О ТЕРМОРАЗРУШЕНИИ МАТЕРИАЛА ЭЛЕКТРОДОВ В ЭЛЕКТРОРАЗРЯДНОМ РЕАКТОРЕ

Порошковая металлургия занимает важное место в деле ускорения научно-технического прогресса для реализации новейших проектов и программ при производстве авиационной и ракетно-космической техники. Она развивается как в направлении совершенствования существующих технологических решений, так и в направлении разработки процессов получения новых материалов и покрытий, значительно повышающих надежность изделий. Непрерывно происходят процессы расширения номенклатуры изделий и покрытий с особыми функциональными свойствами (таблица.1) — самосмазывающиеся, износостойкие, коррозионностойкие, высокопористые проницаемые, высокопрочные.

Важным позитивным фактором, расширяющим перечень достоинств технологии порошковых материалов, является возможность использования относительно дешевых источников сырья для получения порошков. К таким источникам относятся отходы производства: металлургии, металлообработки, недорогие минеральные ресурсы и др.

Основными требованиями, предъявляемыми к свойствам порошков, являются размер частиц, форма частиц, насыпной вес, прессуемость, плотность, изотропность свойств, адгезия с подложкой и т.д. Наиболее востребованная форма частиц – сфера.

Одним из перспективних методов получения порошков с заданными гранулометрическими и дисперсионными свойствами является диспергирование исходных материалов в электроразрядном реакторе [1].

По мнению ряда авторов [2-4], наряду с процессами плавления, испарения и гидродинамического выброса расплавленного металла, подвергающегося электроэрозионной обработке, приводящей к образованию порошков сферической формы, значительный вклад в общую величину эрозии может внести хрупкое разрушение поверхностных слоев металла за счет возникающих в них термических напряжений при мощных кратковременных импульсах тока (10⁻⁵ – 10⁻⁶ с), малых площадях сосредоточенности теплового пятна искрового разряда, что приводит к появлению в диспергированном продукте осколков металла, нарушающих гранулометрический состав получаемых порошков.

В работе исследуется влияние термических напряжений на характер диспергируемых частиц в зависимости от процесса выделения тепла в месте электрического разряда.

Характер термических напряжений существенно зависит от величины плотности тока в пятне разряда. При плотностях тока выше $10^8 \, \text{A/cm}^2$ терморазрушение материалов, подверженных эрозии, обу-

словлено действием объемного разогрева, локализованного в основном в области под разрядным пятном.

Назначение и область применения покрытий для авиационной и ракетно-космической техники

Область применения покрытий	Назначение покрытий	Материал покрытий
Авиация		
Лопатки газовых турбин, цапфы шасси	Термостойкость	Al-Ni; Al; Al ₂ O ₃
Тормозные колодки, барабаны	Износостойкость	Карбиды Cr-B-Ni, окислы
Сочленения и лопатки турбин и компрессора	Эрозионная стойкость	WC+Co; TiC; Cr ₂ O ₃ ; Al+Ni; Cr+B+Ni
Несущие конструкции крыла, фюзеляжа	Прочность, жесткость	Композиционные ма- териалы на основе Al; Ti
Обтекатели радиоантенн	Защита от атмосферного воздействия	Al ₂ O ₃ и материалы на ее основе
Ракетная техника		
Головки и сопла ракет	Жаростойкость, жаропрочность, эрозионная стойкость	Оксиды алюминия, циркония, тугоплавкие материалы с пропиткой
Сопла ракет	Жаростойкость, жаропрочность, эрозионная стойкость	Слой окиси алюми- ния + слой Мо (5-6 че- редующихся слоев)
Теплоизоляция	Терморегулирование	Окиси, карбиды
Космическая техника		
Обтекатели, экраны	Жаростойкость, жаропрочность	Вольфрам, окиси
Теплоизоляция раке- тоносителей	Жаростойкость	Окись циркония, W, Мо
Аппараты для косми- ческих исследований	Жаростойкость, жаропрочность, терморегулирование, износость, триботехнические свойства подвижных узлов	Окислы, карбиды, си- лициды W, Zr, Mo

При плотностях тока ниже 10⁷ A/см² преобладают поверхностные источники тепла, которые вызывают выброс материала в паровой и жидкой фазах, при охлаждении которых образуются мелкозернистые порошки сферической формы. Модель возникновения термоупругих напряжений за счет джоулевых источников тепла базируется на уравнении теплопроводности [4]

$$c\gamma \frac{\partial \theta}{\partial t} = div(kgrad\theta) + \rho j^2, r > 0, z > 0,$$
 (1)

где c – удельная теплоемкость; γ – плотность; k – коэффициент теплопроводности; $\theta(r,z,t)$ – температура; ρ – удельное электросопротивление; j(r,z,t) – плотность тока на поверхности пятна.

Для уравнения (1) задаются начальная температура, условие отсутствия теплообмена вне дугового пятна (z=0, $r>r_0$), а также тепловой поток P на разрядном пятне (z=0, $0 < r < r_0$).

В случае поверхностного источника тепла представляется естественным в качестве модели температурного поля на поверхности элек-

трода использовать сферическую модель $b = \frac{r_0}{\sqrt{2}}$, на которой

$$-k\frac{\partial\theta(b,t)}{\partial r}=P_0t, \qquad (2)$$

где P_0 — скорость нарастания поверхностного теплового потока; r_0 — начальный радиус тепловоспринимающего пятна; r — текущий радиус токового пятна.

Главные компоненты тензора напряжений определяются из соотношений [4]:

$$\sigma_{rr} = -\frac{2E\alpha_0}{1-\mu} \frac{1}{r^3} \int_b^r x^2 \theta(x,t) dx;$$

$$\sigma_{\phi\phi} = -\frac{\sigma_{rr}}{2} - \frac{E\alpha_0}{1-\mu} \theta(r,t).$$
(3)

Решение задачи для температуры $\theta(r,t)$ имеет вид

$$\theta(r,t) = \frac{bP_0t}{k} \frac{\beta}{\alpha} \left\{ \operatorname{erfc}(\alpha - \beta) - 2(\alpha + \beta) \operatorname{ierfc}(\alpha - \beta) + 4\beta^2 e^{-(\alpha - \beta)^2} \left[\eta(\alpha - \beta) - \eta(\alpha - \beta + \frac{1}{2\beta}) \right] \right\}, \tag{4}$$

где
$$\alpha = \frac{r}{2\sqrt{at}}$$
; $\beta = \frac{b}{2\sqrt{at}}$; r – радиус-вектор точки, в которой опреде-

ляется напряжение; $\eta(z) = e^{z^2} erfc(z)$ – функция ошибок; a – температуропроводность.

Подставляя значение (4) в выражение (3), находим компоненты тензора напряжений. Если $\sigma_{\rm B}$ – предел прочности материала электрода, то условие отсутствия его термоупругого разрушения в простейшем случае $\left|\sigma_{rr}-\sigma_{\phi\phi}\right|<\sigma_{\rm B}$ примет вид [4]:

$$\frac{E\alpha_0}{1-\mu} \frac{P_0 tb}{k} \left| \frac{4\alpha}{\sqrt{\pi}} - 1 - 4\beta^2 \right| 1 - \eta \left(\frac{1}{2\beta} \right) \left| \langle \sigma_8, \right|$$
 (5)

где $\sigma_{\it g}$ – предел прочности материала электрода; $\it E$ – модуль упругости; $\alpha_{\it 0}$ – коэффициент температурного расширения материала; μ – коэффициент Пуассона; $\it P_{\it 0}$ – скорость нарастания поверхностного теплового потока, определяемая из вольт-амперной характеристики разряда; $\it t$ – текущее время воздействия теплового потока.

По выражению (5) были рассчитаны максимальные напряжения, возникающие в материале электрода (сталь 20, алюминий) для двух случаев: на фиксированном расстоянии от центра тепловоспринимающего пятна в зависимости от времени воздействия теплового потока (рис. 1) и при фиксированном времени разряда (соответствующем максимальному значению скорости нарастания теплового потока) на различных расстояниях от центра пятна (рис. 2).

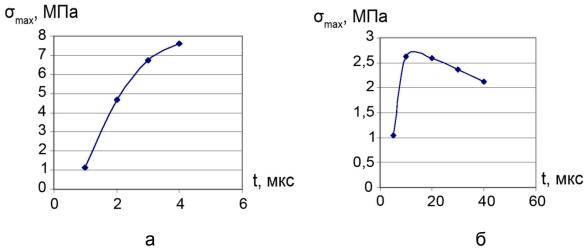


Рисунок 1 — Максимальные напряжения в электроде на расстоянии r от центра теплового пятна: а — стальной электрод при $r = 79 \cdot 10^{-4}$ см; б — алюминиевый электрод при $r = 30 \cdot 10^{-4}$ см

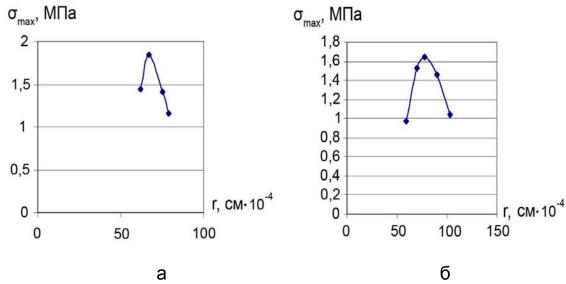


Рисунок 2 — Максимальные напряжения в электродах: а — стальной электрод при t_{ρ} = 10^{-6} c; б — алюминиевый электрод при t_{ρ} = $5\cdot10^{-6}$ c

Как видно из полученных результатов, максимальные термоупругие напряжения по модулю не превосходят предел прочности для стали и алюминия.

Это соответствует экспериментальным данным: на фотографиях лунок и микролунок (рис. 3), а также полученных порошков (рис. 4), трещин и частиц с отличительными кристаллическими сколами не наблюдается.

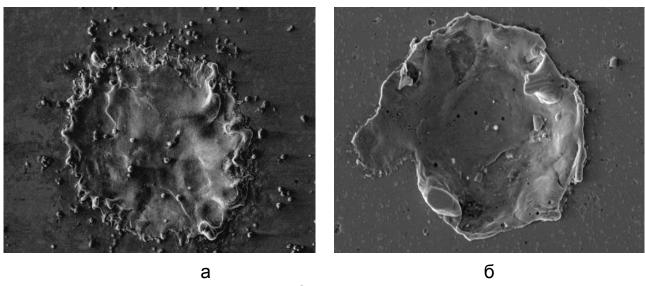


Рисунок 3 – Эрозионная лунка: а – на стальном электроде; б – на алюминиевом электроде

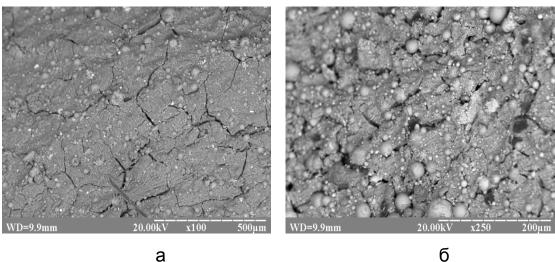


Рисунок 4 – Внешний вид порошка: а – алюминиевого (Д16); б – стального (сталь 20)

Таким образом, хрупкого разрушения поверхностных слоев исследуемых материалов не происходит при данных параметрах импульсного разряда.

В результате проведенных исследований показано, что в электроразрядном реакторе наблюдается поверхностный механизм передачи тепла, при котором не возникают термические напряжения выше предела прочности.

Список использованных источников

- 1. Кручина, В.В. Диспергирование металла из единичных лунок в электроразрядном реакторе [Текст] / В.В. Кручина // Вопросы проектирования и производства конструкций летательных аппаратов : сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». Вып. 5 (56). Х., 2008. С. 126 132.
- 2. Золотых, Б.Н. О роли механических факторов в процессе эрозии в импульсном разряде [Текст] / Б.Н. Золотых, И.П. Коробова, Э.М. Стрыгин // Электрические контакты. М., 1967. С. 32 51.
- 3. Раховский, В.И. Физические основы коммутации электрического тока в вакууме [Текст]: моногр. / В.И. Раховский. М.: Наука, 1970. 563 с.
- 4. Ким, Е.И. Модель термоупругого разрушения в процессе импульсной электроэрозионной обработки материалов [Текст] / Е.И. Ким, С.Н. Харин// Электронная обработка материалов. 1983. № 2. С. 5 6.

Поступила в редакцию 13.11.2012. Рецензент: д-р техн. наук, проф. М.Е. Тараненко, Национальный аэрокосмический университет им. Н. Е. Жуковского «ХАИ», г. Харьков.