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ADVANCED IMAGE SUPER-RESOLUTION
USING DEEP LEARNING APPROACHES

The subject of this article is Image Super-Resolution (ISR) using deep learning techniques. ISR is a rapidly
evolving research area in computer science that focuses on producing high-resolution images from one or
more low-resolution sources. It has garnered substantial interest due to its broad applicationsin areas such as
medical imaging, remote sensing, and multimedia. The rise of deep learning techniques has brought a revolu-
tion in ISR, providing superior performance and computational efficiency compared to traditional methods
and driving further advancements in overcoming the challenges associated with enhancing image resolution.
The goal of this study is to enhance the quality of super-resolved images by developing a novel deep learning
approach. Specifically, we explore the integration of Convolutional Neural Networks (CNNs) and Generative
Adversarial Networks (GANSs) to address the inherent challenges of producing high -quality images from low-
resolution data. This study aims to push the boundaries of ISR by combining these architectures for greater
precision and visual fidelity. The tasks are as follows: 1) design and implement a hybrid model using CNNs
and GANs for image super-resolution tasks; 2) train the model on benchmark datasets like Set5, Set14, DIV2K,
and specialized datasetssuch as X-ray images; 3) assess the model’s performance using numerical metrics like
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM); 4) to compare the pro-
posed method against existing state-of-the-art ISR techniques and demonstrate its superiority. The following
results were obtained in thisstudy: Our deep learning model, which integratesthe Super-Resolution Convolu-
tional Neural Network (SRCNN) and the Super-Resolution Generative Adversarial Network (SRGAN), demon-
strated significant performance improvements. The CNN successfully learned to map low-resolution image
patches to their high-resolution counterparts, and the GAN further refined the images, enhancing both preci-
sion and visual quality. The evaluation metricsyielded highly promising results, with Peak Signal-to-Noise Ra-
tio (PSNR) reaching up to 36.1368 dB and Structural Similarity Index Measure (SSIM) reaching 0.9670. These
values exceed the benchmarks set by contemporary ISR methods, thus validating the superiority and effective-
ness of our approach in the field of image super-resolution. Conclusions. This study demonstrated the poten-
tial of combining CNN and GAN in the domain of image super-resolution. The proposed model exhibits signifi-
cantadvancementsover existing ISR methods, offering higher accuracy and improved image quality. The find-
ings confirm the efficiency of deep learning methodsin overcoming traditional imaging challenges, making the
proposed model valuable for both academic research and practical applicationsin ISR.

Keywords: Deep learning; Image Super-resolution; Convolutional Neural Network; Generative Adversarial
Network; SRCNN; SRGAN.

1. Introduction topic in image processing [1]. In recent years,
significant advancements in image super-resolution
1.1. Motivation have been achieved using deep learning techniques. The

SR method improves an image’s resolution by analyz-
ing its visual features and generating a higher-resolution
version. These features range from simple elements
such as outlines, shapes, and shades to more complex
ones like textures and luminance. By analyzing these
features and extending the details to a higher resolution,
image super-resolution aims to produce images with
improved clarity without requiring additional capturing
hardware. This inherent ability to learn and extrapolate
features encourages us to consider deep learning as an

Nowadays, the need for high-quality images has
led to the development of Image Super-Resolution (SR),
a key category of image processing techniques aimed at
enhancing the resolution of images. This method focus-
es on reconstructing high-resolution (HR) images from
low-resolution (LR) images in image processing. It has
numerous practical applications, including medical im-
aging, surveillance, and security. Due to its extensive
range of applications, SR has garnered significant inter-
est, and it is currently one of the most active research
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ideal solution to this computational challenge. Recent
advances in image super-resolution have been achieved
through deep learning approaches. However, there are
many challenging open topics related to deep learning
for image SR. Various deep learning techniques have
been applied to tackle super-resolution (SR) tasks, start-
ing with initial methods like SRCNN [2, 3] based on
Convolutional Neural Networks (CNNs) and progress-
ing to more advanced approaches such as SRGAN [4,
5], which utilize Generative Adversarial Networks
(GANs). SRCNN utilizes a neural network to address
the SR problem by learning detailed features from ex-
tensive datasets. CNN architectures like SRCNN have
demonstrated effectiveness in super-resolution tasks, but
they come with several limitations. These include chal-
lenges in handling extremely low-resolution images, the
high computational cost due to its shallow design, and
the potential for blurriness in high-frequency areas. In
addition, its performance can be heavily affected by the
quality of the training data and may be less resilient to
noise. To overcome these issues, researchers frequently
turn to more advanced techniques like SRGAN to en-
hance image quality.

1.2. State ofthe art

Numerous DL methods for image super-resolution
(SR) have been reported in recent studies. For instance,
Chen et al. in [6] introduced a method for enhancing the
resolution of single-depth images using Convolutional
Neural Networks (CNNs). The authors proposed a
CNN-based approach tailored specifically for depth
images, which are commonly used in applications such
as 3D reconstruction and robotics. The proposed method
improves the quality of depth images by increasing
resolution while preserving depth information. The ef-
fectiveness of the proposed approach was demonstrated
through experimental results and performance compari-
sons. Jian Lu, Weidong Hu, and Yi Sun [7] presented a
novel approach to image super-resolution (SR) that lev-
erages geometric similarity. The authors proposed a
deep learning method that improves the resolution of
low-resolution images by focusing on the geometric
relationships within the image. This method enhances
the SR process by identifying and using similar geomet-
ric structures, leading to more accurate and visually
appealing high-resolution images. The effectiveness of
this approach was demonstrated through experiments
and comparisons with existing SR methods. The paper
proposed by K. Chauhan et al. [8] reviewed recent ad-
vances in single-image super-resolution (SISR) tech-
niques based on deep learning. The authors surveyed
various methods to improve the resolution of low-
quality images, focusing on deep learning models such
as CNNs and GANs. This review discusses the chal-
lenges in SISR, evaluates different architectures, and

compares their performance. The paper also highlighted
future research directions, emphasizing the potential of
deep learning in improving image quality across various
applications. Chung, M. et al. [9] introduced a novel
two-stage approach called the bicubic-downsampled
low-resolution image-guided generative adversarial
network (BLG-GAN) for enhancing the super-
resolution (SR) of remote sensing images. In the first
stage, real-world low-resolution (LR) images are trans-
formed into cleaner, bicubic-like LR images using syn-
thetic LR images generated by bicubic downsampling as
a reference. These refined images are then input into a
super-resolution network, which learns to map them to
high-resolution (HR) images. By splitting the SR task
into two distinct steps, BLG-GAN achieves higher im-
age quality with reduced network complexity than exist-
ing state-of-the-art models. The effectiveness of the
proposed approach was validated through experiments
on high-resolution satellite image datasets, which
demonstrated significant improvements in image quali-
ty. More recently, a study [10] investigated the applica-
tion of the Super-Resolution Convolutional Neural
Network (SRCNN) to improve image resolution. The
authors outlined the structure of SRCNN, emphasizing
its three key components: patch extraction and represen-
tation, non-linear mapping, and reconstruction. They
highlighted how SRCNN, a recognized deep learning
model, can be successfully applied to improve image
resolution and visual quality, particularly in scenarios
where high-resolution images are crucial. The results
revealed that SRCNN outperforms traditional image
enhancement techniques, particularly in preserving
sharpness and reducing noise in the reconstructed imag-
es, making it a highly effective tool for applications
requiring superior image restoration. In the same year,
the authors of the study [11] presented an innovative
super-resolution technique that integrates Generative
Adversarial Networks (GANs) with quantum feature
enhancement. Their method was specifically designed
to enhance aerial agricultural images with the aim of
improving image quality and detail for better analysis
and monitoring. By integrating quantum features into
the GAN framework, the proposed approach addressed
challenges related to image resolution and fidelity,
thereby demonstrating improved performance in aerial
image applications.

Hassan et al. [12] proposed an innovative deep
learning approach for Single Image Super-Resolution
(SISR) using an Autoencoder architecture with residual
connections. Unlike conventional interpolation-based
and reconstruction-based techniques, the proposed mod-
el uses convolutional and transposes convolutional lay-
ers without subsampling, ensuring high-quality image
reconstruction while maintaining computational effi-
ciency. By incorporating skip connections between the
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down-sampling and up-sampling stages, the network
effectively preserves fine details, which improves the
generation of high-resolution images. The evaluation
covers both quantitative and qualitative aspects of im-
age restoration, highlighting the proposed method’s
superiority over existing SISR techniques. Another
study, which integrated deep learning for both super-
resolution reconstruction and segmentation to improve
photoacoustic imaging (PAI), was developed by John-
son et al. [13]. Their method proposes an enhanced deep
super-resolution minimalistic network (EDSR-M) that
addresses computational complexity and parameter
count while improving image quality. The results re-
vealed significant enhancements in both image quality
and segmentation performance. This method highlights
the potential of deep learning techniques to overcome
challenges such as low resolution, noise, and image arti-
facts, ultimately advancing the clinical applications of
PAI. The introduction of deep learning by Hwang et al.
[14] facilitated greater developments in Super Resolu-
tion, particularly in improving the quality of magnetic
resonance imaging (MRI) for the diagnosis and treat-
ment of trigeminal neuralgia (TN). By applying SR to
various MRI techniques, including T1-weighted, T2-
weighted, VISTA, contrast-enhanced T1, and proton
density imaging, the study demonstrated that SR signifi-
cantly improved image quality. The findings of this
study highlighted its potential as a powerful tool for
both diagnosing and treating TN.

The main contribution of the recent study by Lee
et al. [15] is the development of an advanced super-
resolution technique for enhancing the quality of medi-
cal images, particularly for melanoma diagnosis. The
authors proposed a CNN-based architecture that features
a convolutional self-attention block that combines chan-
nel and spatial attention mechanisms. Their model em-
ploys subpixel convolution to improve image resolution
and produces high-quality results with enhanced preser-
vation of textures and contours. Evaluation on the ISIC
2020 dataset showed that the proposed model outper-
formed existing methods, demonstrating its effective-
ness in improving medical image quality for more pre-
cise diagnostic applications.

State-of-the-art methods in super-resolution imag-
ing, such as CNNs, GANs, and attention mechanisms,
have shown progress; however, they face challenges
like artifacts, detail loss, and high computational de-
mands. This research introduces a novel deep learning
framework that combines CNNs for feature extraction
and GANs for texture synthesis to improve resolution,
detail preservation, and training stability.

1.3. Objectives and the approach

SRCNN and SRGAN models have demonstrated
impressive results in a range of image processing appli-

cations, including image super-resolution. There has
been a distinct gap in the exploration of new models,
particularly GANs, for super-resolution.

The primary contributions of this research are as
follows:

- We propose a lightweight strategy that merges
SRCNN and SRGAN to produce high-resolution images
from low-resolution sources;

- The proposed method uses an advanced CNN
and GAN to generate high-quality images, thereby ena-
bling accurate identification and analysis;

- We examine the metrics used to achieve opti-
mal performance.

- We compare the proposed method with con-
ventional SR techniques to demonstrate its superiority
in terms of preserving details, minimizing artifacts, and
enhancing overall image quality.

This paper has the following structure: Section 2
presents foundational information relevant to the field
of image resolution. Section 3 describes the methods
used to develop our image resolution architecture. This
includes information about two key processes: the
SRCNN and the SRGAN processes. Section 4 provides
an in-depth discussion of the experimental results and
conclusions. The last Section summarizes the conclu-
sions of the study.

2. Background Information

2.1. Image Super-Resolution

Image Super-Resolution is a technique used to en-
hance the resolution of images by converting low- and
high-resolution images. This area has experienced sub-
stantial progress has been made with the use of deep
learning methods, especially CNNs and GANs. Image
SR techniques span a wide range of approaches includ-
ing Interpolation-Based Methods, Reconstruction-Based
Methods and Learning-Based Methods. Several tech-
niques developed over the years have yielded significant
results, Specifically Learning-Based Methods. These
techniques include CNNs and GANs. Different methods
can achieve super-resolution images.

2.2. CNN for Super-resolution

CNN models are extensively employed for image
super-resolution (SR) owing to their ability to learn in-
tricate features and patterns from images [16]. The CNN
architecture for SR typically involves layers of convolu-
tion operations, where each layer is responsible for cap-
turing different levels of features from the input image.

The network gradually refines the image resolution
by learning to predict missing details. The Super-
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Resolution Convolutional Neural Network (SRCNN) is
one of the earliest and most influential deep learning
models for image SR. The SRCNN works by establish-
ing a transformation from low-resolution images to
high-resolution images. The network was trained on an
extensive dataset of corresponding low- and high-
resolution images. Once trained, the network can up-
scale a low-resolution image by predicting the high-
resolution details [17].

2.3. GAN for Super-Resolution

The Super-Resolution Generative Adversarial
Network (SRGAN) is a more advanced model that lev-
erages the adversarial learning paradigm of GANs to
produce high-resolution photo-realistic images from
low-resolution inputs [18, 19].

Figure 1 shows the SRGAN architecture [20],
which consists of two components: a generator and a
discriminator:

- Generator: this model is typically a deep CNN
designed to transform a low-resolution image into a
high-resolution counterpart. The goal of the generator is
to produce images that are indistinguishable from real
high-resolution images;

- Discriminator: the discriminator model is
trained to distinguish real-life high-resolution images
from images generated by the generator. The generator
and discriminator are trained together in a process in
which the generator enhances its ability to deceive the
discriminator, while the discriminator becomes more

Generator Network B residual blocks

|

adept at distinguishing between real and generated im-
ages.

3. Methodology

The application of deep learning techniques in im-
age super-resolution has led to significant advance-
ments, offering new opportunities and capabilities. This
study introduces a robust method that combines
SRCNN and SRGAN to produce super-resolution imag-
es from low-resolution inputs. Figure 2 presents the
architecture of the proposed approach, highlighting the
complex layers and processes involved in achieving
enhanced super-resolution.

Our architecture includes two key processes: the
SRCNN process and the SRGAN process:

- SRCNN Process: The SRCNN model takes a
low-resolution (LR) image, which is resized to the tar-
get dimensions using bicubic interpolation [21], and
processes it through three layers. The first layer, known
as Feature Extraction, uses 64 filters of size 9X9 to cap-
ture crucial features from the LR image. The second
layer, Non-linear Mapping, applies 32 filters of size 1x1
to refine and integrate these features, thereby creating a
more detailed representation. The final layer, Recon-
struction, uses a single 5x5 filter to generate high-
resolution (HR) images from the processed features.
This layer combines and enhances the features to pro-
duce a super-resolution image with improved detail and
sharpness compared to the original LR input;
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Fig. 1. The detailed architecture of SRGAN
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Fig. 2. The structure of our Methodology

- SRGAN Process: The SRGAN process uses two
distinct neural networks: the generator, which creates
new data, and the discriminator, which evaluates the
quality of the data. This involves five key steps. First,
the process begins with a low-resolution (LR) image, a
downscaled version of the high-resolution (HR) image
that lacks finer details. Next, the generator enhances the
LR image’s resolution through multiple layers, includ-
ing residual and scaling blocks, to produce a high-
resolution image by restoring missing details. The dis-
criminator then assesses the quality of the generated
high-resolution image, differentiating between real HR
images and those created by the generator, thus refining
its output. For feature extraction, a pretrained VGG19
model is employed to capture high-level features from
HR images, and this model helps evaluate the perceptu-
al quality of the generated images. Finally, the SRGAN
loss is calculated by comparing the feature maps of the
generated and real HR images, and we update both the
generator and discriminator to improve the quality of
the generated images until they are nearly indistinguish-
able from the real images.

4. Experiment details

After thoroughly examining the principles and ar-
chitecture of the proposed approach, its implementation
was performed using Python scripts designed to en-
hance image quality. The execution occurred on a ma-

chine with 16 GB RAM and an Intel Core i5 CPU run-
ning Windows 11. To address the computational de-
mands, the Google Colab environment was used, lever-
aging its cloud-based resources. This section presents a
detailed analysis of the experimental results, beginning
with a comprehensive description of the dataset and
highlighting its characteristics and relevance to the
study. Subsequently, the outcomes of the training pro-
cess are explored, including a discussion of performance
metrics and an analysis of the results to demonstrate the
effectiveness of the proposed approach. In addition, the
proposed method was evaluated in comparison with
existing super-resolution techniques.

4.1. Datasets

In the field of super-resolution (SR), several image
datasets are widely recognized and frequently used as
benchmarks to assess and compare the effectiveness of
different SR techniques. For this study, three well-
known datasets were strategically selected: DIV2K
(https://data.vision.ee.ethz.ch/cvI/DIV2K/), Set5, and
Setl4  (https://www.kaggle.com/datasets/ll0ldnmyset-5-
14-super-resolution-dataset?select=Set5), along with a
dataset of Generated X-ray Images
(https://www.kaggle.com/datasets/anaselmasry/generate
d-images-xray). Figures 3, 4, and 5 show examples of
images from these datasets. The use of these datasets
enabled a rigorous evaluation and validation of the pro-
posed SR method’s performance.



https://data.vision.ee.ethz.ch/cvl/DIV2K/
https://www.kaggle.com/datasets/ll01dm/set-5-14-super-resolution-dataset?select=Set5
https://www.kaggle.com/datasets/ll01dm/set-5-14-super-resolution-dataset?select=Set5
https://www.kaggle.com/datasets/anaselmasry/generated-images-xray
https://www.kaggle.com/datasets/anaselmasry/generated-images-xray

192

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Fig. 3. DIV2K dataset

Fig. 4. Set5 and Set14 dataset

This selection allows us to benchmark the pro-
posed method against established datasets while also
evaluating its applicability to various types of images,
including medical images:

- DIV2K: This dataset is extensively used for sin-
gle-image super-resolution tasks and includes 1,000
diverse images. It was split into 800 images for training,
100 images for validation, and 100 images for testing. It

was

designed  for super-resolution NTIRE2017 and
NTIRE2018 super-resolution challenges and focuses on
advancing research in image super-resolution by ad-
dressing more realistic degradations [22];

- Set5: This dataset includes five high-quality im-
ages commonly used for testing and benchmarking su-
per-resolution methods. The images in Set5 include a
variety of content,such as natural scenes and objects,
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Fig. 5. Generated Images X-ray dataset

providing a good balance between textures and details
[23]. Set5 was selected for its simplicity and effective-
ness in highlighting the strengths and weaknesses of
different SR techniques;

- Setl4: Building upon the concept of Set5, Set14
comprises 14 images that encompass a wider variety of
visual contents. This dataset includes both natural and
man-made scenes, along with varying levels of texture
and detail. Setl4 presents a more challenging bench-
mark for super-resolution methods, as it assesses the
algorithms' ability to generalize across diverse image
types [24];

- Generated Images X-ray: This dataset consists of
1,160 medical images [25] classified into three catego-
ries: Covid-19, Normal, and Pneumonia. It is specifical-
ly designed to support research and development in
medical imaging, with a focus on deep learning and
machine learning applications.

4.2. Evaluation Metrics

In this study, we used the peak signal-to-noise ra-
tio (PSNR) and structural similarity index measurement
(SSIM) as evaluation indices to evaluate the spatial re-
construction quality of super-resolved images [26].
PSNR is one of the most frequently used metrics for
evaluating image quality. However, it primarily

measures the pixel-wise error between corresponding
points and does not consider human visual perception.
Consequently, its evaluation may not always accurately
reflect human subjective judgment. The formula for this
metric is as follows:

2
PSNR = 10 x logy, (M), 6

Where the MSE is calculated as follows:

IN=1(1" —P"

MSE = )

In this context, I™ represents the gray value of the
n'" pixel of the original image, and P™ denotes the gray
value of the n'® pixel after processing. The PSNR is
measured in (dB), with higher values indicating better
image quality.

The SSIM is an additional metric for evaluating
the perceived quality of digital images. The SSIM is
used to evaluate the structural similarity between imag-
es by analyzing various aspects, such as luminance, con-
trast, and structural details. The SSIM formula is given

by Eqg. (3):

(21sR HiHR+C1)(20)SR (HR +C2)

SSIM (ISR, [HR)= 3)

(sR?+ WHR?+C1)(0;sR? + O HR?+C2)
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where sk and wrr represents the mean value of the
image ISR and "R, o,sr, IMR denotes the covariance of
ISR and I"R, and osr, and omr, represent the vari-
ance of the image IS® and I"R, Constants C, and C, are
used to prevent the divide-by-zero error, where
¢, =(k,L)?, C, =(k,L)* , with default values k, =
0.01, k,= 0.03, and L representing the dynamic range of
pixel values, which is 1 in our study.

4 3. Results

To reveal the testing outcomes and performance
of our approach, the SRCNN technique was first ap-
plied to three widely used image super-resolution da-
tasets: Set5, Setl4, and DIV2K. The SRCNN method
learns a mapping between low-resolution and high-
resolution image pairs, making the presence of both
types of images essential for successful training. In this
study, we selected 91 images from the DIV2K dataset
for training, ensuring that the network was exposed to a
broad and high-quality range of images. To evaluate
the trained SRCNN model’s effectiveness, we em-
ployed 19 test images sourced from the Set5 and Set14
datasets, which are established benchmarks in the field
of image super-resolution, offering a reliable basis for
performance evaluation.

Figure 6 shows the loss curves of the proposed
SRCNN model. We notice a pattern where the accuracy
rate increased and the error rate decreased as the num-
ber of epochs increased. However, this improvement is
not linear. Once a certain number of epochs is reached,
the curves begin to stabilize, and the rate of improve-
ment is reduced significantly compared to the earlier
stages. In addition, the accuracy rate starts to decline
beyond this point.

Loss Curves
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Fig. 6. Loss Graph of SRCNN

Based on this finding, we calculate the PSNR,
MSE, and SSIM to comprehensively assess our model's
performance in reconstructing degraded images. These
metrics provide important insights into the quality of the

reconstructed images by comparing them with the origi-
nal high-resolution images. Figure 7 compares the
PSNR, SSIM, and MSE values for the degraded and
reconstructed images. This analysis demonstrates the
effectiveness of our model in enhancing image quality,
as indicated by the higher PSNR and SSIM values and
lower MSE, demonstrating its ability to restore details
lost during degradation.

Similarly, we trained the SRCNN model on 150
training images, 60 test images, and 60 degraded imag-
es. The quality metrics obtained from this evaluation
demonstrate that the proposed model is highly effective
in restoring image details and enhancing the overall
quality of degraded images. Figure 8 shows a notable
enhancement in both PSNR and SSIM scores, indicating
the model’s success inrecovering fine details and reduc-
ing distortions from the degradation process. These re-
sults highlight the model’s strong performance in image
reconstruction, validating its effectiveness for image-
super-resolution tasks.

degraded image reconstructed image
PSNR: 2TLTTIS2ISTIG PSNR: 3613655254039764
5 MSE: S340650856365696 NSE: 4458985507246
Original SSM: 0SSEHIBAEDLT SSI0GTRISITELI20

k

Fig. 7. The results of PSNR and SSIM
on the Set5 dataset

degraded image reconstructed image
PSR: 30 PSNR: 35
MSE: 0.01 MSE: 0.005
SSiM: 09 SSIE 095

Fig. 8. The results of PSNR and SSIM
on the X-ray dataset

For training our SRGAN model, a dataset of 110
LR images and 110 HR images was utilized, drawn
from the DIV2K, Setl4, and Set5 datasets, which are
well-regarded in the image super-resolution field. The
dataset was randomly split into training and testing sets
for a thorough evaluation of model performance. Specif-
ically, 74 images were used for training the model to
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learn the relationship between low-resolution and high-
resolution images, while the remaining 36 images were
reserved for testing to evaluate the model's ability to
generalize to new, unseen data. This random split en-
sures that the performance metrics are reliable and are
not skewed by any specific subset of images. Figure 9
shows the results of the SRGAN model, which was
trained for 200 epochs, with a single image demonstrat-
ing significant improvements.

4.4. Performance Comparison

In this section, an in-depth evaluation is presented
to compare the proposed architecture with existing SR
methods. The overall comparison is presented in Table
1. As illustrated in Table 1, the proposed approach out-
performed the other methods, achieving the highest
PSNR of 36.1368 dB and SSIM of 0.9670. These results
demonstrate the superior ability of the proposed method
to reconstruct high-quality images with finer details and
reduced  distortions.  Furthermore,  IGAN-SRCP
achieved the second-best performance with a PSNR of
31.1210 dB and SSIM of 0.9055, which represents a
considerable margin compared to our approach. Com-
pared to SRCNN, EDSR, ESRGAN, and RFB-
ESRGAN, the proposed architecture shows significant
improvements in terms of both PSNR and SSIM. For
example, SRCNN, a preceding model in super-
resolution research, achieves a PSNR of 29.8132dB and
SSIM of 0.8796, which is significantly lower than the
results of our approach. Similarly, advanced models like
EDSR and ESRGAN exhibit moderate performance,
with EDSR achieving a PSNR of 30.4251 dB and SSIM
of 0.8901, and ESRGAN achieving a PSNR of 30.2009
dB and SSIM of 0.8986. The RFB-ESRGAN model,
which integrates receptive field blocks into ESRGAN,
improved slightly with a PSNR of 30.4116 dB and
SSIM of 0.8910, yet still falls short of the performance
demonstrated by our approach.

degraded image reconstructed image

PSNR:10.91 dB
SSIM: 0.3298

PSNR: 15.74 dB
SSIM: 0.3724

Original

195
Table 1
Performance comparison in terms
of PSNR and SSIM values

Methods PSNR(dB) SSIM
SRCNN [27] 29.8132 0.8796
EDSR [28] 30.4251 0.8901
ESRGAN [29] 30.2009 0.8986
RFB-ESRGAN [30] 30.4116 0.8910
IGAN-SRCP [31] 31.1210 0.9055
Proposed approach 36.1368 0.9670

= 0 —
Y L, s AR

100455
¢

it

0 %5 0 75 00 15

Fig. 9. The results of PSNR
and SSIM on the Set14 dataset

In summary, these comparisons underscore the ef-
fectiveness of the innovations introduced in the pro-
posed architecture, which enable it to surpass existing
SR methods in terms of generating high-quality, visual-
ly appealing images. The substantial gains in both
PSNR and SSIM highlight the robustness and efficacy
of the proposed method, making it a significant ad-
vancement in the field of image Super-Resolution.

45, Discussion

The proposed method enhances the quality of su-
per-resolved images by integrating CNNs and GANSs,
leveraging their strengths in feature extraction and real-
istic texture generation. The proposed deep learning
model, which combines SRCNN with SRGAN, demon-
strated significant improvements in terms of perfor-
mance. The CNN effectively learns to map low-
resolution image patches to their high-resolution coun-
terparts, and the GAN further refines the images, en-
hancing both precision and visual quality. The scientific
novelty lies in the optimized combination of SRCNN
for structural accuracy and SRGAN for perceptual en-
hancement, achieving a balanced trade-off between
sharpness and realism. However, some limitations re-
main. The model's high computational complexity
makes real-time processing challenging, especially in
large-scale applications. In addition, performance is
highly dependent on the quality and diversity of the
training dataset, which may lead to suboptimal generali-
zation for unseen images. In addition, although percep-
tual quality is improved, fine-grained texture recon-
struction in highly degraded images remains a chal-
lenge.

5. Conclusions

Recently, there has been a significant shift from
traditional algorithms to deep learning-based methods
for super-resolution tasks. Deep learning has signifi-
cantly influenced image-super-resolution applications,
delivering exceptional reconstruction results because of
its strong nonlinear mapping abilities. This paper intro-
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duces a lightweight approach for image super-resolution
using deep learning techniques, including Convolutional
Neural Network (CNN) and generative adversarial net-
work (GAN) models. In addition, the performance of
these models was evaluated by measuring PSNR and
SSIM values and evaluating them across various da-
tasets. The findings indicate outstanding average PSNR
and SSIM values, demonstrating that the proposed ap-
proach outperforms other super-resolution methods.
This makes it particularly suitable for applications re-
quiring high-resolution imaging with improved detail
and accuracy, such as medical imaging, remote sensing,
and advanced surveillance systems. Future work will
focus on enhancing super-resolution techniques for
medical images in real-world applications by develop-
ing hybrid models that integrate attention mechanisms,
transformer-based architectures, and novel loss func-
tions to improve feature extraction and texture recon-
struction. These advances could enhance performance in
challenging conditions, such as low-light environments
or images with significant noise. Additionally, adapting
super-resolution techniques for domain-specific applica-
tions, particularly in medical imaging, will be a key area
of research, with the goal of improving diagnostic imag-
ing modalities like MRI, CT scans, and ultrasound, to
aid in early disease detection. Another important direc-
tion is the exploration of federated learning to enable
the distributed training of super-resolution models while
ensuring data privacy, which is crucial in healthcare
settings. Furthermore, the robustness ofsuper-resolution
models under real-world conditions, including varying
levels of degradation, will be prioritized. By incorporat-
ing adaptive learning strategies, these models can dy-
namically adjust to different image types and resolu-
tions, thereby enhancing their applicability in diverse
fields, such as remote sensing, surveillance, and video
enhancement.
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PO3IWPEHA HAJIBUCOKA PO3JLUIBHA 3JATHICTh 30BPAKEHb
3 BUKOPUCTAHHAM IMIAXOAIB I'NIMBOKOI'O HABYAHHSA

Moxameo baoi, @amima Amynac, Mypao A3pyp, Moxammao Ani A. Xamyoex

IIpenmeToM M€l cTaTTi € HAaABUCOKA PO3AUIbHA 37aTHICTH 300pakeHb (Image Super-Resolution, ISR) 3 Buko-
PUCTaHHSIM MeToAiB IMOOKoro HaB4yaHHs. HaaBucoka posniipHa 37aTHICTH 300pakeHb (ISR) - me ramysp komm'to-
TepHUX HayK, sIKa IIBUAKO PO3BUBAETHCS 1 30CEpeDKEHa Ha CTBOPEHHI 300paXkeHb BUCOKOI PO3AUIBHOT 34ATHOCTI Ha
OCHOBI 0ZHOTO a00 NEKUIbKOX BXITHUX JaHUX HU3BKOI1 PO3AUIbHOI 37aTHOCTL. BiH mpuBepHYB 3HAauHy yBary 3aB[-
KU IIUPOKOMY 3aCTOCYBAaHHIO B TaKHMX Taiy3sx, SK MEAMYHA Bidyasizallis, MMCTAHILIHE 30HIyBaHHI Ta MYJbTHMeE-
ma. Po3BHTOK MeTOMiB MIMOOKOTO HAaBYAaHHSA MPHHIC peBosomito B ISR, 3a0e3nmeduBIIM BHILY MPOIYyKTABHICTH i
00YHCITIOBAGHY €()EKTUBHICTh MOPIBHAHO 3 TPAIUIIHHUMU METOJAMU, 1 CTUMYJIIOIOYH TOJAIBINNN Mporpec y mo-
JOJIaHHI MpoOJieM, MOB'SI3aHUX 3 MiABHIIEHHIM pPO3AUIbHOT 3MaTHOCTI 300pa)keHb. METOr0 IbOTO JOCIIDKEHHS €
MOKpAIIECHHS SKOCTI 300pa)XCHb 3 HaJIBHCOKOIO PO3IUIHHOIO 3[ATHICTIO IIIIXOM PO3POOKH HOBOTO MIOXOAy IO IJIH-
0OKOTO HaBUaHHS. 30KpeMa, MU JIOCIIHKYEMO IHTErpaIlifo 3ropTkoBux HeiipoHHUX Mepex (CNN) Ta reHepaTUBHHX
3sMmaranbHuX Mepex (GAN) mii BupimieHHS mpoOieM, MOB'SI3aHUX 3 OTPUMAaHHIM BHCOKOSKICHHX 300pa)KeHb 3 Ja-
HUX HU3BKOT pO3AUTbHOT 3maTHOCTI. LI poboTa Mae Ha MeTi po3mmpuTH Mexi ISR musixom moegHaHHS IHX apxiTe-
KTyp Vi1 OIbIIOT TOYHOCTI Ta Bi3yaJIbHOI JOCTOBIPHOCTI. 3aBIaHHS POOOTH IMOJATAIOTH Y HACTYMHOMY: 1) po3po-
Ooutn Ta peanmizyBaTH TiOpumHy Mozens 3 BUkopucTaHHSIM CNN Ta GAN 1 3ama9 HaABHCOKOI PO3AUIBHOI 3/1aTHO-
cTi 300pakeHb; 2) HABYMTH MOJC]b Ha CTAJOHHHMX Habopax JaHuX, Takux sk Set5, Setl4, DIV2K Ta crnemiamizosa-
HHUX Ha0bopax JaHMX, TAKUX SK PEHTrCHIBCHKI 3HIMKH; 3) OLIHUTH MPOAYKTUBHICTh MOJEN 32 JOHNOMOTON KUIbKiC-
HUX METpHUK, TakuxX sK mikoBe BimHolueHHs: curHaw/myMm (PSNR) ta inpexkc cipykrypuoi moaiduocti (SSIM); 4)
MOPIBHATH 3alPOTIOHOBAHUI METOJT 3 ICHYIOUMMH CyJYacHMMH MeToqaMu ISR Ta mpoaeMoHCTpyBaTH OTO mepesary.
VY mpoMy nocnimkeHHI OyimM OTpHMaHI HACTyNHI pe3ysibrarth: Hama mMopens IMMOOKOTO HAaBYaHHSA, AKa IHTETpYe
3TOPTKOBY HEWPOHHY MEpexy 3 BHCOKOIO po3autbHOI0 37aTHiCTIO (SRCNN) Ta reHepaTuBHY 3MaraiabHy MEpexy 3
BUCOKOIO po3niibHOI0 37aTHICTIO (SRGAN), mpomemMoHCTpyBajia 3HayHe MOKpamieHHs nponaykrtuBHOCTL. CNN yc-
IIITHO HABYMBCA 3ICTABIATH AULTHKH 300pa)XCHHS 3 HMU3BKOIO PO3AUIGHOIO 3[ATHICTIO 3 IXHIMHM aHAlIOTaM¥ 3 BHCO-
KOO PO3JUIBHOIO 3HAaTHICTIO, ToAl 9k GAN Ime Oinblne moxpamuB 300pakeHHs, MiIBUIIUBIIM TOYHICTh i Bi3yalbHY
SIKICTh. METpHUKH OLHKU Jau JAyke 0aratooOiusioui pe3ysbTaTd: mikoBe BimHoluneHHs curHaw/myMm (PSNR) mocsr-
1o 36,1368 nb, a mokasHuK iHAekcy CTpykrypHOi momioHOCTI (SSIM) - 0,9670. Lli 3HaueHHS NMEepPEeBUIYIOTh OKa3-
HUKH, BCTAHOBJIEHI cydacHMMHU MetomaMmu ISR, mo mintBeppkye mepeBary Ta e(EKTHBHICTh HAIIOTO IMiIXOTy B Tra-
Jy31 HaJIBUCOKOI pO3IUIbHOI 3MaTHOCTI 300pakeHb. BucHoBku. Lle mocimimkeHHS IeMOHCTpY€E MOTEHLIal MO€IHAHHS
CNN 1a GAN B 00J1acTi HaJBUCOKOT PO3AUILHOI 34aTHOCTI 300pakeHb. Haria mozens feMOHCTpye 3HAauYHI nepeBark
HaJ iICHYIOUYUMHU MeToJaMu ISR, mpomoHyroouYn BHILY TOYHICTH Ta HOKpAIlEHY SKICTh 300pakeHb. Pe3yipTaTél miAT-
BEPIKYIOTh €(PEKTUBHICTh MIIXO/iB MIMOOKOTO HAaBYAHHSA Y IMMOJOJIAHHI TpaJWLifHUX MpobieM oOpoOKH 300pa-
KEHb, 0 POOUTH II0 MOJENb I[IHHAM BHECKOM SIK JUI1 aKaJeMIYHHX JOCIIPKeHb, TaK 1 I MPAKTUYHOTO 3aCTOCY-
BaHHs B ramy3i /133.

KirrouoBi cioBa: ['mnboke HaBUaHHS; HAJIBHCOKA PO3JUIbHA 3JATHICTH 300pa)KeHb; 3rOpTKOBA HEHPOHHA Me-
pexa; SRCNN; renepatnBHa 3MaraisHa Mepexa; SRGAN.
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