КЛАССИФИКАЦИЯ ВЕРОЯТНЫХ ДЕФЕКТОВ ФОРМЫ ЛИСТОВЫХ ДЕТАЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Технологические процессы формообразования листовых тонкостенных деталей обшивки и каркаса конструкции летательного аппарата основаны на пластическом деформировании, когда при штамповке, вытяжке, гибке, обтяжке, раздаче, обжиме, выдавливании металл переводится в пластичное состояние. Этим обеспечивается необходимая степень деформирования, а также уровень остаточных деформаций, сохраняющихся после снятия внешней нагрузки. Структура металла заготовки не является абсолютно однородной, а деформирование во многих процессах формообразования имеет локальный характер, особенно при закреплении листа по краям. В результате возникает самоуравновешенное внутреннее напряженное состояние, сжимающая компонента которого приводит к потери устойчивости отдельных участков листовой детали и появлению дефекта формы в виде некоторого отклонения от теоретического контура. Из листа изготавливают детали одинарной и двойной кривизны, известно, что такие конструкции теряют устойчивость к центру кривизны [1].Таким образом, дефекты формы листовой детали представляют собой выпучивание в сторону вогнутости, размеры которой и форма в плане зависят от технологического процесса формообразования. Если бы внутренние напряжения как растягивающие, так и сжимающие релаксировали, то это снижало бы вероятность появления дефектов формы. Для релаксации напряжений необходимо время и температура, которых не всегда достаточно, поэтому приходится применять дополнительные технологические процессы калибровки листовых деталей в целях устранения дефектов формы.

Целью классификации дефектов формы тонкостенных листовых деталей летательных аппаратов является систематизация, позволяющая синтезировать унифицированные и достаточно универсальные алгоритмы и процедуры устранения дефектов и расчета энергетических потребностей для устранения этих дефектов.

В работе [2] сформулированы основные требования к классификации объектов и явлений. Применительно к дефектам формы их классификация должна удовлетворять следующим требованиям:

- общность обхвата существующих и возможных дефектов формы;
- возможность прогнозирования появления дефектов формы и путей их устранения;
 - возможность оценки ущерба от дефекта;
- возможность унификации математического описания формы дефекта.

В таблице приведена классификация дефектов формы для нескольких принципов классификации, обеспечивающих удовлетворение тех или иных из сформулированных выше требований. Так как речь идет о дефектах, то не рассматриваются классы типа устраняемых или неустраняемых дефектов, поскольку в последнем случае производится выбраковка деталей, а данная работа посвящена калибровке, т.е. устранению незначительных дефектов и доводке формы детали до нормального функционирования. Также не рассматриваются формы дефекта в плане, что обосновано следующими соображениями.

Таблица — Классификация дефектов формы тонкостенных листовых деталей

Принцип	Наименование	Отличительные	Рекомендации
классификации	класса дефекта	признаки класса	
Отношение	Дефекты, влияю-	Размеры, форма и	Необходимо
к функционирова-	щие на работоспо-	расположение де-	устранение или с
нию и внешнему	собность и нару-	фектов нарушают	сохранением иска-
виду	шающие внешний	нормальное функ-	жения или с вос-
	вид	ционирование и за-	становлением
		метно искажают	внешнего вида
		внешний вид	
	Дефекты, влияю-	Размеры, форма и	Необходимо
	щие на работоспо-	расположение де-	устранение
	собность и заметно	фектов нарушают	
	не нарушающие	нормальное функ-	
	внешний вид	ционирование, но	
		не искажают внеш-	
		ний вид	
	Дефекты, не	Размеры, форма и	Необходимо
	нарушающие рабо-	расположение де-	устранение или
	тоспособность, но	фектов не влияют	косметическое
	искажающие внеш-	на работоспособ-	скрытие видимых
	ний вид	ность, но заметно	дефектов
		искажают внешний	
		вид	
	Дефекты, не	Размеры, форма и	Эксплуатация воз-
	нарушающие рабо-	расположение де-	можна
	тоспособность и	фектов не влияют	
	незаметно искажа-	на работоспособ-	
	ющие внешний вид	ность и могут быть	
		обнаружены ин-	
		струментальными	
		способами	
Местоположение	Внутренние	Контур основания	Анализ влияния на
	дефекты	дефекта не пересе-	функционирование
		кает края детали	изделия
	Пограничные	Контур основания	Анализ влияния на
	дефекты	дефекта пересека-	функционирование
		ет край детали	изделия

Продолжение таблицы

Принцип	Наименование	Отличительные	Рекомендации
классификации	класса дефекта	признаки класса	
Характер	Видимые дефекты	Дефекты заметны	Анализ влияния на
проявления		невооруженным	функционирование
		глазом или с по-	изделия
		мощью подсветки	
	Скрытые дефекты,	Дефекты не замет-	Анализ влияния на
	проявляющиеся	ны при обычной	функционирование
	при нагревании или	температуре, но	изделия
	охлаждении детали	проявляются при	
		повышенных или	
		пониженных тем-	
		пературах	

Искажение формы листовой детали является следствием потери устойчивости отдельных участков под действием остаточных внутренних сжимающих напряжений, образующихся в результате свободных температурных и пуассоновых деформаций. Но потеря устойчивости означает переход деформированного состояния в положение с меньшей потенциальной энергией в пределах допустимых предельных состояний. Как показал Д. Друккер [3], энергетически оправданными являются выпуклые предельные поверхности состояния, а дефекты представляют собой своеобразный способ минимизации внутренней энергии системы, и есть все основания полагать, что форма основания дефекта будет выпуклой кривой (рис. 1, а). К тому же сложно представить систему сжимающих напряжений, приводящую к выпукло-вогнутому контуру дефекта (рис. 1, б).

Рисунок 1 – Некоторые схемы контура основания дефекта

Таким образом, оправданным представляется принятие контура основания искажения формы листовой детали в виде эллипса или близкой к нему замкнутой кривой.

Основой любого производственного процесса является изготовление надежно функционирующих деталей требуемого внешнего вида. В связи с этим классификация дефектов формы по отношению к работоспособности и внешнему виду может рассматриваться как наиболее общая, а два других принципа обеспечивают удовлетворение довольно специфических требований — позволяют унифицировать математическое описание дефекта или обосновывают необходимость дополнительной инструментальной проверки при отличающихся температурных условиях.

Выводы

На основе нескольких принципов разработана классификация дефектов формы тонкостенных листовых деталей. Обоснована форма контура основания дефекта в виде эллипса или близкой к нему замкнутой кривой.

Дальнейшие исследования будут посвящены разработке математического описания геометрии формы дефекта тонкостенных листовых деталей летательных аппаратов.

Список использованных источников

- 1. Вольмир, А.С. Нелинейная динамика пластинок и оболочек [Текст] / А.С. Вольмир. М.: Наука, 1972. 439 с.
- 2. Карпов, Я.С. Соединение деталей и агрегатов из композиционных материалов [Текст] / Я.С. Карпов. Х.: Нац. аэрокосм. ун-т «Харьк. авиац. ин-т», 2006. 359 с.
- 3. Друккер, Д. Пластичность, течение и разрушение. Неупругие свойства композиционных материалов [Текст] / Д. Друкер. М.: Мир, 1978. С. 9 32.

Поступила в редакцию 13.07.2015. Рецензент: д-р техн. наук, проф. Я.С. Карпов, Национальный аэрокосмический университет им. Н. Е. Жуковского «ХАИ», г. Харьков