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ENHANCING CREDIT CARD FRAUD DETECTION:
THE IMPACT OF OVERSAMPLING RATES AND ENSEMBLE METHODS
WITH DIVERSE FEATURE SELECTION

The subject matter of this article is enhancing credit card fraud detection systems by exploring the impact of
oversampling rates and ensemble methods with diverse feature selection techniques. Credit card fraud has be-
come a major issue in the financial world, leading to substantial losses for both financial institutionsand con-
sumers. As the volume of credit card transactions continues to grow, accurately detecting fraud ulent behavior
has become increasingly challenging. The goal of thisstudy is to enhance credit card fraud detection by analyz-
ing oversampling rates to select the optimal one for the highest-performing models and using ensemble tech-
niguesbased on diverse feature selection approaches. The key tasks undertaken in thisstudy include assessing
the models’ performance based on accuracy, recall, and AUC scores, analyzing the effect of oversampling using
the Synthetic Minority Over-sampling Technique (SMOTE), and proposing an ensemble method that combines
the strengths of different feature selection techniquesand classifiers. The methods used in thisresearch involve
applying a range of machine learning techniques, including logistic regression, decision trees, random forests,
and gradient boosting, to an imbalanced dataset where legitimate transactionssignificantly outnumber fraudu-
lent ones. To address the data imbalance, the researchers systematically investigated the impact ofvarying over-
sampling rates using SMOTE. Additionally, they developed an ensemble model that integrates seven feature
selection methods with the eXtreme Gradient Boosting (XGB) algorithm. The results show that the application
of SMOTE significantly improves the performance of the machine learning models, with an optimal oversampling
rate of 20% identified. The XGB model stood out for its exceptional performance, with high accuracy, recall,
and AUC scores. Furthermore, the proposed ensemble approach, which combines the strengths of the diverse
feature selection techniquesand the XGB classifier, further enhances the detection accuracy and system perfor-
mance compared to the traditional methods. The conclusions drawn from this research contribute to advancing
the field of credit card fraud detection by providing insightsinto the impact of oversampling and the benefits of
ensemble methodswith diverse feature selection. These insights can aid in the development of more effective and
robust fraud detection systems, helping financial institutions and consumers better protect against the growing
threat of credit card fraud.
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losses forboth institutions and consumers [2]. As the vol-
ume of credit card transactions grows, detecting fraudu-

1. Introduction

The rapid evolution of the global landscape and fi-
nancial industries has significantly enhanced conven-
ience in individuals' lives, particularly during the
COVID-19 pandemic when many transitioned to online
platforms. However, this shift has also led to a surge in
financial crimes such as credit card fraud. Global losses
due to payment fraud have dramatically increased, rising
from USD 9.84 billion in 2011 to USD 32.39 billion in
2020, and are projected to reach USD 40.62 billion by
2027 [1]. Credit card fraud continues to be a significant
problem in today's financial world, causing substantial

lent behavior becomes increasingly challenging. Ensur-
ing the security of all transactions, with a focus on fraud
detection and prevention, is a critical task [3].

1.1. Motivation

Credit card theft manifests in various forms, from
ATM skimming to large-scale data breaches at payment
processors. Despite efforts to secure payment systens,
enhancing credit card security is an ongoing research
topic. Many banks and financial institutions use rule-
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based systems, where experts design rules based on his-
torical fraud patterns [4]. Transactions that trigger these
rules require further investigation, but fraudsters contin-
ually develop methods to circumvent these regulations.
Credit card fraud can occur through theft, application
fraud, use of fake cards, non-receipt of issued cards
(NRI), and online fraud, including card-not-present
(CNP) fraud, which only requires access to card data, not
the cardholder's physical presence [5, 6].

1.2. Objective

The research enhanced credit card fraud detection
by developing a novel machine learning approach that
shows quantifiable improvements over existing solutions
onimbalanced datasets. To address the challenge of class
imbalance, this study systematically varies oversampling
rates, explaining that this helps optimize model perfor-
mance without introducing bias or overfitting. By testing
all models on real transaction samples, not generated
data, the practical applicability of the findings is ensured.
The objectives are directly formulated and traced through
the results, highlighting the positive effects and quantita-
tive benefits of this approach over known methods in
terms of accuracy, recall, and Area Under the Curve
(AUC) metrics.

1.3. Approach

This research begins by applying twelve distinct
machine-learning models to an imbalanced dataset,
where legitimate transactions significantly outnumber
fraudulent ones. To address dataimbalance, the Synthetic
Minority Over-sampling Technique (SMOTE) is em-
ployed, which artificially augments the minority class of
fraudulent transactions to create amore balanced dataset.
Various oversampling rates are systematically explored
to determine the optimal rate that enhances the model
performance. The investigation identified an optimal
oversampling rate of 20%, serving as a benchmark for
further analysis. Under optimal conditions, the model
performance is evaluated, and the top six models are
identified based on their metrics. Notably, the eXtreme
Gradient Boosting (XGB) model demonstrates excep-
tional performance when combined with the optimal
oversampling rate.

To further enhance the XGB model, seven feature
selection methods were employed, integrating them into
an ensemble model consisting of seven distinct base
learners. Each base learner represents a variant of the
XGB model empowered using a unique feature selection
method. The ensemble model uses a “hard voting” sys-
tem, where each base learner’s prediction carries equal
weight, collectively determining the authenticity oftrans-
actions.

1.4. Structure of the Article

The remainder ofthis paperis organized as follows:
Section 2 provides the related works, while Section 3 de-
scribes the dataset used in this study and presents the pro-
posed approach. Section 4 discusses the results. Finally,
the paper concludes with the main findings and future re-
search directions.

2. Related Works

The field of credit card fraud detection faces signif-
icant challenges due to imbalanced datasets, leading to
high false positive and negative rates in existing systens.
Addressing these challenges requires innovative ap-
proaches to improve the effectiveness of fraud detection
mechanisms. The current literature highlights various
machine learning techniques and oversampling methods
to tackle these issues, but there remains a gap in under-
standing the impact of different oversampling rates on
model performance. As shownin Table 1:

[7]: This study utilizes a credit card dataset from
European cardholders and explores under-sampling,
SMOTE, and AdaSyn as techniques for handling imbal-
anced datasets. While it achieves high accuracy, the pa-
per ignores the temporal aspects of fraud, which can be
crucial for real-world applications.

[8]: Similar to [7], this study also uses the European
cardholder dataset and employs SMOTE for over-
sampling. Although it demonstrates accurate results, the
paper lacks an analysis of the impact of hyperparameter
tuning, which can significantly influence model perfor-
mance.

[9]: This study applies statistical methods for fea-
ture selection and SMOTE for oversampling on the Eu-
ropean cardholder dataset. It achieves high recall, indi-
cating a good ability to identify positive fraud cases.
However, the paper lacks a sufficient explanation of the
JAD algorithm, limiting its reproducibility and clarity.

[10]: This paper introduces a novel approach using
PCA and a CNN Autoencoder for feature selection, com-
bined with Random Undersampling and SMOTE Tomek
for handling imbalanced data. It claims to achieve top
performance in credit card fraud detection. However, the
authors do not provide comparisons with other methods,
and the model's interpretability is limited.

[11]: This study explores a deep autoencoder for
feature selection and uses various resampling techniques.
While it successfully reduces data dimensionality, the pa-
per lacks comparisons with other approaches and re-
quires further investigation into the model's interpretabil-
ity.

[12]: Focusing on real credit card transactions, this
research emphasizes personalized detection optimiza-
tion. However, it raises ethical implications that need to
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be carefully addressed, especially concerning data pri-
vacy and potential biases.

[13]: This paper employs fuzzy c-means clustering
for feature selection and SMOTE for oversampling. It
demonstrates superior performance compared to other
oversampling techniques. However, the study suffers
from inadequate feature analysis and high computational
complexity.

[14]: Using the IEEE-CIS fraud detection dataset,
this study leverages correlation and PCA for feature se-
lection. The key advantage lies in its use of uncertainty
quantification to enhance fraud prevention. However, the
paper acknowledges the need for more research to vali-
date its findings.

[15]: This study focuses on a financial indicators
dataset for listed companies and applies multiple feature
selection models along with SMOTE. While it benefits
from a large dataset and explores multiple algorithms, the
paper lacks industry-specific and temporal financial data,
limiting its applicability to real-world scenarios.

[16]: Using PCA for feature selection on the Euro-
pean cardholder dataset, this research achieves high ac-
curacy and Fl1-score. However, it ignores the important
temporal aspect of credit card transactions.

[17]: This study employs correlation-based feature
selection and SMOTE for oversampling on the European
cardholder dataset. It reports high accuracy and F1-score
but lacks comparisons with other methods to demonstrate
its superiority.

[18]: This study focuses on enhancing fraud detec-
tion using SMOTE for oversampling on a European card-
holder transaction dataset. However, it lacks compari-
sons with other approaches and provides limited discus-
sion onthe complexity and scalability.

[19]: This research utilizes a novel CSO algorithm
for feature selection on the European cardholder dataset
and claims to outperform existing algorithms. However,
it lacks comparisons to support this claim.

[20]: This paper applies SVM-RFE for feature se-
lection and SMOTE for oversampling on the IEEE-CIS
fraud detection dataset. It identifies an Adaboost +
LGBM hybrid model as the best performer. However, the
study lacks interpretability and does not address adver-
sarial robustness.

[21]: This study explores SMOTE-ENN for over-
sampling on a European cardholder transaction dataset
and claims to outperform widely used methods. How-
ever, it lacks interpretability, making it difficult to under-
stand the model’s decision-making process.

[22]: This study utilizes various datasets, including
Bank Marketing, Vehicle Insurance, Fraudulent on Cars,
Worldline & ULB, and BankSim, and reports significant
performance gains. However, it highlights the need to ad-
dress hyperparameter tuning and computational com-
plexity.

[23]: This study focuseson the European cardholder
dataset and claims superior performance compared to
other classifiers. However, it lacks specific details about
the methods used.

[24]: This research employs a genetic algorithm
(GA) for feature selection and SMOTE for oversampling
on the European cardholder dataset. It claims to outper-
form existing systems but lacks interpretability and de-
tails about computational efficiency.

[25]: This study combines a neural network ensem-
ble with a hybrid resampling method (SMOTE-ENN) on
the European cardholder dataset. However, it overlooks
the important aspect of scalability.

[26]: This paper uses PCA for feature selection and
SMOTE for oversampling on the European cardholder
dataset. It compares the supervised and unsupervised al-
gorithms but lacks interpretability.

[27]: This research explores quantumcomputing for
fast fraud detection using random undersampling on the
European cardholder dataset. However, it lacks discus-
sion on scalability, which is crucial for real-world appli-
cations of quantum computing.

[28]: This study introduces a novel GNN model for
fraud detection on the Sparkov dataset, demonstrating ef-
ficient graph processing and improved performance met-
rics. However, the computational complexity remains a
concern.

[29]: This research achieves high AUPRC and AUC
on the European cardholder dataset but lacks discussion
on scalability.

[30]: This paper employs hybrid undersampling
(Tomek links) and oversampling (BCBSMOTE) on the
PaySim dataset, resulting in improved Fl-score, preci-
sion, and AUPRC. However, the computational com-
plexity is a potential drawback.

[31]: This paper introduces an ensemble model
(SYM, KNN, Random Forest, Bagging, Boosting) for
credit card fraud detection using the Kaggle Credit Card
Fraud dataset. Under-sampling and SMOTE addressed
the class imbalance. Feature selection was omitted due to
anonymized features, a study limitation alongside limited
adversarial attack and scalability analysis.

[32]: This study introduces a hybrid ensemble and
deep learning approach for the detection of credit card
fraud. Using European and Sparkov datasets, itemployed
oversampling, undersampling, and SMOTE to handle
class imbalance, and PCA for feature selection. A key
limitation is the performance gap between real-world and
synthetic data, raising concerns about the model general-
izability tested on synthetic data.

[33]: This article introduces a credit card fraud de-
tection method that combines a neural network with
SMOTE totackle imbalanced datasets. Using a European
dataset of 284,807 transactions (0.172% fraudulent), the
proposed approach shows improved performance over
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traditional methods. The limitations include insufficient
detail on NN hyperparameters and reliance on a single
dataset.

The analysis of credit card fraud detection research
papers highlights various methods such as SMOTE and
PCA for improving detection accuracy. Common issues
include ignoring temporal aspects, lack of method com-

Imbalanced data is a significant problem that is often ad-
dressed with oversampling techniques, but innovative so-

lutions are needed. Future research should focus on in-

corporating temporal data, improving method compari-
sons, enhancing interpretability, ensuring scalability, and
developing better strategies for handling imbalanced da-
tasets to create more robustand practical fraud detection

parisons, poor interpretability, and scalability challenges.  systems.
Table 1
Overview of the fraud detection studies
Feature . Lo
Ref. Dataset . Oversampling Advantages Limitations
Selection
. Under-
Credit card dataset samplin Ignores
[7] from European card- N/A SMF()Z)TIg’ High accuracy temporal fraud
holders ' aspects
AdaSyn
Credit card dataset Ignores
[8] from European card- N/A SMOTE Accurate hyperparameter
holders tuning impacts
Credit card dataset I Insufficient
Statistical . .
[9] from European card- methods SMOTE High recall JAD algorithm
holders explanation
. Random .
Credit card dataset . . No comparison,
PCA+CNN Undersamplin Top credit card fraud - .p
[10] from European card- . limited
Autoencoder g, SMOTE detection . .
holders interpretability
Tomek
Credit card dataset Dee Resamplin No comparison,
[11] from European card- P _p g Lower-dimensional data needs
autoencoder techniques . -
holders interpretability
[12] Real cfredlt card N/A N/A Personal'lsgd d.etectlon ' Et.hlcgl
transactions dataset optimisation implications
. Inadequate fea-
Credit card dataset Fuzzy c- Excels over other ture gnal Sis
[13] from European card- means SMOTE . YSB,
. oversampling computational
holders clustering .
complexity
IEEE-CIS fraud de- Correlation _Uncertalnty quantifica- | Requires more
[14] . N/A tion enhances fraud pre- research for
tection dataset and (PCA) . N
vention validation
Multipl Missing i -
Financial indicators fel;ttLIJF;ee Large dataset, multiple tlss—lsnilcr:gss
[15] dataset for listed . SMOTE g . P y-Spectiic,
. selection algorithms temporal finan-
companies .
models cial data
Credit card dataset High accuracy and f1 Ignorin
[16] from European card- PCA N/A g y g g

holders

score

temporal aspect
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Continuation of Table 1

Feature

Ref. Dataset . Oversampling Advantages Limitations
Selection
Credit card dataset High accuracy and Fl- Compare
[17] from European card- Correlation SMOTE g y methods
score
holders needed
No compari-
Credit card transac- sons, limited
[18] tion dataset from Eu- N/A SMOTE Enhanced detection complexity,
ropean cardholders scalability dis-
cussion
Credit card dataset Outperforms existin No
[19] from European card- CsO N/A P . g :
algorithms comparisons
holders
No interpreta-
Adaboost+LGBM hy- .
IEEE-CIS fraud de- . ) - bility, no adver-
[20] - SVM-RFE SMOTE brid model identified as Y
tection dataset . sarial robust-
champion
ness
Credit card transac- .
[21] | tion datasetfrom Eu- N/A SMOTEENN | Outperforms widely - No
used methods interpretability
ropean cardholders
Bank Marketing, Ve- Hyperparame-
hicle Insurance, Sianificant performance ter tuning, com-
[22] Fraudulent on Cars, N/A N/A g ari)ns putational com-
Worldline & ULB, g plexity require
and BankSim attention
Credit card dataset Outperforms other clas- Outperforms
[23] from European card- N/A N/A sifiers in terms of per- | other classifiers
holders formance metrics in metrics
Lack of inter-
Credit card dataset . pretability,
Outperforms existin .
[24] from European card- GA SMOTE P g computational
systems .
holders efficiency de-
tails
Credit card dataset Neural network ensem- Scalabilit
[25] from European card- N/A SMOTE-ENN | ble +hybrid resampling Y
overlooked
holders method
Credit card dataset Compares No
[26] from European card- PCA SMOTE supervised/unsupervise | . .
. interpretability
holders d algorithms
Credit card dataset . .
27] from Euronean card- N/A Random Quantum computing for | No scalability
P Undersampling fast fraud detection discussion

holders
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Continuation of Table 1
Ref. Dataset Featu_re Oversampling Advantages Limitations
Selection
Novel GNN model, ef-
ficient graph pro- computational
[28] Sparkov dataset N/A N/A '.' 'g Php hu '.
cessing, improved per- complexity
formance metrics
Credit card dataset No scalabilit
[29] from European card- N/A N/A High AUPRC and AUC . - y
discussion
holders
Hy:;:gpllji:ger- Improved Fl-score
0,
(Tomek links) Im ro(\issazor/zzzision Computational
[30] PaySim N/A and over- P P P .
sampling (81.27%) complexity
Improved AUPRC
(BCBS)M OTE (72.77%)
Credit card dataset Under- Scalabilit
[31] from European card- N/A sampling and High accuracy anal sisy
holders SMOTE y
Credit card dataset .
Oversampling,
from European card- under Improved accurac Generalizabil
[32] holders and Sparkov PCA . P y .
datasets sampling, and ity
SMOTE
. Insufficient
Credit card dataset Improved performance detauil clml NN
[33] from European card- N/A SMOTE over traditional hVDErDarame-
holders methods. yp tzrs

3. The proposed approach

This study explores the intricate aspects of detecting
fraud, particularly focusing on how different over-
sampling rates affect performance indicators in a range
of machine learning models. The initial stage of the ap-
proach, depicted in Figure 1, involves introducing 12 di-
verse models to a dataset where genuine transactions out-
number fraudulent ones. To tackle this imbalance, the
SMOTE is usedto increase the representation of the mi-
nority fraudulent transactions, thereby achieving a more
balanced dataset. The core of the study is to methodically
test various oversampling rates to find the one that most
enhances the models’ accuracy, recall, and AUC.
Through investigations, we identified 20% as the most
effective oversampling rate. Under this optimal condi-
tion, we assess the models’ performances and highlight
the top six models with outstanding performance metrics.
The eXtreme Gradient Boosting (XGB) model is partic-
ularly noteworthy for its adaptability and efficiency at

this oversampling rate. To further improve the XGB
model’s fraud detection capability, we incorporate seven
distinct feature selection methods. These methods were
incorporated into an ensemble model comprising seven
base learners. Each learner is a variation of the XGB
model, enhanced by a different feature selection ap-
proach. This ensemble model operates on a “hard voting”
mechanism, where each base learner's prediction is
equally weighted, collectively determining a transac-
tion's legitimacy. Our study, by delving into the subtle
effects of oversampling rates on various machine learn-
ing algorithms, seeks to develop robust strategies for
combating credit card fraud, thereby advancing the field
of predictive accuracy in this essentialarea.

3.1. Data used

This research uses a well-known credit card fraud
detection dataset, which includes 284807 transac-
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Proposed approach

| -

Application of 12 machine learning models on an imbalanced original dataset for training

Selection of the top 6 models based on accuracy, recall and AUC ‘

Training of the 6 models using SMOTE with varying oversampling rates to optimize their performance.
(Oversampling Rate Analysis for Optimal Model Performance)

Best Model: XGB and Optimal Oversampling Rate: 0.2 E

Feature Selection Methods Applied on XGB Model for Optimal Combination

Obtained Best Subset of 7 Feature Selection Methods for XGB Model
Creation of Ensemble Model with 7 Base Learners £

v v v v ¥ ¥ Vv

XGB+ XGB+ .
XGB+Gain
Pearson Spearman . .
. . information
correlation correlation

G)éﬁgt"i-c XGB+  XGB+ XGB+
algorithm  ACO PSO Aquila

Vv v v ¥ v v ¥

HARD VOTING

Detection (fraud or not) \E

Fig.1. The Proposed approach

tions made by European cardholders over a two-day pe-
riod in September 2013 [34]. Out ofthe totaltransactions,
284315 were legitimate while 492 transactions were
fraudulent, accounting for only 0.172% of the dataset.As
such, the dataset is severely skewed, posing challenges in
developing efficient fraud detection algorithms. The da-
tasetincludes 30 numerical features (V1 to V28), as well
as thetime and amount of each transaction. The last col-
umn of the dataset indicates the class of the transaction,
with a value of 1 representing a fraudulent transaction
and a value of 0 indicating a non-fraudulent transaction.

The features from V1 to V28 are notnamed to ensure se-
curity and integrity.

3.2. Data Preprocessing and Splitting

The dataset undergoes several preprocessing steps.
Initially, it is cleaned by editing missing information, cor-
recting errors, orremoving duplicates. After cleaning, the
dataset is normalized using the min-max scaling method,
which ensures that all values fall within a specified range.
Next, the dataset is split into training and testing sections.
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The training data, comprising 70% of the dataset, is used
to train and fine-tune the machine learning models, help-
ing them recognize patterns and relationships. The re-
maining 30% serves as testing data to evaluate the mod-
els’ performance by predicting outcomes for new, unseen
data. This approach is a standard practice in machine
learning for assessing algorithm effectiveness.

3.3. Optimal Models

Twelve models were trained using the training data,
and the performance of the systemwas evaluated using
the testing data. These models include GaussanNB,
MLPClassifier, XGBClassifier, DecsionTreeClassifier,
CatBoostClassifier, RandomForestClassifier, AdaBoost-
Classifier, LGBMClassifier, GradientBoostingClassifier,
KNeighborsClassifier, LogisticRegression, and SVM.
Finally, six optimal models were selected based on accu-
racy, recall, and AUC score. Figure 2 and Algorithm 1
illustrate the methodology employed in selecting the six
optimal classifiers

3.4. Resampling

After training the top six classifiers on the original
imbalanced dataset, the SMOTE was employed to bal-
ance the training data, and the models were subsequently
refitted.

For each of the six classifiers, SMOTE over-
sampling rates ranging from 0.05 to 0.5 in increments of
0.05 were systematically tested. At each oversampling
rate, the training data were rebalanced using SMOTE, the
classifier was retrained on the oversampled data, and its
performance was evaluated. By adjusting the SMOTE
oversampling rate for each classifier, the overall model
performance was improved by mitigating the class im-
balance. After evaluating the performance of each classi-
fier and oversampling rate combination, the one that per-
formed the beston the testsetwas selected. Algorithm 2
and Figure 3 illustrate the procedure for investigating the
impact of the oversampling rate on six classifiers to de-
termine the optimal rate for each.

3.5. Feature Selection

After selecting the best-performing classifier, vari-
ous feature selection methods were evaluated to identify
the ideal subset that enhances the performance of each
approach. The goal was to construct aset of base learners,
each consisting of the best classifier paired with a differ-
ent feature selection method. The feature selection tech-
niques we evaluated included the following:

— Pearson correlation - selects features that have
a strong linear correlation with the target;

Algorithm 1 Classification Algorithm
Input: Dataset
Output: Best six classifiers

Data preprocessing:

Dataset Cleaning:
o Editing missing information.
o Correcting incorrect data.
o Removing duplicate entries.

Data Normalization:

o The dataset is normalized using the min-max scaling method.
o This normalization ensures all input values lic within a [0,1] range.

Data split: Split the dataset into training and testing sets

Train classifiers: classifiers = [NB(), MLP(), XGB(), DT(), CATBoost(),
RF(), AdaBoost(), LGBM(), BG(), KNN(), LR(), SVM()]

Evaluate classifiers: Evaluate the performance of each classifier on the
testing set

Select the best six classifiers: Select the six classifiers with the best
performance metrics

Dataset

)

Data Preprocessing

)

Data Split
|

¥ N

Training Data Testing Data

L

NB, MLP, XGB, DT, CATBoost, RF, AdaBoost,
LGBM, BG, KNN, LR, and SVM

L

Evaluation &

1}

Best six classifiers

Fig. 2. Machine learning classification process

— Spearman correlation - selects features with a
strong monotonic relationship to the target;

— Information gain - selects features that mini-
mize entropy and maximize information aboutthetarget;

— GCenetic algorithm uses an evolutionary ap-
proach to select feature subsets that optimize fitness;

— Particle swarm optimization (PSO) - iteratively
searches for optimal features guided by swarm intelli-
gence;

— Antcolony optimization (ACO) - uses artificial
ant colonies to select features that maximize pheromone
trails;
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— Aquila - an optimization algorithm that itera-
tively adds/removes features to find an optimal subset.

Algorithm 2 Training and Evaluating Classifiers with SMOTE
Input: Original Imbalanced Dataset, Set of Six Highest-Performing Classi-
fiers

Output: Best Classifier and Oversampling Rate Combination
Train classifiers on original imbalanced dataset

Apply SMOTE to rebalance the training data

for each elassifier in the set of six classifiers do

for SMOTE oversampling rate in range 0.05 to 0.5 with increments of
0.05 do

Rebalance the training data using SMOTE:
Retrain the classifier on the oversampled data

| Evaluate the classifier performance
end

Determine the optimal SMOTE oversampling rate
end

Tune the SMOTE oversampling rate for cach classifier
Evaluate the performance of each combination on the test set

Choose the best combination

Training Data Testing Data

h

Oversampling using SMOTE

|—) DT, NB, RF, XGB, CATBoost and MLP

h 4

Evaluation [¢

h 4
Best classifier, XGB

Fig. 3. Comparative Analysis of the Top Six Classifiers
Enhanced by Oversampling Techniques

The best-performing classifier was selected and
paired with each feature selection method to determine
the optimal number of top features in the training set.
This generated a set of base learners, each consisting of
the top classifier and a feature set optimized for a differ-
entselection technigue. Evaluating various feature selec-
tion methods allowed us to determine which techniques
enhance the performance of the top classifier on this da-
taset. The ensemble of optimized base learners can then
be combined to improve the overall predictive accuracy.
Algorithm 3 and Figure 4 depict the process of selecting
and evaluating various feature selection methods to iden-
tify the optimal feature subset for enhancing the perfor-
mance.

Algorithm 3 Select Best Performing Classifier and Feature Selection
Method

Input: Dataset, Best Performing Classifier

Output: Best Feature Selection Method, Set of Base Learners

Select best performing classifier:
for each feature selection method do

Evaluate feature selection technique: Pearson correlation Spear-
man correlation Information gain Genetic algorithm  Particle swarm
optimization (PSO) Ant colony optimization (ACO) Aquila

Select optimal number of top features

Generate set of base learners
end

Evaluate feature selection methods

Training Data
Pearson correlation

Spearman correaltion
Gain information
Genetic algorithm
PSO
ACO
Aquila

Apply XGB

The best subset of
each method

Fig. 4. Selection of Optimal Subsets for Each Method
Based on Performance Metrics in the Testing Data

3.6. Ensemble Methods

After evaluating a range of feature selection meth-
ods, the top-performing classifier was paired with each
optimized feature set to establish a collection of base
learners. Specifically, the top classifier was paired with
the feature subset selected by each of the following tech-
niques: Pearson correlation, Spearman correlation, infor-
mation gain, genetic algorithm, particle swarm optimiza-
tion, ant colony optimization, and Aquila. This resulted
in a set of seven base learners, where each base learner
consisted of the same top classifier trained on a different
optimized feature set. We then combined these base
learners using a voting ensemble method to create a
strong final classifier. The voting ensemble allows each
base learner to independently make a prediction, and then
combines the predictions by taking a vote. The final pre-
diction is the class that receives the majority of votes
across all base learners. The voting ensemble allows us
to leverage the strengths of each feature selection method
by training the same top classifier on different views of
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the data and then combining the predictions. The base
learners will make uncorrelated errors, and the ensemble
will make a better prediction than any individual base
learner. The goal of the voting ensemble is to improve
generalization performance and robustness through the
diversity and collective intelligence of the base learners.
This approach allowed us to construct a strong final clas-
sifier that integrates multiple feature selection tech-
niques. Algorithm 4 and Figure 5 demonstrate the pro-
cess of pairing a top-performing classifier with different
feature subsets, derived from a variety of selection meth-
ods, to construct a series of unique base learners. These
learners are then integrated using a voting ensemble
method to create a comprehensive and strong final clas-
sifier.

Algorithm 4 Ensemble Learning and Feature Selection

Input: Dataset, Set of Feature Selection Techniques

Output: Final Prediction

Evaluate various feature selection techniques:

Identify best performing classifier:

for cach optimized feature set in Pearson correlation, Spearman correla-

tion, information gain, genetic algorithm, particle swarm oplimization, ant
colony optimization, Aquila do
Create a base learner: Combine the optimized feature set with the
best performing classifier to create a base learner
end
Combine all base learners: Combine all base learners using a voting
ensemble method
for cach instance to be classified do
‘ Let each base learner make a prediction:
end
Combine the predictions: Combine the predictions by taking a vote
Final prediction: The final prediction is the class that receives the major-
ity of votes across all base learners

XGB + Pearson correlation

XGB + Spearman correlation

XGB + Gain information

Fraud
or
Not

Hard
Voting

XGB + Genetic algorithm

XGB +PSO

A A

XGB + ACO

XGB + Aquila —|

Fig. 5. Ensemble Learning Using Hard
\oting Technique

4. Results and Discussion

In this section, we discuss the comprehensive find-
ings of our tests as well as the assessment metrics we
used to analyze the performance of our suggested strat-
egy. We will also provide a thorough analysis of the find-
ings and their implications.

4.1. Experimental Setup

The research was conducted on a cloud-based plat-
form called Kaggle, which was outfitted with GPU hard-
ware accelerators and a variety of libraries such as Scikit-
Learn, matplotlib, sklearn, and pandas. An Intel Core i-7
3.0 GHz CPU with 8.0 GB of RAM was used in the ex-
periment.

4.2. Performance Metrics

A confusion matrix is often used to evaluate the per-
formance of the machine learning models. It contains the
counts of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). These counts al-
low for the calculation of various evaluation metrics as
follows:

— Accuracy measures how often the model makes
the correct prediction. It is calculated as the ratio of the
correct predictions (TP + TN) to the total predictions:

TP + TN
TP + TN + FP + FN’

(1)

Accuracy =

— Recall, also called sensitivity or true positive
rate (TPR), measures the proportion of actual positives
thatare correctly identified. It is calculated as:

TP

TP + FN @

Recall =

— The AUC (area under the ROC curve) metric
summarizes the model's performance across all classifi-
cation thresholds. The ROC curve plots TPR vs. FPR
(false positive rate). A higher AUC indicates better over-
all performance.

In summary, the confusion matrix provides the
basic counts to compute various metrics that evaluate dif-
ferent aspects of a model’s predictive performance. Ac-
curacy measures overall correctness, recall quantifies
sensitivity, and AUC summarizes performance across
thresholds.



Intelligent information technologies

95

4.3. Comparative Performance Metrics
Analysis Across Twelve Classifiers

Table 2 displays the performance classification of
twelve different categorization models, which are scored
based on their accuracy, recall, and AUC.

The accuracy ratings of the models vary from
0.9662 to 0.9995, showing that all models correctly pre-
dict the target variable. However, the accuracy differ-
ences among the models were minor, with the bestaccu-
racy score being only 0.0333 higher than the lowest ac-
curacy score.

The recall scores, which represent the proportion of
true positives accurately detected by the model, show a
larger range, with 0.8175 being the greatest and 0.3378
being the lowest. This suggests that certain models excel
in terms of accurately recognizing the positive class.

The AUC scores, which reflect the model's ability
to differentiate between positive and negative classes, ex-
hibit a similar range of performance to the recall scores,
the maximum AUC score is 0.8976, while theminimum
is 0.6688.

Overall, the MLPClassifier, XGBClassifier, Cat-
BoostClassifier, and RandomForestClassifier models
outperformed the other three models. The GaussianNB
model achieved a higher AUC score than some ofthe top-
performing models, but had a lower accuracy and recall
score. The AdaBoostClassifier, LGBMClassifier, Gradi-
entBoostingClassifier, KNeighborsClassifier,
LogisticRegression, and SVM models performed poorly
across all three measures. In summary, considering the
metrics presented in Table 2, the following six models
emerged as the top performers: MLPClassifier,
XGBClassifier, CatBoostClassifier, RandomForestClas-
sifier, GaussianNB, and DecisionTreeClassifier.

4 4. Impact Analysis of Oversampling Rate on
Machine Learning Model Performance Metrics

A few key observations fromTable 3 are as follows :

— Table 3 compares six different machine learn-
ing models (Decision Tree, Naive Bayes, Random For-
est, XGBoost, CatBoost, and MLP) across three evalua-
tion metrics, namely accuracy, recall, and AUC;

— XGBoost scored the highest in terms of both ac-
curacy (0.9996) and recall (0.8378), meaning it made the
fewest false positive and false negative predictions;

— CatBoost and MLP scored the next highest in
accuracy, butslightly lower in recall;

— Random Forest also scored very well in terms
of accuracy (0.9995) but scored worse in recall than
XGBoost, CatBoost and MLP;

— Naive Bayes had the lowest accuracy score of
the models but scored higherin recall than Decision Tree
and Random Forest;

— Decision Tree scored very well for accuracy,
but it had the worst recall score out of the models. This
suggests thatitis more proneto false negatives;

— In terms of AUC, XGBoost again performed
best (0.9188), followed by Naive Bayes. AUC evaluates
the overall discriminative power of the model across dif-
ferent thresholds;

— The performance metrics of several over-
sampled classification models were also evaluated to de-
termine the optimal oversampling rate for each model;

— The models were analyzed based on their accu-
racy, recall, and AUC scores, which were then compared
to identify the best performing model at each over-
sampling rate;

— By evaluating the models with different over-
sampling rates, we can determine the rate that provides
the bestbalance between model performance and the re-

Table 2
Model performance metrics duction of class imbalance in the dataset.
Model Accuracy| Recall | AUC Overall, XGBoost outperforms the other models,
- excelling in accuracy, recall, and AUC. CatBoost, MLP,
GaussmnNIB. 09773 | 08175 | 08976 | .y Random Forest show strong results in specific met-
MLPClassifier 09994 | 0.777 | 0.8884 |  yics while Decision Tree and Naive Bayes fall behind.
XGBClassifier 0.9995 | 0.7635 | 0.8817
DecisionTreeClassifier 0.9992 | 0.7432 | 0.8714 Table 3
CatBoostClassifier 0.9994 | 0.7364 | 0.8682 Model performance with oversampling
P Over-
RandomForestClassifier | 0.9994 | 0.7297 | 0.8648 .
Model | samplin Accurac Recall| AUC
AdaBoostClassifier 0.9991 | 0.6689 | 0.8343 i Y
LGBMClassifier 0.9662 | 0.6486 | 0.8077 DT 0.15 09975 | 0.7837] 0.8908
C_%radientBoostingCIassi— 0.9990 0.6148 | 0.8072 NB 0.05 0.9762 0.8243| 0.9004
fier RF 0.15 0.9995 0.7972| 0.8985
KNeighborsClassifier 0.9992 | 0.5945 | 0.7972 XGB 0.20 0.9996 | 0.8378] 0.9188
LogisticRegression 0.9991 | 0.5878 | 0.7938 Catboost 0.25 0.9994 | 0.8243| 0912
SWM 0.9986 | 0.3378 | 0.6688 MLP 0.25 0.9988 0.8243| 0.9117
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The analysis of the oversampling rate’s impact on
the performance of an XGBoost model, as illustrated in
Figure 6, reveals that the Area Under the Receiver Oper-
ating Characteristic Curve (AUC score) peaks at an over-
sampling rate of 0.20, achieving a maximum value of
0.912. This optimum point signifies the best balance be-
tween enhancing the representation of the minority class
and preserving the model’s generalization capability.

0.910 7

0.905

0.900

AUC Score

0.895 4

0.890 4

T T T T T T
0.05 0.10 0.15 0.20 0.25 0.30
Oversampling Rate

Fig.6. Performance of XGB as a Function
of Oversampling Rate Measured by AUC Score

Oversampling, a technique employed to mitigate class
imbalance by increasing the instances in the minority
class, can enhance model performance by providing ad-
ditional data for learning; however, excessive over-
sampling risks overfitting, where the model may learn
noise instead of the essential patterns. Beyond the 0.20
rate, the AUC score begins to decline, indicating that fur-
ther oversampling introduces redundancy and noise, ad-
versely affecting the model performance. Therefore, it is
recommended to select the optimum oversampling rate
0f 0.20 to maximize the model performance while moni-
toring for overfitting through regular evaluation on a val-
idation set.

45. Comparative Efficacy of Feature Selection
Techniques in Enhancing Model Performance

Table 4 and Figure 7 detail a comparison of seven
feature selection methods in a classification model, fo-
cusing on the number and type of selected features, over-
sampling rate, and performance metrics like accuracy, re-
call, and AUC. Spearman correlation, Gain information,
Genetic algorithm, PSO, and ACO stand out, achieving
accuracy above 0.9994 and recall over 0.8412, indicating
their effectiveness in selecting predictive features.

In terms of selected features, V14 appears in the
feature sets of all methods, indicating its importance asa
predictor. V10 and V11 also occurred frequently. The
feature sets are mostly small, between 5-7 features, show-
ing that these methods can effectively reduce dimension-
ality and select compact yet predictive subsets of fea-
tures.

Spearman correlation selected the fewest features
(5) with the highest accuracy, recall, and comparable
AUC. It is also worth noting that ACO selected six fea-
tures with the highest accuracy and recall. Overall, the
feature selection methods were found to be quite effec-
tive for this classification task.

4.6. Enhancing Classifier Performance through
Ensemble Integration of Diverse Feature
Selection Methods

The effectiveness of integrating various feature se-
lection methods with the XGB classifier using an ensem-
ble approach was highlighted. This method achieved an
accuracy of 0.9998, a recall of 0.8693, and an AUC of
0.9376. A range of feature selection techniques were
used, including Pearson and Spearman correlation, infor-
mation

Table 4
Performance comparison of various feature selection methods
# of selected
Model features The selected features Accuracy Recall AUC
XGB+Pearson V14', 'v12', V11|
correlation 5 'V]_O', V4 0.9995 0.8425 0.9268
XGB+Spearman V14, V12, V4,
correlation 5 'V_‘]_O', V11 0.9997 0.8495 0.9245
XGB+Gain V10, 'V11, 'V12,
information 6 V14, 'V16, V17 0.9997 0.8501 0.9289
XGB+Genetic V3, V4, 'V10, 'V11',
algorithm 7 V14, 24, /28 0.9994 0.8412 0.9199
V3, V4, V10, 'V14,
XGB+PSO 5 "\/28 0.9996 0.8483 0.925
V3, V4, V11, V14,
XGB+ACO 6 V16, '\28 0.9997 0.8505 0.9255
. V4, V10, 'V13,
XGB+Aquila 5 V14, V17 0.9996 0.8475 0.9231
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gain, and others, to create seven base learners. Each
learner was trained on a different feature set and then
combined using a voting ensemble method. This ap-
proach leveraged the diverse strengths of each method,
resulting in a robust final classifier that was more accu-
rate than any individual learner by minimizing uncorre-
lated errors.

4.7. Outperforming Current State -of-the- Art
Techniques: Comparative Analysis of Fraud
Detection in Credit Card Transactions

Table 5 displays a comparison between our pro-
posed method and other recent approaches found in the
literature, which we selected due to their use of the same
dataset. Overall, these existing methods show satisfac-
tory results; however, our approach outperforms most
other techniques. A key advantage of our method is the
systematic analysis of different machine learning algo-
rithms and feature selection techniques. Additionally, we
investigated various oversampling rates to determine the
optimal rate for each of the top six models. In contrast to
other oversampling-based approaches that oversampled
the data before splitting it into training and test sets, our
method oversampled only the training data. This prevents
synthetic samples from being included in the testsetand
allows for a more robustevaluation of the model perfor-
mance. Furthermore, unlike previous studies that used a
single oversampling rate (typically 0.5), we optimized
this hyperparameter for each model. Evaluating our ap-
proach by examining multiple datasets, rather than just
one, would strengthen these conclusions and is an area
for future work. In summary, our methodological

vanab e
— Accuracy
. Recall
AlUC

%
%

Model
Fig. 7. Comparative Analysis of Different Feature Selection Techniques Based

on Accuracy, Recall, and AUC Metrics

improvements, including tuning oversampling rates and
comparing various learning algorithms, are critical fac-
tors that allow it to surpass current state-of-the-art tech-
niques.

5. Conclusion and future work

This paper provides a comprehensive analysis of
credit card fraud detection, focusing on the impact of var-
ying oversampling rates and the implementation of a
novel ensemble method. Specifically, this study investi
gates the influence of SMOTE oversampling on key per-
formance metrics, revealing an optimal rate of 20% for
maximizing accuracy, recall, and AUC scores. This opti-
mal rate balances the benefits of addressing class imbal-
ance with therisks of overfitting and noise amplification.
A key innovation of this work lies in the introduction of
an ensemble approach that integrates multiple feature se-
lection methods with the XGBoost classifier. This ap-
proach significantly outperforms the traditional methods,
achieving remarkable results: 99.98% accuracy, 86.93%
recall, and 93.76% AUC. These metrics demonstrate the
ensemble model's effectiveness in identifying fraudulent
transactions while minimizing false positives and nega-
tives. High recall is particularly crucial in fraud detection,
as it minimizes the number of fraudulent transactions that
go undetected. A critical aspect of the research method-
ology involved rigorous testing on real-world transaction
data, ensuring the model’s robustness and practical ap-
plicability. This focus on real-world data contrasts with
many studies that rely solely on synthetic datasets. By us-
ing real transaction data, the research ensures that the
model can effectively handle the complexities and the
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Table 5
Performance comparison of different techniques on the credit card transaction dataset
Ref Dataset Technique Evalution Metrics Results
. Accuracy: 0.9996,
7 RF Accuracy, Plzri?slzlc?rg, Recall and Precision: 0.9130, Recall:
0.8571, Fl-score: 0.8842
Accuracy: 0.9998,
[8] AdaBoost Accuracy, Precision, Recall Precision: 0.9992, Recall:
+XGB 0.9997
o Accuracy: 0.9990,

9] JAD Accuracy, Precision, Recall, Precision: 0.7960, Recall:
Credit card F1-score and AUC 0.8480, Fl-score: 0.8210,
trarr?sz:\c'ggrns AUC: 0.9810
dataset from Deep o A(_:cu.racy: 0.99%, )

[11] European Accuracy, Precision, Recall, Precision: 0.9777, Recall:
cardnibiors | AutoEncoder Fi-score and AUC 0.7212, Fi-score: 0.8302,

+PCA AUC: 0.7630
Accuracy: 0.9800

Accuracy, At (.

[26] RF Precision, and AUC Precision: 0.8900, AUC:
0.9500

[27] Bagged Accuracy andAUC Accuracy: 0.9704, AUC:
tree 0.9489

Our XGB Accuracy, Recall and AUC Accuracy: 0.9998, Recall:

approach 0.9358, AUC: 0.9817

nuances of actual credit card transactions. While the re-
sults are promising, the study acknowledges the limita-
tion of relying on a single dataset. Future research will
address this by validating the methodology across diverse
datasets to ensure its generalizability. Further exploration
of alternative oversampling and downsampling tech-
niques, along with the integration of diverse data sources,
is also planned.
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NOKPAILIEHHA BUABJIEHH ST IIAXPAVICTB A 3 KPEAMTHUMHM KAPTKAMM:
BIUVIMB YACTOTHU HA/IMIPHOI JUCKPETHU3AIII TA METOAIB CYKYIIHOCTI
3 PBHOMAHITHUM BHUBOPOM @ YHKIIIA

M. Axyxap, A. Abapoa,
M. Env @amini, M. Yxcini

IMpexmeToM 1i€i cTaTTi € BIOCKOHAJCHHS CHUCTEM BUSIBJICHHS IIaxpaicTBa 3 KPCIMTHHMH KapTKaMH IULIXOM
BUBYECHHSI BIUIMBY YacTOTH HAUIMIIKOBOI JUCKPETH3AIlii Ta METOJiB aHCaMOJIf0 3 pI3HOMAHITHUMH TEXHIKAMH BHOODY
¢ynukuii. [laxpaiicTBO 3 KpeIUTHUMHU KapTKaMHU CTAJI0 CEPHO3HOIO MPoOeMoro y piHAHCOBOMY CBITi, IO MPHU3BEIO
JI0 3HAYHUX BTpaT SK Ul (IHAHCOBUX YCTAHOB, TaK i I croxwBadiB. OCKITBKH 0OCST TpaH3aKIid 3 KPEIUTHAM H
KapTKaM¥ TPOJOBXKY€ 3pOCTATH, TOYHE BUABICHHS IIaXpaiCcTBa CTa€ Jefali CKIQAHIINIM. MeTa IbOTO JIOCTIDKEHH S
MOJISITA€ B TOMY, 100 MOKPAIUTH BUSBJICHHS IMAXpalCTBa 3 KPSIUTHHMH KAPTKAMH IUBIXOM aHAJi3y 4acToT Iepe-
JWCKpeTH3altii, mo0 BHOpaTH ONTUMaNbHy I Haiie() eKTHBHIMNX MoJeel, 1 BHKOPHUCTOBYIOYH METOH aHCaMOITo,
3aCHOBaHI Ha PI3HOMAHITHUX Migxomax a0 BHOOpy ¢yHKiil. OCHOBHI 3aBIAHHS, SKi BUKOHYIOTHCS B IIBOMY JOCIIi-
JDKEHHI, BKIIOYAIOTh OIIHKY €()EeKTHBHOCTI MOJEJEH Ha OCHOBI TOYHOCTI, 3amam ’sITOByBaHHs Ta mokazHukie AUC,
aHaNi3 edeKTy MepemrcKpeTu3anii 3a AOMOMOTOI0 METOAy CHHTeTHUHOI mepemuckpetusanii meHmocti (SMOTE) i
IPOMOHYBaHHS METOy aHcaMOIlo, SIKHH MO€JHY€E CUIbHI CTOPOHHM Pi3HI METOJM BHOOPY O3HAK i KIacU(IiKaTOpH.
MeTtou, sIKi BUKOPHCTOBYIOThCS B IbOMY JOCIIDKEHHI, IepeadavaroTs 3aCTOCYBAaHHS HU3KH METOJIB MAIIMHHOTO
HABYaHHS, BKIIOYAIOYH JIOTICTUYHY pErpecito, IepeBa pilleHb, BUMAIKOBI JICH Ta MOCUJIEHHS Tpali€HTa, 1O He30ama-
HCOBaHOTO Ha0Opy JaHUX, 1€ JIETITMMHUX TpaH3aKIil 3HAYHO MEepPEBUIIYy€ KUIbKICTh Mmaxpaiicbkux. o6 ycyHyTH
JucOanaHc JaHuX, JOCITAHUKH CHCTEMATUYHO JOCIIPKYIOTh BIUIMB Pi3HUX YACTOT MEPEaUCKpEeTU3allii 3a I0MOMOT00
SMOTE. Kpim TOr0, BOHH pO3pOOISIOTE MOCIH aHCAMOJTIO, siKa 00’eJHy€ ciM MeToAiB BUOODPY (ByHKLIMH i3 anropu-
™oM eXtreme Gradient Boosting (XGB). Pesympramé 1poro JOCHMKEHHS MOKa3yTh, MO 3actocyBanHsi SMOTE
CYTTEBO MOKPALIY€ NMPOAYKTUBHICTh MOJICTCH MalIMHHOTO HAaBYaHHS 3 ONTHMAaJIbHOIO YacTOTOO MEPeIUCKPETH3AI i1
20%. Mogens XGB BuabBacs CBOEIO BUHATKOBOIO POy KTUBHICTIO, BUCOKOIO TOYHICTIO, TOKA3HHMKAMH 3aIiaM “sITo-
ByBaHHs Ta AUC. KpiM ToTO, 3anpONOHOBaHUN KOMIUICKCHUN MiIXid, SKAH MOEIHY€ B COO1 CHIIbHI CTOPOHHU PI3HO-
MaHITHUX METOJiB BUOOPY o3HaK 1 kiacudikatopa XGB, NOJATKOBO MIiIBHINY€E TOYHICTh BHUSBJICHHS Ta MPOIyKTHB-
HICTh CUCTEMH MOPIBHIHO 3 TPAIUIIIHHUMHU MeToIaMHu. BUCHOBKH, 3p00JieH] B pe3yJIbTaTi I[bOTO AOCITIDKEHHS, CIpPHU-
SIOTh PO3BHUTKY Taly3i BHSBICHHS IIaxpaicTBa 3 KPEIUTHHUMH KapTKaM¥, HaJalo4d PO3yMIHHS BIUIMBY HaIMIpHOT
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BUOIPKH Ta MepeBar METOJiB aHCAMOJIO 3 pi3HOMAaHITHUM BHOOpOM (yHKUIH. I{i BITOMOCTI MOXYTb TONOMOTTH B
po3po01Ii OUThIl eHEKTUBHHUX 1 HAAIMHUX CHCTEM BHSBJICHHS IIaxpadcTBa, MOMOMArarodu (iHaHCOBUM yCTAHOBaM i
CIOKMBaYaM Kpallle 3aXHIIaTHCS BiJ 3pOCTAr0Y0i 3arp0o3Hy MaxpaicTBa 3 KPSIUTHUMH KapTKaMU.
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