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THE IMPROVEMENT AND REALIZATION
OF FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD

The Lattice Boltzmann Method (LBM) is a numerical method developed in recent decades. It has the
characteristics of high parallel efficiency and simple boundary processing. The basic idea is to construct a
simplified dynamic model so that the macroscopic behavior of the model is the same as the macroscopic
equation. From the perspective of micro-dynamics, LBM treats macro-physical quantities as micro-quantities
to obtain results by statistical averaging. The Finite-difference LBM (FDLBM) is a new numerical method
developed based on LBM. The first finite-difference LBE (FDLBE) was perhaps due to Tamura and Akinori
and was examined by Cao et al. in more detail. Finite-difference LBM was further extended to curvilinear
coordinates with nonuniform grids by Mei and Shyy. By improving the FDLBE proposed by Mei and Shyy, a
new finite difference LBM is obtained in the paper. In the model, the collision term is treated implicitly, just as
done in the Mei-Shyy model. However, by introducing another distribution function based on the earlier
distribution function, the implicitness of the discrete scheme is eliminated, and a simple explicit scheme is
finally obtained, such as the standard LBE. Furthermore, this trick for the FDLBE can also be easily used to
develop more efficient FVLBE and FELBE schemes. To verify the correctness and feasibility of this improved
FDLBM model, which is used to calculate the square cavity model, and the calculated results are compared
with the data of the classic square cavity model. The comparison result includes two items: the velocity on the
centerline of the square cavity and the position of the vortex center in the square cavity. The simulation results
of FDLBM are very consistent with the data in the literature. When Re=400, the velocity profiles of u and v on
the centerline of the square cavity are consistent with the data results in Ghia's paper, and the vortex center
position in the square cavity is also almost the same as the data results in Ghia's paper. Therefore, the
verification of FDLBM is successful and FDLBM is feasible. This improved method can also serve as a
reference for subsequent research.

Keywords: Lattice Boltzmann Method (LBM); Finite-difference LBM (FDLBM); Square cavity.

Introduction equation. From the perspective of micro-dynamics,

Lattice Boltzmann Method (LBM) is a flow field
simulation method from micro to macro developed in
the 1980s, which can reflect the interrelationship
between macroscopic  physical quantities and
meso-structure motion. The basic idea is to construct a
simplified dynamic model so that the macroscopic

behavior of the model is the same as the macroscopic

LBM

micro-quantities to obtain results by statistical averaging

treats macro-physical quantities as
[1, 2]. Therefore, it has been successfully applied in
related fields such as multiphase flow, chemical reaction
diffusion, percolation, and particle suspension flow.
Historically, LBM evolved from the lattice-gas
automata (LGA) method. Later it was realized that the

lattice Boltzmann equation (LBE) could also be derived
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from the continuous Boltzmann equation by choosing
an appropriate set of discrete velocities based on some
special discretization schemes. And it provides a solid
theoretical foundation for LBM. The idea that LBE is a
discrete scheme of the continuous Boltzmann equation
also provides a way to improve the computational
efficiency and accuracy of LBM. From this idea, the
discretization of the phase space and the configuration
space can be done independently. Once the phase space
is discretized, any standard numerical technique can
serve the purpose of solving the discrete velocity
Boltzmann equation (DVBE).

It is not surprising that the finite-difference,
finite-volume, and finite-element methods have been
introduced into LBM in order to increase computational
efficiency and accuracy by using nonuniform grids. The
first finite-difference LBE (FDLBE) was perhaps due to
Reider and Sterling [3], and was examined by Chen et
al. [4, 5] in more detail. The study of FDLBE is still in
progress. A high-order upwind compact finite difference
lattice Boltzmann method (UCDLBM) was developed
by Sun [6], which effectively solves the problem of
viscous incompressible flow. Mei and Shyy [7] further
extended the finite difference LBM to curvilinear
coordinates with non-uniform grids, and suggested
using the second extrapolation method to determine the
unknown collision term of the curvilinear coordinate
system at the new time level in FDLBE. Mostafa [8]
proposed a numerical framework based on multiple
relaxation time lattice Boltzmann (LB) model and novel
discretization techniques for simulating compressible
Highly
Boltzmann methods are employed to simulate one- and
two-dimensional compressible flows. Qiu [9] simulates

flows. efficient finite difference lattice

the two-dimensional cover-driven cavity flow on a
non-uniform grid, and discusses the impact of the
implicit-explicit Runge-Kutta scheme and the
non-uniform grid of the current lattice Boltzmann
method. And a hybrid Lattice Boltzmann (LB) -finite
difference (FD) numerical scheme for the simulation of
reacting flows at low Mach numbers is presented by
Hosseini [10].

In this work, we present an improved version of
the FDLBE first proposed by Mei and Shyy [7]. In our

model, the collision term is treated implicitly, just as

done in the Mei-Shyy model. However, the implicitness
of the discrete scheme is completely removed by
introducing another distribution function based on the
earlier distribution function, and we finally obtain a
simple explicit like the standard LBE.
Furthermore, this trick for the FDLBE can also be easily
used to develop more efficient FVLBE and FELBE
schemes.

scheme

1. Numerical Model of FDLBM

The starting point of the FDLBE proposed by Mei
and Shyy [7] is the continuous discrete velocity

Boltzmann equation

s o
2t T8 Vi =0, (1-1)

where & is the discrete particle velocity, f; is the
distribution function (DF) associated with &, and Q; is
the collision operator. In the kinetic theory, the collision
very
approximated by the simple
Bhatnagar-Gross-Krook (BGK) Model in LBM,

operator s complicated and is usually

single-relaxation-time

(1-2)

where T is the relaxation time and fie is the local
equilibrium distribution function (EDF). The equation
(1-2) is integrated on [t,, t,4;] to get the new equation
as follows

Boet = o At VBT S [ Q"] (193)

In order to remove the implicit term in the
collision term of equation (1-3), a new distribution

function is introduced as follows
(1-4)
By applying this DF to equation (1-3), we obtain

the following semi-discretized Boltzmann equation:

~ n+1 At] 2 n At en
M=11-=|f +=F
gl [ 21) 7! 2t !

— At -V, (1-5)

where

(1-6)

- 2t (. Atae
f = 2T+AL (gi + Z_Tfi )

Once the gradient operator is discretized, the DF

g; can evolve according to equation (1-5), given that §;
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is initialized. The macroscopic density p and velocity
u of the fluid can be determined from the DF §;
directly. In fact, from equation (1-4) we can obtain
p=28 . pu=X§g:. (1-7)
2. Numerical model of FDLBM
with external force term

After adding an external force term a- szi to
equation (1-1), the new discrete velocity Boltzmann

equation is obtained as follows
A
E + Ei . Vfl +a- ngl = ‘Q‘i' (2-1)

After — ﬁ-Vgﬂ is replaced by the symbol §S;,

Equation (2-1) changes to:
i & p
E + Ei . Vfl = ‘Q'i + Si' (2-2)

The equation (2-2) is integrated on [t,,t,,1] to get the

new equation as follows

s . o At
et = 0 A VE = [0+ Q"] +

2
At
+=[S" + 57, (2-3)
where
5, = 20tge (2+4)
¥Si=0, Y§S =4 (2-5)

In order to remove the implicit term at the right
end of equation (2-3), a new distribution function is

introduced as follows

~ 2 At (4 2 At
gi = fi + % (fl - fie) - ?Sl (2'6)

By applying this DF to equation (2-3), we obtain the
following semi-discretized Boltzmann equation:

At1.n At.en
~ n+1 4
o+l g g Topen
gl [ ZT] ! ZT !

—At; - VT, 4+ S, 2-7)
where
2 2% ~ Aty e At
fi = 2%+At (gi + 2% fi + 2 Si)' (2-8)

The macroscopic density p and velocity u of the fluid
can be determined from the DF g; directly. In fact,

from equation (2-6) we can obtain

2 paAt

p=X8 pu=x§g+ (2-9)

3. Boundary conditions

Initial and boundary conditions are usually given
in terms of macroscopic physical variables such as p
and u. But in LBM, the initial and boundary conditions
should be implemented through the distribution function
f,. How to determine the initial and boundary values of
the DF is an important issue in LBM.

In this paper, the boundary conditions of the two
types of distribution functions are processed by the
non-equilibrium extrapolation method proposed by
Guo [11]. The basic principle is to decompose the
distribution function at the boundary point into two
parts: equilibrium and non-equilibrium. Part of it is
approximated by the definition of boundary conditions,
while the non-equilibrium part is determined by

non-equilibrium extrapolation.

4. Solving steps of FDLBM

The steps to solve the finite difference LBM are
shown in the following Fig. 1. In these steps, the most
important thing is to use the second-order upwind and
center difference hybrid format differential convection
term. Among them, the convection term is differentiated
to obtain the following formula (4-1) by using the

second-order upwind formula

3f (&) —
ﬁ —4f,(gs — A%g) +| if c;g > 0,
o] _ +f;(§s — 248g) 1
%ely 3fi(‘EB) -
—ﬁ —4f,(E + A%g) +| if ¢ < 0.
+f,(Eg + 248g)

And the convection term is differentiated to obtain the
following formula (3-2) by using the central difference
format

of; _ 1
@L = 255 [£i(8 + 48p) + fi(Ep — AEg)].  (4-2)

Therefore, the convection term is differentiated to
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obtain the following formula (4-3) by using a
second-order upwind and central difference hybrid
format

9| _ G0 _ o
ﬁ| = 8623 ) +(1-¢ %l

mix

where 0 < e < 1.

( START )

¥
Initialize the macroscopic quantity

(4-3)

and distribution function

Y

Given boundary conditions (unbalanced extrapolation)

Y
Find all the original distribution
functions by formula (2-8)

Adopt second-order upwind and center difference

hybrid format differential convection term NO

Update the distribution function by formula (2-7)

Y

Solve the macroscopic quantity by formula (2-9).

Y
{ END )

Fig. 1 Solving steps of FDLBM

5. Verification of FDLBM-Square cavity

It is a benchmark problem that the air flow in the
square cavity is driven by the cavity cover. The
reliability of FDLBM was verified by comparison with
the data results in Ghia's paper [12]. This is mainly
verified by comparing the velocity on the center line of
the cavity and the position of the vortex center. In Ghia's
paper, the velocity on the center line of the cavity is
shown in Fig. 2 and Fig. 3 below. And When Re=400,
the position of the vortex center in the cavity is shown
in Table 1 below. If the results of the vortex center

position obtained by the FDLBM method are consistent

with the results of the vortex center in Table 1, then
FDLBM can be considered to be feasible.
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Fig. 2. Velocity type u on centerline of square cavity
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Fig. 3. Velocity type v on centerline of square cavity

Where u is the velocity component on the x-axis,
and v is the velocity component on the y-axis.
Table 1
The position of the vortex center
in Ghia's paper (Re=400)

Vortex center In Ghia's paper [12]
position Coordinates
Primary X 0.5547

vortex 0.6055
Lower left vortex X 0.0508
y 0.0469

Lower right vortex X 0.8906
y 0.1250
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5.1. Square cavity model

The square cavity model used in this article is
consistent with the model in Ghia's paper. This article
simulates the sliding of the plate on the square cavity to
the right, driving the air flow in the square cavity. The
calculation area and boundary types are shown in Fig. 4.
The width and height of the square cavity are H, all

walls are fixed walls, and the cavity is filled with air.

U=0

Fig. 4. Physical model of the square cavity

The

viscous flow in a cavity. An incompressible fluid is

problem considered is two-dimensional
bounded by a square enclosure and the flow is driven by
a uniform translation of the top. The present simulation
uses Cartesian coordinates with the origin located at
lower left corner. The top boundary moves from left to
right with velocity U,=1.

The calculation conditions are shown in Table 2 as

follows.
Table 2
The calculation conditions
Conditions Re Ma H(m)
Values 400 0.1 1

5.2. Numerical simulation results

The non-uniform grid used in the calculation is
shown in Fig. 5. The grid is non-uniformly distributed

in the x and y directions.

0 0.2 0.4 06 08 1
X

Fig. 5. Non-uniform mesh (64 x64)

Fig. 6 shows the velocity flow field in the x
direction and Fig. 7 shows the velocity flow field in the
y direction through numerical calculation. Fig. 8 is a
streamline diagram inside the square cavity.
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Fig. 6. Velocity flow field in the x direction

Where u is the velocity component on the x-axis,

and v is the velocity component on the y-axis.

5.3. Analysis of numerical simulation results

The first is the velocity in the cavity drawn by the
rainbow color table (Fig. 6 and Fig. 7), and the flow
direction indicated by the vector diagram (Fig. 8). It can
be seen that the velocity at the top of the cavity is close
to Ux=1, where the fluid flow is driven by the moving
wall. After the fluid is pushed to the wall on the right, it
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flows down first, and then returns to the left side of the
cavity. The movement creates a large vortex in the

center of the cavity.
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Fig. 7. Velocity flow field in y direction

0.4
X

Fig. 8. Streamline diagram

From the flow velocity flow results in Fig. 6 and
Fig. 7, the velocity profile of u and v on the center line
of the square cavity were obtained as shown in Fig. 9.
The circles in the figure represent the data In Ghia's
paper, and the curves represent the result of the FDLBM

calculation.
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Fig. 9 The velocity profile of u and v

on the center line of the square cavity

From the above streamline diagram, it can be
concluded that the vortex center position in the square

cavity calculated by FDLBM is shown in Table 3.

Table 3
Data comparison
Vortex In Ghia's Present Error
center paper [12] simulation rate
position Coordinates Coordinates
Primary x | 0.5547 | x 0.5563 | <0.3%
vortex y | 0.6055 | y | 0.6045 | <0.2%
Lower left x | 0.0508 | x | 0.0512 | <0.8%
vortex y | 0.0469 | y | 0.0473 | <0.9%
Lowerright | x | 0.8906 | x | 0.8851 | <0.7%
vortex y | 0.1250 | y | 0.1239 | <0.9%

It can be seen from Fig. 9 that the velocity profiles
of u and v on the center line of the square cavity are
very consistent with the results in Ghia's paper.

It can be seen from Table 3 above that the vortex
center position calculated by FDLBM is consistent with
the vortex center position calculated by Ghia, and the

error range is less than 1%.
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Conclusion

The top cover drive cavity is a benchmark problem.

The simulation results of FDLBM are very consistent
with the data in the literature by comparing with the
literature (Ref. 12). When Re=400, the velocity profiles
of u and v on the center line of the square cavity are
consistent with the data results in Ghia's paper, and the
vortex center position in the square cavity is also almost
the same as the data results in Ghia's paper. Therefore,
the verification of FDLBM is successful and FDLBM is
feasible.

It can be concluded that compared with traditional
computational fluid dynamics methods (such as finite
difference, finite element method, finite volume method,
etc.), the lattice Boltzmann method has the following
advantages:

1) the algorithm is simple, a simple linear
operation plus a relaxation process can simulate various
complex nonlinear macroscopic phenomena;

2) able to handle complex boundary conditions;

3) the pressure in the lattice Boltzmann method
can be directly solved by the equation of state;

4) programming is easy, and the pre- and
post-processing of calculation is also very simple;

5) it has high parallelism;

6)it can directly simulate the flow field of
connected domains such as porous media with complex
geometric boundaries, without the need for calculation

grid conversion.
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BJIOCKOHAJIEHHS TA PEAJIIBALIISAA METOJA KOHIIEBO-PI3BHUIIEBOI PEINITKUA BOJILIIMAHA
Ippan Cyns, Cens 130y, I'van Yscao, beii An

Pemritgactuit meton bonpnmana (LBM) - e unciioBmii MeTo, po3poOIeHHiT B OCTaHHI AeCATIIITTI. BiH Mae
XapaKTePUCTUKNA BUCOKOI Mapaie’bHOI ePeKTHBHOCTI Ta MPOCTOi rpaHudHoi 0OpoOku. OCHOBHA imes MOiArae B
moOyaoBi crporneHoi AWHAMIYHOI Mojemi, 00 MaKpOCKOIidHa MOBEIiHKa Mozeni Oyma Takol X, SK i
MaKpOCKOIIiYHE piBHAHHA. 3 TOUKH 30py MikpomuHaMiku, LBM TpakTye Makpo(i3wmyHi BEIHIMHH SK MiKpO
BEJIMYMHH I OTPHMAHHS Pe3yNbTaTiB MUITXOM CTaTUCTHIHOTO ycepenHeHHs. Kinnero-pizaunesunit LBM (FDLBM)
- [1e HOBUH YMCeNbHUIT MeToA, po3pobieHuii Ha ocHOBI LBM. Ilepumii kinneBo-pizamuanii LBE (FDLBE), moxuso,
O0yB obymoBieHnit Tamyporo Ta AkiHOpi, i Horo mocuimkysamu Cao et al. 6inpm geransHO. KiHmeBo-pizHuIeBHiA
LBM OyB H0OmaTKOBO DO3MIMPEHHN A0 KPUBOJIHIMHWX KOOpPIMHAT 3 HeomHOpimHumu citkamu Meit i lwii.
Vnockonamroroun FDLBE, zanpomonoBanmit Meii ta Illei, y poOoTi oTpuMaHO HOBY KiHIEBY pisHuHmI0 LBM. YV
MOJIeNIi TePMIiH 3ITKHEHHS TPaKTYeThCS HESBHO, SK Iie pobOutbes B Mmopmeni Mei-Iui. OmgHak, BBOOSYH IHIIY
(YHKIIIO PO3MOIITy HAa OCHOBI MOMEPEeNHBOI (YHKINI pO3MOALTY, HESBHICTH AHUCKPETHOI CXEMH ITOBHICTIO
YCYBa€ThCs, 1 HAPEIITI OTPUMYETHCS TPOCTa sIBHA cxema, Taka sk crangapTHuii LBE. Kpim Toro, mert ¢oxyc mmst
FDLBE Takox MOXHa JIETKO BHKOPHUCTOBYBAaTH sl po3poOku Oimbmn edextuBHuX cxeM FVLBE Ta FELBE. [lna
TOTO, MO0 MEePEeBIpUTH MPAaBIWIBHICT 1 JOIUIBHICTE Ii€i BHockoHaneHoi Momeni FDLBM, ska BHKOPHUCTOBYETHCS
JUISL pO3paxyHKy MOl KBaJpaTHOI NMOPOKHUHHM, a OOYMCIIEHI pe3ydabTaTH MOPIBHIOIOTHCA 3 AAHHUMHU KJIACHIHOL
MOZIeTi KBaJIpaTHOI MOPOXKHMWHH. Pe3ynbTar MOpiBHAHHSA BKIIOYAE ABa ITYHKTH: IIBHAKICTH HA IEHTPaIbHINA JiHIT
KBaJIpaTHOI IOPOKHMHU Ta TIOJOXKCHHS LEHTpPa BUXPY B KBaJpaTHiil MOpOXKHWHI. Pe3ynpraTh MonenmoBaHHS
FDLBM nyke y3romkyroThes 3 JiteparypauMu ganumu. Komu Re = 400, mpodini mBUAKOCTI U i V HA EHTpaNbHII
JiHIT KBaApaTHOI MOPOKHIHHU BiIOBITAIOTH pe3ynbTaTtaM AaHuX y crari Ghia, a IONOKEHHS HEHTPaIbHOTO BHXPY B
KBaJIpaTHIi TOPOXHUHI TaKOXK Maike OJHAKOBE 3 pe3yiabraTaMH AaHHX pospaxyHkax Ghia. Orxe, mepeBipka
FDLBM e ycmimnaoro, i FDLBM € moxnmBoro. Leit BmockoHaneHHH METOo MOXKE TaKOXK CITYKUTH €TallOHOM JUIS
MOAAJBIINX AOCIHIIKEHb.

Karwuosi cioBa: Pemrityactuit meton boneimana (LBM); Kinneo-pisaunesuit LBM (FDLBM); Ksagpataa

MOPOKHUHA.

VJIYYIIEHUE U PEAJU3ALIMSI METOJIA KOHEYHO-PASHOCTHOM PEHIETKU BOJIBIIMAHA
Hepan Cynw, Cenw I30y, I'van Yoscao, bru An

Pemerounsrit Mmeton bomeimana (LBM) - 3T0 YncieHHBIH METOM, pa3paOOTaHHEIA B MOCICIHUE ACCATHICTH.
O ob6nagaer XapakTepUCTUKaMU BBICOKOW MapauienbHOi 3(QeKkTHBHOCTH W MpoCcTO 00pabOTKM TpaHuIl.
OcHOBHast wuJest COCTOMT B TOM, 4TOOBI TIOCTPOMTH YINPOIICHHYIO JUHAMHYECKYI0 MOJENb, YTOOBI
MaKpOCKOITMYECKOE TOBEJICHNE MOJAENN OBUIO TaKMM e, KaK M MaKpOCKONW4eckoe ypaBHeHHE. C TOUKH 3peHUs
MUKpoauHaMukn LBM  paccmarpuBaer Makpo(U3MUECKHE BEIMYMHBI KaK MHUKPOBEIMYHMHBI JUIS TOJNyYESHUS
Pe3yAbTaToB IyTEeM CTaTHCTHYecKoro ycpeaHnenus. Koneuno-pasnoctHast LBM (FDLBM) - 310 HOBBII 4HCIICHHBIN
Meroj, paspaboranHblii Ha ocHoBe LBM. IlepBas koneuno-pasnoctHas LBE (FDLBE), Bo3MOXHO, BO3HHKIIA
omaromapst Tamype u AkuHOpH 1 OblIa uccnenoBana Cao u apyrumu Ooinee aeranpHo. KoHeuHo-pasHocTHass LBM
OblIa JIOTIOJIHUTENLHO PACIIMpPEHa 10 KPUBOIMHEWHBIX KOOPJMHAT C HEOAHOPOAHBIMH ceTkamu Meii u 1n. ITyrem
ynyumenunss FDLBE, npeanoxxennoro Mei u Shyy, B ctarbe noiyueHa HOBasi KoHeUHO-pasHocTHass LBM. B monenn
TEPMHH CTOJIKHOBEHHSI 0OpabarhiBaeTcsi HESIBHO, Kak ¥ B Monenu Meii-1llaii. OxgHako myTeM BBeIeHHs APYrou
(GYHKIMU pacrpesesieHus], OCHOBaHHOH Ha Oonee paHHEH (YHKIMHU pacrpe/eeHus], HeIBHOCTb JUCKPETHON CXEMBI
MOJTHOCTBIO YCTpPaHsSETCA, U, HAKOHEll, IIoJIyJaeTcsl IpocTas sIBHAs cXxeMa, Takasl kak ctannaptHas LBE. Kpome Toro,
stoT npueM st FDLBE Taxoke MOXXKHO JIETKO MCIIONIb30BaTh 11 pa3paboTku Oonee a¢dexruBHbix cxeM FVLBE u

FELBE. UYrto0bl mpoBepuTh IMpPaBHIBHOCTh M OCYLIECTBUMOCTH 3TOH ymydmieHHoi monenun FDLBM, koropas
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UCTIONB3YETCS Ul pacdeTa MOAENM KBAaJPAaTHON IIOJIOCTH, W PE3YIbTaThl PacdeTOB CPABHUBAIOTCS C JAHHBIMU
KJIACCHMUYECKOW MOJZENM KBaApaTHOH monocTu. Pe3ymbrar cpaBHEHHs BKIIOYACT JBa IIapaMeTpa: CKOPOCTh Ha
LIEHTPAJIbHOM JIMHUU KBaJpaTHOM IOJOCTH U TOJOXKEHHE LIEHTpa BUXpsA B KBaApaTHOM monocTu. Pe3ymbTaTsl
monenupoBannss FDLBM ouens coracyrores ¢ qanHeIMHA B nureparype. Korma Re = 400, mpodwmmm ckopoct u 1 v
Ha LEHTPAJIbHON JIMHUU KBaJPaTHOM MOJOCTH COINIACYIOTCS C pe3ylbTaTaMy JaHHBIX B crarbe Ghia, a momoxeHne
LIEHTPa BUXpPA B KBAJPaTHOW MOJIOCTH TakKXe IOYTH TaKoe K€, KaK JaHHbIE, MOTydeHHble B pacuyerax Ghia.
CrnenosatensHo, poBepka FDLBM ycmemmra u FDLBM BemonHAMa. OTOT YITYYIIEHHBIH METOI TakKKe MOXET
CITy’KHUTh CIIPAaBOYHBIM MATE€PHAJIOM JUIS IOCJIELYIONINX NCCIEJOBaHU.

KawueBbie ciaoBa: pemetounsiii meron bomervana (LBM); Komeuno-pasnoctHas LBM (FDLBM);

KBanparnas nonocts.
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