
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
132

UDC 004.056.5:004.738 doi: 10.32620/reks.2024.3.09

Arkadii KRAVCHUK, Mykola ONAI

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

DEVELOPING INFORMATION TECHNOLOGY FOR EVALUATING

AND ENHANCING APPLICATION-LAYER DDOS ATTACK DETECTION METHODS

The subject matter of this article is the methods to detect distributed denial-of-service (DDoS) attacks at the

Hypertext Transfer Protocol (HTTP) level with the purpose of justifying the requirements for creating software
capable of identifying malicious web server clients. The goal of this article is to develop an information

technology to evaluate the efficiency of DDoS attack detection methods, which will quantify their operating time,

memory consumption, and approximate classification accuracy. In addition, this paper p roposes hypotheses and

a potential approach to improve existing application-layer DDoS attack detection methods with the intention of
increasing their accuracy and identification speed. The tasks of this study are as follows: to analyse modern

methods for detecting application-layer DDoS attacks; to investigate their features and shortcomings; to develop

a software system to assess DDoS attack detection methods; to programmatically implement these methods and

experimentally measure their performance indicators, specifically: classification accuracy, operating time, and

memory usage; to compare the efficiency of the investigated methods; to formulate hypotheses and propose an
approach to improve existing methods and/or develop new methods based on the resul ts obtained. The methods

employed are abstraction, analysis, systematic approach, and empirical research. In particular, the datasets

generated by DDoS utilities were processed using the synthetic minority oversampling technique (SMOTE) to

balance them. Furthermore, the studied DDoS attack detection methods were implemented, including fitting the
required parameters and training artificial neural network models for evaluation. The following results were

obtained. The average classification accuracy, operating time, and random-access memory (RAM) consumption

during Internet traffic classification were determined for six DDoS attack detection methods under the same

conditions. This study has demonstrated that the development of a novel method to detect DDoS at tacks at the

HTTP level with enhanced accuracy and classification speed is strongly required. The experimental results

demonstrate that the time series-based method exhibited the shortest operating time (1.33 ms for 5000 vectors),

whereas the deep neural network-based method exhibited the highest average classification accuracy (ranging

from 99.07% to 99.97%) and the lowest memory consumption (39.09 KB for 5000 vectors). Conclusions. In this

study, a software system was developed to assess the average accuracy of DDoS attack classification methods

and measure the computational resources utilized. The scientific novelty of the obtained results lies in the

formulation of two hypotheses and a potential approach to the creation of a novel method for detecting DDoS

attacks at the HTTP level, which will have both high classification accuracy and a short operating time to surpass

previously studied analogues in these respects. The first hypothesis is based on the additional usage of HTTP

request attributes during Internet traffic classification. The second hypothesis is to analyse a graph of user

transitions between website pages. The article also superficially describes a potential approach that involves the

implementation of the described hypotheses as well as the proposed software architecture of an application-

layer DDoS attack detection system for the Kubernetes platform and the Istio framework, which addresses the

issue of collecting web request parameter values for websites that use the cryptographically secure d HTTPS

protocol.

Keywords: DDoS; DDoS attack detection; network traffic analysis; information security; AL-DDoS; HTTP;

cryptography; software system; Kubernetes; Istio.

Introduction

Motivation

The availability and reliability of Internet services

are prerequisites for successful completion of most tasks

in various areas of everyday life. For example, card

payments in a shop require transaction processing on

bank servers, while distance education is carried out us -

ing video conferencing systems and online learning

platforms. Indeed, the modern development of

information technology has made it possible to automate

a multitude of routine tasks, rapidly process vast arrays

of data, identify optimal solutions for programmed tasks,

manage complex systems in an automated manner, and

so forth. In many cases, the success of these scenarios

 Creative Commons Attribution

NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Information security and functional safety

133

depends on the stable operation and availability of web

servers that execute relevant software and serve user

requests. Moreover, the stability of an Internet

connection and data transfer speed play crucial roles in

the field of information and communication

technologies, as they facilitate remote provision of

services to any location worldwide.

A disruption in the functioning of an online service,

in addition to causing inconvenience to customers, may

result in significant losses to the owners of the service,

including financial and reputational losses, reduced

productivity, and data privacy breaches. Therefore,

ensuring the stability of servers providing online services

is an important task in the information technology field,

which involves protecting against various types of

cyberattacks. It is also important to note that cyberattacks

have become highly effective weapons of aggression in

the context of contemporary hybrid wars [1]. Such

attacks can disrupt the functioning of critical

infrastructure and even worsen the moral and

psychological state of the population, as is unfortunately

true in Ukraine. In the context of a full-scale war, the

stability of the computer systems used by civilians or

defence forces is critical because cyber threats only

increase in such circumstances.

There are numerous types of cyberattacks that aim

to make Internet services unavailable to users, but re-

searchers distinguish a separate type of cyberattack for

this purpose – denial-of-service attacks, among which

distributed denial-of-service (DDoS) attacks are the most

well-known [2]. Furthermore, among all types of

cyberattacks, DDoS attacks are among the most prevalent

causes of server outages [3]. This is because such attacks

do not incur high costs or special preparation, and the

damage caused is quite significant. It should also be

noted that in Ukraine during the third quarter of 2023, the

proportion of DDoS attacks in all cyberattacks was

approximately 90% [4]. Given the growing number of

Internet of Things (IoT) devices that can be easily hacked

by attackers to be used in distributed attacks, the issue of

DDoS protection is becoming increasingly critical. In

addition, as cloud computing continues to develop

rapidly, an increasing number of companies will likely

use it to provide services to customers via the Internet.

The preceding argument leads us to conclude that the

number of Internet services and cyberattacks will

continue to increase. Thus, protecting computer

resources from DDoS attacks is highly relevant.

DDoS attacks are designed to overwhelm the victim

server with an excessive number of requests; thus, the

main way to protect against such attacks is to filter

incoming traffic from malicious users. It is evident that

detecting malicious requests is significantly more

complex than blocking network packets by IP address, so

this article will focus on DDoS detection methods .

State of the art

There are numerous types of DDoS attacks, and for

systematization, scientists have divided them into

categories. One such categorization distinguishes

between attacks in the network and application layers of

the Open Systems Interconnection (OSI) model. Over the

past few decades, scientists have conducted in-depth

analyses of the characteristics of Internet traffic during

network-layer DDoS attacks and have proposed effective

methods to identify such traffic. For example, Ohsita et

al. [5] described a method for detecting SYN flood

attacks using statistical analysis. They justified that the

rate of TCP SYN packets from benign users has a normal

distribution and proved that high variance values for this

rate can be a sign of a DDoS attack. Furthermore,

Bogdanoski et al. [6] proposed an adaptive threshold

algorithm for the detection of such attacks. This

algorithm calculates the number of TCP packets with the

SYN flag set and compares it with a threshold value that

can vary depending on the total number of packets

received over a given period. In addition, Boro et al. [7]

considered a method to detect UDP flood attacks, which

first counts the number of changes in the destination port

and source IP address across packets originating from

clients and then computes the Renyi entropy based on

these obtained values. When an anomalous entropy value

exceeds a predetermined threshold range, it is interpreted

as an indicator of a potential attack. In other words, there

are many methods for detecting network-layer DDoS

attacks that are highly accurate and offer high

classification speed. Moreover, the success of defence

against network-layer attacks depends on the distribution

of data centres involved and their bandwidth capacity to

withstand heavy loads. In contrast, application layer

attacks have a quite different situation.

Experts have highlighted that application-layer

DDoS attacks are challenging to identify [8] because they

behave similarly to user traffic; therefore, the speed of

sending requests is no longer a reliable indicator for

detecting this type of attack, in contrast to network-layer

attacks. Although application-layer DDoS attacks have

recently been actively studied by researchers, and

appropriate methods for their identification have begun

to emerge, there is still a gap in the understanding of both

the characteristics and features of these attacks and

effective methods for defending against them. Therefore,

this article focuses on application layer attacks because

existing methods either cannot detect them with high

accuracy or take a long time to determine them.

Regarding the gaps in this subject area, it is also worth

noting that authors frequently fail to provide information

regarding the operating time and memory consumption

of developed solutions in their publications.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
134

Thus, research into the detection of application-

layer DDoS attacks is highly relevant. Analysis of

modern methods for identifying these cyberattacks, in

conjunction with experimental evaluation of the time and

memory utilization of the corresponding software

implementations during their operation, is essential to

identify shortcomings and objectively compare the

efficiency of existing solutions. This will facilitate the

formulation of new approaches intended to enhance the

detection process of application-layer DDoS attacks.

The paper structure

The remainder of this paper is divided into six

sections and conclusions. The structural organization of

the article is given below.

In Section 1, the main purpose of this study is

outlined, and all objectives, which were fulfilled during

this research, are enumerated in detail.

Section 2 presents a comprehensive literature

review of modern methods for detecting application-

layer DDoS attacks, providing an in-depth analysis of the

current state-of-the-art techniques. In this section, six

relevant methods are examined and their respective

advantages and disadvantages are discussed, followed by

a comparative analysis.

Section 3 describes the methodology employed

during the experiment to assess the efficiency of the

analysed DDoS attack detection methods. This section

describes the approach used to generate datasets, the

tools used to implement selected methods and develop

the test software system, and the quantitative measures

used to evaluate the accuracy, operating time, and

memory usage of the considered methods.

Section 4 presents the case study of this paper by

describing the experimental evaluation process of the

analysed methods and the results of the conducted

experiments. This section explains the dataset generation

workflow and how the developed programs process data

to prepare balanced datasets. In addition, it describes the

software implementation of the system, which assesses

the accuracy, speed, and memory consumption of the

implemented DDoS attack detection methods during

classification.

Section 5 discusses the obtained results. This

section analyses the results of each method across all

metrics and highlights their strengths and limitations .

Furthermore, in this section, the methods are described in

detail, including the selected optimal parameter values.

In Section 6, hypotheses and an approach to

improve DDoS attack detection methods are proposed

based on the analysis of the results of the considered

methods. This section outlines the architecture of the

software system for detecting application-layer DDoS

attacks and describes the developed approach.

The paper ends with the Conclusions , which

summarize the findings and highlight the scientific

novelty and practical significance of this research. In

addition, future research directions are outlined.

1. Purpose and objectives

The purpose of this study was to develop an

information technology to evaluate the efficiency of

DDoS attack detection methods. The technology will

quantify the time and memory consumption of these

methods and provide an approximate estimation of their

average accuracy. Additionally, based on the analysis of

the quantitative results obtained for existing methods,

this study aims to propose an approach to improve

application-layer DDoS attack detection methods with

the objective of increasing their accuracy and/or

detection speed.

To achieve this purpose, the following objectives

must be performed: to analyse modern methods of

detecting application-layer DDoS attacks and investigate

their features and shortcomings; to develop a software

system to assess DDoS attack detection methods; to

programmatically implement the considered methods

and experimentally measure their performance indicators

(classification accuracy, operating time, memory usage);

to compare the efficiency of the investigated methods;

and to formulate hypotheses and propose an approach for

improving existing methods and/or developing new

methods based on the results obtained.

2. Application-layer DDoS attack

detection methods

It is necessary to analyses the specifics of this

subject area and its terminology. As previously stated,

DDoS attacks are categorized into two distinct classes

according to the OSI model employed: network-layer

(NL-DDoS) and application-layer (AL-DDoS) attacks.

In fact, DDoS attacks utilize a specific communication

protocol, such as ICMP, TCP, UDP, DNS, HTTP, and

others, according to which the affiliation to the

corresponding class is determined. However, regardless

of the protocol used, each class has its own specific

characteristics: NL-DDoS attacks aim at overloading the

bandwidth of communication channels, switches, and

other network devices by sending an excessive number

of packets per unit of time, whereas AL-DDoS attacks

aim at exhausting the computing resources of the server

that processes the requests. In addition, the following

types of DDoS attacks are distinguished by the speed of

malicious traffic generation: high-rate and low-rate. The

majority of NL-DDoS attacks are high-rate (HR-DDoS)

attacks because modern data require an extremely large

amount of data to overload them. This is achieved by

Information security and functional safety

135

continuously sending network packets from numerous

devices simultaneously with minimal delays, i.e. the

transmission speed under such conditions is very high.

However, AL-DDoS attacks do not require sending a

substantial amount of data at high speed because the

target server can be overwhelmed by a relatively small

number of special requests, which nevertheless require a

considerable amount of computational resources (e.g.,

CPU time or RAM) for processing. This is the reason

why application-layer attacks are commonly low-rate

(LR-DDoS), which significantly complicates the

detection process [9]. For example, uploading large files

to a server involves a resource-intensive write operation

on disk, yet this activity often appears to be a typical

client behaviour. Thus, the peculiarity of detecting

application-layer DDoS attacks lies in focusing more on

the content of requests and their attributes when

analysing Internet traffic data rather than on the speed at

which requests are received. To gain a more

comprehensive understanding of the classification of

DDoS attack types, Fig. 1 shows a diagram that organizes

the types of attacks into several categories.

The identification of DDoS attacks is a binary

classification task, whereby each sender of web requests

should be assigned to one of two classes: benign or

malicious user. To determine the appropriate class,

network traffic data are collected, processed, and

analysed. This information is then used to identify the

sources of DDoS attacks using a specific classification

method. Cybersecurity experts have identified two

distinct categories of DDoS detection methods: those

based on signature detection and those bas ed on anomaly

detection [10]. Furthermore, the latter category

encompasses a number of additional approaches that

employ statistical analysis, information theory, artificial

neural networks, and other techniques. It is evident that

algorithms that search for matches between traffic

attributes and attack signatures in a database can identify

attacks almost instantly. However, signature-based

methods are not suitable for detecting AL-DDoS attacks

because such attacks do not have stable attribute values

that can be used to identify them. In contrast, anomaly-

based methods can detect even new types of attacks, but

require more time for classification. Consequently, this

paper considers anomaly-based methods, which perform

more in-depth data analysis based on certain

mathematical techniques and are able to

comprehensively classify application-layer DDoS

attacks. A clear representation of the classification of

DDoS attack detection methods is provided in Fig. 2,

which shows the hierarchical structure of these methods,

dividing them into categories and types.

No et al. [11] proposed a method for detecting

DDoS attacks using information theory to reduce the

computational complexity of calculating the information

entropy of the rate of incoming network packets from

users. The primary advantage of the Fast Entropy method

is its ability to accelerate the detection of DDoS attacks,

thereby enabling their rapid blocking and mitigation. In

addition, No et al. [11] provided experimental evidence

that their Fast Entropy method has the shortest

identification time and the highest classification accuracy

among existing methods based on information entropy.

However, the main limitation of the proposed algorithm

is that it was evaluated only in the context of HR-DDoS

attacks at the network layer. Therefore, the proposed

method cannot detect application layer attacks due to its

reliance on a single network layer feature.

In contrast to No et al. [11], Zhao et al. [12] selected

other attributes to analyse user behavior on websites and

used such attributes to detect AL-DDoS attacks.

Similarly to the previously mentioned method, this

method is based on information entropy but employs

other formulas for new attributes. Specifically, it utilizes

the Uniform Resource Locator (URL) of the requested

resource and the client's IP address as attributes to

calculate two entropy values for each unique client and

web server resource. The entropy of URL resources

requested by a given client's IP address is as follows :

       
K

URL URL
k i 2 k i

k 1

EUPI i P x log P x



 , (1)

where  EUPI i is the information entropy of URLs from

the ith IP address ix ;

 URL
k iP x is the probability of occurrence of the

kth URL in requests from the ith IP address ix ;

K is the number of unique URLs in requests from

the ith IP address ix .

Formula (1) can be used to identify a DDoS attack

on a specific web server resource. However, during

periods of high user activity, such as a flash crowd event

where a large number of users visit, for example, a

promotional product page in an online store, this

indicator may falsely signal a DDoS attack. Therefore,

the authors proposed another formula for calculating the

entropy of IP addresses that have accessed a particular

URL resource on the server:

       
N

IP IP
i k 2 i k

i 1

EIPU k P u log P u



 , (2)

where  EIPU k is the information entropy of IP ad-

dresses for the kth URL ku ;

 IP
i kP u is the probability of occurrence of the ith IP

address in requests to the kth URL ku ;

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
136

Fig. 1. Classification scheme for DDoS attack types

Fig. 2. Classification scheme of DDoS attack detection methods

N is the number of unique IP addresses in requests

to the kth URL ku .

It is argued that the proposed method can accurately

detect HTTP DDoS attacks on web servers and

distinguish them from flash crowd events by checking the

entropy of IP addresses that accessed a URL resource

with suspicious activity using the formula (2). However,

this approach does not consider other attributes of web

requests that could cover a wider range of attacks against

web server resources. Furthermore, it is unclear how

DDoS attack detection software can obtain specified

attributes from user requests using an HTTPS protocol,

which encrypts all data between the server and client.

Laptyev et al. [13] proposed a method to detect LR-

DDoS attacks executed via slow HTTP

requests. The proposed method leverages time series

analysis to predict future user behavior, thereby allowing

for the pre-emptive classification of all site visitors and

blocking suspicious ones. A key attribute is the delay

time between packets received from the client, which is

quantified using the following formula:

 
k

i 1 i
i 1

t t

T
k 1










, (3)

where T is the average delay between received packets;

k is the number of packets received for analysis;

i 1t  is the time of receipt of the i+1st packet;

it is the time of receipt of the ith packet.

Types of DDoS attacks

By OSI model layer By traffic generation rate

NL-DDoS

(network-layer)

AL-DDoS

(application-layer)

HR-DDoS

(high-rate)

LR-DDoS

(low-rate)

DDoS attack detection methods

Signature-based Anomaly-based

Statistical

methods

Time series

analysis

Artificial

intelligence

methods

Artificial neural

networks

Genetic

algorithms

Deep neural

networks

Multilayer

perceptron

Information

theory methods

Nearest

neighbour

methods

Graph anomaly

detection

methods

k-nearest

neighbours

method

Information security and functional safety

137

The construction of this time series involves

analysing the time intervals between successive user

packets using the formula (3), and the focus of the

method is to identify abnormally large delays or a trend

toward increasing delays, which is indicative of an LR-

DDoS attack. One disadvantage of this method is that

analysing the time series data for each website visitor is

time-consuming, potentially requiring a separate high-

performance computer. A further limitation of this study

was that it only analysed the time delay between packets.

In addition, the authors of this method did not provide

any conclusions regarding the optimal threshold value for

packet delay that should signal a DDoS attack.

Dong et al. [14] proposed a method to detect DDoS

attacks based on the k-nearest neighbours (KNN)

algorithm and proposed an improvement to this method.

The KNN method classifies network packets using their

attributes, represented as a vector

      1 1 2 2 n nf x ,f x ,..., f x . This vector contains

information about the number of packets, duration of

receiving all packets, total number of received bytes, and

average number of received bytes per second. This

representation creates a Euclidean space, allowing the

calculation of distances between packet vectors. As a

result, by analysing the nearest neighbors of a packet

being classified, we can determine whether it is benign or

malicious. To enhance the classification precision, the

authors of this method improved the KNN model by

introducing an additional weighting factor into the

formula to determine the class of an object as follows:

p id(x ,x)

1
w

e
 , (4)

where w is the weight factor in the formula used to

determine the class of the object;

p id(x ,x) is the distance between the object under

classification px and the current object ix , which is se-

lected for comparison with the given data set.

The application of formula (4) yielded a commend -

ably high classification accuracy of 91%. Another

noteworthy aspect of this method is its ability to gather

attributes in software-defined networking (SDN) through

the API of network controllers. However, a significant

limitation of this method is its requirement for

preliminary training using a dataset that provides

comprehensive information about common types of

application-layer DDoS attacks. In addition, this study

does not specify how to determine the optimal value of

parameter k, which determines the number of nearest

objects considered when classifying a packet. In addition,

the proposed solution has yet to be evaluated for its

efficacy in detecting low-rate attacks.

Johnson Singh et al. [15] presented a method to

classify HTTP DDoS attacks that employs artificial

neural networks (ANN), specifically, the multilayer

perceptron (MLP) and genetic algorithm (GA). The

structure of the proposed neural network comprises three

layers: an input layer, a hidden layer, and an output layer.

Each layer contains three neurons, with the exception of

the output layer, which contains only one node. This

method distinguishes itself from other ANN-based

approaches by using a genetic algorithm to initialize

weights during model training, as opposed to the

conventional use of gradient descent during the backward

error propagation phase. Johnson Singh et al. [15]

proposed using three attributes as inputs to the neural

network: the number of HTTP requests, entropy, and

variance of requests within each user session. Data

collection was conducted over a recurring 20 s interval,

which, according to the authors, was sufficient for a

DDoS attack to make a website inaccessible. It is also

important to note that in this method, only HTTP GET

requests are considered for analysis . The entropy of

HTTP GET requests during the session of the ith user

within the tw timeframe is:

 
 

 

 

 

 
t t 1

t
tt

1

i,w i,w

i,w n
i,wj,wj 1

C C
E log log

CC









 
   
 
 

, (5)

where  ti,wE is the information entropy of the web re-

quests of the ith user within the time interval tw ;

 ti,wC is the number of requests received from the

ith user within the time interval tw ;

n is the number of unique users captured within the

time interval tw ;

 is the parameter whose value is 0 when

   t t 1i,w i,wC C


 , or 1 when    t t 1i,w i,wC C


 .

Upon calculating the entropy indicators of user web

requests using formula (5) over several time intervals, the

variance of these entropy values is obtained as follows :

 j

2
N

ij i,w

i

E M

V
N

 
 

 



, (6)

where iV is the variance of the entropy values of the web

requests of the ith user;

iM is the mean value of the entropy values of the web

requests of the ith user;

N is the number of time intervals within which all

entropy values for the ith user are obtained.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
138

Formulas (5) and (6) are used to calculate the values

of the key attributes which characterize the client's

behaviour during communication with the HTTP server.

The proposed method can detect application-layer DDoS

attacks on web servers with a high degree of accuracy,

and the detection rate was approximately 98% based on

the experimental results. Furthermore, the proposed

method can distinguish between DDoS attacks and flash

crowd events by comparing the variance in the entropy

values of web requests and the total number of requests

for each suspicious user. However, the proposed method

has certain limitations. It is only capable of analysing

GET requests, which represents a significant restriction

because numerous HTTP DDoS attacks employ other

web request methods, such as POST, PUT, and PATCH.

Another drawback of this method is that the proposed

attributes are based solely on the number of user requests.

Consequently, although the proposed method can

identify LR-DDoS attacks generated by Slowloris and

SlowHTTPTest, it is unlikely to be able to detect other

types of low-rate DDoS attacks. In addition,

classification accuracy depends on the training dataset

that contains sample requests from various types of

HTTP DDoS attacks.

Muraleedharan et al. [16] proposed a deep neural

network (DNN) model to identify slow DDoS attacks at

the HTTP protocol level. The choice of DNN in the given

study is justified by the fact that, among all artificial

neural networks, this type has one of the highest data

classification accuracy rates. Furthermore, deep neural

networks have gained significant popularity, as

evidenced by the rapid development of large language

models (LLMs), which are constructed using DNN

architectures and have demons trated remarkab le

capabilities in natural language processing tasks. The

difference between a deep neural network and a

conventional ANN (e.g., MLP) is that a DNN has

multiple hidden layers with neurons rather than a single

layer. In addition, a DNN is a fully connected feed-

forward neural network; thus, each neuron is connected

to all neurons in the subsequent layer. This allows us to

recognize nonlinear relationships between data. The

DNN model proposed in this study incorporates four

hidden layers, with each layer containing the same

number of neurons as the input layer. The input data for

this model comprise a set of 80 attributes from the flow

of network packets, including protocol type, number of

received bytes, packet count, and transmission speed.

Thus, the input and hidden layers contain 80 neurons. In

order to train the model, the open dataset CICIDS2017,

which contains all of the aforementioned attributes, was

employed, as well as a class label for each packet. This

label indicates benign traffic or one of the four DDoS

tools: Slowloris, SlowHTTPTest, Hulk, and GoldenEye.

The main feature of the proposed method is that it

performs multi-class classification, which enables

determination of the name of the program that generated

the detected DDoS attack. Thus, the output layer of the

DNN comprises five neurons, each responsible for a dis -

tinct class: benign traffic and four DDoS utilities. Among

the aspects of the implementation of this neural network,

the following should be noted: ReLU (rectified linear

unit) and Softmax activation functions were used for the

hidden layers and the output layer, respectively; the

Adam (adaptive moment estimation) optimization

algorithm was used to train the model; and the categorical

cross-entropy loss function was chosen for classification.

The proposed method exhibits a remarkably high

classification accuracy rate of nearly 99%, which

significantly outperforms the existing methods.

However, the accuracy of the proposed method was

derived from a relatively small dataset comprising only

6000 attribute vectors, with only 2000 representing

benign traffic. The limited sample size raises concern

about the practical applicability of the findings. To obtain

more objective results, it is advisable to employ a

balanced dataset and a more substantial and diverse data

collection to thoroughly evaluate the proposed method.

Although this study did not measure the classifier's

operating time, given the complexity of DNN and the

high dimensionality of the data, it is fair to say that this

method has a relatively low attack detection rate

compared to the other analysed methods. In the DDoS

attack detection context, any delay is a significant

disadvantage because it is important to identify the attack

before it makes the website unavailable to users. Another

challenge in implementing this method is the

considerable time required to train the model and the

necessity to find a balanced dataset with different types

of HTTP DDoS attacks.

This section presents a comprehensive analysis of

six DDoS attack detection methods, evaluates their

advantages and weaknesses, pinpoints their limitations ,

and explores their potential use in identifying DDoS

attacks at the application layer. In addition, a set of key

criteria was established to compare the abovementioned

methods (Table 1).

According to Table 1, the EUPI-EIPU [12], Time

series [13], MLP-GA [15], and DNN [16] methods can

be employed to detect application-layer DDoS attacks. In

addition, the KNN [14] method can be used if new

attributes that characterize AL-DDoS attacks are

selected, and in such cases, the model is trained on a

dataset containing the corresponding features. In

addition, almost each of the above methods is capable of

identifying LR-DDoS attacks; however, the authors have

not conducted exhaustive experimental trials to test their

proposed solutions against different types of attacks. For

example, the authors of the MLP-GA [15] method did not

assess the classification accuracy of low-rate DDoS

Information security and functional safety

139

Table 1

Comparative characteristics of DDoS attack detection methods

Criteria

Method

OSI model

layers;

protocols

Attributes

employed

Requirements for usage Type of DDoS attacks

supervised

learning

parameters

tuning
NL AL HR LR

Fast entropy [11]
3, 4; ICMP,

TCP, UDP

speed of

receiving

packets

– + + – + –

EUPI-EIPU [12] 7; HTTP

URL of the

request, IP

address of the

client

– + – + – +

Time series [13]
4, 7; TCP,

HTTP

delay time

between packets
– + – + – +

KNN [14]
3, 4; ICMP,

TCP, UDP

number of

packets and

bytes, speed and

duration of

receiving bytes

+ + + – + –

MLP-GA [15] 7; HTTP

number of

requests, their

entropy,

variance

+ – – + + –

DNN [16]
4, 7; TCP,

HTTP

properties of

network packet

flow

+ – – + – +

attacks. In addition, the number of requests does not

adequately characterize LR-DDoS attacks, it is advisable

to use other attributes in entropy calculations when using

this method. Therefore, selecting the optimal attributes to

detect low-rate AL-DDoS attacks is an important task.

Upon examination of the data presented in Table 1, it is

evident that the HTTP is the most prevalent application-

layer attack protocol. It is also important to note that all

methods require preliminary preparation prior to use,

including finding thresholds for correctly signalling an

attack, selecting parameters (e.g., k for KNN), and

training a model for machine learning methods.

In order to draw final conclusions about the analysis

of modern methods for detecting application-layer DDoS

attacks, it is necessary to compare the classification

accuracy, operating time, and memory consumption of

these solutions under the same experimental conditions,

specifically, with the same set of test data, the same

amount of free computing resources of the same

computer, and the same programming language for

simple meeting software components and their

dependencies.

3. Methodology

The methodology of the experiment to determine

the efficiency of the analysed AL-DDoS attack detection

methods requires discussion. This step is necessary to

objectively evaluate the considered solutions in a

common environment using the same test data. The

experimental study consists of three parts: preparation of

the dataset, implementation of the methods and software

system for testing, and quantitative evaluation of the

method efficiency.

The purpose of the dataset preparation phase is to

generate a dataset comprising network packets typical of

both benign and malicious traffic, which are

subsequently employed to train models and verify the

accuracy of the classification methods. Because the

available public datasets contain a limited number of

examples of HTTP LR-DDoS attacks [17], we decided to

generate a new dataset. This involves preparing a web

server, finding utilities to simulate relevant DDoS

attacks, capturing the generated network traffic,

processing the captured data according to the

requirements of the classifiers, and saving the resulting

data in a structured format. To generate low-rate DDoS

attacks at the HTTP protocol level, several utilities have

been selected, each differing in their method of

generating malicious traffic [18]. Specifically, the

following programs are involved: Rudy [19],

Slowloris [20], SlowHTTPTest [21], PyDDoZ [22],

Hulk [23], and GoldenEye [24], most of which generate

LR-DDoS attacks. The victim is a web server serving a

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
140

website with multiple pages (URLs) using the HTTP

protocol, which provides web request attributes in an

unencrypted format, allowing them to be obtained

directly from the network packet. This server is launched

from the source code [25] on a local computer, where

DDoS attacks are generated.

To obtain user traffic, it is proposed to manually

visit website pages. However, the number of such visits

will be too small; thus, a special algorithm should be

employed to increase the number of minority class

examples to correct the dataset imbalance. It is also

crucial that such algorithm should be responsive to non-

stationary processes of traffic changes, thereby ensuring

that synthetic data generated accurately reflect the

dynamic nature of network traffic. However, given that

each dataset in this study contains only a single manually

generated instance of a DDoS attack without any

additional concurrent events, the requirement for this

algorithm to adapt to fluctuating traffic patterns is not

applicable in this case.

Additionally, it is necessary to develop a program

that analyses and processes the captured network packets

to select and store the necessary attributes in a structured

format. The Python programming language should be

used to create such a program because it offers many

libraries for processing network data (e.g., CICFlowMe -

ter [26] and pyshark [27]), which significantly simplifies

the process of searching and selecting network packet

attribute values. Moreover, software development using

Python is fast because of its concise syntax. Despite the

low execution speed of Python programs, primarily due

to the use of an interpreter, this is not a significant

disadvantage in this case because the primary goal in this

case is to obtain processed data.

The analysed methods for detecting DDoS attacks,

as well as the software system for testing, were

implemented in the Go programming language since it is

important to obtain values for the operating time of the

corresponding solutions under the same conditions. Go is

a compiled programming language, so the execution

speed of developed programs is high and comparable to

other compiled languages. In contrast, Python is

relatively slow. Although Python offers numerous

packages for data processing and machine learning, these

often execute calls to compiled libraries written in C,

which compromises the objectivity of comparing

different methods. To implement the software system, a

strategy design pattern was selected to facilitate the

convenient interchange of different DDoS attack

detection methods during testing. Furthermore, methods

requiring supervised learning are trained on a training

dataset, which is a subset of a previously prepared

dataset. In addition, the training dataset is used to select

optimal parameter values as required.

A quantitative evaluation of the methods was

conducted by measuring the following indicators:

average classification accuracy, operating time, and

RAM usage using the developed software. The efficiency

of the methods was evaluated using a test dataset that was

extracted from the main dataset generated during the first

phase. In particular, the accuracy of DDoS attack

detection methods is calculated as binary classification

accuracy, which represents the proportion of correctly

classified vectors to the total number of classified

vectors. This approach only provides a general estimation

of accuracy, which means that the resulting value is

somewhat approximate and may not fully reflect the true

accuracy of the method. This limitation arises because

DDoS attacks are typically non-stationary processes, and

the characteristics of traffic may vary over time. In

dynamic network environments, short-lived DDoS

attacks may go undetected, resulting in a small number

of false negatives that do not significantly impact the

overall accuracy score. Therefore, the accuracy score

may be misleadingly high. However, in this study, each

DDoS dataset was designed to contain only a manually

generated DDoS attack, resulting in a more uniform

traffic pattern. In addition, benign traffic was assumed to

be evenly distributed throughout the attack duration,

which simplified the evaluation process. Although this

approach to calculate accuracy may not be suitable for

more complex, real-world scenarios with multiple attacks

and highly dynamic traffic, it is a reasonable

approximation in the current controlled setting. Given

these constraints, the goal of this study is not to determine

the exact accuracy of DDoS attack detection methods;

rather, we evaluate their performance under controlled

conditions. Accordingly, binary classification accuracy

was employed, and it was calculated using the following

formula:

TP TN

AC
TP FP TN FN




  
, (7)

where AC is the average classification accuracy;

TP is the number of correctly classified attribute

vectors of DDoS traffic;

TN is the number of correctly classified attribute

vectors of benign traffic;

FP is the number of vectors incorrectly classified

as DDoS traffic attribute vectors ;

FN is the number of vectors incorrectly classified

as benign traffic attribute vectors .

For all the analysed methods, it is necessary to

calculate the average classification accuracy for each

type of HTTP DDoS attack generated by the previously

mentioned utilities using formula (7). Future research

may investigate more comprehensive metrics and

adaptive approaches for evaluating classification

Information security and functional safety

141

accuracy, which would be better suited to varying traffic

conditions and multiple attack scenarios. In addition, the

operating time and RAM consumption of the developed

software solutions should be measured several times

using the built-in profiling tools in Go. The analysis

should be based on the average values of these metrics to

eliminate the impact of random factors.

It is important to note that the Fast entropy [11]

method has not been experimentally evaluated, i.e., its

accuracy, operating time, and memory consumption have

not been measured. This is due to the fact that this method

was designed for the specific purpose of detecting only

network-layer DDoS attacks and relies on an attribute

that characterizes only high-rate attacks.

4. Experimental evaluation of methods

During the preparation of the test dataset, several

Bash scripts and Python programs were developed and

employed to perform the necessary tasks. These tasks

included deploying a web server, collecting Internet

traffic parameters, generating DDoS attacks, processing

network packets, and extracting the necessary packet and

web request attributes for the analysed methods. To

capture the traffic, the tcpdump utility was used to listen

to all network interfaces and to save any network packets

sent to or from the running web server. In other words,

all incoming and outgoing traffic from the test website

was monitored, and filtering was based on the port

number of the sender or receiver matching the port

number on which the website was running. Packets were

captured during the execution of each DDoS attack

generation tool for 5 min, except for Hulk [23] and

GoldenEye [24], for which the capture duration was 5 s

because these tools generate high-rate attacks. The traffic

capture results were recorded in PCAP files.

The simulation of user traffic was conducted by

manually opening website pages from three different

browsers simultaneously and performing typical user

actions such as registering on the site, authorization,

creating and editing elements and uploading photos. To

generate DDoS attacks, relevant utilities are launched

from the corresponding source code [19 – 24]. Each

utility was executed sequentially via scripts while the

network traffic was captured, resulting in 6 PCAP files

for the respective DDoS utilities and one additional

PCAP file describing the user traffic. The settings used

for the DDoS utilities are listed in Table 2. In addition, it

should be noted that whenever possible, DDoS tools are

configured to generate random URLs, headers, and

request bodies.

Two distinct approaches were employed to process

the obtained PCAP files with the objective of extracting

the necessary attributes of Internet traffic from both the

network and application layers. This was necessary be-

cause the Time series [13], KNN [14], and DNN [16]

methods rely on the attributes of network packet flow,

whereas the other analysed methods rely on information

from HTTP requests. To calculate packet flow

characteristics from the PCAP files, the

CICFlowMeter [26] program was employed, which was

used to create a dataset for training the DNN [16] model.

The CICFlowMeter [26] program provides a total of 80

attributes about packet flow, including all necessary

network layer attributes for the Time series [13] and

KNN [14] methods. Finally, the calculated attributes are

exported to CSV files. A Python program was developed

and used to obtain information about HTTP requests.

This program analyses the contents of packets in the

PCAP file using the pyshark [27] library and extracts the

parameters of each HTTP request from the TCP protocol

data into a separate array even if the request is not fully

completed. Subsequently, all captured web request

attributes are written to a CSV file, including the IP

address, port number, date and time the request was

received, request method, URL, and the User-Agent of

the request. Therefore, for seven different classes of

captured data, the two programs produced 14 CSV files.

The number of packets and requests from each Internet

traffic source obtained as a result of the above data

processing steps is shown in Table 3.

Since almost all of the DDoS detection methods

analysed in this study perform only binary classification,

and their identification accuracy can vary significantly

depending on the type of attack, it was decided to create

Table 2

Parameters of utilities for generating DDoS attacks

Parameter

DDoS utility

Request methods

Request

body size,

KB

Delay

between

requests, s

Number of

threads

Number of

client

sockets

Operating

time, s

Rudy [19] POST 5120 3 100 100 300

Slowloris [20] GET – 15 1 150 300

SlowHTTPTest [21] GET – 10 1 150 300

PyDDoZ [22] GET and POST – 0.4 128 128 300

Hulk [23] GET – – 1022 1022 5

GoldenEye [24] GET and POST – – 5 150 5

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
142

Table 3

The amount of information after processing the generated traffic from various sources

Source or type of traffic
Number of obtained attribute vectors

at the network layer at the application layer

Benign 67 492

Rudy [19] 346 100

Slowloris [20] 600 600

SlowHTTPTest [21] 430 210

PyDDoZ [22] 739 1484

Hulk [23] 2887 3008

GoldenEye [24] 2473 2471

datasets in which user traffic data are combined with data

from each DDoS attack source for the network and

application layers separately. This approach allows for a

more accurate determination of the efficiency of these

methods by classifying specific DDoS utilities, thereby

identifying potential gaps in their implementation.

As shown in Table 3, combining benign traffic with

any other source of DDoS attacks into a single dataset

creates an unbalanced dataset, which typically results in

inefficient training of machine learning models and,

consequently, degrades classification accuracy.

Therefore, another Python program was developed that

combines information from two CSV files, one

representing benign traffic, into one dataset and balances

it by increasing the number of minority class values using

the SMOTE [28] algorithm. However, it is important to

acknowledge the limitations of using the SMOTE

algorithm when balancing datasets containing network

traffic data because it does not account for the non-

stationary behaviour of DDoS attacks. Despite this

limitation, the relatively stable network environment

captured in the datasets, which were generated under

controlled conditions in this study, allows for the

utilization of more straightforward balancing

approaches. Because benign traffic remains cons istent

throughout a single instance of a DDoS attack, the

SMOTE algorithm remains a feasible choice for this

study. However, in future research involving more

dynamic network environments, it will be essential to

develop a more advanced algorithm that can adapt to

non-stationary traffic changes to ensure the reliability of

the measured classification accuracy values of detection

methods. Additionally, a dataset containing network

traffic attributes from all sources of DDoS

attacks [19 – 24] was generated and balanced for the

DNN [16] method to evaluate the accuracy of the multi-

class classification. As a result, 13 balanced datasets were

created. The number of classes in each of the prepared

datasets is given in Table 4.

For experimental evaluation of application-layer

DDoS attack detection methods, a software system was

developed in Golang, implementing the analysed meth-

ods [12 – 16]. The proposed system performs the

following tasks: reading data from the generated datasets,

training models or tuning parameter values for the

corresponding methods, measuring their classification

accuracy, operating time and memory usage, and

exporting the obtained metric values to CSV files.

Although Golang lacks the concepts of classes and

inheritance, it supports interfaces, structures, and

methods, thus enabling interface implementation

features. In addition, Golang facilitates code reuse and

modularity via the composition of structures.

The developed software system is the core

component of the information technology designed to

evaluate the efficiency of DDoS attack detection

methods, and its primary workflow is illustrated in Fig. 3.

Table 4

Number of instances of each class in generated datasets

Dataset name
Class name in the

dataset

Number of Internet traffic attribute vectors

at the network layer at the application layer

by class in total by class in total

1 2 3 4 5 6

Benign and Rudy [19]
Benign 346

692
492

984
Rudy [19] 346 492

Benign and Slowloris [20]
Benign 600

1200
600

1200
Slowloris [20] 600 600

Benign and SlowHTTPTest [21]
Benign 430

860
492

984
SlowHTTPTest [21] 430 492

Information security and functional safety

143

Continuation of Table 4

1 2 3 4 5 6

Benign and PyDDoZ [22]
Benign 739

1748
1484

2968
PyDDoZ [22] 739 1484

Benign and Hulk [23]
Benign 2887

5774
3008

6016
Hulk [23] 2887 3008

Benign and GoldenEye [24]
Benign 2473

4946
2471

4942
GoldenEye [24] 2473 2471

Benign, Rudy [19], Slowloris [20],

SlowHTTPTest [21], PyDDoZ [22],

Hulk [23] and GoldenEye [24]

Benign 2887

20209 –

Rudy [19] 2887

Slowloris [20] 2887

SlowHTTPTest [21] 2887

PyDDoZ [22] 2887

Hulk [23] 2887

GoldenEye [24] 2887

Fig. 3. IDEF0 diagram of information technology for evaluating

the efficiency of DDoS attack detection methods

Fig. 3 shows an IDEF0 diagram that illustrates the

processes involved in assessing DDoS attack detection

methods, as well as their inputs, outputs, controls,

resources, and interconnections. The main process (A0)

is divided into five constituent steps: loading datasets,

initializing detection methods, evaluating the accuracy of

each method across all datasets, assessing their operating

time and memory usage, and exporting the results to CSV

files. This diagram provides a high-level overview of

how the developed software system orchestrates these

tasks in the overall information technology framework. It

is important to note that the evaluation processes in

NODE: TITLE: NUMBER:Evaluating the efficiency of DDoS attack detection

methodsA0

1

Array of dataset

properties and traffic

attribute vectors

Instances of DDoS

attack detection

methods with

interfaces for training

and evaluation of

classification

CSV files

of datasets

Obtained operating

time and memory

usage values of

DDoS attack

detection methods

across batches of

the dataset

Obtained accuracy

values of DDoS

attack detection

methods across all

datasets

CSV files of

evaluation

results

Datasets

settings

(file path,

name,

and type)

Specifications of

existing DDoS attack

detection methods

Names of DDoS

attack detection

methods

Batch sizes of dataset

to assess operating

time and memory usage

Name of dataset to

assess operating time

and memory usage

Path to output

directory

Output directory for

saving the resulting files

1

Load datasets

of benign and

DDoS network

traffic

2

Initialise DDoS

attack detection

methods

3

Evaluate accuracy

of all DDoS attack

detection methods

across all datasets

4

Evaluate operating

time and memory

usage for all DDoS

attack detection

methods across

batches of the

dataset

5

Export evaluation

results into

CSV files

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
144

activities A3 (accuracy evaluation) and A4 (operating

time and memory usage evaluation) are crucial and

closely interrelated and are managed by the same module

in the software system. Because of the similarities

between these two processes, only the first is explored in

depth. For a more detailed breakdown, the decomposition

of process A3 is illustrated in Fig. 4.

Fig. 4 illustrates the IDEF0 decomposition of

activity A3 from the top-level diagram in Fig. 3. This

decomposition highlights that the process of evaluating

the accuracy of DDoS attack detection methods is

divided into five principal stages: selecting appropriate

datasets for each method, splitting datasets into training,

validation, and test subsets, training models of each

method on all datasets, predicting traffic types for test

subsets, and calculating classification accuracy using the

predicted and expected values. The selection of an

appropriate dataset is essential because this study utilizes

two distinct types of datasets: one representing traffic

data at the network layer and application layer. Each

considered DDoS attack detection method is designed to

operate with only one of these data types; thus, it is

necessary to filter and match the supported datasets for

each method during the initial step (A31). The model

training process (A33) and traffic type prediction (A34)

processes are implemented in accordance with the

specifications of the respective DDoS attack detection

methods, as detailed in Section 2 of this paper. The

classification accuracy at the final step (A35) was

calculated using the methodology outlined earlier in this

article.

IDEF0 diagrams do not fully illustrate how the

corresponding stages handle arrays of input data and

other detailed operations, which are crucial for

understanding the process. Therefore, Fig. 5 presents a

flowchart of the algorithm to evaluate the accuracy,

operating time, and memory usage of DDoS attack

detection methods. The algorithm is implemented as a

universal software module that is applicable to processes

A3 and A4, as shown in Fig. 3.

Fig. 4. IDEF0 diagram of the accuracy evaluation process

for all DDoS attack detection methods on all datasets

NODE: TITLE: NUMBER:Evaluate accuracy of all DDoS attack detection

methods across all datasetsA3

2

Specifications of

existing DDoS

attack detection

methods

Array of dataset

properties and traffic

attribute vectors

Obtained

accuracy values

of DDoS attack

detection

methods across

all datasets

Instances of DDoS attack detection

methods with interfaces for training

and evaluation of classification

Prediction results of

traffic type for each

test datasets by

appropriate DDoS

attack detection

methods

Test datasets

Training and

validation

datasets

Compatibility of datasets with

DDoS attack detection methods

Instances of DDoS

attack detection

methods with

initialised

parameters and/or

trained models for

all appropriate

datasets

Array of sets containing method

name, dataset name and

reference to prediction results

1

Select

appropriate

datasets for

each DDoS

attack detection

method

2

Split all

datasets

into training,

validation and

test subsets

3

Train the model

and/or tune the

parameters of

each method for

all appropriate

datasets

4

Predict traffic type

for each attribute

vector in test

datasets by all

DDoS attack

detection methods

5

Calculate classification

accuracy for each

DDoS attack detection

method across all

datasets by comparing

predicted values to

expected values

Information security and functional safety

145

Fig. 5. Scheme of the algorithm for evaluating accuracy, operating time,

memory usage of DDoS detection methods

Start

End

Input file

paths, names

and types of

all datasets

M := list of methods

D := list of datasets

B := batch sizes set

R := repeat count

Input names

of DDoS

attack

detection

methods

Input batch

sizes of

datasets for

evaluation

Input repeat

count of

evaluation

repetitions

Input path to

output directory

E := empty list of

evaluation results

m := select next

method instance

from the list M

Is m = nil ?

Reset iterator for

list D

No

d := select next

dataset instance

from the list D

Is d = nil ?

Is
dataset d

acceptable for
method m ?

No

Yes

4

2

3

1

4

5

3

1

No

Yes

Split dataset d into

training, validating

and test subsets

Yes

Train model of

method m on

training and

validating subsets

of dataset d

Reset iterator for

set B

Is set B
empty ?

No

Yes

b := select next

batch size from the

set B

Is b = nil ?
Yes

dt := first b vectors

from test subset of

dataset d

No

dt := test subset of

dataset d

6

5

6

ha := cumulative

bytes allocated for

heap

ta := current time

Yes

p := predicted

traffic types for

each vector from

test dataset dt by

method m

hb := cumulative

bytes allocated for

heap

tb := current time

acc := calculate

accuracy using p

and dt

htotal := hb - ha

ttotal := tb - ta

Append to list E set

{m, d, acc, htotal,

ttotal, len(dt), r}

r := r - 1

Is r > 0 ?

2

Serialise items in

list of evaluation

results E into CSV

format

Output CSV

files into output

directory

No

3

r := R

Is set B
empty ?

No

3
Yes

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
146

The algorithm, which is illustrated in Fig. 5,

outlines the steps involved in selecting datasets, training

models, classifying test data, and calculating

performance metrics. It accepts various input parameters,

such as dataset specifications, method names, batch sizes,

and repetition count. The flow of the algorithm begins by

iterating through all considered DDoS attack detection

methods. For each method, the algorithm processes all

datasets and splits them into training and tes ting subsets.

Once a method is trained, the algorithm determines

whether batch sizes have been specified and, if so,

iterates through them, slicing the test dataset accordingly.

During evaluation, it measures the cumulative allocated

heap bytes before and after the prediction process, as well

as the time required to make predictions on the test

dataset's attribute vectors. The results, including the

calculated accuracy, operating time, memory usage, and

associated input parameters, are then appended to a

dedicated array. If a repetition count is specified, the

evaluation is repeated with the same parameters for the

number of provided repetitions. Finally, the consolidated

results are written as CSV files. Note that the inputs of

the batch size and repetition count are optional. When

only the accuracy needs to be measured, the batch sizes

are provided as an empty set, and the repetition count is

set to zero. However, to evaluate the operating time and

memory usage, the algorithm takes a set of batch sizes

and a repetition count, which enables the assessment of

performance across different input sizes and the

generation of average results through repeated

evaluations.

It is essential to examine the details of the software

implementation of the proposed system, which is

designed to evaluate the efficiency of DDoS attack

classification methods. The source code is organized into

several packages, each containing elements intended for

the same purpose. The “Dataset” structure in the package

of the same name represents a dataset and includes fields

where relevant information is stored. Additionally, this

structure implements methods for loading data from a

CSV file and retrieving various data, including an array

of attribute value vectors, a set of class names found in

the dataset, the OSI model layer corresponding to the

stored attributes, and the total number of vectors in the

dataset. In the “results” package, the “PredictionResult”

and “ResourceUsage” structures represent information

about classification accuracy and computing resources

used, respectively. Together, they are included in the

“EvaluationResult” structure, which, through

composition, describes the performance indicators of a

method during testing on a specific dataset, with the

dataset's name also reflected in the structure. Each DDoS

attack detection method is evaluated through a series of

experiments, during which the datasets and size of the

test samples are varied. The quantitative indicators

calculated during each experiment were stored in the

“EvaluationResults” structure, which consisted of the

method name and an array of “EvaluationResult”

instances that reflected the results of each experiment. In

the “methods” package, each DDoS attack detection

method is encapsulated within its own structure, which

implements the “DDoSDetectionMethod” interface. This

interface includes several functions essential for utilizing

classification methods, such as “GetName”, which

returns the full name of the method;

“IsDatasetAccepted”, used to verify compatibility of the

method with a given dataset; “Train”, which takes a

dataset to either train the model or initialize method

parameters; and “Evaluate”, which assesses the method's

classification accuracy using a specified test sample size

and returns results. The above elements from the

“methods” package implement the strategy design

pattern, where the “DDoSDetectionMethodsAssessor”

structure from the “benchmarks” package plays the role

of the context. This structure evaluates all DDoS attack

detection methods in the “EvaluateAllMethods”

function, where it sequentially changes strategies, i.e.,

instances of the corresponding method structures, that are

added in advance by the “AddDetectionMethod”

function. Then, this structure executes the “Train” and

“Evaluate” functions for each new strategy. In addition,

when “EvaluateAllMethods” is executed, each strategy is

tested on all datasets added by the “AddDataset”

function. Finally, the obtained results are exported to

CSV files using the “ExportEvaluationResultsToCS V”

function from the “DDoSDetectionMethodsAssessor”

structure. The UML class diagram for the developed

structures and interfaces (Fig. 6) provides a

comprehensive overview of the software system,

highlighting the interrelationships among the various

components.

During the implementation of the software system,

third-party modules were used: sklearn [29] to search for

k-nearest neighbors and construct a multilayer

perceptron, go-deep [30] to generate a deep neural

network model, and gonum [31] to manipulate the

matrix. The experimental evaluation results of the

average classification accuracy of application-layer

DDoS attack detection methods [12 – 16] for all

considered datasets are presented in Table 5.

As illustrated in Table 5, the DNN [16] method was

the sole approach evaluated on a large-scale dataset that

incorporated the generated data from all DDoS

utilities [19 – 24], as it is the only method capable of

performing multi-class classification. It is important to

note that in this case, the average classification accuracy

was calculated based on the proportion of correctly

matched predictions to the expected class names for each

network flow relative to the total number of vectors in the

sample.

Information security and functional safety

147

To evaluate the operating speed of the meth-

ods [12 – 16], three consecutive measurements of the

classification time were taken for samples from the Be-

nign and Hulk [23] dataset of different sizes: 100, 500,

1000, 2500, and 5000 vectors. Subsequently, the

arithmetic means of the obtained values from the three

measurements were calculated for each experiment. The

results of measuring the operating times of the methods

are given in Table 6.

Fig. 6. UML class diagram of a software system to test DDoS attack detection methods

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
148

Table 5

Average classification accuracy of application-layer DDoS attack detection methods on different datasets

Dataset name

Average classification accuracy of the method, %

EUPI-EIPU

[12]

Time series

[13]

KNN

[14]

MLP-GA

[15]

DNN

[16]

Benign and Rudy [19] 91.67 94.42 99.42 97.17 99.44

Benign and Slowloris [20] 95.74 97.24 99.83 96.33 99.5

Benign and SlowHTTPTest [21] 94.55 87.04 97.91 97.01 99.07

Benign and PyDDoZ [22] 93.72 80.66 99.46 96 99.72

Benign and Hulk [23] 98.39 83.18 97.26 85.53 99.97

Benign and GoldenEye [24] 98.6 90.1 96.93 97.49 99.63

Benign, Rudy [19], Slowloris [20],

SlowHTTPTest [21], PyDDoZ [22],

Hulk [23] and GoldenEye [24]

– – – – 98.19

Table 6

Operating time of application-layer DDoS attack detection methods for different sizes of input data

Number of vectors

in the test dataset

Time consumed by the method for vector classification, ms

EUPI-EIPU [12] Time series [13] KNN [14] MLP-GA [15] DNN [16]

100 0.27 0.04 24.33 0.05 8

500 2 0.13 119.33 0.2 31.33

1000 4 0.24 221.33 3 64.33

2500 224.33 0.74 562.67 25.33 145.67

5000 585.33 1.33 1097 93.33 273.67

Similarly, the amount of RAM consumed by the

application-layer DDoS attack detection methods was

measured in each experiment, and the results are

presented in Table 7.

Table 7

Memory consumption of application-layer DDoS attack detection methods for different sizes of input data

Number of vectors

in the test dataset

The amount of RAM consumed by the method for vector classification, KB

EUPI-EIPU [12] Time series [13] KNN [14] MLP-GA [15] DNN [16]

100 436.68 17.71 4658.43 33.93 0.82

500 4832.54 123.57 23246.17 206.24 3.94

1000 10385.1 251.95 46540.19 2130.96 7.85

2500 274278.01 524.37 116123.43 14400.84 19.56

5000 723350.22 1049.29 228863.96 56322.25 39.09

In conclusion, the values of average classification

accuracy (Table 5), operating time (Table 6), and

memory consumption (Table 7) for the analysed DDoS

attack detection methods [12 – 16] were obtained.

5. Results discussion

A brief review of the obtained results indicates that

among the methods [12 – 16], no single method

simultaneously achieved the highest average

classification accuracy, the lowest operating time, and

the lowest memory consumption. Therefore, to gain a

more detailed understanding of the data presented in

Tables 5–7, it is necessary to analyze each method

separately, highlighting the specific advantages and

limitations of each method against different DDoS

utilities.

It is important to acknowledge that the accuracy of

DDoS attack detection methods was evaluated using

manually generated datasets, each comprising a single

instance of a specific DDoS attack type generated by the

corresponding DDoS utility. Furthermore, the benign

traffic in each dataset was replicated and distributed

evenly throughout the attack duration using the SMOTE

algorithm to achieve a more balanced representation.

These two factors resulted in a discrepancy between the

reported average classification accuracy in this study and

the accuracy that could be observed in real-world

scenarios. This is due to a significant limitation of the

current methodology, namely that it does not consider

Information security and functional safety

149

dynamic network environments, where traffic

characteristics can fluctuate more unpredictably.

Therefore, the actual accuracy under real-life conditions

may be lower than that observed in this study. Despite

these limitations, the results provide a valuable basis for

comparing the relative performance of the considered

methods, particularly in terms of their average

classification accuracy in relatively stable traffic

environments. Further research can address this issue by

evaluating the detection accuracy in more complex and

dynamic network scenarios and employing a more

comprehensive approach, thereby providing a more

accurate assessment of real-life performance.

It should also be mentioned that all the experiments

and measurements conducted in this research were

performed on a computer with the following

configuration: Intel Core i5-10210U processor with a

clock speed 2.11 GHz; DDR4 RAM of 16 GB.

The EUPI-EIPU [12] method demonstrated

satisfactory classification accuracy (exceeding 90%) for

malicious traffic across all considered DDoS utilities.

However, using this criterion, it is inferior to the majority

of the other methods. For high-rate DDoS attacks

(Hulk [23] and GoldenEye [24]), classification accuracy

reaches 98%, while for low-rate attacks it fluctuates

between 91% and 95%. This discrepancy can be

explained by the lower frequency of requests during low-

rate attacks, which causes the entropy value to potentially

align with that of benign traffic. In addition, the entropy

value of a particular URL resource is significantly

influenced by the size of the time window. This

parameter determines the time interval within which the

collected requests are analysed and classified,

segmenting the continuous stream of Internet traffic into

discrete intervals, i.e., information arrays, for further

processing. The findings indicated that a 30 s time

window was optimal for detecting both HR- and LR-

DDoS attacks, achieving the highest classification

accuracy for both types compared to other time window

values. The entropy threshold for this method was

calculated as the average between the mathematical

expectations of the entropy values for benign and

malicious traffic, adjusted by subtracting and adding the

standard deviation, respectively. Although the EUPI-

EIPU [12] method can perform classification at high

speed, this speed significantly decreases as the number of

input data increases. For example, classification time

increased to 0.2 s for 2500 vectors , whereas for 1000

vectors it took 0.004 s. Another disadvantage of this

method is the high RAM consumption (700 MB for 5000

vectors), which is one of the highest among the evaluated

methods. This high memory usage is likely due to the

dynamic creation of hash tables to group requests by

URL and senders by IP address during method execution,

which consumes additional memory.

The highest DDoS attack classification speed was

observed with the Time series [13] method, which

represents a significant advantage given the urgency of

reducing the time required to detect and block DDoS

attacks. The Time series [13] method consumed

significantly less time for classification compared to its

nearest competitor, taking only 0.001 s to process 5000

vectors, whereas the MLP-GA [15] method took 0.09 s

for the same task. The rationale behind this high

processing speed is that the Time series [13] method does

not attempt to identify attacks by processing all input

data. Instead, it selects a subset of the first packets from

each source (50% of the packets in this study) and

predicts future delays between packets. In addition, in

contrast to the other methods analysed, this method

employs only a single network-layer attribute, thereby

reducing the computational complexity. However, the

average classification accuracy of the Time series [13]

method was the lowest among the obtained results. This

method relies solely on the time delay between packets,

resulting in an approximate accuracy of 83% for high-

rate DDoS attacks and a peak accuracy of 90% for

GoldenEye [24]. In addition, the classification accuracy

for HR-DDoS attacks could have been even lower

because the original version was designed to detect only

slow attacks, which are identified when the time delay

between packets exceeds a given threshold.

Consequently, the Time series [13] method was modified

in this study to also detect high-rate attacks. DDoS class

assignment for a client occurs when the time delay

between received packets is either large or small, i.e.,

when it exceeds or falls below the predefined thresholds,

depending on the type of attack identified during training.

The classification accuracy of LR-DDoS attacks ranges

from 87% to 97%, except for PyDDoZ [22], for which

the generated malicious traffic was identified with the

lowest accuracy of 80%. This poor accuracy is likely due

to the rate of sending requests by PyDDoZ [22] being

substantially similar to the rate of benign traffic. Another

advantage of the Time series [13] method is that it has

one of the smallest memory consumptions among the

others, requiring only 1 MB for 5000 vectors.

The accuracy of the KNN [14] method fluctuates

between 97% and 99% for all considered sources of

DDoS attacks, making it one of the best-performing

methods analysed in this study. In experiments, we

determined that the optimal value for parameter k, at

which classification accuracy reaches its maximu m

value, is 3. This corresponds to selecting the three nearest

neighbours to determine the object’s class. However, the

KNN [14] method had the longest operating time among

all considered methods, taking 1.1 s to process 5000

vectors, which is twice as slow as EUPI-EIPU [12] with

the same input data. The classification process could be

even longer without the use of the k-d tree (KD-

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
150

Tree) [32] in the software implementation, which speeds

up the search for nearest neighbouring objects. The low

classification speed can be attributed to the use of four

network-layer attributes, which significantly increases

the number of computational operations while ensuring

high accuracy of DDoS attack identification. Another

limitation of the KNN [14] method is its high RAM

consumption, which renders it one of the least memory-

efficient methods to be evaluated. Notably, classifying

only 5000 vectors requires 220 MB of memory. This

large memory footprint can be attributed to the inherent

characteristics of the KD-Tree data structure employed

by KNN.

As previously stated, the MLP-GA [15] method

exhibits relatively low time consumption for data

classification (0.09 seconds for 5000 vectors) and

moderate memory consumption, requiring only 55 MB to

process 5000 vectors. It is worth noting that the sigmoid

function was selected as the activation function, and

Adam was employed as the optimization algorithm in the

implementation of this neural network. The maximu m

number of training iterations in this model was 300

epochs, and an early stopping mechanism was employed

to prevent overtraining. The requests submitted by each

website visitor were divided into groups of 10 requests

each, within which the required attributes for this method

were calculated, including the entropy value of the user

requests. The MLP-GA [15] achieves high average

classification accuracy of 97%, with a slight reduction to

85% for requests originating from the Hulk [23] utility.

During the implementation of the proposed method, it

was determined that filtering web requests using the GET

method, as previously assumed in the study [15], was not

necessary. Therefore, the obtained accuracy values are

satisfactory, particularly for low-rate attacks.

In this study, the DNN [16] method demonstrated

the highest efficiency in classifying application-layer

DDoS attacks, achieving an accuracy of 99% for all

considered malicious traffic sources. Furthermore, the

accuracy of the multi-class classification was 98%. This

high performance can be attributed to the use of

numerous attributes (80 in total) in detecting malicious

traffic with a deep neural network, which is also known

for its high performance. Although requiring a relatively

low number of training iterations (10 epochs for binary

classification and 30 for multi-class), this method

exhibits a significantly longer training time compared to

MLP-GA [15], which is one of its notable disadvantages.

In addition, the operating time of DNN [16] is relatively

high, taking 0.3 seconds to process 5000 vectors, which

is approximately three times slower than MLP-GA [15].

However, in terms of RAM consumption, this method is

the most efficient, as it uses only 0.04 MB for 5000 input

vectors. This memory efficiency can be explained by the

lack of need for preprocessing input data prior to

classification. Furthermore, prediction operations (input

data processing) in a deep neural network are executed

without creating additional data structures.

Thus, among the analysed methods for detecting

application-layer DDoS attacks, none simultaneously

achieved the best average classification accuracy and

operating time, which highlights the relevance of

developing an improved method. Specifically, the

average accuracy of methods with relatively short

operating times (e.g., Time series [13]) can be enhanced

by incorporating additional attributes from web requests.

However, using an excessive number of attributes may

increase the operating time of the method, as observed in

DNN [16]. Therefore, it is critical to identify Internet

traffic features that are highly correlated with DDoS

attack requests. For example, prior to training a

DNN [16] model, techniques, such as principal

component analysis (PCA) or autoencoders, can be

employed to reduce the dimensionality of the input data

by discarding irrelevant information, which can increase

the speed of DDoS classification.

6. Hypotheses and approach for improving

AL-DDoS attack detection methods

Several hypotheses need to be considered to

develop an application-layer DDoS attack detection

method that can outperform existing methods in terms of

both classification accuracy and speed.

The first hypothesis proposes improving the Time

series [13] method by incorporating the analysis of

information entropy changes in HTTP request attributes,

in addition to examining the time delay between network

packets. Specifically, further investigation can be

conducted to determine whether the classification

accuracy of the proposed method can be enhanced by

including parameters such as the HTTP request method,

request URL, number and length of request headers, and

size of the request body. This approach involves

constructing additional time series for these attributes

and predicting their future entropy values to detect

abnormal deviations from typical benign traffic values.

Furthermore, parameters related to the web server, such

as CPU load, RAM usage, and disk activity, could also

be considered, as high values may indicate a DDoS

attack. However, it must be experimentally proven that

these new attributes improve the classification accuracy

of the proposed method.

The second hypothesis proposes the creation of a

new method to detect AL-DDoS attacks, focusing on

analysing the graph representing transitions between

URL resources (pages) of a website by each user to

identify anomalous behavior. It is evident that the

majority of ordinary users visit popular pages on a

website, and the order in which they access such pages

Information security and functional safety

151

may be slightly similar (even for different users), as they

typically navigate to the next page by clicking on one of

the available hyperlinks on the current page, depending

on the navigation options offered on the website. In

contrast, DDoS attacks are typically directed either at a

specific URL or by crawling all available pages of a

website. Therefore, to identify suspicious behaviour

typical of DDoS attacks, it is advisable to focus on

factors, such as the number of cycles, path length in the

graph, and other relevant features during the analysis of

the transition graph.

The main challenge in implementing the proposed

hypotheses is the difficulty in capturing HTTP request

attributes when the HTTPS is used, which is currently the

most prevalent protocol among web servers [33]. This

problem arises because all data transmitted via HTTPS

are protected by asymmetric cryptography, which makes

it impossible to decrypt the value of any web request

attribute without a private key. It is obvious that

providing access to private keys to third-party software is

a risky and unsafe practice. Therefore, a more reliable

alternative approach is preferred. One potential solution

is to use a specific software architecture for designing

Internet services, which enables the encryption of

requests not directly within the web framework (i.e. the

program that directly processes web requests and is

responsible for the functioning of the website) but in a

separate module for traffic routing. This module allows

the user to inspect web requests in unencrypted form for

software extensions within the system. For example,

Istio, a framework created for Kubernetes clusters to

configure networks for microservices and control the

routing of Internet traffic between clusters, can serve as

such a router. Istio allows for the encryption of web

requests sent outside the internal system to the global

network, the setting of special rules, and the integration

of middleware to process HTTP requests, thereby

providing access to all attributes of the requests [34]. In

other words, it is possible to read all parameters of web

requests in Istio, even when using the HTTPS protocol

by implementing an application embedded in Istio that

uses the provided interface for this purpose. Furthermore,

the Istio framework was adapted for the Kubernetes

platform, which is the most popular environment for

deploying microservices [35]. Istio is widely used in

cloud services, including Kubernetes-based projects.

Therefore, an application-layer DDoS attack detection

software system is proposed exactly for the Kubernetes

platform, where the attributes of Internet traffic are

collected using the Istio framework.

Based on the above hypotheses and software

architecture, a potential approach to improving current

application-layer DDoS attack detection methods is

described below, with a focus on software engineering

aspects. As previously stated, DDoS detection software

should be deployed on a Kubernetes cluster and interact

with the Istio framework. Given the increasing popularity

of microservice architecture and containerisation (a

method of virtualizing and packaging applications and

their dependencies in an isolated container that allows

them to run in any environment), this requirement is

reasonable. Kubernetes is designed for applications that

require high performance, fault tolerance, and scalability.

Consequently, multiple websites can be hosted on the

same cluster, thereby allowing the DDoS detection

system to effectively monitor and protect all deployed

web servers by leveraging the cluster's distributed

computing resources. This approach assumes that traffic

encryption for HTTPS (TLS termination) is performed in

a virtual gateway in Istio that connects the cluster's

internal network to the Internet. To capture the

unencrypted web request attributes required for the

proposed DDoS detection methods, an EnvoyFilter [36]

should be created in the Istio network, through which all

Internet traffic directed to the web servers will pass. This

filter forwards each HTTP request to middleware, where

the required attributes of the web requests are sent to a

separate software module for further classification of

DDoS attacks. Communication between different

software components in the system should be performed

using a message broker. This facilitates the decoupling of

components, their asynchronous interactions, scalability,

and fault tolerance. The web request classification

module should implement one of the proposed DDoS

detection methods and be able to scale horizontally

during peak loads. Identified sources of malicious traffic

can be stored in a non-relational key-value database,

where it is sufficient to retain information about the IP

address of each DDoS generator and the time of its

detection. These data can be further used to create rules

to block Internet traffic from DDoS sources in the Istio

network.

Conclusions

This study analyses modern methods to detect

application-layer DDoS attacks on web server resources.

This study examines several relevant methods in this

field, revealing their main concepts, operational

mechanisms, advantages, and disadvantages.

Furthermore, this study evaluates the average

classification accuracy of these methods and measures

their operating time using generated datasets that include

examples of malicious requests from popular utilities to

conduct low-rate and high-rate DDoS attacks at the

HTTP protocol level. The experimental results

demonstrate that none of the analysed methods achieves

high average classification accuracy and operating speed

simultaneously, which indicates the need to develop a

new method to detect application-layer DDoS attacks

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
152

with the desired characteristics. Two hypotheses are

proposed for creating new methods, one of which

involves the additional use of HTTP request attributes in

the classification of Internet traffic, and the other

involves an analysis of user transition graphs between

website pages. In addition, this paper presents a brief

overview of a potential architectural solution within the

proposed approach for a software system designed to

detect DDoS attacks based on the Kubernetes platform

and the Istio framework. If further developed and

implemented, this solution could address the challenge of

collecting web request parameter values for websites that

use the cryptographically protected HTTPS protocol.

The scientific novelty of this study lies in obtaining

average classification accuracy values, as well as

measuring the operating time and RAM consumption

during the classification of network packets and web

requests from prepared datasets under the same

conditions for six modern and promising methods for

detecting application-layer DDoS attacks, namely:

EUPI-EIPU [12], Time series [13], KNN [14], MLP-

GA [15], and DNN [16]. To conduct this experimental

study, balanced datasets were generated with malicious

requests created using popular DDoS utilities: Rudy [19],

Slowloris [20], SlowHTTPTest [21], PyDDoZ [22],

Hulk [23], and GoldenEye [24]. The results demonstrate

that the Time series [13] method exhibits the shortest

operating time (1.33 ms for 5000 vectors), and the

DNN [16] method exhibits the highest average

classification accuracy (ranging from 99.07% to 99.97%)

and the lowest memory consumption (39.09 KB for 5000

vectors). In addition to the comparative analysis of

existing DDoS attack detection methods based on the

obtained values, the scientific novelty lies in formulating

two hypotheses to create a new method to identify DDoS

attacks at the HTTP protocol level, which will combine

high accuracy and classification speed to outperform

existing analogues in these metrics.

The practical significance of this study lies in the

development of a software system to test DDoS attack

detection methods, as well as in the software

implementation of all analysed methods. In future, this

system will enable the evaluation of new methods by

measuring the accuracy, operating time, and memory

usage. In addition, the practical significance is

demonstrated by describing a potential software

architecture for a system that collects web request

attributes using a dedicated software module for Istio in

a Kubernetes cluster. Although the architectural design is

presented in a relatively superficial way, it nevertheless

provides a conceptual framework that can be further

developed and refined in future research.

A potential approach to improve existing methods

for detecting application-layer DDoS attacks is proposed.

This approach encompasses the realization of the

formulated hypotheses to improve DDoS attack

classification methods, along with the implementation of

the proposed software system architecture. A concise

description is provided that offers insights into the

processes involved in collecting, processing, and

classifying Internet traffic data from a software

engineering perspective.

Future research directions. Future research will

focus on the development and validation of the hypothe-

ses proposed in this paper to develop a method for

detecting application-layer DDoS attacks with the

highest accuracy and classification speed among known

analogues. This involves software implementation of the

methods based on the proposed hypotheses and

evaluation using the developed information technology.

Furthermore, the proposed approach requires further

refinement and implementation of the outlined

architectural design, and the resulting software system

should then be experimentally evaluated in the

Kubernetes cluster environment.

In addition, the next steps involve developing a new

methodology to evaluate the accuracy of DDoS attack

detection methods. This methodology will be sensitive to

sudden and significant traffic changes in dynamic

network environments, which will make it more

applicable to real-world scenarios. The current approach

is insufficient to address the issue of traffic fluctuations

and non-stationary behaviours inherent to DDoS attacks,

which limits the reliability of the obtained results. The

implementation of a more comprehensive evaluation

approach will facilitate precise measurement of the

classification accuracy of DDoS attack detection

methods. Furthermore, the methodology for generating

and balancing DDoS datasets requires further revision. In

particular, the use of the SMOTE algorithm to balance

datasets introduces a limitation because it generates

synthetic data without considering the non-stationary

nature of DDoS attacks. Therefore, it is necessary to

employ a more sophisticated algorithm to address the

imbalances in the datasets, ensuring that the generated

data more accurately suit the dynamic network

environment. Moreover, future evaluations may consider

testing detection methods on datasets containing multiple

instances of different types of DDoS attacks potentially

generated by different DDoS utilities to simulate more

complex and realistic attack scenarios. The

implementation of these improvements will lead to more

precise assessments of the accuracy of DDoS attack

detection methods, which will enhance the reliability of

experimental results .

Contributions of authors: conceptualisation,

problem statement, literature review, analysis of methods

for detecting application-layer DDoS attacks, method-

Information security and functional safety

153

ology, software implementation of methods and develop-

ment of a system for evaluating them, experimental re-

search, analysis of the obtained results, formulation of the

novel approach, hypotheses, and conclusions – Arkadii

Kravchuk; review, editing – Mykola Onai.

Conflict of interest

The authors declare that they have no conflict of in-

terest in relation to this research, whether financial, per-

sonal, authorship or otherwise, that could affect the re-

search and its results presented in this paper.

Financing
This study was conducted without financial support.

Data availability

The manuscript contains no associated data.

Use of artificial intelligence

The authors confirm that they did not use artificial

intelligence technologies while creating the presented

work.

All the authors have read and agreed to the

publication of the finale version of this manuscript.

References

1. Simons, G., Danyk, Y., & Maliarchuk, T. Hy-

brid war and cyber-attacks: creating legal and operational

dilemmas. Global Change, Peace & Security, 2020,

vol. 32, no. 3, pp. 337–342. DOI:

10.1080/14781158.2020.1732899.

2. Uma, M., & Padmavathi, G. A Survey on Vari-

ous Cyber Attacks and their Classification. International

Journal of Network Security, 2013, vol. 15, no. 5,

pp. 390–396.

3. Kizzee, K. Cybersecurity: Cyber Attack Statis-

tics to Know. Parachute Technology. Available at:

https://parachute.cloud/cyber-attack-statistics-data-and-

trends/ (accessed 01.01.2024).

4. Cyber Dimensions of the Armed Conflict in

Ukraine: Quarterly Analysis Report Q3 from July to Sep-

tember 2023. CyberPeace Institute. Available at:

https://cyberpeaceinstitute.org/wp-content/uploads/

2023/12/Cyber-Dimensions_Ukraine-Q3-2023.pdf

(accessed 01.01.2024).

5. Ohsita, Y., Ata, S., & Murata, M. Detecting dis-

tributed denial-of-service attacks by analyzing TCP SYN

packets statistically. IEICE transactions on communica-

tions, 2006, vol. 89, no. 10, pp. 2868–2877. DOI:

10.1093/ietcom/e89-b.10.2868.

6. Bogdanoski, M., Shuminoski, T., &

Risteski, A. Analysis of the SYN Flood DoS Attack. In-

ternational Journal of Computer Network and Infor-

mation Security, 2013, vol. 5, no. 8, pp. 1–11. DOI:

10.5815/ijcn is.2013.08.01.

7. Boro, D., Basumatary, H., Goswami, T., &

Bhattacharyya, D. K. UDP flooding attack detection us-

ing information metric measure. Proceedings of Interna-

tional Conference on ICT for Sustainable Development,

2016, vol. 408, pp. 143–153. DOI: 10.1007/978-981-10-

0129-1_16.

8. Application layer DDoS attack: an overview .

Cloudflare, Inc. Available at:

https://www.cloudflare.com/learning/ddos /application-

layer-ddos-attack/ (accessed 01.01.2024).

9. Mantas, G., Stakhanova, N., Gonzalez, H.,

Jazi, H. H., & Ghorbani, A. A. Application-layer denial

of service attacks: taxonomy and survey. International

Journal of Information and Computer Security , 2015,

vol. 7, no. 2-4, pp. 216–239. DOI:

10.1504/ijics.2015.073028.

10. Kaur, P., Kumar, M., & Bhandari, A. A review

of detection approaches for distributed denial of service

attacks. Systems Science & Control Engineering , 2017,

vol. 5, no. 1, pp. 301–320. DOI:

10.1080/21642583.2017.1331768.

11. No. G., & Ra, I. An efficient and reliable DDoS

attack detection using a fast entropy computation

method. International Symposium on Communications

and Information Technology, 2009, pp. 1223–1228.

DOI: 10.1109/iscit.2009.5341118.

12. Zhao, Y., Zhang, W., Feng, Y., & Yu, B. A

classification detection algorithm based on joint entropy

vector against application-layer DDoS attack. Security

and Communication Networks, 2018, vol. 2018,

article no. 9463653. 8 p. DOI: 10.1155/2018/9463653.

13. Laptyev, O. A., Buchyk, S. S., Savchen-

ko, V. A., Nakonechnyy, V. S., Mykhal'chuk, I. I., &

Shestak, Ya. V. Vyyavlennya ta blokuvannya povil'nykh

DDoS-atak za dopomohoyu prohnozuvannya povedinky

korystuvacha [Detecting and blocking slow DDoS at-

tacks by predicting user behaviour]. Naukoyemni

tekhnolohiyi – Science-intensive technologies, 2022,

vol. 3, no. 55, pp. 184–192. DOI: 10.18372/2310-

5461.55.16908. (In Ukrainian).

14. Dong, S., & Sarem, M. DDoS Attack Detection

Method Based on Improved KNN With the Degree of

DDoS Attack in Software-Defined Networks. IEEE Ac-

cess, 2020, vol. 8, pp. 5039–5048. DOI:

10.1109/access.2019.2963077.

15. Johnson Singh, K., Thongam, K., & De, T. En-

tropy-based application layer DDoS attack detection us -

ing artificial neural networks. Entropy, 2016, vol. 18,

no. 10, article no. 350. 17 p. DOI: 10.3390/e18100350.

16. Muraleedharan, N., & Janet, B. A deep learning

based HTTP slow DoS classification approach using

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
154

flow data. ICT Express, 2021, vol. 7, no. 2, pp. 210–214.

DOI: 10.1016/j.icte.2020.08.005.

17. Ring, M., Wunderlich, S., Scheuring, D.,

Landes, D., & Hotho, A. A survey of network-based in-

trusion detection data sets. Computers & Security, 2019,

vol. 86, pp. 146–147. DOI: 10.1016/j.cose.2019.06.005.

18. Kumar, V., Kumar, K., & Mahadev. Classifica -

tion of DDoS attack tools and its handling techniques and

strategy at application layer. In 2nd International Con-

ference on Advances in Computing, Communication, &

Automation, 2016. 6 p. DOI: 10.1109/icaccaf.2016.

7749002.

19. RUDY attack tool to perform slow-rate attacks.

GitHub, Inc. Available at: https://github.com/

darkweak/rudy (accessed 01.02.2024).

20. Slowloris HTTP denial of service attack tool in

Python. GitHub, Inc. Available at: https://github.com/

gkbrk/slowloris (accessed 01.02.2024).

21. SlowHTTPTest application layer denial of ser-

vice attacks tool. GitHub, Inc. Available at:

https://github.com/shekyan/slowhttptest (accessed

01.02.2024).

22. PyDDoZ: DDoS tool using application layer

(L7) attack techniques. GitHub, Inc. Available at:

https://github.com/ProTechEx/pyddoz (accessed

01.02.2024).

23. Hulk (Http Unbearable Load King) DDoS at-

tacking tool. GitHub, Inc. Available at:

https://github.com/grafov/hulk (accessed 01.02.2024).

24. GoldenEye Layer 7 DDoS test tool. GitHub, Inc.

Available at: https://github.com/jseidl/GoldenEye (ac-

cessed 01.02.2024).

25. Kravchuk, A. Source code of website “Rapid

delivery”. GitHub, Inc. Available at:

https://github.com/akrava/rapid-delivery/tree/mvc-ssr

(accessed 01.02.2024).

26. Python CICFlowMeter: CICFlowMeter Python

Implementation. GitHub, Inc. Available at:

https://github.com/hieulw/cicflowmeter (accessed

01.02.2024).

27. Pyshark: Python wrapper for tshark, allowing

python packet parsing. GitHub, Inc. Available at:

https://github.com/KimiNewt/pyshark (accessed

01.02.2024).

28. Chawla, N. V., Bowyer, K. W., Hall, L. O., &

Kegelmeyer, W. P. SMOTE: synthetic minority over-

sampling technique. Journal of artificial intelligence re-

search, 2002, vol. 16, pp. 321–357. DOI:

10.1613/jair.953.

29. Sklearn: partial port of scikit-learn to go.

GitHub, Inc. Available at: https://github.com/pa-

m/sklearn (accessed 01.03.2024).

30. Go-deep: neural network implementation for

deep learning. GitHub, Inc. Available at:

https://github.com/patrikeh/go-deep (accessed

01.03.2024).

31. Gonum: set of numeric libraries for the Go pro-

gramming language. GitHub, Inc. Available at:

https://github.com/gonum/gonum (accessed

01.03.2024).

32. Tiwari, V. R. Developments in KD Tree and

KNN Searches. International Journal of Computer Ap-

plications, 2023, vol. 185, no. 17, pp. 17–23. DOI:

10.5120/ijca2023922879.

33. Usage statistics of Default protocol https for

websites. W3Techs. Available at: https://w3techs.com/

technologies/details/ce-httpsdefault (accessed

01.03.2024).

34. Current State and Future of the Istio Service

Mesh. Tetrate. Available at: https://7637559.fs 1.

hubspotusercontent-na1.net/hubfs/7637559/

Istio%20Book/The-Current-State-and-Future-of-the-

Istio-Service-Mesh.pdf (accessed 01.03.2024).

35. Shurupov, D. Kubernetes and containerization

trends according to reports of 2021 . Palark GmbH.

Available at: https://blog.palark.com/kubernetes -and-

containers-market-trends-2021/ (accessed 01.03.2024).

36. Toader, S. How to write WASM filters for Envoy

and deploy it with Istio. Outshift by Cisco Systems, Inc.

Available at: https://outshift.cisco.com/blog/envoy-

wasm-filter (accessed 01.03.2024).

Received 27.05.2024, Accepted 20.08.2024

РОЗРОБЛЕННЯ ІНФОРМАЦІЙНОЇ ТЕХНОЛОГІЇ ДЛЯ ОЦІНКИ ТА ВДОСКОНАЛЕННЯ

МЕТОДІВ ВИЯВЛЕННЯ DDOS-АТАК ПРИКЛАДНОГО РІВНЯ

А. А. Кравчук, М. В. Онай

Предметом дослідження в статті є методи розпізнавання DDoS-атак на рівні протоколу HTTP для об-

ґрунтування вимог до створення програмного забезпечення для ідентифікації зловмисних клієнтів вебсер -

верів. Метою є розроблення інформаційної технології для оцінки ефективності методів виявлення DDoS-атак,

яка дозволить кількісно визначити час їх роботи, споживання пам’яті та приблизну точність класифікації.

Крім того, ця стаття має на меті запропонувати гіпотези та перспективний підхід для вдосконалення наявних

методів виявлення DDoS-атак прикладного рівня з метою збільшення їхньої точності та швидкості ідентифі -

кації. Завдання: проаналізувати сучасні методи виявлення DDoS-атак прикладного рівня, дослідити їх особ-

ливості та недоліки; розробити програмний комплекс для оцінки методів виявлення DDoS-атак; програмно

Information security and functional safety

155

реалізувати розглянуті методи і експериментально виміряти показники їх роботи, а саме: точність класифіка -

ції, час роботи, використання пам’яті; порівняти ефективність досліджених методів; сформулювати гіпотези

та підхід для вдосконалення наявних та/або розроблення нових методів на основі отриманих результатів. Ме-

тодами, що використовуються, є: абстрагування, аналіз, системний підхід, емпіричне дослідження. З окрема,

здійснено збір даних Інтернет-трафіку, що генерувався утилітами для проведення DDoS-атак, та виконано

оброблення цих наборів даних за допомогою методу SMOTE (synthetic minority over-sampling technique) для

їх збалансування. Крім цього, програмно реалізовано методи, що досліджуються, включно з підбором не-

обхідних параметрів та навчанням моделей штучних нейронних мереж, для їх оцінки та аналітичного по -

рівняння. Отримано такі результати. Обчислено значення показників середньої точності класифікації, а та-

кож часу роботи та обсягів споживання оперативної пам’яті під час виконання класифікації Інтернет-трафіку

для шістьох методів виявлення DDoS-атак за однакових умов. Доведено, що розроблення нового методу ви-

явлення DDoS-атак на рівні протоколу HTTP із кращими значеннями показників точності та часу класифікації

є актуальним завданням. Результати експериментів показали, що метод на основі аналізу часових рядів має

найменший час роботи (1,33 мс для 5000 векторів), а метод на основі глибокої нейронної мережі – найвищу

середню точність класифікації (від 99,07 % до 99,97 %) та найменші обсяги використання оперативної пам’яті

(39,09 КБ для 5000 векторів). Висновки. У даному дослідженні розроблено програмну систему для оцінки

середньої точності класифікації методів виявлення DDoS-атак та вимірювання обчислювальних ресурсів, які

вони використовують. Наукова новизна отриманих результатів полягає в формулюванні двох гіпотез та пер -

спективного підходу щодо створення нового методу ідентифікації DDoS-атак на рівні протоколу HTTP, який

матиме одночасно високу точність класифікації та швидкість роботи для того, щоб перевершити досліджені

аналоги за цими показниками. Зокрема, одна з гіпотез ґрунтується на додатковому застосуванні атрибутів

HTTP-запитів під час класифікації Інтернет-трафіку, а інша має здійснювати аналіз графа переходів користу -

вачів між сторінками вебсайту. Також у статті поверхнево описано перспективний підхід, який полягає в

реалізації описаних гіпотез та впровадженні запропонованої архітектури програмної системи виявлення

DDoS-атак прикладного рівня для платформи Kubernetes і фреймворку Istio, що вирішує питання збору зна-

чень параметрів вебзапитів для сайтів, які використовують криптографічно захищений протокол HTTPS.

Ключові слова: DDoS; виявлення DDoS-атак; аналіз мережевого трафіку; захист інформації; AL-DDoS;

HTTP; криптографія; програмна система; Kubernetes; Istio.

Кравчук Аркадій Андрійович – асп. каф. програмного забезпечення комп’ютерних систем,

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» ,

Київ, Україна.

Онай Микола Володимирович – канд. техн. наук, доц., доц. каф. програмного забезпечення

комп’ютерних систем, Національний технічний університет України «Київський політехнічний інститут

імені Ігоря Сікорського», Київ, Україна.

Arkadii Kravchuk – PhD Student of the Department of Computer Systems Software, National Technical

University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine,

e-mail: arkakrava@gmail.com, ORCID: 0000-0002-6128-206X.

Mykola Onai – PhD, Associate Professor, Associate Professor at the Department of Computer Systems

Software, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine,

e-mail: onay@pzks.fpm.kpi.ua, ORCID: 0000-0002-4938-8355, Scopus Author ID: 57204924611.

