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TASK SOLVING ORGANIZATION OF INVERSE PROBLEMS
OF THERMOELASTICITY FOR A THIN RING

The research of stress-strained conditions of aviation and power industrial facilities refers to the problems of
mechanics of a solid deformed body. In this case the ultimate goal of the research may be different: determina-
tion of the stress-strain state of specific objects; identification of mechanical characteristics of materials. But if
we assume that the study of the stress-strain state of a body with known all other initial data is the subject of a
direct problem, then the definition of any parameter of the system by known characteristics stress-strain state
can be attributed to the class of inverse problems of the mechanics of a deformed solid. New inverse thermoe-
lasticity problems for thin ring have been formulated in which unknown thermal loading (temperature of
boundary surface and intensity of frictional heat flux) has been determined using additionally given vertical dis-
placements of one of the outer boundary surfaces. The functional spaces, for which the problems are well-
posed, have been found. The method for solving the problems has been suggested and numerically verified with
the use of the solution of the direct problem. This paper deals with the determination of heating temperatures
and temperature distributions on the upper surface of a thin ring. The expressions of the heating temperatures
and temperature distributions have been obtained in series form, involving Bessel’s functions with the help of
the integral transform technique. Thermoelastic deformations have been discussed and illustrated numerically
with the help of temperature and determined. In the framework of the nonlinear theory of thin rings on the basis of the
inverse problem method was formulated a model of deformation of the observed thin-walled ring with loads, boundary condi-
tions, geometric parameters to be determined. The basis of the model is the parametrization of a direct problem of nonlinear
theory thin-walled elements using the boundary elements method 2 and the variational formulation of the identification prob-
lem, which provides for minimization of the residual functional reflecting the deviation of stress-strain state parameters ob-
tained as a result of observationfrom those calculated on the basis of an approximate solution.

Keywords: inverse problem, inverse transient function, thermoelastic deformation, thin ring.

Introduction Therefore it is obvious that the method of inverse prob-
lems is the most optimal for solving such questions as
Today the transition from expensive experimental the thermoelasticity of a thin disk.
methods to cheaper ones becomes more and more rele-

vant. Experiments with thin rings, which are used in 1. Statement of the problem
propulsion systems, aerospace engineering and air-
planes, involve using a multitude of specialists, equip- Let's suppose that in a circular ring a <r <b there

ment, working space (laboratories) and time. The meth-
od of inverse problems proposes to solve the problem
much more cheaply and without loss of efficiency. It is
especially important to use the inverse problem method
in cases when an repeated enough times for statistical ~ described by the stationary heat conduction equation
representativeness experiment may be expensive or  With prescribed temperatures at its boundaries
dangerous.

is no heat source, the inner side of it is heated to tem-
perature T and the external side is heated temperature

to T,. Then the temperature distribution in the ring is

It should be remembered that quality is fundamen- 1d| dT| 3 3
tally unstable, since it is determined by randomly ;E[rg} =0, a<r<b, T@)=T,, T(b) =T, (1)
changing factors and tends to a constant deviation from
given levels. Under the influence of production and op- As a result of heating in the area of a ring formed

erational factors, the quality changes during the experi-  hermoelastic stresses, which in this case are represented
ment. This means that even a representative results of

the data can result in a significant error due to a change
in the quality of the equipment during the experiments.

by the following components: radial o, and circumfer-

ential o, . To define the data component we will use the
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differential equation for radial displacement u, which
has the following form [1]

i[lm} = (1+v)ad—T, a<r<b. (2)
dr{r dr dr
Let's suppose that at borders of this area are given
displacements
u,(a)=u,, y,(a)=u,. 3)
Need to find the temperature distribution in the
ring T(r), a<r<b, if the values of the radial stress at
certain points of the ring are known with an error char-
acterized by a random amount distributed according to
the normal law with zero mathematical expectation and

variance & [2]
R[Cr(rk)]zsi! a<rk<ba (4)
where R is the operator representing this error.

2. Exact solutions for direct problems
of heat conduction (1)
and thermoelasticity (2)

The solution in closed form for the Dirichlet
boundary value problem of the form (1) can be obtained
after performing successive double integration

rd—Tz d—Tzﬂ,Tlelnr+D2.
dr dr r

1°

Constants and are determined from the boundary
conditions of the problem (1)

T, =D,Ina+D, b T,-T
;T,-T,=D/In—; D, = =,

T,=D,Inb+D, a lnE

a

Thus, the obtained temperature distribution in the
ring

_ (T, -T)Inr+T,Inb-T, Ina
Inb-Ina '

T

)

For the solution of the boundary value problem
(2), (3) will do the same.
m= (1+v)aTr+Cr;
d

2

= (1+v)ochrdr+Cl%+C2.

And finally, for the radial stress we obtain the fol-
lowing
o r C,
u=(1+v)—[Trdr+C, —+—. 6)
Ta 2 r

Now need to determine the unknown coefficients
C; and C; from boundary conditions (3) for problem (2).
Write the formulas for the component stresses [1]

c =

r

_%[sr +Veg, —(1+v)ocTJ ,
Y

S, =1iz[sr +ve, —(1+v)aT],
-v

where the corresponding deformations are determined
L d .
through radial displacement ¢, = d_u g, = g€ Inserting
r r
the expressions for the displacements (6) and tempera-
ture (5) into the formula for o, , we get the following

dependence for the radial stresses

_du u
T

Taking the integral in the last expression, we obtain
finally

T

2 2 2 2 2 2
o = ocf D, r'lnr—-a lna_r a +D2r a N
r 2 4 2
(7

{E(HV)—C—;(I—VZ)}.
2 r

c =_O°_15f(Dl lnr+D2)rdr+1 E 2{%(l+v)—c—;(l—v)},
roa r

+

-V

Similarly, we can obtain the expression for tangen-
tial stress o, .

We determine the unknown coefficients in (7)
from the system resulting from the boundary conditions
A3), C,.C,,

Cl Cz _ _
c cr<a>=o} 2 U=
o ®)=0] C\j ) Gy ) F
2(1+v) e 1-v)

== (1-v) |

For the coefficients finally get

1
o[L-

1 E_
a—z}(l—V)=—F(l—V )



26 ISSN 1727-7337. ABUAIIMOHHO-KOCMUNYECKAS TEXHUKA U TEXHOJIOI'US, 2017, Ne 5(140)

F(1+V) L 2C, 1-v

1 1Y 7' a 14y
E(z_zj
a- b

The exact solution of both boundary value prob-
lems are obtained to verify approximate solutions of the
same task by using one of the approximate methods (for
example, the method of weighted residuals).

C, =

3. Regularizing algorithm
A. N. Tikhonov

Regularizing algorithm A. N. Tikhonov construct-
ing analytical solutions of linear inverse problems
(2)-(4) is to minimize the following functional [3]

J=1{l6.(t)—c*Pdr+a Q[T], (8)

which relies on the method of least squares. Under the
integral in the functional (8) is squared the difference
between the voltages obtained in the measurement result
and the simulated stresses are obtained by solving the
boundary value problem in displacements (2), (3) with
the subsequent calculation of the radial stresses. Here,
the stabilizer or stabilizing functions that depend on an
identifiable temperature — the regularization parameter.
Let us write the expression for the radial stress, which
deformation will introduce through the move

E |du u
Gf:l—vz [E+v?—(l+v)aT] 9)

The stabilizer Q[T] present in the form of a square

of the second derivative from the desired temperature in
the following form

Q[T] = ‘f{li(rd—TH rdr. (10)

al rdr\ dr

Substitute expressions (9) and (10) into the func-
tional (8), then get

2 2
J:?{Z—u+v2—(l+v)aT—cf} rdr+(xrkf{li(rd—Tﬂ rdr.
r

al dr al rdr\ dr

In the last expression for the functional J, to sim-
plify calculations when minimize, radial voltage divided

by the multiplier

5.
-V

Due to the fact that the task of minimization of
functional is infinite-dimensional task, as it is necessary
to find the temperature function and the corresponding

function of displacement. In turn, the temperature and
radial displacement is the solution of corresponding
boundary value problems of heat conduction (1) and
thermoelasticity (2), (3), So we reduce the infinite di-
mensional problem of minimizing the functional to fi-
nite-dimensional, using with the solution of boundary
value problems (1), (2) and (3) method of weighted re-
siduals [4].

4. The method of weighted residuals
in the form of Galerkin

For the solution of boundary value problems of
heat conduction (1) select basis functions in spline of
Schoenberg a third-degree defect 1 [5]. This choice of
basis due to the fact that subsequent will need to get a
radial voltage as the solution of the boundary problem
(2), (3) where the temperature enters in the form of its
first derivative and to achieve a good precision on the
displacement, it is desirable to have a smooth first de-
rivative from temperature function.

Construct the following grid on the interval, where
is the parameter grid integer number.

Multiply equation (1) for the selected spline and
will printeriem the obtained expression for the area of
solving the boundary value problem, then get

vl d| dT L
i;a{rg}(oj(r)rdrzo, j=-Ln+l1

or after integration by parts are

b

o, -
‘fd—Tﬂrdr—d—an —0, j=—Ln+l.
adr dr dr |,

In the future, Dirichlet boundary conditions will be
presented in the form of the boundary conditions of heat
transfer with large heat transfer coefficients and

dT

dT
E:aa(T—Ta), r=a; —Ezocb(T—Tb), r=b.

After substitution of the boundary conditions in we
obtain the following system of equations and now imag-
ine the desired temperature function in the form of a
linear combination of basis functions

T="% To, (). (11)

where the coefficientsT,,i=-1,n+1 of the uknown

function at baseline.
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The solution of equation (13) is a vector of the
components, which confirms the reduction to a finite-
dimensional problem. Similarly dealing with the solu-
tion of the boundary problem of thermoelasticity (2), (3)
using the finite element method.

Following the method of weighted residuals [4],
we multiply equation (2) to the element of the chosen
basis ¢;(r) and will printeriem in the region.

After integration by parts in the first integral we
get the following expression and imagine the move
function is in the form of a sum where — the same
splines of the third degree and with the same sampling
region, as in the conduction problem (1). Then, given
the boundary conditions (3), for the coefficients we get
the following system of linear algebraic equations

dr dr

|
i=-1

Y {d(b 4o, ¢¢}rdr——1(l+v)oc—¢rdr
r

j=-Ln+1

5. The method of the influence functions
in the inverse problem of thermoelasticity

With the aim to link both boundary value problems
(heat conduction (1) and thermoelasticity (2), (3)) by
one target vector, in this case, we use the method of
influence functions [6]. Since we already have an ex-
pression for temperature in the form (13), then substi-
tute it into the right side of equation (2), pre-
differentiated with respect to spatial coordinates. If now
the function of the radial stresses present in the form of
the sum of the same number of components as the tem-
perature and substitute into the equation of thermoe-
laticity

u=Wr+ '3 TU, .

Here the function "accumulates" a heterogeneous
boundary conditions for the displacements on the
boundaries of the region in which the radial tension is
equal to zero. Due to the fact that this differential equa-
tion is linear and the boundary conditions for homoge-
neous functions, then it splits into linear differential
equations of the form

_ 49,
}_(Hv)a i

a<r<b,

d [1d@U,)
EP——— (12)

r dr

with homogeneous boundary conditionsU, (a)=0,

U.(b)=0,i=—Ln+1.

You can talk and Vice versa, using the principle of
superposition. Have a first linear differential equation
(16), multiply each of them on constant coefficient and
fold, then given function, taking into account the inho-
mogeneous boundary conditions for the displacements
on the boundaries of the ring will receive the original
equation (12) with inhomogeneous boundary conditions.

Here for each effect we get the system response in

the form of a% , 1.e., a function of influence. Summa-

rizing all the effects in the right part of (12), obtained as
the sum of

u(r) =W+ ¥ TU ) (13)

the desired movement.
Having said thisU,,i=-1,n+1, we note that two

functions for the temperature and radial displacement
are included in the functional (11), was presented in the
form of linear combinations of different bases. For each
function your basis, that is for temperature — it's the
splines of the third degree, a function of the radial dis-
placement is a function of influence. Influence functions
are found by solving the direct boundary value problems
of thermoelasticity (13). The coefficients of both func-
tions are the same. Here also it turned out that the func-
tional (11) it is necessary to minimize the space dimen-
sions, that is, in finite-dimensional space.

To compute the influence functions, it is necessary
to solve () boundary value problems of the form (13).
Again we apply the method of weighted residuals with
the same basis in the form of splines of the third degree,
then get

4u
al| dr?
The integral of the second derivative, as before,

write out, using the method of integration by parts. With
the zero boundary conditions we have

ldi—u—z—(l+ v)o—- d }erdr =
dr

rdr r

- Udb. )
[ __'_———(1+v)0c% j}l‘dl‘=0
T dl‘

i=-1,n+l1.

According to FEM the influence function ("single"
radial tension) will be presented in the following form

U (=% U (0.

Below in Fig.1 and Fig.2 shows radial tension and
temperature.
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Fig. 1. Radial tension: 1 (black line) — exact, 2 (red line) — noisy, 3 (blue line) — identified
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Fig. 2. Temperature: 1 (black line) — exact, 2 (blue line) — identified

6. Minimization of functional

Substitute in the expression for the functional (11)
representation of temperature functions (13) and func-
tion of radial displacement (17)

dw +5 Ti%+ﬂ+znfl TU, -

b
I=1 [—
i [ dr =1 dr r ri=l

2
—(1+V)Otnfl Ti¢i—cf]2rdr++ocrlf 1d r“flTi% rdr
i=-1 al rdrl =t dr

After substitution functionality is a function of var-
iables in the unknown coefficients. To determine these
coefficients we use the necessary condition of minimum
of function of several variables, namely

o
dT,

0, j=—lLn+l1. (14)

Based on the fact that the experimental values of
the radial stresses is known at specific points (4), the

integrals in the right part of system (14) can be comput-
ed numerically by, for example, by the method of rec-
tangles.

Based on the fact that the experimental values of
the radial stresses is known at specific points (4), the
integrals in the right part of system (14) can be comput-
ed numerically by, for example, by the method of rec-
tangles

b{ . dw vw}
[lo, —————— yrdr=
a dr r |’

|:Grk _M _L(rk):|\l" (trhy,
dr r !

E]

1

where is the point of a ring, in which the measured radi-

al strain, h, =1, —-r_,, k =1,m,m is the number of
measurements. The integrals in the left part can be cal-
culated with prescribed accuracy, as function is the sum
of influence functions and their derivatives of Schoen-
berg splines of the third degree. Influence functions can
be calculated with reasonable accuracy by solving the

boundary value problem (14).
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7. A search of the regularization
parameter

Following the algorithm for computing the regu-
larization parameter, we write the norm of the deviation
of the simulated and experimental radial stresses. For
choice of the regularization parameter the following
algorithm is used [7]. The parameter should be chosen
in such a way that the values of and (15) would be as
similar as possible because to make them equal is not
possible. To do this, in practical calculations choose the
"narrow" range of change values in the form
[min I, max I ]. The regularization parameter varies

in such a way that the value was in the given numeric
interval.
min [ <I< maxI,. (15)

Once this occurs, the calculation stops.

For this variation you can use, for example, the
method of dichotomy. First sets the two values and their
arithmetical mean is taken. Next, with the same value
minimizes the Tikhonov functional, i.e. solve the sys-
tem. The obtained nodal factors are used when checking
the conditions (15). If this is less, is taken as the same
value. If more, take it as. Then calculated the arithmetic

mean and continue the process until, until you run con-
dition (15).

8. The results of identification

In Fig. 1-2 presents the results of the identification
of the radial stresses and temperature with an error of
measurement voltages of 1, 5, 10, 15 and 20%.
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OPI'AHMU3BAIIMA PEHIEHUA OBPATHBIX 3A/IAY TEPMOYIIPYT'OCTH
JJIA TOHKOTI'O KOJIbLHA

B. O. IToszopoonuii, O. C. Byoanosa

HoBble 0OpaTHBIC 3a1a4¥l TEPMOYIIPYTOCTH ISl TOHKOT'O KOJIbIa ObUTH ChOpMYITHMPOBAHBI M MPUMEHSIOTCS MIPH
MIPOCKTHPOBAHUHU YCTPOMCTB a3POKOCMUYECKON TEXHUKU. B 3THX 3aayax HEM3BECTHAs TEIUIOBAsi Harpy3ka (Temiie-
paTypa TPaHUYHOM TOBEPXHOCTH U MHTCHCUBHOCTH TEIUIOBOTO IOTOKA) ObLIa OMpe/eicHa ¢ MCIONb30BAHUEM JaH-
HBIX BEPTUKAJIBHOIO CMEIICHHS OJHOW M3 BHEUIHHX T'PAHUYHBIX MOBEPXHOCTEeH. DYHKIIMOHAIBHBIC TPOCTPAHCTBA,
JUTSL KOTOPBIX OOpaTHBIC 3a1a4 KOPPEKTHBI, ObLIH HalaeHbl. CIIoc0o0 peleHuss 00paTHBIX 3a1a4, ObLT MPEeIIoKeH U
MPOBEPEH C KCIOJIH30BAHUEM MHOTOKPATHOI'O PEIICHUS MPSAMON 3a7ayd. ITa CTAaThs MOCBSAIICHA OMNPEIACTICHUIO
TeMIepaTyp HarpeBa M paclpeeicHus TeMIepaTyp Ha BEpXHEH MOBEPXHOCTH TOHKOTO KOJbIIA. BhIpakeHUs TeM-
MepaTyp HarpeBa M pacrpelnesieHUs] TeMIepaTyp ObLIHM ITOMYYCHBI B BUAC psla, BKIrouYas QyHKIMU beccens ¢ mo-
MOIIBI0 MHTETPAJIBHOIO Mpeodpa3opanus. TepMoynpyrue aepopManui ObUTH 00CYKIEHBI M MPOMLTIOCTPUPOBAHBI
YHCJICHHO C TIOMOIIBIO YUCICHHBIX METOJIOB ONPEACICHHS TEMIIEPaTyp.

KnaroueBsbie cioBa: oOpaTHas 3amada, oOpaTHas nepexonHast (pyHKIMs, TepMoynpyras nedopmanus, TOHKOe
KOJIBIIO.

OPI'AHI3AIIA BUPILIEHHA OBEPHEHUX 3ATAY
TEPMOIIPYKHOCTI AJI51 TOHKOI'O KLUIbI S

B. O. IIoszopoonin, O. C. Byoanosa

Hogi oGepHeHi 3a1a4i TepMOITPY)KHOCTI ISl B3aEMOJIIOUHX MIapiB Oynu chOpMYIbOBaHi Ta BUKOPUCTOBYIOTh-
csl TIpH TIPOEKTYBaHHI MPHUCTPOIB aepOKOCMIYHOI TEXHIKH. B IMX 3ajayax HeBiZoMe TEIIOBE HaBaHTa)KEHHS (TeM-
nepatypa rpaHH4YHOI IIOBEPXHi Ta IHTEHCHBHICTb TEIUIOBOTO IIOTOKY) OyJi0 BU3HAYECHE 3 BUKOPHCTAHHSIM JaHHUX BEp-
TUKAJILHOT'O 3MIILEHHSI O/IHI€T 3 30BHIIIHIX TPAHUYHHX ITOBEPXOHb. DYHKIIOHANBHI IPOCTPAHCTBA, ISl KOTPUX 00e-
PHEHI 3aj7a4i KOpeKTHi, OyJu 3HalzeHi. 3aci0 BUKOPUCTaHHS OOCPHEHUX 3a1ad, OyJIO 3alpolOHOBAaHO Ta IepeBipe-
HO 3 BUKOPUCTaHHSM 0araToKpaTHOTO BUPIIIEHHS NPsSMOI 3a1adi.

[ro craTTiO MPHUCBSIYEHO BU3HAYEHHIO TEMIIEPATyp HArpiBy Ta PO3MOIUICHHIO TEMIIEPATyp Ha BEPXHIil ITOBep-
XHI TOHKOTO KUTbIIA. BupaxkeHHs TeMIiepaTyp HarpiBy Ta po3NOALICHHS TeMIeparyp Oyiau ofep)KaHi y BUTIISII psi-
Iy, BpaxoByrodd (yHKIIT becens 3a HOMOMOrow iHTErpalbHOrO MepeTBOpeHHs. TepMmomnpyxHi medopmarii Oyau
PO3IIISTHYTI Ta MPOLIIOCTPOBAHI YHUCENBHO 32 JOMOMOT0I0 YHCENbHIX METO/IB BU3HAUYEHHS TEMIIEPaTYP.

Kurouosi ciioBa: o6epHeHa 3amaua, oOepHEHa MepexiaHa QYHKILA, TePMONpYyxHa aedopmMaltis, TOHKE KUTbIE.
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