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ANALYSIS OF TWO-STEP APPROACH FOR COMPRESSING TEXTURE IMAGES

WITH DESIRED QUALITY

A task of lossy compression of remote sensing and other types of images with providing the desired quality is
considered. Quality is mainly characterized by the peak signal-to-noise ratio (PSNR) but visual quality metrics
are briefly studied as well. Potentially, a two-step approach can be used to carry out a compression with provid-
ing the desired quality in a quite simple way and with a reduced compression time. However, the two-step ap-
proach can run into problems for PSNR metric under conditions that a required PSNR is quite small (about 30
dB). These problems mainly deal with the accuracy of providing a desired quality at the second step. The paper
analyzes the reasons why this happens. For this purpose, a set of nine test images of different complexity is
analyzed first. Then, the use of the two-step approach is studied for a wide set of complex structure texture test
images. The corresponding test experiments are carried out for several values of the desired PSNR. The obtained
results show that the two-step approach has limitations in the cases when complex texture images have to be
compressed with providing relatively low values of the desired PSNR. The main reason is that the rate-distortion
dependence is nonlinear while linear approximation is applied at the second step. To get around the aforemen-
tioned shortcomings, a simple but efficient solution is proposed based on the performed analysis. It is shown
that, due to the proposed modification, the application range of the two-step method of lossy compression has
become considerably wider and it covers PSNR values that are commonly required in practice. The experiments
are performed for a typical image encoder AGU based on discrete cosine transform (DCT) but it can be expected

that the proposed approach is applicable for other DCT-based image compression techniques.

Keywords: two-step approach; lossy compression; desired accuracy; complex texture image.

Introduction

With improvement of image acquisition technolo-
gies, information contained in images increases and be-
comes more abundant. This assists users to solve many
practically valuable tasks as Earth surface monitoring
from aerospace carriers, intelligent map navigation, intel-
ligent medical treatment, target recognition and many
others. For many modern applications, there is a tendency
to increase imaging system resolution and, respectively,
the number of image pixels. In turn, then acquired images
occupy more storage space and more time is needed to
transfer them via communication lines with a limited
bandwidth (e.g. from a satellite to on-land center of re-
mote sensing data processing and dissemination). Then,
image compression can be a useful way out [1].

It is known [2] that image compression can be loss-
less and lossy. The latter one is able to provide a consid-
erably higher compression ratio (CR) than the best loss-
less compression. This means that, due to lossy compres-
sion, more storage space can be saved and more time can
be saved when data are transferred. This is very important
in practical situations where real-time performance is of-
ten required.

However, under a high compression ratio, it is inev-
itable that image distortions are introduced and some part
of useful information can be lost. Then, some trade-off
should be found between a compressed image quality and
a produced CR [3]. Besides, image quality in lossy image
compression has to be described (quantitatively assessed)
using some adequate (application or service oriented)
quality metrics [4]. An aforementioned trade-off can be
reached if: a) an adequate metric is available; b) a tool
(algorithm) for quality variation is available; c) a method
for providing a desired quality with an appropriate accu-
racy is available and it is able to work quickly enough. In
other words, one has to provide high computational effi-
ciency, high reliability and accuracy of an approach to
providing a desired quality of compressed images.

Many related studies have been carried out and
some progress has been reached. In particular, iterative
compression methods [5] can gradually approach the ex-
pected value of a used metric and achieve high accuracy
that can be preset. Recall that, for iterative techniques, a
considered image is compressed and decompressed mul-
tiple times with calculation of a chosen quality metric af-
ter each decompression, comparison of a metric current
value to the desired one and adjusting a parameter that
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controls compression (PCC) appropriately (to move to-
wards the desired metric value at the next step). Depend-
ing upon a coder used, quantization step (QS), scaling
factor, quality factor or bpp (bits per pixel) can serve as
PCC.

An obvious drawback of iterative approach is that
the number of iterations is uncertain, it can vary in a ra-
ther wide limits depending upon a used algorithm of PCC
changing, image properties and present accuracy of met-
ric providing. Then, iterative compression might con-
sume a lot of time and computing resources [5]. A posi-
tive feature of the iterative compression is that it practi-
cally guarantees reaching a desired accuracy of quality
providing.

Another way to providing a desired quality in lossy
compression is to extract a part of image information
(statistics) as a basis for predicting compressed image
quality, and then to compress the image without any iter-
ations based on prediction and a recommended PCC.
Such a non-iterative compression requires fewer compu-
ting resources, but is often unable to provide a sufficient
accuracy [6].

A compromise solution for lossy compression can
be a recently proposed two-step method [7]. At initial
stage, it uses one compression/decompression using a
starting PCC with metric calculation. Then, a final PCC
is calculated using linear approximation and employing
averaged rate-distortion curves obtained in advance. Af-
ter this, the image is compressed using the final PCC.

Through the two-step compression method, the
compression process has simplified and become faster. In
some practically important situations. its accuracy is ac-
ceptable [7]. However, through in-depth research, it has
been shown that if one needs to provide the desired qual-
ity characterized by peak signal-to-noise ratio (PSNR)
about 30dB... 35dB or smaller, the accuracy radically de-
creases and becomes inacceptable. This happens more of-
ten if a compressed image has a complex structure.
Meanwhile, complex structure (highly textural) images
are ubiquitous in remote sensing imaging [8], industrial
[9], and intelligent medical-assisted diagnostic applica-
tions [10]. Texture features are of great significance in
image classification and automatic recognition [8].

The goal of this paper is to study the compression
performance of complex texture images mainly employ-
ing PSNR as quality metric, to analyze the results and to
give the limitations of the two-step method in practical
applications. A correction scheme is proposed to improve
the accuracy of quality providing for the two-step method
after correction. The AGU encoder used in our experi-
ments is an encoder based on discrete cosine transform
(DCT) [11].

The organization of the paper is as follows. The
basic peculiarities of the two-step method are introduced

in the second Section. Analysis of the visual quality as-
sessment results is given in the third Section. The fourth
Section mainly involves the testing results for highly tex-
tural images. Their thorough analysis is done. In Conclu-
sion, the revised two-step method is summarized, and
suggestions for practical use of the two-step method are
given.

Basic peculiarities of the two-step approach

As it has been already mentioned, the recently pro-
posed two-step method of image compression consists of
two stages. The first one is preliminary image compres-
sion/decompression with a “rough” quantization step.
The goal of the first stage is to compress our image with
providing a value of a considered metric rather close to a
desired value. The problem here is that performance
characteristics of any method of lossy compression de-
pend upon many factors, in the first order, image com-
plexity.

The term image complexity is widely used in image
processing although it has not been strictly specified yet.
So, let us try to explain it verbally by several examples.
It is a known fact in lossless compression [10] that an at-
tained CR varies in certain limits depending upon an im-
age lossless compression is applied to. There are images
with “unpredicted” or “hardly predictable” structure that
are compressed with CR close to unity. These are images
with many “locally active areas” as edges, details, and/or
textures. Similarly, there are images for which efficient
denoising is impossible [12]. Again, these are images
with high percentage of pixels that belong to locally ac-
tive areas.

Coming back to lossy compression, we can state
that for complex structure images either PSNR is smaller
if the same CR is provided (or the same PCC is used) or
CR is smaller if the same PSNR is provided. To prove
this, Fig. 1 presents two examples of the so-called rate-
distortion curves — dependences of PSNR on QS for the
coder AGU for which QS serves as PCC. These depend-
ences (Fig. 1) have been obtained for two test remote
sensing images - Frisco and Diego — that are presented in
Fig. 2 and which are good example of simple and com-
plex structure images, respectively. As one can see,
PSNR values for a given QS can differ by several dB.

Taking this into account, the proposition in [7] was
to apply some “good” initial QS at the first stage.
Because of this, the method [7] is based on using the av-
erage rate-distortion curve for trend prediction and QS
setting. In fact, the average distortion curve provides ap-
propriate preconditions for calculating the initial (rough)
value of any PCC in general and QS for AGU in the con-
sidered particular case. The method of obtaining the av-
erage rate-distortion curve is explained below.
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Let us select a certain number of test images as basic
ones (nine images listed in Table 1 have been used at the
experimental stage, which can be more in practical appli-
cations). For each image, the quality metric dependence
on QS has been obtained. Then, data for each QS have
been averaged providing an approximation of average
distortion curve. A part of experimental data is shown in
Tablel starting from very small and ending by very large
QS values.
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Fig. 1. Dependences of PSNR on QS for two test images
compressed by the AGU encoder

Fig. 2. Test images Frisc o and Diego

The considered set of test images contains four ones
commonly used in image processing. In addition, four
typical test remote sensing images and one medical im-
age have been added. The reason for this is our hope that
these test images are able to represent a wider field.

Analysis of data in Table 1 shows the following.
When QS is small (QS <10), PSNR changes (reduces)
drastically, so the QS changing step is set to 2, and when
QS is relatively large, PSNR changes smoothly (slowly),
so the step of its changing is set to 5. Comparison of
PSNR values for QS=75 shows that they can differ from
each other by almost 10 dB being the largest for simple
structure test images and the smallest for complex struc-
ture ones.

Among data in Table 1, there is the AVERAGE line.
The corresponding data allow determining derivative for
average rate distortion curve (Fig. 3) that represents the
trend and is exploited at the second stage of the two-step
procedure. The trend shown in Figure 3 is very obvious.
As QS value increases, the corresponding PSNR values

become smaller, and the change in the derivative absolute
value is similar.

Table 1
Experimental data of PSNR dependence on QS

QS value 2 4 75 80
Goldhill 51.996 | 46.834 | ...| 29.4297 | 29.145
Baboon 51.953 | 46.667 | ...| 25.5437 | 25.200
Barbara 52.065 | 47.150 | ...| 29.6363 | 29.240
Lenna 52.041 | 47.020 | ...| 31.6323 | 31.345
Aerial 52.063 | 46.998 | ...| 27.1821 | 26.858
Airfield 52.043 | 46.714 | ...| 26.0693 | 25.791
Frisco 53.626 | 49.755 | ...| 33.4553 | 33.127
Diego 51.949 | 46.622 | ...| 25.4872 | 25.227
Mrt_prepared 54.001 | 49515 | ...| 31.6745 | 31.363
average 52.415 | 47.475 .| 28.9011 | 28588
derivative -2.470 -1.498 -0.06245
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Fig. 3. PSNR average distortion curve

After the average distortion curve is obtained, we
can first use it to calculate the initial value of QS. For
example, let us provide PSNRgs=35 dB for the image
Goldhill. According to average data in Table 2, it can be
estimated that QS=~25, but the following calculations
can be made for getting a better estimate of QSii:

PSNR,,-PSNR,,
QSinit :QSest + : t[\/|' ’ (1)

where QSest is the value estimated from the average dis-
tortion data, PSNRav is the average PSNR value corre-
sponding to the estimated QSes. M’ is the derivative of
the corresponding QSest. Then, it equals 24.6064.

Table 2
Average data of PSNR dependence on QS
QSvalue | ... 15 20 25
average 38.10263 | 36.2837 | 34.91293

The compressor can be run first time using QSini,
The PSNRini: can be obtained, it equals 34.503dB. Then,
at the second stage, calculate QSges from the values ob-
tained (QSinit, PSNRinit, PSNRges, derivative):
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PSNR . -PSNR;

des init

MI

QSdes =QSinit + (2)

Then, one has to run the compressor the second time
setting QSqes=22.3587. the provided PSNRproy OCCUrS to
be equal to 35.0117dB, the error is less than 0.02dB. This
example shows that if the rate-distortion curve for a given
image is close to average rate distortion curve, one can
expect that the two-step procedure will be able to im-
prove accuracy of PSNR providing.

However, particular images might have rate-distor-
tion curves (see Fig. 1) that differ from the average curve
(Fig. 3), This leads to the fact that for the images Frisco
and Diego, the errors of providing PSNRges = 35 dB are
1.246 dB and 2.794 dB, respectively. This is less than
after the first stage but these errors are not appropriate.

Such errors show that different accuracy of providing
PSNR takes place and this is reflected in appearance of
compressed images.

In order to understand this, some comparative ex-
periments are necessary. In visual evaluation, let us em-
ploy three visual quality evaluation metrics, namely
PSNR, PSNR-HVS, and PSNR-HVS-M. The latter two
metrics take into account human visual system (HVS),
and these visual quality metrics have been shown in the
paper [8] to work well with the two-step method.

The comparison test results for Airfield image are
shown in Fig. 4. The similarity of images in Fig. 4, a and
Fig. 4, b is very high, some light differences can be found
(the parts marked in blue), while one can more easily find
some differences between images in Fig. 4, aand Fig. 4, ¢
(these parts are marked in red).

PRI Vs, -

c)

Fig. 4. Comparison of images: a, QS=30, PSNR =30.7564dB; PSNR-HVS = 30.1088dB;
PSNR-HVS-M = 34.7141dB; CR = 7.0329; b, QS=35, PSNR =29.7700dB; PSNR-HVS =28.9909dB;
PSNR-HVS-M =33.2661dB; CR = 8.5991; ¢, QS=40, PSNR = 29.0365dB; PSNR-HVS =28.0836dB;

PSNR-HVS-M = 32.1077dB; CR =10.1689
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In this way, analysis of these images and the corre-
sponding metrics’ values allows drawing the following
conclusions: when difference of PSNR values (APSNR)
is less than 1dB, the image difference is not obvious, but
when APSNR is greater than or equal to 1.5dB, the image
difference can be easily observed.

Analysis of quality providing for two-step
lossy compression approach

In [7], the results for the two-step compression
method are analyzed for the set of test images (used in
obtaining the average distortion curve). Three sets of data
have been obtained for PSNR for three values of
PSNRges, namely, 34 dB, 37 dB, and 40 dB. It was found
from the results that the proposed two-step procedure
worked well enough if it was desired to provide PSNR
larger than 37 dB, but the error of providing the desired
PSNR occurred to be too large for PSNRges smaller than
35.....37dB[7].

To better understand how the two-step method
works and what are the arising problems, consider the
cases of PSNRges equal to 35 and 30 dB in more detail.
Table 3 presents data obtained for PSNR¢es=35dB. The
lower line presents variance values of PSNRini: and
PSNRprov. It is seen that, due to the second step, variance
is significantly reduced compared to one step compres-
sion. It works well for simple and middle complexity im-
ages (consider data for such test images as Lenna, Bar-
bara, Goldhill). However, there are four test images for
which the error of providing PSNRges is greater than 1
dB. This means that people can clearly see the difference
when looking at the corresponding images (recall the
comparison in Section 2).

Table 3

Statistics and parameters of providing PSNRges=35dB

i;gsgfe QSmi | PSNRys|  AQS | QSe | PSNRyo,
Goldhill | 24.6 [ 34503 | -2.2476 | 22.358 | 35.0117
Baboon | 24.6 | 32.4512 | -11.526 | 13.079 | 37.1222
Barbara | 24.6 | 35.9636 | 4.3578 28.964 | 35.0604
Lenna 246 | 36.3968 | 6.3169 30.923 | 35.4641
Aerial 246 | 336942 | -5.9054 | 18.701 | 35.5482
Airfield | 246 | 32.2547 | -12.415 | 12.191 | 38.6067
Frisco 246 | 39574 | 206781 | 45.284 | 36.2463
Diego 246 [ 321536 | -12.868 | 11.738 | 37.794
Mrt_prep | 24.6 | 38.0092 | 13.609 38215 | 35.4429
ared
Variance 7.1179 1.6761

Consider now the data for PSNRges=30 dB. Recall
here that for the cases PSNR about 30 dB and less the
distortions introduced by lossy compression can be
clearly observed and the image quality is quite poor. The
obtained data are presented in Table 4. Analysis shows
the following. First, variance values for both PSNRi,i: and

PSNRyrov have sufficiently increased and become practi-
cally equal. Second, the number of images with an error
larger than 1 dB has risen to 5 out of 9. This shows that
the two-step method cannot provide appropriate accuracy
of producing a desired PSNR when PSNRges is about 30
dB. Again, the largest errors are observed for highly tex-
tural images as Baboon, Airfield, Diego.

Table 4

Statistics and parameters of providing PSNR¢es=30dB
Testimage | QSiit | PSNRin AQS QSrec PSNRyro
goldhill 60.1 | 3034 | -424 55.90 | 30.639
baboon 60.1 | 2672 | -402 19.8 33.973
barbara 60.1 [ 3088 [ 108 71.0 29.947
lenna 60.1 | 3262 [ 323 92.5 30.717
aerial 60.1 | 28.34 [ -20.4 39.6 30.687
airfield 60.1 [ 27.05 | -36.3 23.8 32.521
frisco 60.1 | 3468 [ 576 117. 31.155
Diego 60.1 | 26.44 [ -43.8 16.3 35.210
mrt_prepare | 60.1 | 32.89 35.6 95.8 24.510
Variance 9.1183 9.0517

Complex texture image test experiment

By comparing the data, it can be seen that large er-
rors of the designed two-step method often appear in im-
ages with complex structure images (e.g., Baboon, Air-
field, Diego). To analyze these effects more in detail, 30
texture images [13] have been chosen for testing. The im-
age set and their titles are shown in Fig. 7. There are two
reasons for choosing these images. First, these images are
not in the image library from which the average rate-dis-
tortion curve was obtained earlier. The testing of these
images can more objectively reflect the real application
of the two-step method. Secondly, these images contain
texture structures with different degrees of complexity.

.
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Fig7. Texture test image set
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The test results can to some extent reflect the impact
of the complexity of the texture structure of the image on
the accuracy that can be achieved by two-step compres-
sion. Test statistics is shown in Table 5. Alongside with
the data for the metric PSNR is paid the main attention in
this paper, visual quality metrics are considered.

Here Mges is the desired value of the considered vis-
ual quality metric, My is the provided value of the con-
sidered visual quality metric, VAR is the variance of
visual quality metric for thirty test images obtained after
the first-stage compression, VAR is variance of visual
quality metric obtained after the second (correcting) step
of compression, MAXafina IS Maximum error between
Mges and the provided values Mpr. From the statistical
results, it can be seen that for the metrics PSNR-HVS and
PSNR-HVS-M the two-step method works well enough,

This means that some actions have to be undertaken
to make the two-step procedure operation better. It is
possible to observe from data in Table 6 that when |AQS|
is greater than 0.5QSinit, the correction starts losing sense.
To our opinion, there are the following reasons behind
this. Recall that the basis of the two-step method is that,
within a certain area, the average rate-distortion curve
and the rate-distortion curves of particular images are ap-
proximately parallel and linear approximations can be
used to describe the curves locally. It can be seen from
the graph in the second Section that when QS<30, this
effect gradually disappears.

Table 6
Statistics and parameters of providing PSNR =30 dB
for texture images

and the variance after the two steps is considerably, by i;?te QSit | PSNRii | AQS QSrec | PSNRpo
approximately one order, smaller than the variance of the testf 60148 | 25705 | 52881 | 7267 | 41734
first step. Meanwhile, the error is also well controlled, test2 | 60.148 | 26.705 | -40571 | 19577 | 33.955
which is better reflected for PSNR-HVS. For the PSNR test3 | 60.148 | 26.48 -43.339 | 16.809 | 34.965
metric, more problems are revealed. When the desired | test4 | 60.148 | 26.737 | -40.175 | 19.973 | 33.948
value is 40 dB, the two-step method still works. When testS | 60.148 | 26454 | -43.659 | 16489 | 35042
. . . test6 | 60.148 | 25.443 | -56.107 | 4.041 46.525
the desired value is 35 dB and, especially 30 dB, abnor- test7 1 60128 | 26836 | 38.956 | 21192 | 33382
mal situations occur. The experimental data when test8 | 60.148 | 32.835 | 34.905 95.053 | 29663
PSNRges = 30 dB are shown in detail below (Table 6). testd | 60.148 | 30.938 | 11.549 | 71.697 | 30.064
testl0 | 60.148 | 28.176 | -22.458 | 37.691 | 30.757
Table 5 testll | 60.148 | 28.088 | -23541 | 36.607 | 30.581
Statistics of nine test images testl2 | 60.148 | 27.53 -30.411 | 29.737 | 31.182
test13 | 60.148 | 27.297 | -33.280 | 26.868 | 32.071
Visual quality testl4 | 60.148 | 25.099 | -60.342 | -0.194 -
EV&'U;‘?CO” Mes | VARfs | VARwo | MAXAfina testl5 | 60.148 | 25.211 | -58.963 | 1.185 56.455
€
SSNR 0 o857 T 0380 576 testl6 | 60.148 | 25.285 | -58.052 | 2.096 51.6
BSNR . TE04s | 323906 | 29.3803 testl7 | 60.148 | 24.68 -65.501 | -5.353 -
PSNR 30 3692 N/A test18 | 60.148 | 24.243 | -70.882 | -10.733 | -
PSNR-HVS 40 0.0314 0.0011 0.0892 test19 60.148 24.398 -68.973 -8.825 -
PSNR-HVS 35 0.1862 0.0097 0.3517 test20 | 60.148 | 24.458 -68.234 | -8.086 -
PSNR-HVS 30 0.6208 0.1528 1.3796 test21 | 60.148 25.231 -58.717 1431 54.525
PSNR-HVS-M | 40 5.6079 | 0.194 1.3653 test22 | 60.148 | 26.108 | -47.919 | 12.229 | 37.446
PSNR-HVS-M | 35 46928 | 0.4413 1.5423 test23 | 60.148 | 25561 | -54.654 | 5.494 44.061
PSNR-HVS-M 30 1.8633 0.2485 1.0542 test24 | 60.148 24.709 -65.144 -4.996 _
test25 | 60.148 | 24.548 | -67.126 | -6.978 -
As one can see, PSNRjn; varies in wide limits start- test26 | 60.148 | 25464 | -55.848 | 4.300 46.07
ing from approximately 24dB and completing by approx- | test27 | 60.148 | 26.863 | -38.623 | 21.525 | 33.677
imately 33dB. This means that even if an image subject test?8 | 60.148 | 27.616 | -29.352 | 30.796 | 31.571
L test29 | 60.148 | 29.249 | -9.246 50.902 | 30.223
to lossy compression is fully textural (recall that the test tes30 160148 | 25938 | 50.012 | 10136 | 38.92

images are taken from the database of texture images
[13]) there is a probability that some of them can be com-
pressed well and AQS can be positive. However, for most
textural images, the situation is the opposite. For the most
complex structure (problematic) images, the recom-
mended value of the recommended QS occurs to be neg-
ative (marked by red), and this causes the procedure to
stop running because QS should be positive by definition.
Another observation to note is that for data (marked by
red blue) the operation of the two-step procedure is also
improper since the errors of providing PSNRges are gen-
erally very large.

This is why the data marked in blue in Table 6 have
large errors. If the error of the Mini; at the first step con-
tinues to increase, the corrected QS will be negative. Be-
sides, the correction is calculated based on the corre-
sponding derivative M" at Mini. When the error of the
Minit value is large, it is not consistent with the actual sit-
uation to calculate with the M’ corresponding to Mipi.

This shows that the two-step method has a certain
range of applications. If it exceeds this range, its use
needs to be restricted. We propose to analyze AQS. If
|AQS[>0.5QSinit, then set:
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AQS=0.5QS, . ®)

The data for the modified algorithm that employs
(2) and (3) are as follows (Table 7).

Table 7
Statistics and parameters of providing PSNRges=30 dB
with constraint

i;zzte QSwc | PSNRyi | AQS | QSwe | PSNRyoy
testl 60.148 25.705 -52.881 30.074 30.486
test2 60.148 26.705 -40.571 30.074 30.926
test3 60.148 26.48 -43.339 30.074 30.717
test4 60.148 26.737 -40.175 30.074 31.065
tests 60.148 26.454 -43.659 30.074 30.594
test6 60.148 25.443 -56.107 30.074 30.146
test7 60.148 26.836 -38.956 30.074 30.931
test8 60.148 32.835 34.905 95.053 29.663
test9 60.148 30.938 11.549 71.697 30.064
test10 60.148 28.176 -22.458 37.691 30.757
testll | 60.148 28.088 -23.541 36.607 30.581
testl2 | 60.148 27.53 -30.411 29.737 31.182
testl3 | 60.148 27.297 -33.280 30.074 31.320
testl4 | 60.148 25.099 -60.342 30.074 30.153
testl5 | 60.148 25.211 -58.963 30.074 30.136
testl6 | 60.148 25.285 -58.052 30.074 30.228
testl7 | 60.148 24.68 -65.501 30.074 29.876
testl8 | 60.148 24.243 -70.882 30.074 29.685
test19 60.148 24.398 -68.973 30.074 29.744
test20 | 60.148 24.458 -68.234 30.074 29.779
test21 | 60.148 25.231 -58.717 30.074 30.158
test22 | 60.148 26.108 -47.919 30.074 30.560
test23 | 60.148 25.561 -54.654 30.074 30.446
test24 | 60.148 24.709 -65.144 30.074 29.956
test25 | 60.148 24.548 -67.126 30.074 29.856
test26 | 60.148 25.464 -55.848 30.074 30.387
test27 | 60.148 26.863 -38.623 30.074 31.374
test28 | 60.148 27.616 -29.352 30.7958 31.571
test29 | 60.148 29.249 -9.246 50.9079 30.223
test30 | 60.148 25.938 -50.012 30.074 30.476
Var 3.823 0.281

The experimental data show that when the applica-
tion of the standard two-step method is restricted, the
modified method of obtaining QS has achieved good re-
sults.

The variance has been reduced by one order, and the
maximum error does not exceed 1.58 dB.

Conclusion

The simplicity and practicality of the two-step
method makes it feasible to promote the use of lossy
compression. The paper analyzes the errors of PSNR
providing and further improves the applicability of the
method to complex texture images. The use of the two-
step method in the remote sensing and medical imaging
ensures high accuracy of image quality providing.
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AHAJII3 IBOETAITHOTI'O IAXOAY 10 CTUCHEHHS TEKCTYPHUX 30BPA’KEHbDb
3 BA’JKAHOIO SKICTIO

@. JIi, C. C. Kpugenxo, B. B. JIykin

Po3rnsigaeTbes 3a1a4a CTUCHEHHS 3 BTPAaTaMU JIAaHUX JIMCTAHIIHHOTO 30HAYBaHHS Ta IHIINX THUIIB 300paKeHb
13 3a0e3neueHHsIM 0a)aHoT IKOCTI. SIKICTh B OCHOBHOMY XapaKTepH3YEThCs MTIKOBUM CITiBBIHOLIEHHSIM CUTHAJ / IIyM
(PSNR), aie Tako KOPOTKO BHBYAIOTHCS 1HINI MOKA3HHUKH SKOCTI 300pakeHHs. [10TeHIIHHO, ABOSTAITHUH ITiIXi]T
MOYK€ BUKOPHUCTOBYBATHUCS JUUIsI BAKOHAHHS CTUCHEHHS 13 3a0€31IeUeHHAM 0axaHo{ SIKOCT1 IOCUTH IIPOCTHM CIIOCOO0M
1 3 3MEHIIIEHNM YacoM CTUCHEHHs. OTHAK JBOCTAITHUH MiJXiJ MOXKEe 3iTKHYTHCS 3 ipobiaemamu st meTpuku PSNR
B yMOBaX, kou HeoOxiganit PSNR mocuts Manuii (6:im3pko 30 nb). Lli mpobnemMu B OCHOBHOMY CTOCYIOTBCSI TOUHO-
cTi 3a0e3medYeHHs Oa)KaHo1 TKOCTI Ha APYroMy eTami. B po0oTi aHaMi3yIOThCS IPUYUHH, 33 SKHUMU II¢ BiIOYBa€THCS.
Jnst pOTO CIIOYaTKy MpoaHaTi30BaHO HA0Op 3 JIEB'SITH TECTOBUX 300pakeHb Pi3HOI ckiamgHocTi. [loTiM BHKOpHC-
TaHHS JIBOCTAIHOTO MiJIXOy BUBYAETHCS IS ITUPOKOTO HAOOPY TECTOBHUX 300paxeHb 31 CKIIA/JHOI CTPYKTYPOIO Te-
KcTypH. BinnmoBigHi TECTOBI €eKCIIEpUMEHTH POBEACHI I JeKUTbKOX 3Ha4eHb O0axxanoro PSNR. Otpumani pe3yinb-
TaTH TOKa3yIOTh, IO JBOCTATHUMA MigXil Ma€ OOMEXEHHS B TUX BHUMAJKaX, KOJU CKIQJHI TEKCTYPHI 300paKeHHS
MTOBMHHI OYTH CTHCHYTI 3 3a0€e3MeUeHHsIM BiTHOCHO HU3BKUX 3HaueHb OakaHoro PSNR. OcHoBHa mpu4mHA MOJIATae
B TOMY, IIO 3aJIS)KHICTh IIBUAKOCTI BiJl CIIOTBOPEHHS € HENIHIHHOI, TOAI K Ha IPYroMy €Talli BUKOPHCTOBYETHCS
niniiHe HaOmxeHHs. [1[o0 06iiiTH BUIIE3ragani HeJIOMKH, TPOMOHYETHCS TPOCTE, alie ePEeKTUBHE PIllICHHS HA OC-
HOBI IIpoBeieHOr0 aHaii3y. [loka3aHo, 0 3aB/ASKU 3aIPOIOHOBaHIN Moandikamnii 001acTh 3aCTOCYBaHHS ABOETAI-
HOTO METOJly CTUCHEHHS 3 BTpaTaMH CTajla 3HauHO mmpiie i oxorutoe 3HaueHHs PSNR, siki 3a3Bu4aii nmotpiOHi Ha
npakTHii. EkcriepuMeHTH BUKOHYIOTHCS 1t TUIIOBOTO Koiepa AGU OCHOBI IMCKPETHO-KOCHHYCHOTO TIEPETBOPEHHS
(DCT), ane MoxkHa OUiKyBaTH, IO 3aMPONOHOBAHU Mi/IXil MOYKE OYTH 3aCTOCOBAHO JIJIS HIIUX METOJ[iB CTHCHEHHS
300pakens Ha ocHOBI DCT.

KoaiouoBi ciioBa: gBocTyneHeBHil MiIXi/l; CTHCHEHHS 3 BTpaTaMy; Oa)kaHa TOYHICTh; CKJIaJHE 300paskeHHS; Te-
KCTYpH
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AHAJIA3 JIBYXITAIIHOI'O MOJIXOJIA JIJISI CKATHSI TEKCTYPHBIX U30BPAKEHUI
C XKEJJAEMbBIM KAYECTBOM

@. JIu, C.C. Kpusenxo, B.B. /Iykun

PaccmaTpuBaeTcs 3agada CkaTHs C MOTEPSMH JaHHBIX AUCTAHIIMOHHOTO 30HAUPOBAHUS M JPYTHX TUIIOB H300-
pakeHHl ¢ oOecreyeHneM KeTaeMoro kadecTBa. KauecTBO B OCHOBHOM XapaKTEPH3YeTCsl MMKOBBIM OTHOIICHHEM
curHan / myM (PSNR), HO Takke KpaTKo M3y4aroTcs APYTHE MOKa3aTelIn KadecTBa nm3oOpaxeHus. [loTeHnmansHO,
JBYX3TAITHBIA ITOIXO0J MOXKET MCIIOIb30BATHCS AL BBHITIOIIHEHHUS CKATUSA C 00ECIIEYCHHEM KEITaeMOro KauecTBa J0-
BOJILHO NPOCTBIM CIIOCOOOM M C yMEHBIIEHHBIM BpeMeHEM cikaTusi. OfHAKO ABYX3TAIHBIA MOAXOA MOXET CTOJIK-
HYThCA ¢ IpobneMamu Juist MeTpukd PSNR B ycnoBusx, koraa tpedyemsiii PSNR noBosibsHO Man (okoso 30 nb). Otn
npo0JIeMBI B OCHOBHOM KacaloTCsl TOYHOCTH 00eCIIeueHHs! KeIaeMoro KauecTBa Ha BTOPOM dTare. B craTbe aHamm-
3UPYIOTCS] IPUYUHBL, [0 KOTOPHIM 3TO IMPOUCXOAUT. IJIsl 3TOr0 CHavaja aHaJIM3UPYeTCsl HabOp M3 JIEBSITH TECTOBBIX
N300paKEHUH Pa3INYHON CIOKHOCTH. 3aT€M HCIOJB30BAHUE JBYXITAITHOTO IMOJXOJa H3y4aeTcst JJIsl IIHMPOKOTO
Habopa TECTOBBIX M300pPaKEHUI CO CII0KHON CTPYKTYpOH TeKcTypbl. COOTBETCTBYIOLIME TECTOBBIE 3KCIIEPUMEHTEI
MIPOBOJSAT JUIS HECKOJIbKUX 3HaueHuH sxenaeMoro PSNR. TlonmydeHHbIe pe3ynbTaThl HOKA3bIBAIOT, YTO JBYXITAITHBIH
MOJXOJ UIMEET OTPAaHUUCHHMS B TEX CIIydasiX, KOT/a CIIOKHbBIE TEKCTYPHBIE H300paskeHNS JOJKHBI OBITH CIKATHI C 00ec-
MICYCHUEM OTHOCHUTEIIFHO HU3KUX 3HaueHUH sxenaeMoro PSNR. OcHoBHas mpudIHA 3aKITF0YAETCs B TOM, YTO 3aBUCH-
MOCTb CKOPOCTH OT HCKaKEHHS SIBJIICTCS] HETMHEHHOM, TOTAa KaK Ha BTOPOM 3Talle MpUMEHseTCs TMHEHHOe Tpron-
xeHue. YToObI 000HTH BBIICYTTOMSHYThIE HEIOCTATKH, IIpeIaraeTcs MpocToe, Ho 3 peKTHBHOE penieHHue Ha OCHOBE
MIPOBEJCHHOT0 aHanm3a. [lokasaHo, 4To Gnaromaps npenokeHHOW Moau(uKay 00IacTh MPUMEHEHHS ABYXJTall-
HOTO METOJIa CKaTHsl C TIOTEPSIMHU CTaJIa 3HAUYUTEIBHO MIMpe U oxBaTbiBaeT 3HadeHUsI PSNR, koTopsie 00braHO Tpe-
OYIOTCSI Ha TIPaKTUKE. DKCIEPUMEHTHI BBIMOIHAOTCS it TunmumdHoro AGU kozepa n300pakeHUs Ha OCHOBE JTUC-
KpeTHO-KOCHHYCcHOT0 npeodpazoBanust (DCT), HO MOXKHO 0KHIATh, YTO MPEATI0KEHHBIH [10JIX0]1 IPUMEHUM JUIS Py~
T'HX METOJIOB CXKaTHsl n300paxxeHuit Ha ocHoBe DCT.

KaroueBble ciioBa: ABYXCTYIEHUYATHIH TOIX0/; CKATHE C TIOTEPSIMU; XKeJlaeMast TOUHOCTb; CJIOXKHOE H300paxe-
HUE; TEKCTYPbI
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