УДК 629.78

Н.М. Дронь, д-р техн. наук, П.Г. Хорольский, канд. техн. наук, Л.Г. Дубовик

МАССОВАЯ ЭФФЕКТИВНОСТЬ КОСМИЧЕСКИХ ТРАЛЬЩИКОВ ПРИ ИСПОЛЬЗОВАНИИ СОЧЕТАНИЯ ЭЛЕКТРОРАКЕТНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКИ И ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ МАЛОЙ ТЯГИ

Введение

В эпоху небывалой засоренности низкоорбитального космоса космическим мусором (МК) разработка способов и средств защиты функционирующих космических аппаратов от воздействия высокоскоростных мелких частиц МК приобретает весьма важное значение.

Как один из методов решения задачи сбора мелкого мусора с низких орбит можно рассматривать применение космических тральщиков (КТ), использующих двигательные установки (ДУ) и имеющих на своем борту специальное устройство, улавливающее мелкие частицы космического мусора или поглощающее кинетическую энергию этих частиц [1]. При этом массовые характеристики как отдельных элементов КТ, так и всего аппарата в целом определяются способом выведения его на требуемую орбиту и зависят от типа двигателей в составе используемых ДУ.

В работе [2] приведено оценивание энергомассовых характеристик космического тральщика, выводимого на требуемую орбиту с помощью ракеты-носителя (РН) посредством разгонного блока (РБ) с жидкостной ракетной двигательной установкой большой тяги, а в работе [3] — непосредственно РН с применением на этапе очистки электроракетных двигательных установок (ЭРДУ). В работе [4] определена массовая эффективность КТ при использовании на этапе выведения и очистки жидкостных ракетных двигателей малой тяги (ЖРДМТ). Представляет интерес рассмотрение и других возможных вариантов выведения и эксплуатации космических тральщиков с различными сочетаниями типов двигательных установок.

1. Постановка задачи

Целью данной статьи является оценка основных характеристик космического тральщика, при выведении и эксплуатации которого выполняется такой маневр: выведение тральщика на промежуточную орбиту с помощью РН, отделение его и довыведение на требуемую высокую орбиту с использованием разгонной электроракетной двигательной установки и спуск до конечной низкой орбиты путем торможения с применением жидкостного ракетного двигателя малой тяги.

Для разгонной ЭРДУ предлагается использовать стационарный плазменный двигатель типа СПД-140 со следующими параметрами: тяга – 0,25 H, потребляемая мощность – 5 кВт, удельный импульс тяги – 20000 м/с.

В качестве жидкостных ракетных двигателей малой тяги рассматривается применение двигателя РН «Циклон-3» с тягой 100 Н или двигателя 11Д458 с тягой 392,4 Н с удельным импульсом 2600 и 2747 м/с соответственно. Выбор этих типов ЖРДМТ позволяет оценить характеристики космического тральщика для двух крайних значений тяги ЖРДМТ (минимального и максимального) из известного ряда ЖРДМТ, разработанных в России [5].

Промежуточная орбита для выведения КТ на высокую орбиту соответствует высоте 200 км, высокая — 1200 км, низкая — 500 км. Все орбиты рассматриваются круговыми.

Устройство, улавливающее мелкие частицы МК, представляется в виде полой сферы, способной складываться при ее упаковке под обтекателем РН. Жесткость устройства на протяжении процесса очистки обеспечивается армирующей системой, находящейся на внутренней поверхности сферы.

2. Результаты исследований

Для выполнения данного маневра были рассмотрены известные в мире ракеты-носители в широком диапазоне их грузоподъемности на орбите высотой 200 км.

В процессе исследований для каждой РН были рассчитаны масса тральщика, время его выведения на требуемую высокую орбиту, масса и радиус улавливающего устройства, а также время спуска тральщика с высокой орбиты на низкую.

Масса космического тральщика M_{KT} определялась из выражения

$$M_{KT} = M_0 - M_{PT_{3PJ}} - M_{PB_{cvx}},$$

где M_0 – грузоподъемность РН на круговой орбите высотой 200 км; $M_{PT_{3PD}}$ – запас рабочего тела (РТ) ЭРД для перевода космического тральщика с промежуточной орбиты на требуемую; $M_{PE_{cyx}}$ – сухая масса разгонного блока, включающая в себя массу конструкции разгонной ЭРДУ $(0,15\,M_{PT_{3PD}})$ и массу системы электропитания $(50~{\rm kr})$ [6] .

Запас рабочего тела ЭРД, расходуемого на этапе выведения КТ на требуемую орбиту, вычислялся по формуле К.Э. Циолковского.

Время выведения тральщика на высокую орбиту $t_{\rm g}$ рассчитывалось исходя из требуемого запаса РТ и основных параметров используемого ЭРД [6].

Масса M_{yy} и радиус R_{yy} улавливающего устройства, принятого в качестве полезной нагрузки, определялись из уравнения баланса массы КТ [6].

Расчет времени спуска тральщика с высокой орбиты на низкую t_c производился по формуле:

$$t_c = max(t_n, t_{aad}), t_n = I_{cvm}/P,$$

где I_{cym} – суммарный импульс тяги ЖРДМТ; $t_{aa\partial}$ – заданное время спуска; P – тяга ЖРДМТ.

Полученные результаты для рассмотренных ракет-носителей и выбранных ЖРДМТ с тягой P сведены в таблицу.

Результаты расчетов

	Грузопола			P=100 H			P=392,4 H		
Название РН	Грузоподъ- емность на орбите вы-	M_{KT}	t_{e} ,	M_{yy} ,	R_{yy} ,	t_c ,	M_{yy} ,	R_{VV} ,	t_c ,
	сотой ~200 км, т	Т	мес	Т	M	Ч	Т	M	Ч
«Titan-2-SLV»	2,36	2,3	1,8	1,5	24,0	2,9	1,5	24,2	0,7
«Молния»	2,50	2,4	1,9	1,6	24,9	30,5	1,6	25,1	7,8
«CZ-2C»	2,75	2,7	2,0	1,8	26,4	3,4	1,7	26,6	0,9
«H-1»	3,20	3,1	2,5	2,1	28,9	3,9	2,1	29,1	1,0
«Titan-34B»	3,60	3,5	2,8	2,4	31,0	4,4	2,4	31,2	1,1
«Днепр-1»	3,82	3,7	2,9	2,6	32,1	4,7	2,6	32,3	1,2
«Циклон-3»	4,00	3,9	3,0	2,7	32,9	4,9	2,8	33,1	1,3
«CZ-4B»	4,16	4,0	3,1	2,8	33,6	5,1	2,9	33,9	1,3
«Arian-40»	4,85	4,7	3,8	3,4	36,7	5,9	3,4	36,9	1,5
«CZ-3A»	6,00	5,8	4,6	4,3	41,2	7,3	4,3	41,5	1,9
«Atlas-2»	6,60	6,4	5,0	4,7	43,4	8,1	4,8	43,7	2,1
«Arian-44P»	6,80	6,6	5,2	4,9	44,1	8,3	5,0	44,8	2,1
«Atlas-2A»	7,00	6,8	5,3	5,0	44,8	8,5	5,1	45,1	2,2
«Arian-42L»	7,30	7,1	5,5	5,3	45,8	8,9	5,3	46,1	2,3
«Союз 2-1Б»	7,85	7,6	5,9	5,7	47,6	9,6	5,8	47,9	2,5
«Delta-4M»	8,22	8,0	6,2	6,0	48,8	10,0	6,1	49,1	2,6
«Atlas-3A»	8,66	8,4	6,6	6,3	50,2	10,6	6,4	50,5	2,7
«CZ-2F»	9,00	8,7	6,8	6,6	51,2	11,0	6,7	51,5	2,8
«CZ-3C»	9,30	9,0	7,1	6,8	52,1	11,3	6,9	52,4	2,9
«Arian-44L»	9,60	9,3	7,2	7,0	53,0	11,7	7,1	53,3	3,0
«H-2A/202»	9,75	9,5	7,3	7,2	53,4	11,9	7,3	53,7	3,0

Продолжение таблицы

	Грудопола			P=100 H			P=392,4 H		
Название РН	Грузоподъ- емность на орбите вы- сотой ~200 км, т	M_{KT} т	$t_{ m g}$, мес	M_{yy} , T	R_{yy} , M	t_c ,	M_{yy} , T	R_{yy} ,	<i>t_c</i> ,
«Atlas-33»	10,00	9,7	7,6	7,4	54,1	12,2	7,5	54,5	3,1
«H-2A/2022»	10,60	10,3	8,0	7,8	55,8	12,9	7,9	56,1	3,3
«Delta-4M+(4,2)»	11,02	10,7	8,3	8,1	56,9	13,4	8,3	57,3	3,4
«CZ-3B»	11,20	10,9	8,5	8,3	57,4	13,7	8,4	57,8	3,5
«Atlas-5(401)»	12,50	12,1	9,5	9,3	60,8	15,2	9,4	61,2	3,9
«Зенит-2»	13,00	12,6	9,8	9,7	62,1	15,9	9,8	62,4	4,1
«Titan-405A»	13,40	13,0	10,1	10,0	63,0	16,3	10,1	63,4	4,2
«Atlas-5(521)»	15,08	14,6	11,4	11,3	67,0	18,4	11,4	67,4	4,7
«Titan-403A»	17,70	17,2	13,4	13,3	72,8	21,6	13,6	73,2	5,5
«Arian-5G»	19,45	18,9	14,8	14,7	76,4	23,7	14,8	76,9	2,6
«Atlas-5(551)»	20,52	19,9	15,5	15,5	78,5	25,0	15,7	79,0	6,4
«Протон-М»	21,00	20,4	15,8	15,9	79,4	25,6	16,1	79,9	6,6
«Delta-4H»	24,00	23,3	18,1	18,2	85,1	29,3	18,4	85,6	7,5
«Space Shuttle»	28,80	28,0	21,7	21,9	93,3	35,1	22,2	93,9	9,0

Как видно из приведенной таблицы, при использовании на этапах выведения и эксплуатации космического тральщика рассмотренного сочетания типов двигателей масса выводимого КТ, а также масса и радиус входящего в его состав улавливающего устройства растут с увеличением грузоподъемности РН. При этом, несмотря на разницу в тяге используемых ЖРДМТ почти в четыре раза, полученные значения M_{yy} и R_{yy} практически не отличаются.

Время выведения КТ с промежуточной орбиты на требуемую посредством разгонной ЭРДУ измеряется месяцами и составляет для рассмотренного ряда PH от 0,15 до 1,8 года.

Время спуска КТ, в течение которого производится улавливание космического мусора, значительно меньше времени его выведения и растет с уменьшением тяги ЖРДМТ, что говорит в пользу применения таких двигателей при условии доведения их ресурса до требуемых величин. При этом следует учесть, что по сравнению с вариантом использования ЭРДУ оно меньше в сотни раз [2].

Выводы

На основании полученных результатов можно сделать вывод о том, что с учетом ограничения времени выведения КТ на требуемую орбиту применение рассмотренного маневра космического тральщика с ЭРДУ и ЖРДМТ целесообразно для начального этапа очистки космоса и

не имеет смысла для оперативных действий. При этом следует отметить, что стоимостные затраты, связанные с использованием ЖРДМТ, значительно уступают затратам на создание ЭРДУ.

Предметом дальнейших исследований могут быть другие варианты сочетания типов двигательных установок при различных маневрах выведения и эксплуатации космических тральщиков с учетом также экономических затрат на осуществление этих маневров.

Список использованных источников

- 1. Шевцов А. В. Мелкий космический мусор. Анализ развития и способы борьбы / А. В. Шевцов, А. С. Макарова // Космічна наука і технологія. Додаток до журналу. Д.: ДНУ, 2002. Т. 8. № 1. С. 176 179.
- 2. Кондратьев А.И. Оценка характеристик мусорособирающих космических аппаратов с электроракетной двигательной установкой для улавливания космического мусора / А.И. Кондратьев, А.В. Хитько, П.Г. Хорольский, Л.Г. Дубовик // Авиационно-космическая техника и технология. Х.: «ХАИ», 2009. № 9 (66). С. 45 47.
- 3. Дронь Н.М. Оценка характеристик космических мусоросборщиков, выводимых на требуемую орбиту непосредственно ракетаминосителями / Н.М. Дронь, А.И. Кондратьев, П.Г. Хорольский, Л.Г. Дубовик // Вопросы проектирования и производства летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». Вып. 1 (61). Х., 2011. С. 100 103.
- 4. Дронь, Н.М. Массовая эффективность космических тральщиков при использовании жидкостных ракетных двигателей малой тяги / Н.М. Дронь, А.И. Кондратьев, П.Г. Хорольский, Л.Г. Дубовик // Техническая механика. 2010. № 3. С. 100 105.
- 5. Васильев В.В. Выбор универсальных параметров двигателя малой тяги, предназначенного для поддержания орбиты спутника Земли / В. В Васильев, В. В. Салмин // Космические исследования. 1984. Т. XXII. Вып. 6. С. 858 866.
- 6. Кондратьев А. И. Методика расчета тяговых и энергомассовых характеристик мусорособирающего космического аппарата с ЭРДУ / А. И. Кондратьев, П. Г. Хорольский, Л. Г. Дубовик // Авиационно-космическая техника и технология. Х.: «ХАИ», 2009. № 10 (67). С. 82 84.

Поступила в редакцию 5.04.2011 г. Рецензент: д-р техн. наук, проф. В.Н. Кобрин, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков