УДК 629.7.002.3: 531.781.2

Д.А. Пинчук, К.В. Миронов, Е.Ф. Кучерявый, С.Ф. Мандзюк

ИССЛЕДОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ПРИ РАСТЯЖЕНИИ ТОНКИХ ЧЕРНЫХ ВЫСОКОПРОЧНЫХ РУЛОННЫХ МЕТАЛЛОВ

В конструкциях авиационной техники наряду с дюралевыми и титановыми сплавами для повышения удельной прочности используют и высокопрочные стали, например ВКС, ВНС, СН. В частности, крепление лопасти вертолета к валу редуктора двигателя осуществляется с помощью торсиона, изготовленного из набора пластин высокопрочного рулонного материала толщиной 0,3 мм.

Рассмотрим особенности входного контроля качества тонколистовой рулонной стали, которые проводят для подтверждения соответствия физико-механических характеристик материала паспортным или справочным данным.

ГОСТ 11701-84 [1] не предусматривает определения модуля упругости и коэффициента Пуассона для материала толщиной до 3,0 мм.

Определение этих характеристик для листов толщиной от трех миллиметров и более предусмотрены ГОСТом 1497-84 [2].

Отличия определения механических свойств в разных ГОСТах обусловлено большой гибкостью тонких образцов, первоначальной погибью рулонных материалов (не подлежащие правке заготовки или образцы, деформирование их изгибом или местным перегибом [1]) и, как следствие, невозможность использования приклеиваемых тензорезисторов для определения продольных и поперечных деформаций при статических испытаниях образцов на растяжение.

Целью исследования является измерение продольных и поперечных деформаций навесными тензометрами (экстензометрами) и способ их крепления на тонких образцах с первоначальной погибью для определения физико-механических характеристик, в том числе модуля упругости и коэффициента Пуассона.

В Проблемной научно-исследовательской лаборатории «Прочность и надежность авиационных конструкций» разработана конструкция экстензометра и способ крепления, в котором предусмотрен пружинный механизм и неметаллическая прокладка, обеспечивающая надежное крепление и измерения деформаций на плоских тонких образцах.

Исследование проведено на модернизированной разрывной машине ZD 10/90 с использованием измерительной тензометрической системы СИИТ-3. Результаты измерений введены в память ПЭВМ и по специальным программам проведена их обработка в целях получения

значений упругих и механических характеристик. Программное обеспечение дает возможность кроме численных значений характеристик получать графики «сила - перемещение» и «напряжение-деформация».

На рис. 1 и 2 показаны образцы с установленными на них тензометрами и образец, установленный в испытательную машину.

Рисунок 1 — Тензометры для определения продольной и поперечной деформаций, установленные на образцах

Рисунок 2 – Образец с тензометром, установленный в испытательную машину

На рис. 3 изображен типовой график «сила - перемещение» после приложения к образцу начальной нагрузки согласно ГОСТ 1497-84.

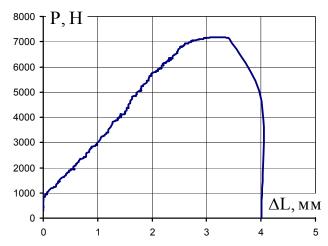
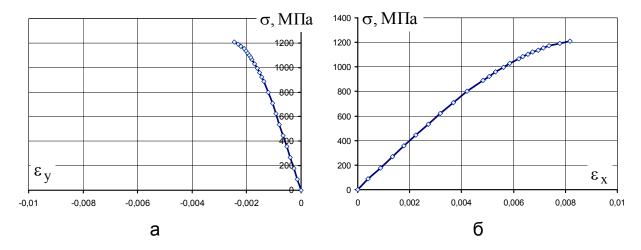



Рисунок 3 – Типовой график «сила - перемещение»

На рис. 4 представлены типовые графики «напряжение - деформация», полученные при обработке показаний продольных и поперечных тензометров.

а – «напряжение – поперечная деформация»

б – «напряжение – продольная деформация»

Рисунок 4 – Типовые графики зависимости σ – ε для образцов

Были испытаны, обработаны результаты и проведен анализ полученных характеристик трех партий материала по пять образцов в каждой партии.

На рис. 5 показан характер разрушений образцов после испытаний.

Рисунок 5 – Образцы после испытаний

Из работы [3] известно, что при испытаниях на растяжение плоских полос, изготовленных из тонкого холоднокатаного листового металла, никогда не бывает разрушения по поверхности, перпендикулярной к направлению растяжения. Разрыв получается под наклоном 55° – 60° к оси образца. Следует предполагать, что исследуемый рулонный материал подвергали холодной прокатке при изготовлении.

В таблице для примера, приведены средние физико-механические характеристики образцов из одной партии материала.

Таблица — Средние физико-механические характеристики образцов из одной партии материала

Номер образца	Начальная площадь поперечного сечения образца F_{0} , мм 2	Начальная расчетная длина L_o , мм	Конечная расчетная длина L_{κ} мм	Наибольшая нагрузка Р _{тах} , Н	Нагрузка при пределе текучести <i>Р_т, Р_{0,2},</i> Н	Временное сопротивление <i>ס</i> _є , МПа	Предел текучести $oldsymbol{\sigma}_m,oldsymbol{\sigma}_{0,2}, M \Pi a$	Относительное равномерное удлинение $\delta_p,\%$	Относительное удлинение после разрыва $\delta,\%$	Модуль упругости Е, МПа	Коэффициент Пуассона μ
1	5,654	80,0	80,92	7161,3	6538,4	1281,2	1193,4	0,775	1,053	2,064*10 ⁵	0,309
2	5,440	80,0	81,12	7210,4							
3	5,528	80,0	80,57	7063,2							
4	5,446	80,0	80,61	6935,7							
5	5,509	80,0	80,99	6965,1							

Выводы

В результате проведенных исследований отработана методика определения характеристик механических свойств тонких (менее 3 мм) высокопрочных металлов с помощью навесных экстензометров. Методика дополняет известные методы статических испытаний на растяжение тонких листов и лент (ГОСТ 11701-84), и позволяет определять модуль упругости и коэффициент Пуассона.

Список использованных источников

- 1. ГОСТ 11701-84. Металлы. Методы испытаний на растяжение тонких листов и лент. М.: Изд-во стандартов, 1986. 14 с.
- 2. ГОСТ 1497-84. Металлы. Методы испытаний на растяжение. М.: Изд.-во стандартов, 1985. 63 с.
- 3. Надаи А. Пластичность и разрушение твердых тел / А. Надаи. пер. с англ. / под ред. Г.С. Шапиро. М.: ИЛ, 1954. 647 с.

Поступила в редакцию 26.02.2015. Рецензент: д-р техн. наук, проф. П.А. Фомичев, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков.