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NEURAL NETWORK INTERPOLATION PARAMETERS OF A MULTI-MODE
DYNAMIC MODEL OF THE AIRCRAFT ENGINE

The foundations of the concept of creation of intelligent aircraft engine control systems based on the decompo-
sition of control processes within the architecture of open information systems are considered. Unlike well-
known approaches, the suggested approach allows achieving the management goal based on the principle of
minimum entropy by redistributing system resources in conditions of their shortage, as well as adapting system
characteristics when changing the management situation based on self-learning and self-organization of intel-
ligent control systems. Based on an analysis of the development trends of aircraft engines, as well as develop-
ment trends of production and technological systems, including the creation of new composite materials and
new technologies for the manufacture and control of parts and components of aircraft engines, the intellectual-
ization of their automatic control systems is discussed. Moreover, the development trends of aircraft engine
control systems are considered from the development of their structures, functions, properties, and abilities for
new qualitative changes. The article gives the general characteristics and the main directions of the design of
intelligent control systems for aircraft engines as complex technical objects. The problem of designing nonlin-
ear dynamic models of aircraft engines using artificial neural networks is discussed. The statement of this
problem and possible approaches to its solution are being formed. The results of the neural network identifica-
tion of an aircraft engine are compared using the least-squares method. Such a technique for designing a mod-
el of aircraft engines makes it possible to indirectly calculate engine coordinates inaccessible to measurement
- traction, fuel consumption, etc. The suggested approach allows calculation of the design of neural networks
simulating aircraft engines at each step using standard procedures, which makes it possible to automate the
creation of neural networks. To reduce the computation time, it is suggested using the optimization algorithms
taking into account changes in the state entropy. This simplifies the implementation of the neural network
model of an aircraft engine in real time as part of an onboard computer complex.
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Introduction — ensuring the required environmental character-

istics, high efficiency and durability due to the transition

The development of technical systems can occur to the operation of aircraft engines and its systems in

due to the development of their structures, as well as
individual subsystems and elements. For aircraft en-
gines, as a developing system, the evolution of their
structure is reflected, first of all, in the evolution of their
basic structural scheme, in particular the control and
monitoring systems.

An analysis of the control and monitoring systems
of modern aircraft engines shows that their functions are
extremely large in volume and diverse in content. These
functions are associated with the following tasks:

— ensuring high quality control of aircraft engine
operating modes in a wide range of changing operating
conditions due to «with full responsibility» onboard
adaptive digital electronic systems;

— ensuring the integration of the aircraft engine
control system with the air inlet and aircraft control sys-
tems;

— ensuring high reliability of the functioning and
service life of aircraft engines and their systems due to
the built-in digital electronic monitoring and diagnostics
system;

technical condition;

— ensuring reconfiguration of both the aircraft
engine circuit and its control system and its systems
according to their technical condition.

Achieving high efficiency of the operation of con-
trol and monitoring systems for an aircraft engine under
such complex technical requirements for their operating
conditions is possible if these systems are designed in
the class of intelligent systems, as the most promising
systems that function effectively in the face of uncer-
tainty.

Currently, the problem of creating automatic con-
trol systems for complex technical systems is character-
ized by a transition from the paradigms of a program,
positional, identification and adaptive control to the
paradigms of intelligent control (without automatic goal
setting) and intelligent control, i.e. with automatic goal
setting [1].

This is due both to the continuous complication of
control objects and the conditions of their functioning,
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the emergence of new classes of computing tools (in
particular  distributed computing systems), high-
performance telecommunication channels, and a sharp
increase in the requirements for reliability and efficien-
cy of control processes in the conditions significant a
priori and a posteriori uncertainty. It is becoming gener-
ally accepted that the consideration of the above factors
is possible only on the basis of the transition from
«hardy algorithms of parametric and structural adapta-
tion to the anthropomorphic principle of formation of
control.

An intelligent control system for complex tech-
nical systems that operate on the basis of a reconfigura-
ble computing environment that has the property of
adaptability taking into account the evolving external
environment is shown in [2]. The system changes its
own behavior in the presence of various kinds of inter-
ference in the on-board equipment, active counteraction,
a sharp change in the route of movement, etc.

The purpose of this work is to further improve the
methodology for creating an effective algorithm for
creating a neural network of early indiscriminate diag-
nostics of aircraft engines.

1. The problem statement

As the main feature of the intelligent aircraft en-
gine control system, the entropy estimation of the
amount of information and the capacity information
channel can be used. For this, you can use the principle
of Increasing Precision with Decreasing Intelligence,
which consists in increasing the level of intelligence of
the system with precision control as the hierarchy of
intelligent control systems increases [3].

With this principle in mind, we can formulate the
problem of optimal synthesis of a three-level intelligent
aircraft engine control system based on the entropy ap-
proach.

It is necessary to find such a way to design an in-
telligent aircraft engine control system and its levels:

Qop[ = f(Y,F,G),

in other words to determine the composition of control
algorithms, the structure of databases and knowledge of
the control system, so that the requirement of approxi-
mation of the vector of output parameters Y to the de-
sired result is met under the following condition:

Hs (A) > min, Q)

where Hz(A) — is the total entropy of the set of control
algorithms (R) for all three levels of control of the intel-
ligent aircraft engine control system, which can be cal-
culated as

Hy (A) = H(A)er + H(A)c1 + H(A)p1

where H(A)e, H(A)c, H(A)p — accordingly, the entropy
of the algorithms of the executive level, coordination
level and planning level of the intelligent aircraft engine
control system.

It is assumed that, in addition to fulfilling condi-
tion (1), the following restrictions must be observed:

Hmax(Yv Qopt ’ F) < Hperm1

where H is the maximum permissible level of entropy
of control processes in an intelligent aircraft engine con-
trol system.

The task of minimizing the entropy of the state
vector of the X object is equivalent to the task of opti-
mizing control processes based on the integral quality
criterion:

Ty
1(Q) = jL(x,Q,t)dt—>min,
to

where L(X, Q, t) — a positive definite function from X,
Q
te T =to, Tk];
Q=Q(X, t);
=u X T— Hx.

The technique for solving the problem of synthesis
of an intelligent aircraft engine control system based on
the entropy approach includes the following steps:

Step 1. The control goal (G = G”) and the state of
the environment (F = F") are set.

Step 2. A synthesis of the executive level algo-
rithms of the intelligent control system is carried out
from the condition of minimum entropy:

H(A)|CS —min
and restrictions on the entropy of the output vector:

HOY /9, F) < Hj permi

VXEEY]_;YEEY]_;QEEQ!

where Hiperm — @ permissible level of entropy, deter-
mined by the requirements for the accuracy of maintain-
ing the operating modes of the object.

Step 3. Fixed G = G*, accepted: F € EF.

Step 4. A synthesis of the algorithms of the coor-
dination level of the intelligent control system is per-
formed from the condition:

H(A)¢ — min
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and restrictions on the magnitude of the entropy of the
vector of GTE outputs:

HOY 1Q,F) <H3 perm:

VXEEXZ;YEEYZ;QEEQ,

where Hzperm — @ permissible level of entropy of the
output vector Y, determined by the requirements for the
accuracy of control processes in a given range of the
external environment (G € £G).

Step 5. The synthesis of algorithms for the level of
organization of the intelligent control system from the
conditions:

H(A) — min
and limitations of the form:

H(Y/Qoptv F*) < HS perm ;

VXEEXZ;YEEY3;QEEQ,

where Hz perm — a@ permissible level of entropy of the
output vector Y, taking into account the uncertainty of
control objectives (G € ZG).

It is assumed that

Hl perm < H2 perm < H3 perm-

Step 6. The total complexity of the intelligent en-
gine management system is evaluated:

Hs(A) = H(A)er + H(A)a + H(A)p1.

Step 7. Evaluation of the goal achievement.

Since the problem of choosing a design solution
for an intelligent aircraft engine control system belongs
to the class of inverse problems, the process of solving
this problem can be iterative. Moreover, it is necessary
to develop a library of standard design solutions with an
evaluation of the entropy complexity of control algo-
rithms at various levels of the hierarchy by an intelligent
aircraft engine control system.

In order to evaluate the complexity of the neural
network model, you can use the estimate of the entropy
of the signals at its output [4] under the assumption that
the probability density of the p(Ei) propagation at the i-
th output of the neural system (yi) has the following
form:

p(Ei) — (qi —V;j )_1, ifqi < Ei < Vi,
0, otherwise,

where [q;, vi] — a possible range of variation of E; error
of the learning process of a neural network.

Then we can write the entropy for the deviation of
the output vector of the neural network:

YNN =(Y1’\IN1---IYr';IN)T

in relation to the desired exit vector

Y=(y1¥n)

by means of the following formula:

H(E) =3 p(E InplE: )~ Yy ~a).

i=1

Obviously, the value of the entropy H(E) during
the learning process of the neural network will change,
in the direction of decreasing, since the interval of varia-
tion of the error [q;, vi] will decrease in this case. If you
require the condition

|Ei| < Ei perm:

where

n
H(E)perm =N -1 2+ 3 In(E; perm)-
i=1

Most often, piecewise linear interpolation is used
to solve this problem, which is due to the simplicity of
its algorithmic and software implementation. The main
disadvantage of these models is the following: jumps of
derivatives at interpolation nodes and a significant ap-
proximation error at points between the nodes. More
acceptable from the point of view of ensuring the
smoothness of the approximated characteristics is the
use of spline interpolation using third-order polynomi-
als [5].

2. The problem solution

Consider the model of a multi-mode double-shaft
double-circuit gas turbine engine in the form of a set of
piecewise linear dynamic models of the following form:

x=Aj(x=x")+Bj(0-of'),

y =y +Ci(x—x") + Dj(0— '),

where A;, Bi, Ci, Di, X, ¥, @, y{',x{', of the values of

the vectors of variables x, o, y at steady-state engine
operation modes;

X = (n1, n2)" — is the vector of state variables;

® = (Gr, F¢) —is the vector of control actions;

y:(pc,p:,T:) — is a vector of controlled varia-
bles.
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In order to ensure the functioning of the model in a
given range of changes in engine operating modes, the
problem of interpolating the coefficients of piecewise-
linear dynamic models is usually solved.

Considering the fact that the parameter

n= klﬁl + kzﬁz

determining the choice of the point of the i-th operating
mode is continuous, a multimode engine model can be
represented in the form of a system of differential equa-
tions:

x= AMX-x" M) +Bm)(e-o™ M),
y =y¥ () +C)(x—x* (1)) + D)@ - o™ (1) .

In the case of piecewise linear interpolation, it is
difficult to ensure the required accuracy of the model
over the entire operating range. In the case of polynomi-
al approximation, it is necessary to construct interpola-
tion polynomials of the third order, which in some cases
makes it difficult to ensure the required accuracy of the
model.

When solving the interpolation problem using a
three-layer neural network, the nonlinear multimode
dynamic model of an aircraft engine will have the fol-
lowing form:

X:[%Wilfi () +B [x—x)+ )
i-1

N
+ [Z W2F; (x) + B2 |(0— o),
i=1

N
y=[zWi3fi(X)+B3 x=x¥)+,

i

N
Xt = (wafi (x) + 35] :

i=1

1Mz

WA (x) + B4J(m—m8t),

ot :(%wﬁfi )+ 56],

i=1

where fi(-) —is a neuron activation function;

Wil — are customizable weights;

B; — are displacements in separate layers,

N — is the number of neurons in the hidden layer.

The accuracy of the model in this case will depend

on the number of neurons in the hidden layer. The obvi-
ous advantage of this approach is a possibility to pro-
vide the required accuracy of the interpolation of coeffi-

cients and variables by learning the interpolating neural
network.

The neural network architecture, which interpo-
lates the required parameters of the dynamic model (2),
contains three layers, the parameter n is supplied to its
input, and the values of the matrix elements A, B, C, D
are determined at the output. The accuracy of the calcu-
lation of engine parameters depends on the number neu-
rons in the hidden layer N.

Despite the fact that in the recent years the consid-
erable attention has been paid to the identification of gas
turbine engines using neural networks, the results ob-
tained in this area are not without certain drawbacks,
which are as follows:

— the process of solving the identification prob-
lem in a neural network basis, as a rule, is carried out on
the basis of trial and error;

— there are no reasonable recommendations on
the choice of the structure of the neural network, learn-
ing algorithms, etc.;

— there is no formalized engineering methodolo-
gy for solving such problems.

As studies show, the main stages of the engineer-
ing methodology for constructing a neural network
model of aircraft engines should include:

— preliminary data analysis at the stage of setting
the task;

— data conversion to create an effective network
setup procedure;

— selection of neural network architecture;

— selection of the neural network structure;

— the choice of neural network learning algo-
rithm;

— learning and testing the neural network.

We will consider the problem statement of identi-
fying the characteristics of an aircraft engine in steady-
state operating modes. In these modes, the engine is
described by equations of the form:

X= fl(A! Q) )
Y :fl(Al X) ’

where X, Y, Q and A — are the vectors of state varia-
bles, engine outputs (measured thermogasdynamic pa-
rameters), and control actions and model parameters,
dimensions r, n, m and k, respectively;
f1 and f, are some nonlinear vector functions.
The task of identification is to find such a corre-
spondence

Y =f(AQ),
which would satisfy the condition

HY - Y*” <e
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on a given set of values
XEEX,YEEy,QEEm,

where E,, Ey, E» — determined by the permissible en-
gine operating conditions;
€ — is the specified error.
The solution to the problem of the engine identifi-
cation is reduced to a neural network learning:

n

E:Z(Yi—Yi*)z—>min,

i=1

where E is the total quadratic error of the neural net-
work learning.

As an example, let’s consider the identification of
a dynamic multi-mode aircraft engine model.

An aircraft engine, as a nonlinear dynamic object,
is described by a system of differential equations of the
form:

X(t) = F(X(1), Q(t), V(1), A(t)) ;
Y (t) = GX(t), (1), V(1) ;

where X(t) — is the vector of state variables;
Q(t) — is the vector of control actions;
V(t) — is the vector of external disturbing influences;
Y (t) — is the vector of output coordinates;
F, G —are nonlinear vector functions.
The task of identifying the engine is to determine
an approximating correspondence:

YM(k) :f(YM(k—l),YM(k—Z),...
0 Q(K), Q(k-1),...)

between the output vector Y(x) and the input vectors
Q(k) at discrete time instants according to the results of
observations of these quantities over a certain interval
during the operation of the engine.

In this case, the identification error should not ex-
ceed the specified permissible value gperm:

[0 =M (9] < 2perm

with the same input stimulus Q(y).

The initial data for designing the model are rec-
orded on board the aircraft using the on-board data re-
cording device.

In the process of experimental studies, the Elman
neural network was selected for identification.

Each hidden neuron has its own analogue in the
input layer, forming the input layer together with the

external input oeck Of the network. The output layer of
the network consists of neurons, at the outputs of which

the values of the desired engine parameters nip, Nhp, T: .

The input vector of the Elman network is the value
of the variable oeck, as well as the signals at the outputs
of the neurons of the hidden layer, delayed by one clock
cycle of discrete time.

We denote the state vector of the neurons of the
hidden layer as V, and the vector of network outputs as
Y. Then the expression for the input network vector:

O(K) = (ctack(K), Vi (k—1), Vo (k—1)" .

We denote the weights of the synaptic connections
of the hidden layer of the network as W;®, and the
weights of the connections of the output layer as Wi{®,
then the weighted sum of the inputs of the i-th neuron of
the hidden layer y; and its output signal Vi are found by
the formulas:

3
vi(k) =Y wiQ;(K),
j=1
Vi =11 (K).

where fi(yi) — is an activation function of the i-th neuron
of the hidden layer.

The weighted sum of the inputs of the i-th neuron
of the output layer @i and the i-th output signal of the
network Yi:

¢i(K) = iwﬁ)vi OF
j=1
yi(k) =f2(li (k)

where f2(gi(k)) — the activation function of the i-th neu-
ron of the output layer of the neural network.

The neural network learning function at time k is
defined as the sum of the squared differences between
the outputs of the network Y; and their desired values
of di:

3
E(K) =05 (yi (k) - d; (k) .

i=1

In the process of experimental studies, a compara-
tive analysis of the operation of the neural network and
the classical least squares method under flat noise with
zero mathematical expectation and mean-square devia-
tions of 0.01, 0.02, 0.04 was carried out.

The accuracy of the dynamic identification of the
mathematic engine control system based on the Elman
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neural network turned out to be 1.35 times higher com-
pared to the least squares method.

Conclusion

The analysis of the results indicates the advantage
of using neural network methods in the presence of
noise. The error in dynamic identification of automatic
control systems for aviation engines when using the
classical method, almost 1.5 times exceeds the error of
similar calculations obtained using the Elman neural
network, which shows the high robustness of neural
networks to external perturbations.

The application of the suggested approach opens
up new possibilities in the development of methods for
early indiscriminate diagnostics of hard-to-recognize
defects in aircraft engine parts using computer data ac-
quisition and processing systems.
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HEHPOMEPEXEBA IHTEPIIOJISINISI HAPAMETPIB BAI! ATOPEXUMHOI
JUHAMIYHOI MOJEJII ABIAINIMHOI'O IBUT'YHA

0. A. Tamapeasin, JI. b. Ilpuiimak

Po3rnstHyTi OCHOBM KOHIIEIIiT OOYIOBY IHTENEKTYAIbHUX CHCTEM VIPABIIiHHS aBlalliiHUMU IBUTYHAMH, OC-
HOBaHMX Ha JCKOMIIO3UIIII ITPOLIECIB KEPYBAHHS B paMKaX apXiTEKTypH BIOKpUTUX iH(popMariiinux cucrem. Ha Bin-
MiHY BiJl BIAIOMHUX IJXOIB, MIIXiJ, IO PO3MVISAAETHCS, JO3BONSIE 3a0€3ICUNTH JHOCATHEHHS MCETH YIPaBIiHHSA Ha
OCHOBI IIPUHIUITY MiHIMAJIBHOI €HTPOIIT IUIIXOM IEePEPO3IO LTy PECYPCIB CHCTEMH B YMOBaX iX AC(ILUTY, a TAKOXK
aJanTanii XapaKTepUCTHK CUCTEMU IIPH 3MiHI CUTYyallil KEpyBaHHS HAa OCHOBI CaMOHABYAaHHS M caMOOpraHi3ailii iH-
TeIEKTYaJbHUX CUCTEM KepyBaHHS. Ha OoCHOBI aHaii3y TEHJIEHIIIM PO3BUTKY aBlalliiHUX ABUTYHIB, a TAKOX TECHJIE-
HIIM PO3BUTKY BUPOOHMYHUX 1 TEXHOJOTIYHHUX CHCTEM, BKJIIOYAIOYH CTBOPCHHS HOBHX KOMIIO3UTHHMX MaTepiaiiB i
HOBHX TEXHOJIOT'M BUTOTOBIICHHS M KOHTPOJIIO JIeTajieil 1 By3JIiB aBlalliiHUX IBUTYHIB OOCOBOPIOIOTHCS TCHACHIIIT
IHTeJIEKTyali3allil CUCTEM iX aBTOMATHUYHOro KepyBaHHS. [IpH 1[bOMY TE€HIEHIII PO3BUTKY CHCTEM KE€pPyBaHHs aBia-
MIMHUMU JBUT'YHAMHU PO3MISIIAIOTHCSA 3 TOUYKH 30PY PO3BUTKY iX CTPYKTYP, (PYHKIIIH, BIaCTUBOCTEH 1 3IaTHOCTEH 10
HOBHUX SKICHUX 3MiH, BPaXxOBYIOUH 3arajbHI XapaKTEpPUCTUKH W OCHOBHI HANPSIMKH TOOYIOBH iHTEIEKTYaIbHUX
CHCTEM YIIpaBJIiHHA aBialliiHAMU JIBUTYHAMH K CKJIQJHAMH TEXHIYHUMH 00'ekTamMu. OOTOBOPIOETHCS 3ajiavya Imo-
OyIOBHM HENIHIMHUX JUHAMIYHUX MOJETCH aBiallifHUX NBHTYHIB 3 BUKOPHCTaHHSIM INTYYHHUX HEHPOHHHUX MEPEXK.
®DopMyeThCS TTOCTAHOBKA i€l 3amadi i MOXKIIUBI MiaXoan 10 ii po3B's3ky. [IpoBeneHO MOPIBHSIHHSA PE3YNIbTATIB
HeHpoMepeKeBoi ieHTH(IKaIll aBiallifHOro ABUTYHA 13 3aCTOCYBAaHHAM METOy HaiMEHIIMX KBajpaTiB. Taka me-
TOIMKA TMTOOYIOBH MOJIENI aBialliiHUX JBUTYHIB J03BOJISIE MTOOIYHO OOYUCITIOBATH HEIOCTYITHI BUMIPY KOOPAMHATH
JIBUTYHA — TATY, BUTPATY IMMaJUBa TOIMIO. 3aNMpONOHOBAHMMA ITiIX11 O3BOJISE TIPH TTOOYIOBI HEHPOHHUX MEPEXK, IO
MOJISITIOIOTH aBialliiiHi IBUTYHH, HA KOXXHOMY KPOIIi 3aCTOCOBYBATH CTaHAAPTHI MPOLIEAYPH, SKi TAFOTh MOXKJIHBICTh


https://archive.org/search.php?query=creator%3A%22Ashby%2C+William+Ross%22

. ISSN 1727-7337 (print)
ABIAIHIMHO-KOCMIYHA TEXHIKA I TEXHOJIOTI'IS, 2020, Ne 7(167) ISSN 2663-2217 (online)

aBTOMATU3yBaTH CTBOPEHHsI HEMPOHHOI Mepexi. [yl ckopodeHHs yacy OOYHCIICHb HPOIOHYETHCS 3aCTOCYBAHHS
ONTUMI3aiHHUN aJTOPUTM 3 YpaxXyBaHHSAM 3MiHU eHTpomii crany. Le crporrye peamizariito HeHpoMepexeBoi MoIe-
J1i aBialiifHOTO JBUTYHA B pEabHOMY 4aci B CKJIa/li OOPTOBOTO OOUNCIIOBAIEHOTO KOMILIEKCY.

Kurouesi cjioBa: aBiariiinuii IBUT'YH; TiarHOCTHKA; HEHpPOHA MEpEKa.

HEMPOCETEBASI HHTEPHOJISIIUS IAPAMETPOB MHOI'OPEXKMMHOM
JAHAMHUYECKOM MOJIEJIM ABUALTMOHHOT O JIBUTATEJIS

A. A. Tamapzazun, JI. b. Ipuiimax

PaccMoTpeHbl OCHOBBI KOHIIETIIIMU TOCTPOEHUSI UHTEIIEKTYaIbHBIX CUCTEM YIIPaBJICHUS aBUAIMOHHBIMU JBU-
raTesIMH, OCHOBaHHOW Ha JICKOMITO3HIIUHU ITPOIIECCOB YIIPABICHUS B PaAMKaX apXUTCKTYPhI OTKPBITHIX HH(DOpMAIU-
OHHBIX CHCTEM. B OTIIHYHE OT M3BECTHBIX MOIXOIOB, MPEIIaracMblii TIOAXOM MO3BOJISICT 00ECIICUUTh JOCTHKCHHE
LIeIM yTIPaBJIEHNs] HA OCHOBE MPUHIIMIIA MUHUMAJIBLHON SHTPOMUH MYTEM TiepepacnpeiefieHUus] PpECYpCOB CUCTEMBI B
YCIOBUAX MX NE(DUINTA, a TAKKE aJalTalliil XapaKTePUCTHK CUCTEMbI NMPH WU3MCHEHUM CUTYallMd YIPaBJICHHS Ha
OCHOBE CaMOOOYUYCHHS U CaMOOPTaHU3alMH WHTEIUICKTYalIbHBIX CHCTEM yrparieHus. Ha oCHOBe aHayiM3a TEHJICH-
LIMA pa3BUTUS aBUAIIMOHHBIX JBHUTraTelled, a TakKe TEHJIEHIIUI Pa3BUTHS MPOU3BOJCTBEHHBIX M TEXHOJOTUYECKUX
CUCTEM, BKJIIOYAsl CO3JaHME HOBBIX KOMIIO3UTHBIX MAaTE€pPHAIOB M HOBBIX TEXHOJOTHI M3TOTOBIEHUS M KOHTPOJIS
JieTajeld U y3J0B aBHAIMOHHBIX JIBUTATENEH OOCYXKIAIOTCS TCHACHIIMH MHTCIUICKTYaTIU3allii CHCTEM WX aBTOMATH-
YECKOTro yrpanjieHus. [Ipu 3TOM TEHACHIIMN Pa3BUTHSI CUCTEM YIIPABJICHUS aBUAIIMOHHBIMU JIBUTATEISIMHU PaccMaT-
PHUBAIOTCS C TOYKH 3PCHUS PA3BUTHSA MX CTPYKTYpP, (DYHKIMH, CBOWCTB U CHOCOOHOCTEH K HOBBIM Ka4eCTBCHHBIM
HN3MCHCHHUAM, YUYHTBIBaAs O6U_II/IC XapaKTCPUCTUKU U OCHOBHBIC HAIIPaBJICHHUSA IOCTPOCHUA HHTCIJICKTYaJIbHBIX CH-
CTEM YIpaBJICHUA aBUALIMOHHBIMHU JIBUTATCIIAMU KaK CJIIO)KHBIMH TCXHHYCCKHMU 061)eKTaMH. O6C}’)K213.CTCH 3aJadya
IOCTPOCHUA HEJTUHENHBIX JAUHAMHWYCCKUX MO)]CHeﬁ ABUAITMOHHBIX )IBHFaTeHeﬁ C HUCIIOJIb30BaAHUEM HMCKYCCTBCHHBIX
HEHpOHHBIX ceTeil. DopmMupyeTcsa MOCTaHOBKA 3TOM 3a/ladyd U BO3MOXKHBIE MOAXOABI K €€ pemeHuto. [IpousBeneHo
CpaBHCHHUEC PE3YJILTAaTOB HCﬁ‘pOCCTGBOﬁ PI)IGHTPId)PIKS_LIPIPI aBUAllTMOHHOI'O JABUTaTciisi C NPUMCHCHHUEM MCETOIda
HaMMCHBIINX KBaApaToOB. Taxas MCTOJUKaA IMOCTPOCHUA MOJCIN aBHALIMOHHBIX HBHFaTCHCﬁ IMIO3BOJACT KOCBECHHO
BBIYUCIIATE HEAOCTYITHBIC U3MCPCHUIO KOOPAUHATHI ABUTATCIIA — TATY, pacXo/ TOIIJIMBA U JIp. HpeJlJ'IO)KeHHHﬁ noa-
X0 MO3BOJIACT IIPU IIOCTPOCHUU HCﬁpOHHbIX ceTeﬁ, MOZACITUPYIOIINX aBHAIIMOHHBIC IBUIaTCIIM, Ha KaXXIOM IIare
MPUMEHATh CTaHAAPTHBIE MPOIIEAYPHI, YTO JAET BOZMOXKHOCTh aBTOMATHU3UPOBATh CO3JIaHNEe HEUpOHHOU ceTel. [l
COKpAIlLEHUs1 BPEMEHHU BBIUMCICHUN NpejaraeTcsi IPUMEHEHUE ONTUMU3ZALMOHHBIX aJITOPUTMOB C YUETOM HU3MEHeE-
HUS SHTPONUHU COCTOSTHHA. DTO YIPOILAST pPean3alfio HeMpOoCeTeBOl MOIENH aBUAIIIOHHOTO JBUTATENS B peab-
HOM BPEMEHH B COCTaBE OOPTOBOI'O BBIYUCIUTEIBHOIO KOMILIEKCA.

Kiro4eBble cj10Ba: aBHALIMOHHBIN IBUTATENb; THATHOCTUKA; HEIPOHHAS CETh.

Tamaprazun Asiekcanap AHATOJUeBHY — JI-p TeXH. HAayK, 3aB. Kad). TexHONIOrui asponopros, HarmoHasns-
HBII aBUAIIMOHHBIN yHUBepcuTeT, Kues, Ykpauna.

Mpuiimak JIionmuina BopucoBHa — kaHI. TeXH. HAayK, JOLEHT Kadeapbl TEXHOIOrHid a’spornopToB, Harwo-
HaJBHBIA aBUAIIMOHHBINA yHUBepcuTeT, Kues, Ykpanna.

Aleksandr Tamargazin — Doctor of Technical Science, Head of Dept. of Airport Technologies, National Avi-
ation University, Kiev, Ukraine,
e-mail: avia_icao@mail.ru, ORCID Author ID: 0000-0002-9941-3600.

Liudmyla Pryimak — Candidate of Technical Science, Assistant Professor of Dept. of Airport Technologies,
National Aviation University, Kiev, Ukraine,
e-mail: ludmila-joy@ukr.net, ORCID Author 1D: 0000-0002-3354-9820.


http://orcid.org/0000-0002-9941-3600

