ВЛИЯНИЕ ТРЕЩИНЫ НА УПРУГОПЛАСТИЧЕСКОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ ВОЛОКНИСТЫХ МАТЕРИАЛОВ

Развитие науки и техники позволяет получать анизотропные композиционные материалы, имеющие широкий диапазон свойств, который должен быть учтен при расчете конструкций на прочность. Проблема усложняется, если материал имеет нелинейные или упругопластические свойства. В связи с этим становится актуальной проблема надежной оценки ресурса ответственных агрегатов и элементов конструкций в авиастроении, машиностроении, атомной энергетике и космонавтике.

Широкое применение композиционных материалов в различных ответственных конструкциях требует более точного определения их запасов прочности. Это требует исследования напряженно-деформированного состояния элементов конструкций из упругих и упругопластических композиционных материалов.

В практике широко применяются волокнистые композиционные материалы с борными, углеродными и органическими волокнами. Они имеют ярко выраженные анизотропные свойства, которыми нельзя пренебрегать при расчете конструкций, изготовленных из этих материалов. Известно, что механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними.

В работе волокнистые композиты рассматриваются с феноменологической точки зрения. Упомянутые композиционные материалы на основе метода осреднения рассматриваются как однородные трансверсально-изотропные упругопластические [1].

Определение критических нагрузок, исследование влияния конфигурации и наличия полости, выемок и трещин в элементах конструкций из композиционных материалов методами механики деформируемого твердого тела, в отличие от инженерных подходов, требует, в первую очередь, построения математической модели процесса деформирования композиционных материалов [2].

Квазистатические упругопластические задачи по исследованию напряженно-деформированного состояния технических конструкций и их элементов основывается на уравнениях равновесия исследуемого объекта, уравнения состояния (нелинейной связи между тензором напряжений и деформаций), из соотношений Коши и соответствующих предельных условий.

Для описания процесса упругопластического деформирования композиционных материалов, в особенности слоистых и волокнистых композитов, предложены разные варианты теории пластичности, основанные на методе усреднения, при котором композиционный материал заменятся однородной анизотропной средой и на стохастических подходах [3 – 6]. Теоретические, экспериментальные и практические исследования по механике композиционных материалов являются актуальными и быстро развиваются как область науки, где получены значительные результаты. Но, несмотря на это, проблема исследования процесса нелинейного деформирования конструкционных композиционных материалов сложной структуры, с геометрическими особенностями остается мало исследованной.

В работе для исследования распределения значений обобщенных параметров напряженно-деформированного состояния волокнистых композиционных материалов применяется упрощенная теория трансверсально-изотропной пластичности, предложенной Б.Е. Победря [7]. Применение упрощенной теории основывается на том, что у рассматриваемого армированного композита жесткость армирующих элементов существенно превышает жесткость связующего, вследствие чего интенсивность напряжений и деформаций определяется отдельно как по главной оси трансверсальной изотропии (P_u , p_u), так и по перпендикулярно расположенной плоскости (Q_u , q_u):

$$P_{u} = \frac{\sqrt{2}}{2} \sqrt{(\sigma_{11} - \sigma_{22})^{2} + 4\sigma_{12}^{2}}, \qquad Q_{u} = \sqrt{\sigma_{13}^{2} + \sigma_{23}^{2}},$$

$$p_{u} = \frac{\sqrt{2}}{2} \sqrt{(\varepsilon_{11} - \varepsilon_{22})^{2} + 4\varepsilon_{12}^{2}}, \qquad q_{u} = \sqrt{\varepsilon_{13}^{2} + \varepsilon_{23}^{2}}.$$

На основе упрощенной теории трансверсально-изотропной пластичности разработана методика решения квазистатических упругопластических задач, позволяющая проводить вычислительный эксперимент по исследованию упругого упругопластического напряженно-И деформированного состояний конструкционных элементов из волокнистых композиционных материалов. Для учета структуры и конструкционных особенностей элементов расчет выполняется на основе метода конечных элементов [8]. С этой целью разработан программный комплекс АРПЭК, который включает в себя следующие этапы решения задачи: построение дискретной модели элементов конструкции сложной конфигурации, построение и решение разрешающей системы уравнений, определение параметров напряженно-деформированного состояния элементов конструкции из композиционных волокнистых материалов и визуализации результатов расчетов. Для апробации программного комплекса решения тестовых задач сверялись с известными результатами [3, 4], а также полученными на основе пакета COSMOSM.

В трехмерной постановке рассматриваются упругопластические задачи об одноосном растяжении (P_{zz} = 300 МПа) прямоугольной пластины (высота — 1 м, ширина — 0,5 м, толщина — 0,1 м) с изолированной и боковыми прямолинейными трещинами по центру конструкции. Волокна композиционного материала расположены параллельно оси ОZ. В качестве

волокнистого композита используется бороалюминий. Материал матрицы — алюминиевый сплав Д16 с упругими постоянными: $E=7,1\cdot10^4\,\mathrm{MTa}$, $\mu=0,32$, коэффициент упрочнения $\lambda=0.5$ и предел упругости $\sigma_s=142\,\mathrm{MTa}$. Для борного волокна $E'=39,7\cdot10^4\,\mathrm{MTa}$, $\mu=0,21$, предел прочности при растяжении $\sigma'_s=2,5\cdot10^3\,\mathrm{MTa}$ [1]. Объемные доли бора и дюралюминия в материале относятся как 3:2. Для бороалюминия эффективными механическими параметрами являются [3]:

 $E=160\cdot10^3$ MΠa, $\mu=0.32$, $E=260\cdot10^3$ MΠa, $\mu=0.254$, $G=51\cdot10^3$ MΠa.

Рассматривается задача об одноосном растяжении пластины с горизонтально расположенной центральной изолированной прямолинейной трещиной длиной L=0,1м в центре. На рис. 1 приведены распределения значений интенсивности деформаций p_{ij} и q_{ij} для упругой и упругопластической задач на деформированной конечноэлементной сетке при увеличении значений перемещений в 40 раз. В упругом случае (рис.1, a), повышенные значения интенсивности деформации p_{ij} располагаются в области трещины, причем максимальные значения - в окрестности центра берегов трещины, где наблюдается максимальное раскрытие трещины ($h=1,453\cdot10^{-4}$). В окрестностях вершины трещин также наблюдаются повышенные значения интенсивности деформаций, однако их значения в 1,52 раза меньше. Для исследования напряженнодеформированного состояния пластины в окрестности трещины в табл. 1 приведены значения компонент напряжений и обобщенные значения, интенсивности деформаций р, и напряжений Р, по плоскости изотропии, перпендикулярной оси трансверсальной изотропии ОZ. Анализ результатов упругопластической задачи (рис.1, в) показывает, что пластическая зона окаймляет трещину и перераспределяет напряженнодеформированное состояние, причем раскрытие трещины $h=1.458\cdot 10^{-4}$.

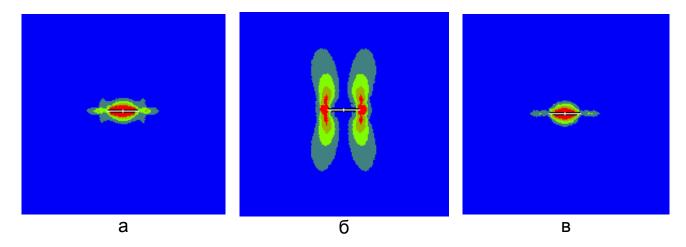


Рисунок 1 — Интенсивность деформации по p_u и q_u (упругий случай), по p_u (упругопластический случай)

Максимальные значения интенсивности деформаций q_u концентрируются в окрестности вершин трещины, но не достигают предела прочности при растяжении волокон заданной нагрузкой P_{zz} (рис.1, б).

Таблица 1 – Значения компонент напряжений и обобщенных
интенсивностей деформаций в окрестности трещины

Месторасположение расчетной точки	задача	p_u · 10^3	$P_u \cdot 10^{-2}$	<i>T_{xz}</i> · 10 ⁻¹	σ_{xx} · 10 ⁻²	σ_{zz} · 10 ⁻²
в центре берегов	упруг.	1,308	1,586	-1,629	-2,748	-0,172
трещины	пласт.	1,209	1,270	-1,948	-2,343	-0,111
в окрестности	упруг.	0,620	0,752	- 0,810	2,820	9,774
вершины	пласт.	0,390	0,472	-1,589	1,882	8,054

На рис. 2 приведены поля распределения значений компонент напряжений σ_{xx} , τ_{xz} , σ_{zz} . Максимальные растягивающие значения компоненты σ_{xx} (рис. 2, а) концентрируются в окрестности вершин трещины, далее распространяются по горизонтали и вертикали трещины. Сжимающие напряжения, формируя область в виде эллипса с центром на середине трещины, концентрируются в окрестности ее берегов.

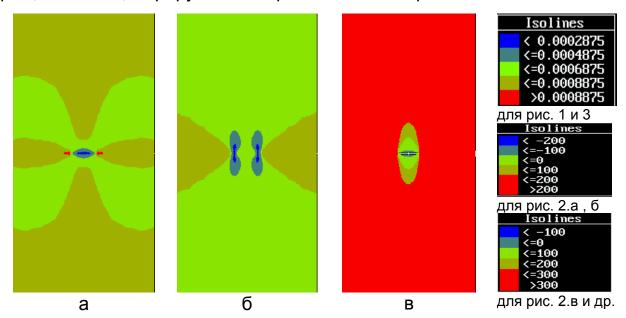


Рисунок 2 – Распределение значений компонент напряжений σ_{xx} , τ_{xz} , σ_{zz}

Положительные значения касательных напряжений τ_{xz} концентрируются в окрестности вершин трещины и распространяются в направлении боковых сторон пластины, что соответствует изгибу этих областей. Отрицательные значения концентрируются у вершины трещины. Наконец, незначительные сжимающие напряжения σ_{zz} концентрируются у кромки берегов трещины, а остальная часть пластины находится под действием заданных поверхностных растягивающих нагрузок. Количественная картина напряженно-деформированного состояния приведена в

табл. 1. Обобщая вышеизложенные факты, можно заключить, что если прямолинейная трещина расположена перпендикулярно к направлению волокон композиционного материала, то она формирует зону пластических деформаций по p_{μ} в окрестностях берегов трещины.

Следующим этапом исследований явился анализ задачи об одноосном растяжении пластины с горизонтальными прямолинейными трещинами (L=0,05 м), расположенными по боковым сторонам пластины. На рис. 3, а,б приведены распределения полей интенсивности деформаций p_u и q_u для упругой задачи. Если обратить внимание на конфигурацию деформированной конечноэлементной сетки в окрестности боковых трещин, то можно увидеть выпучивание боковых сторон конструкции вследствие раскрытия берегов трещин. Максимальные значения интенсивности деформаций располагаются в окрестности вершины трещины, однако, если по p_{μ} повышенные значения наблюдаются в области, расположенной между трещинами, то по q_u – распространяются вертикально. Анализ состояния упругопластического деформирования (рис. 3, в) указывает на то, что пластические деформации формируются у вершин трещины, а при дальнейшем увеличении внешней нагрузки прогнозируется объединение пластических областей, что может привести к потере прочностных характеристик конструкции.

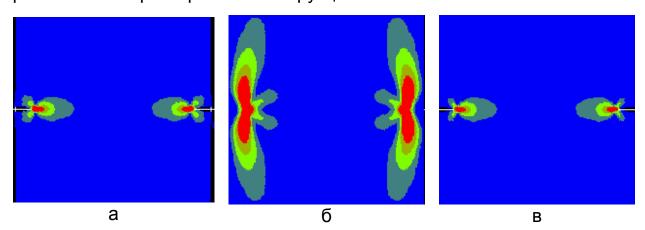


Рисунок 3 — Интенсивность деформации по p_u и q_u (упругий случай), по p_u (упругопластический случай)

Количественная характеристика напряженно-деформированного состояния одноосного растяжения пластины с боковыми трещинами в окрестности вершины трещины приведена в табл.2.

Таблица 2 – Количественная характеристика напряженно-деформированного состояния одноосного растяжения пластины с боковыми трещинами в окрестности вершины трещины

Состояние	$p_u \cdot 10^3$	$P_u \cdot 10^{-2}$	$\tau_{xz} \cdot 10^{-2}$	$\sigma_{xx} \cdot 10^{-2}$	σ_{zz} · 10 ⁻²
Упругость	1,684	2,042	-1,065	4,508	7,677
Пластичность	1,468	1,428	-1,740	3,618	7,694

Интересно отметить, что при решении упругопластической задачи в окрестности вершин трещины значения касательной компоненты напряжений τ_{xz} в 1,63 раза больше, чем в упругой задаче. Это объясняется тем, что пластическая область, образованная в окрестности вершины трещины, благоприятствует дальнейшему раскрытию берегов трещины.

Выводы

На основе полученных результатов можно сделать следующие выводы:

- наличие изолированной горизонтальной трещины в волокнистых материалах вызывает пластическую деформацию по всему контуру трещины по плоскости изотропии (p_u) , а по главной оси изотропии значения интенсивности деформации (q_u) остаются упругими и ее повышенные значения концентрируются лишь в окрестности вершин трещины;
- значения интенсивности деформаций по плоскости изотропии (p_u) в центре трещины примерно в 3,1 раза больше, чем в окрестности вершин;
- наличие боковых трещин вызывает выпучивание областей, занятых трещинами, увеличение значений и зоны пластических деформаций в окрестностях вершин трещин по плоскости изотропии;
- формирование повышенных значений деформаций в области, расположенной между трещинами, при дальнейшем увеличении нагрузки может привести к объединению пластических зон и потере прочностных характеристик конструкций

Список использованных источников

- 1. Исупов, Л.П. О законе пластичности для композитной среды [Текст] / Л.П. Исупов, Ю.Н. Работнов // Изв. АН СССР. МТТ. 1985. № 1. С.121 127.
- 2. Попов, Ю.П. Вычислительный эксперимент [Текст] / Ю.П. Попов, А.А. Самарский // Компьютеры, модели, вычислительный эксперимент. М.: Наука, 1988. С. 18 78.
- 3. Карпов, Е.В. Влияние волокнистой структуры на концентрацию напряжений вблизи кругового отверстия в боралюмине [Текст] / Е.В. Карпов // Динамика сплошной среды. Новосибирск: Ин-т гидродинамики. 2002. Вып. 120. С. 137 144.
- 4. Численное моделирование поведения конструкций из трансверсально-изотропных материалов в условиях квазистатических силовых и терморадиационных воздействий [Текст] / С.А. Капустин, В.А. Горохов, Ю.А. Чурилов, Ю.Г. Слепнев // Проблемы прочности и пластичности: межвуз. сб. — Н. Новгород, 2006. — Вып. 68 — С. 53 — 61.
- 5. Вульфан, С.А. Двуосное растяжение тонкой пластины с круговым отверстием из трансверсально-изотропного материала [Текст] /

- С.А. Вульфан, Т.Д. Семыкина, Л.П. Цуканова // сб. тр. междунар. конф. «Актуальные проблемы прикладной математики, информатики и механики». Воронеж, 2009. С. 113 116.
- 6. Куликов, Р.Г. Применение итерационного метода к решению задачи деформирования однонаправленного композиционного материала с нелинейно-вязкоупругим связующим [Текст] / Р.Г. Куликов, Н.А. Труфанов // Вычислительная механика сплошных сред. Новосибирск. 2011. Т. 4, №2. С. 61 71.
- 7. Победря, Б.Е. Механика композиционных материалов [Текст] / Б.Е. Победря. М.: МГУ, 1984. 336 с.
- 8. Зенкевич О. Метод конечных элементов в технике [Текст] / О. Зенкевич. М.: Мир, 1975. 541 с.