Xz,.... X, 3: X =X
i=1
and
Xi mXJ Zg,iij.
The partitioning of y is defined by the function
Yy i X —1,k , which assigns to each point X the cluster

index:
Xi ={xeX]y,(x) =i},
and the clustering problem can be written as:
X = {X1'x2""’xk}'
In order to solve the clustering problem, we intro-
duce a penalty function gi, which determines the "prox-

imity" to cluster i, i=1k. In order to obtain the opti-

mal clustering, it is necessary to minimize the mean risk
functional:
F(x) =E,f(x,x) > min, 1)
x

where E, is the conditional expectation given a fixed set
x and f(y,X) =y, (x) (x,x) . We will interpret vectors

0i, i=1,_k , as cluster centers, and matrices G;, i=1,_k,
as covariance matrices. Then the clustering quality (1)
has the form:

[
FoO =Y [0i(0;. 1, )P@x) > min.  (2)
i=1X; X

For i =1,_k and fixed x € X of each function gi(x)
depends only on 6; and G;. Then we can choose a clus-

tering rule as
Xi(G),F):(xeX):qi(ei,Fi,x)qu(ej,rj,x),
j:l!i_l;
0 (6;, 13, %) <q;(6;,I3,%),
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j=i+1k,i=ik,
where ® = (04, 02, ..., 8 is a (dk)-matrix;
G is a set consisting of k matrices G, G, ...
where

» Gk,

Tie R™ j=1k.

A true partitioning of the input data into clusters,
which minimizes (2), leads to the following rule, ac-
cording to which x belongs to a particular cluster:

z =arg ming;(6;,15,x) ,
i=Lk
where z = z(0, G, X) is the label of the cluster to which
the data point x is assigned. Let ei € R¥ be a vector
consisting of zeros and one at position z, then:

FO,T) = j el q(6, T, X)P(dx) — min,
e,r

X
where q(0,I",x ) € R¥is a vector of values
a(OLix), =1k .

In important special case corresponds to a uniform
distribution P(-) and a penalty function which is the
square of the Mahalanobis distance

a0, 1) = (x=0) I 7 (x=68). ()

One of the most common and widely used is the

case of Gaussian Mixture Model (GMM) [6]:

k
f(u, ) =f(©,1,x) = > piG(x|6;,13) ,
i=1
where G(x|i,Gj) is the density of Gaussian distribution
with mean 6; € RY and covariance matrix Gi, i =1,_k .
Therefore, using the sequence of input data
{x, x2,....} and a given value of k, we find the parame-
ters 0; € RY and G;, i=1,_k, of the Gaussian distribu-
tions whose mixture has generated the sequence of input
data.
The problem of finding the unknown parameters
6i € RY and G;, i=1,_k, is closely connected with the
clustering problem, which is to find:

K
FO) = [(x—0) T (x—6;)P(dx) > min.
i=1X; X
For input data {x',x2...x"} this functional takes
the form:

k . i
FO.N=Y > -6 57 (x)-6;) —>min, (4)
i:lijXi or
j=1n.
With the clustering problem statement introduced
above, finding the optimal GMM parameters is equiva-
lent to finding the optimal clustering parameters, since

if the sequence {x"} is generated by a GMM with pa-
rameters @* and I'*, then with these parameters the

minimum of the following expression is achieved:

-2 'n(ipie(xwi,n)}

xeX i=1
which can be rewritten as:

k _d
> 3 | -Inpi(en) 2|57+

i=1xJex

+§(xj —0) "It —ei)j,
i=1n.
Denote the first term in this expression by L and
the second term by R, then
argminL =arg minR :(®*,F*) mpu N —> 0 ,
o,r or
Then:

K _ _
FO.D)=Y X" X 0d-0) I d-6y),

i1= XjeXi
j=1n
and consequently
arg minF(®,T) =arg minR = (G)*,F*) mpu N — o,

o,r e,r

In [7] an interesting model of a mixture of Gaussi-
an distributions with sparse parameters was suggested.
This approach constructs a model with a large number
of parameters, many of which are then shrunk to zero in
the process of fitting to the data (hence the "sparseness"
in the name). To model such properties it is necessary to
use a priori distributions that have a large probability
mass concentrated at zero and "long tails" to fit possible
large parameters of the system. In order to achieve such
behavior in the model from [7], the mean value is set as:

0, eRY, 0 ~ N(0,6?), 5; ~C, (01), I=1,d,
where C.(0,1) denotes the Cauchy distribution bounded

on the positive axis with parameters 0 and 1. The diago-
nal covariance matrix can then be given as:
I = diag(0?,63....,3 ) o; ~ C, (0:05), j=Ld.

This choice of distributions corresponds to the
"horseshoe method" prior [8], the use of which allows
us to satisfy the sparsity properties described above due
to the fact that the Cauchy distribution has a large mass
of probabilities centered around a mode. Such a distri-

bution has tails that decay so that the parameters will
decrease to zero, unless the data imply otherwise.

The weights pi ~ D(eo, €1,..., €0), i =1k according
to [7] are supposed to belong to a Dirichlet distribution
where the parameter ey ~ G(op, ko) is obtained from a
gamma distribution with mean k! and variance (o,k?)?,
op = 10.

In spite of a large number of various approaches to
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the clustering problem, the algorithms based on minimi-
zation of quantities determining dissimilarity of objects
remain one of the most demanded. Among such ap-
proaches, the most popular is the k-means method that
searches for a partition ythat minimizes the sum of
squares of inter-cluster distances. Each cluster is charac-

terized by a corresponding centroid 6;, i=1,_k. In this

case we will consider all matrices G to be unit matrices.
Then (3) becomes a Euclidean distance. The k-means
method optimizes the functional (4). This problem is
NP-hard [9], and in the worst case the time complexity
of the algorithm is exponential [10].

Based on the ideas of the k-means method, we can
suggest a k-medoids algorithm. At the input of the algo-
rithm X — data, k — number of clusters, maximum num-

ber of iterations. The output © is an estimation of the
medoid, x — data partitioning.
Step 1: Randomly choose k initial medoids

O= (él,éz, ék) from elements of X.

Step 2: A non-medoid data point is randomly cho-
sen.

Step 3: This point is made a medoid instead of the
closest medoid.

Step 4: If the value of functional (4) with the new
medoid has become smaller, then we leave that point as
the medoid.

Steps 2, 3, and 4 are repeated until the medoids
stop changing or the maximal number of iterations is
reached.

This algorithm uses random initialization, which
can lead to poor clustering quality. One of the common
causes of this result is cluster collapse, where several
clusters are too close together, while others begin to
include "superfluous" elements.

Therefore the initial centroids are iteratively cho-
sen so that they are as far away from each other as pos-
sible, and the algorithm then takes the following form:

Step 1. The first centroid is chosen randomly from
the initial data.

Step 2. For each data element the Euclidean dis-
tance to the nearest centroid is calculated.

Step 3: The new centroid is selected among the el-
ements of the original data with probability proportional
to the square of the distance for this element, which was
chosen at Step 2.

Steps 2 and 3 are repeated until there are k cen-
troids.

One more algorithm which can be used at the deci-
sion of a problem of clustering of the input data at oper-
ation of system of an estimation of a technical condition
of aviation engines is EM (expectation-maximization)
algorithm [11]. It is based on likelihood maximization,
when the model depends on hidden parameters. The EM

algorithm can be used to estimate the parameters of a
mixture of Gaussian distributions [2].
Let’s consider a two-component GMM with diag-

onal covariance matrices and dispersions 67, 63 :

£(,1,%) = -p)Glx| 61,62 )+ pGlx| 0,3 ),
and the likelihood function takes the form

N _ .
ZIn[(l—p)G(x' |el,512)+ pG(x' |92,c§)].
i=1
We introduce a hidden parameter 3;, on which de-
pends to which component of GMM the data element x!

belongs: if 6; = 0, then Xi ~ N(Gl,clz) ,and if 8 = 1, then

X ~N(05,63) for i=LN. Then the likelihood func-
tion is written as
N . )
Z[(l—&i)lnG(x' |el,ci’-)+5i InG(x' |92,c§)]+
i=1
N
+>°[0-8;) Int—p) +; Inp]
i=1
Estimates 01, 02, o1, o2 are constructed from the
corresponding samples. The estimate &; is constructed
as:
Vi =P(8j =1|6y,01,0,,07) .
Then the algorithm can be represented as follows:
Step 1 él,éz are randomly selected from ele-
ments X, 6, =1,6,=1,p=0.5.
Step 2: Classification:
~ f)G(Xi Iéz,&%)

Yi

= — — ,i=1LN.
@-P)GIX [6;,62)+pGlx' 6,53
Step 3: Maximization:

N
> @A-7i)x;
6, :—i=1N ,
> -1
i-1

N A
> @-7i)(x; —6y)?
S i

01 =

. ,
> A=)
i=1
N A
> 3i(xi —0,)?
62 = i=1 N Il
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Steps 2, 3 are repeated until convergence or until
the maximum number of iterations is reached.

From the description of this algorithm, we see that
the k-means method is its special case, in which each
cluster is characterized only by corresponding centroid,
and dispersion estimates are not constructed. The k-
means method uses unambiguous binding of initial data
elements to corresponding clusters, in contrast to EM-
algorithm, which performs ambiguous binding due to
estimation.

If the number of clusters is not known in advance,
we can recommend using the proximity propagation
method [12]. The basic idea of this method is that the
input data are divided into groups based on how similar
they are to each other.

So if X is given some similarity metric such that if
s(x',x)) > s(x|,x¥), then example x' is more similar to
example X! than to x*. An example of such a metric is
s(x',x)) = -x" — xj|[2. If the matrix R = {rix} describes
how well the k-th example fits to be representative of
the i-th example. Matrix A = {aix} describes how right
it would be for the i-th example to choose the k-th as a
representative. The output of the algorithm is cluster
labels for each element of the original data (cy, Cz, ..., Cn).

Step 1. Matrices R and A are initialized with zero
values.

Step 2:

Vi, K:h g =s(xixk)—max(ai K’ +s(xi,xk')).
' K=k

Lz

Step 3:

Vi kizk:ajy = min(o, ek + 2. max(o, rir’k)] :
i'gi,k
Step 4:
Vk:iay = > max(0,f ).
"=k
Steps 2, 3, 4 are repeated until the maximum num-
ber of iterations is reached.
Step 5:
Vi:cj =argmax(a; i + 1 ) .
k

In many cases the input data of the aircraft engine
condition estimation system has significant noise. Then
it is better to use DBSCAN (Density-based spatial clus-
tering of applications with noise) method for data clus-
tering [13]. In this case clusters can be of any shape (in
contrast to k-means method, where convex clusters are
considered).

In describing this algorithm a number of notions
are used:

— point pis called principal if at least t points are at
a distance not exceeding €;

— point g is directly reachable from p if the point g
is at a distance at most ¢ from the point p. In this case,
the point p must be the principal point;

— point q is called reachable from p if there exists a
path (p1,p2,...,pn) Where p1 = p, pn = q and every point
pi+1 is directly reachable from p;;

— all points not reachable from the main points are
defined as outliers;

—if pis a principal point, it is said to form a cluster
together with all reachable points from it.

The DBSCAN algorithm is then written as fol-
lows:

Step 1: Among all points in X the main points are
distinguished.

Step 2: For each principal point, the connectivity
components in the neighborhood graph are defined,
ignoring all non-main points.

Step 3: For each non-major point a cluster is found
if it is e-neighbor, otherwise the point is considered an
outlier.

Another effective clustering method in the pres-
ence of significant noise is the variational Bayesian
method for mixing Gaussian distributions. This method
is an extension of the EM method that can determine the
number of components in a mixture [14]. The variation-
al method adds regularization by integrating information
from a priori distributions. This makes the method more
stable but requires more operations than EM algorithm.

Evaluating the quality of the constructed partition-
ing of the raw data into clusters is a difficult task. At
present, there are a lot of different criteria for its solu-
tion [15], which can be divided into two groups in ac-
cordance with the availability of information on the
partitioning of the original data into clusters: when the
true partitioning is known, and when it is unknown.

The Adjusted Rand Index (ARI) is chosen as the
first criterion [16]. This metric allows to evaluate the
quality of clustering when the partitioning of data into
clusters is known in advance. Let T be the true partition-
ing, C be the clustering result, then: a is the number of
pairs of elements that at both T and C lie in the same
cluster; b is the number of pairs of elements that lie in
different clusters at T, and in different clusters at C.

The Rand Index (RI) is given as

R|=a+b,

C3

then
_ RI-ERI)
" max(R)-ERI)
Thus, this criterion allows us to show by how
much the constructed partition of the data

v ={X1, Xo, ..., Xi}.
is close to the benchmark partition
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x =X, X5, X}

The ARI criterion takes on a value from -1 to 1:
the closer to 1, the higher the quality of clustering.

The second criterion used is Normalized Mutual
Information (NMI) [17]. This metric measures the con-
sistency between the true partitioning of the data and the
partition obtained using the clustering algorithm.

Let

U={Uy, Uy, .., U}
and

V= {Vl, Vz, ey Vk}
are two partitions of data of volume N into k clusters.
Then the mutual information (MI) between U and V is
given as:

MIL) = Y M i va| N|uimvj|
;1121 |Ui||VJ'| |
NMI is defined as:

NMI(U, V) =2—MIUY)
’ H(U)+H(V) '
where
i, (i
H(U) =— —'Iog{—']
E N N
and

M
Hovy=5 i JI 1og L1 |
j—l
NMI takes a value between 0 and 1: the closer the
value is to 1, the higher the clustering quality is.
Another effective criterion for evaluating the quali-

ty of clustering is the Fowlkes-Mallows Index
(FMI) [18]:
_ TP
J(TP<FP)(TP+FN)

Where TP is the number of element pairs that be-
long to the same cluster in the true and in the obtained
partitioning; FP is the number of element pairs that
belong to the same cluster in the true partitioning, but
different in the obtained partitioning; FN is the number
of element pairs that belong to the same cluster in the
obtained partitioning, but different in the true partition.
FMI criterion takes a value between 0 and 1: the closer
to 1, the higher the quality of clustering.

Conclusion

The considered methods of clustering make it pos-
sible to process a fairly large volume of information
coming from dozens of sensors installed in various
systems of gas turbine engines and sharply reduce and
compress large arrays of this parametric information,

making it compact and visual. A mathematically justi-
fied general randomized algorithm of stochastic approx-
imation for clustering in the mixture model of Gaussian
distributions, which can work qualitatively under un-
known but limited disturbances together with the meth-
ods considered in [19]. At the same time, these methods
allow us to implement meta-learning on a small amount
of initial information, which is important for updating
the diagnostic engine model after each flight.
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METOJIU KJACTEPU3AILII TAPAMETPIB [TIPU CTBOPEHHI IjIEﬁPOMEPE)KEBHX
BATATOPEXNUMHHUX TUHAMIYHUX MOJAEJIEN ABIAIIMHUX /IBUT'YHIB

O. A. Tamapeasin, JI. b. Ilpuiimax, B. B. Illlocmax

HasgBuicTs Ha cydacHHX aBiallifiHMX ra3oTypOIHHUX JABHUT'YHAX HAECATKIB, a TO M COTEHBb NAaTYMKIB Ul Oe3repe-
pBHOI peecTpaliii pi3HOMAaHITHUX MMapaMeTPiB IX poOOTH A€ MOXKIMBICTH 30MpaTH H 0O0pOOIISATH BEIMKI 00CATH 1H-
opmari. Ile cTuMyIrO€ PO3BUTOK MOHITOPUHIOBHX 1 JMIarHOCTUYHHUX CHCTEM. Y TOW K€ 4Yac HASABHICTH BEIHUKHX
00csriB iH(popMarlil He 3aBXKIM € JOCTATHLOI0 YMOBOIO ISl BUPOOJIEHHS aJIeKBAaTHUX YIIPABIIHCHKUX pIillIEHB, 0CO0-
JIMBO Y BUIIAJIKY OIIHKYM TEXHIYHOI'O CTaHy aBialliiiHuX OBUTVHIB. IIpy npoMy Tpeba BpaxoBYBaTH, IO aBlalliiiHi
NIBUTYHH II€ 00'€KTH, SIK1 BIZHOCSTHCS IO 1HAMBIIYaIi30BaHUM, TOOTO 10 TaKHX, SIKI € Y CBOEMY PO/ YHIKaIbHUMHU.
Tomy Teopist CTBOPEHHSI CHCTEM OIIHKHM TEXHIYHOTO CTaHy aBiallifHUX JBUTYHIB (DOPMYETHCS HA T PO3BUTKY CY-
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YAaCHUX HEHPOMEPEKEBUX TEXHOJOTH 1 morpedye GopMyBaHHS CIELM(bIYHOr0 METOAOJOIIYHOr0 amapara. I3 1ux
IO3UIIHA V CTATTI PO3IIISAAIOTHCI METOMH, SIKI BUKOPHCTOBYIOTBCS IIPH MPOBEAEHHI KiacTepu3anii BXigHoI iHbOp-
Maii ofepKyBaHOI IIPU POOOTI CYYaCHUX CHCTEM OL[IHKH i IIPOrHO3YBaHHS TEXHIYHOrO CTaHy aBialliiiHUX ra30Typ-
Oinnux aBuryHis. OcoONHMBO akTyalbHa I 3ajaya IOpHM CTBOPEHHI HEHPOMEpPEKEBUX O0araTope:KMMHMX MOJeEINeH
aBlaliiHUX JIBUI'YHIB BHKOPHUCTOBYBAHHMX Yy CHCTEMAaX OLIHKKA TEXHIYHOIO CTaHy JUIS iAeHTH(IKAI[ii MOKIUBUX
BIIMOB 1 IOLIKOKEHb. Y CTATTI PO3IVILNAIOTHECS METPHUYHI, ONTUMI3aliiiHl Ta peKypeHTHI METOAM KilacTepu3allil
BXiZHUX naHuX. I[IpM mbOMY OCHOBHA yBara IpUIIJIEHA MOPIBHAHHIO METOIB KilacTepu3awii 3 METO0 BHOOpY Haii-
OiIpII e(PEKTUBHMX 3 HUX MPU POOOTI CHCTEM OI[HKHM TEXHIYHOrO CTaHy aBilallifiHUX IBHUIYHIB 1 IPUIATHHX IS
peaiizallii cHCTeM 3 MeTa-HaBYaHHsAM. Peaizaliist METOIIB KIacTepHU3allil BXIIHUX JaHHX JT03BOJIIE€ POOUTH pPO30OMB-
Ky II1arHOCTHYHHUX 00pa3iB 00'€KTiB HE 10 OJHOMY IapaMerpy, a o MiJIOMY Habopy o3Hak. KpiM Toro, kiacrepHuil
aHaJji3 Ha BiAMIHY BiJ OUIBIIOCTI MAaTEMATHKO-CTATUCTUYHUX METO/IB HE HAKJIAJA€ HiSIKUX OOMEKEHbL Ha BHJ PO3T-
JIggaeMuX 00'€KTIiB, 1 TO3BOJISE PO3IIILIATH MHOKHHY BXIJHUX JaHUX MPAKTHYHO JOBIJILHOI IPHUPOMH, IO IYKE
BAYKJIMBO IIPH OIIHII TEXHIYHOr0 CTAaHy aBlalliiiHUX JBUTYHIB. Y TOH K€ Yac KJIACTEPHMI aHal3 J03BOJISE PO3TJIA-
JIATH TOCUTH BENUKUHN 00car iH(opMaIii i pi3Ko CKOPOUYBaTH, CTUCKATH BEJIHMKI MAaCHBH ITapaMeTpUIHOI iH(popMa-
1ii, pOOUTH TX KOMIIAKTHAMH ¥ HAOYHUMHU.
Koarouosi ciioBa: aBiauiiiHuii 1BUTYH; 1iarHOCTHKA; HEHpOHA Mepexa.

METO/bI KJTIACTEPU3ALIUN TAPAMETPOB I1PU CO3JAHUN HEHPOCETEBBIX .
MHOTI'OPEXKUMHBIX IMHAMUYECKUX MOJEJENU ABUALTMOHHBIX IBUT'ATEJIEU

A. A. Tamapeazun, JI. b. IIpuiitmax, B. B. Illocmax

Hanuune Ha cOBpEMEHHBLIX aBHAIMOHHBLIX ra30TYPOMHHBIX JBUTATENAX AECATKOB, & TO U COTEH JATYUKOB IS
HEIIPEPBIBHON PErucTpanyy pasHooOpa3HBIX MapaMeTpoB UX paboThl 1a€T BO3MOXKHOCTL cOOUpaTh U 00padaThIBaTh
6OJ'IBU_II/IC O6’béMI)I I/IHd)ODMaLII/II/I. 3T0 CTUMYJINPYET PA3BUTHEC MOHHUTOPUHI'OBBIX U JUATHOCTHUYCCKUX CHUCTECM. B TO
)K€ BpeMs HaMuue OO0abIInX 00bEMOB MHGOPMALIMK HE BCETa SBIAETCS JOCTATOYHBIM YCIOBHEM I BLIPAOOTKU
AACKBATHBIX YIIPABJICHUYCCKUX DeLHeHI/II‘/II, OCO6CHHO B CJIy4a€ OLICHKH TCXHHUYCCKOI'O COCTOSAHUA aBUAIIMOHHBIX ABU-
FaTCHCﬁ. HDI/I 3TOM HAAO0 YUYHUTHIBATH, YTO aBUAIIMOHHBIC ABUIAaTCIIU — 3TO O6’I)CKTI)I, KOTOPbIEC OTHOCATCSA K HHAWUBU-
AYAJINU3UPOBAHHBIM, T. €. K TAKUM KOTOPBIC SABJISAKOTCA B CBOéM pOoaAcC YHUKAJIBHBIMMU. HOTOMV TCOpUs CO3a1aHUS CU-
CTEM OLIEHKH TEXHMYECKOIO COCTOSHHUS aBHAIMOHHEBIX IBHUrareiei hopMHupyeTcs Ha (OHE Pa3BUTHS COBPEMEHHBIX
HEUPOCETEBBIX TEXHOJIOIMI W HyXKIaercs B (HOPMHUPOBAHUM crelrdUYEecKOro Meromosiorndeckoro ammapara. C
ITHX MHO3UILHMH B CTaThE€ PacCMATPHUBAIOTCS METO/bI, KOTOPhIE MCIIONBL3YIOTCS IIPY MPOBEIECHUU KJIaCTEPU3ALMHM HC-
XOIHOH HMH(bOPMALKH, ITOJIYYAaeMOM IPU PAOb0TE COBPEMEHHELIX CHCTEM OLIEHKHM M IIPOTHO3MPOBAHHS TEXHHYECKOIO
COCTOSIHUSI aBHALIMOHHBIX ra30TYpOMHHEIX ABurareiei. OCoOOEHHO akTyajbHa JTa 3a7a4a IIPY CO3JaHUH HeMpoceTe-
BBIX MHOT'OPEKHMMHBLIX MOZENIEH aBHALIMOHHBIX JBUIaTelei, MCHOJb3YEMBIX B CHCTEMaX OLIEHKH TEXHHYECKOTO
COCTOSIHUS IS MACHTH(DUKALIMA BO3MOXKHBIX OTKA30B M IOBPEXKICHHUNA. B cTaThe paccMaTpuUBalOTCS METPUYECKHUE,
ONTHMMHU3ALMOHHBIE U PEKYPPEHTHBIE METOMABI KJIACTEpHU3alMH MCXOAHBIX JAaHHBIX. IIpyu 5TOM OCHOBHOE BHHUMAaHUE
VIEJIEHO CPAaBHEHHMIO METOOB KIACTEPH3ALMU C LENIbI0 BEIOOpa Haubonee d(OMEKTUBHBIX M3 HUX IPU paboTe CH-
CTEM OIICHKU TEXHHYECKOI'0 COCTOSHMS aBHALIMOHHBIX JBHUIaTeNell M MPUIrOAHBIX IJIS peaau3alldd CUCTEM C METa-
00yueHnueM. Peanuzanust METOIOB KIIACTEPU3ALMU UCXOIHBIX JAHHBIX IIO3BOJISET IIPOM3BOAUTEL pPa30HMEHUE TUArHO-
CTHYECKHX 00pa30B 0OBEKTOB HE IO OJHOMY IIapaMeTpy, a IIo LieJoMy Habopy mnpuszHakoB. KpoMe Toro, xiacrep-
HBIH aHAJIM3 B OTJIMYHE OT OOJIBIIMHCTBA MATEMATHKO-CTATHCTHYECKUX METONOB HE HAKJIAIbIBAET HUKAKUX OPDaHU-
YeHUI Ha BHJ PaCCMAaTPUBAEMBIX OOBEKTOB, H IIO3BOJISIET PACCMATPHBATL MHOXKECTBO MCXOMHBIX JAHHBLIX IIPAKTH-
YeCKU MPOMU3BOJBLHOM MPUPOILI, YTO OYEHH BA)KHO IPH OIEHKE TEXHHMYECKOIO COCTOSHHS aBHAIMOHHBLIX JBUIaTe-
Jeil. B Toxe BpeMs KJIACTEPHBIM aHAJIM3 MO3BOJIAET PACCMATPUBATEL JTOCTATOYHO OONBIION 00beM MH(GOPMALHUA U
PE3KO COKpallaTh, C)KAMATh OOJBIIME MACCHBBI MapaMeTPUYEcKOil WHQpOpMAaIMH, AelaTh X KOMIIAKTHBIMH MU
HaTJIS AHBIMU.

Kiro4eBble cj10Ba: aBHALIMOHHBIIN IBUTATENb; THATHOCTUKA; HEHPOHHAS CETh.
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