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The subject matter of this article is the methods to detect distributed denial-of-service (DDoS) attacks at the 

Hypertext Transfer Protocol (HTTP) level with the purpose of justifying the requirements for creating software 
capable of identifying malicious web server clients. The goal of this article is to develop an information 

technology to evaluate the efficiency of DDoS attack detection methods, which will quantify their operating time, 

memory consumption, and approximate classification accuracy. In addition, this paper p roposes hypotheses and 

a potential approach to improve existing application-layer DDoS attack detection methods with the intention of 
increasing their accuracy and identification speed. The tasks of this study are as follows: to analyse modern 

methods for detecting application-layer DDoS attacks; to investigate their features and shortcomings; to develop 

a software system to assess DDoS attack detection methods; to programmatically implement these methods and 

experimentally measure their performance indicators, specifically: classification accuracy, operating time, and 

memory usage; to compare the efficiency of the investigated methods; to formulate hypotheses and propose an 
approach to improve existing methods and/or develop new methods based on the resul ts obtained. The methods 

employed are abstraction, analysis, systematic approach, and empirical research. In particular, the datasets 

generated by DDoS utilities were processed using the synthetic minority oversampling technique (SMOTE) to 

balance them. Furthermore, the studied DDoS attack detection methods were implemented, including fitting the 
required parameters and training artificial neural network models for evaluation. The following results were 

obtained. The average classification accuracy, operating time, and random-access memory (RAM) consumption 

during Internet traffic classification were determined for six DDoS attack detection methods under the same 

conditions. This study has demonstrated that the development of a novel method to detect DDoS at tacks at the 

HTTP level with enhanced accuracy and classification speed is strongly required. The experimental results 

demonstrate that the time series-based method exhibited the shortest operating time (1.33  ms for 5000 vectors), 

whereas the deep neural network-based method exhibited the highest average classification accuracy (ranging 

from 99.07% to 99.97%) and the lowest memory consumption (39.09  KB for 5000 vectors). Conclusions. In this 

study, a software system was developed to assess the average accuracy of DDoS attack classification methods 

and measure the computational resources utilized. The scientific novelty of the obtained results lies in the 

formulation of two hypotheses and a potential approach to the creation of a novel method for detecting DDoS 

attacks at the HTTP level, which will have both high classification accuracy and a short operating time to surpass 

previously studied analogues in these respects. The first hypothesis is based on the additional usage of HTTP 

request attributes during Internet traffic classification. The second hypothesis is to analyse a graph of user 

transitions between website pages. The article also superficially describes a potential approach that involves the 

implementation of the described hypotheses as well as the proposed software architecture of an application-

layer DDoS attack detection system for the Kubernetes platform and the Istio framework, which addresses the 

issue of collecting web request parameter values for websites that use the cryptographically secure d HTTPS 

protocol. 
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Introduction 
 

Motivation 
 

The availability and reliability of Internet services 

are prerequisites for successful completion of most tasks 

in various areas of everyday life. For example, card 

payments in a shop require transaction processing on 

bank servers, while distance education is carried out us -

ing video conferencing systems and online learning 

platforms. Indeed, the modern development of 

information technology has made it possible to automate 

a multitude of routine tasks, rapidly process vast arrays 

of data, identify optimal solutions for programmed tasks, 

manage complex systems in an automated manner, and 

so forth. In many cases, the success of these scenarios 
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depends on the stable operation and availability of web 

servers that execute relevant software and serve user 

requests. Moreover, the stability of an Internet 

connection and data transfer speed play crucial roles in 

the field of information and communication  

technologies, as they facilitate remote provision of 

services to any location worldwide. 

A disruption in the functioning of an online service, 

in addition to causing inconvenience to customers, may 

result in significant losses to the owners of the service, 

including financial and reputational losses, reduced 

productivity, and data privacy breaches. Therefore, 

ensuring the stability of servers providing online services 

is an important task in the information technology field, 

which involves protecting against various types of 

cyberattacks. It is also important to note that cyberattacks 

have become highly effective weapons of aggression in 

the context of contemporary hybrid wars [1]. Such 

attacks can disrupt the functioning of critical 

infrastructure and even worsen the moral and 

psychological state of the population, as is unfortunately 

true in Ukraine. In the context of a full-scale war, the 

stability of the computer systems used by civilians or 

defence forces is critical because cyber threats only 

increase in such circumstances. 

There are numerous types of cyberattacks that aim 

to make Internet services unavailable to users, but re-

searchers distinguish a separate type of cyberattack for 

this purpose – denial-of-service attacks, among which 

distributed denial-of-service (DDoS) attacks are the most 

well-known [2]. Furthermore, among all types of 

cyberattacks, DDoS attacks are among the most prevalent 

causes of server outages [3]. This is because such attacks 

do not incur high costs or special preparation, and the 

damage caused is quite significant. It should also be 

noted that in Ukraine during the third quarter of 2023, the 

proportion of DDoS attacks in all cyberattacks was 

approximately 90% [4]. Given the growing number of 

Internet of Things (IoT) devices that can be easily hacked 

by attackers to be used in distributed attacks, the issue of 

DDoS protection is becoming increasingly critical. In 

addition, as cloud computing continues to develop 

rapidly, an increasing number of companies will likely  

use it to provide services to customers via the Internet. 

The preceding argument leads us to conclude that the 

number of Internet services and cyberattacks will 

continue to increase. Thus, protecting computer 

resources from DDoS attacks is highly relevant. 

DDoS attacks are designed to overwhelm the victim 

server with an excessive number of requests; thus, the 

main way to protect against such attacks is to filter 

incoming traffic from malicious users. It is evident that 

detecting malicious requests is significantly more 

complex than blocking network packets by IP address, so 

this article will focus on DDoS detection methods . 

State of the art 
 

There are numerous types of DDoS attacks, and for 

systematization, scientists have divided them into 

categories. One such categorization distinguishes 

between attacks in the network and application layers of 

the Open Systems Interconnection (OSI) model. Over the 

past few decades, scientists have conducted in-depth 

analyses of the characteristics of Internet traffic during 

network-layer DDoS attacks and have proposed effective 

methods to identify such traffic. For example, Ohsita et 

al. [5] described a method for detecting SYN flood 

attacks using statistical analysis. They justified that the 

rate of TCP SYN packets from benign users has a normal 

distribution and proved that high variance values for this 

rate can be a sign of a DDoS attack. Furthermore, 

Bogdanoski et al. [6] proposed an adaptive threshold 

algorithm for the detection of such attacks. This 

algorithm calculates the number of TCP packets with the 

SYN flag set and compares it with a threshold value that 

can vary depending on the total number of packets 

received over a given period. In addition, Boro et al. [7] 

considered a method to detect UDP flood attacks, which 

first counts the number of changes in the destination port 

and source IP address across packets originating from 

clients and then computes the Renyi entropy based on 

these obtained values. When an anomalous entropy value 

exceeds a predetermined threshold range, it is interpreted 

as an indicator of a potential attack. In other words, there 

are many methods for detecting network-layer DDoS 

attacks that are highly accurate and offer high 

classification speed. Moreover, the success of defence 

against network-layer attacks depends on the distribution 

of data centres involved and their bandwidth capacity to 

withstand heavy loads. In contrast, application layer 

attacks have a quite different situation. 

Experts have highlighted that application-layer 

DDoS attacks are challenging to identify [8] because they 

behave similarly to user traffic; therefore, the speed of 

sending requests is no longer a reliable indicator for 

detecting this type of attack, in contrast to network-layer 

attacks. Although application-layer DDoS attacks have 

recently been actively studied by researchers, and 

appropriate methods for their identification have begun 

to emerge, there is still a gap in the understanding of both 

the characteristics and features of these attacks and 

effective methods for defending against them. Therefore, 

this article focuses on application layer attacks because 

existing methods either cannot detect them with high 

accuracy or take a long time to determine them. 

Regarding the gaps in this subject area, it is also worth 

noting that authors frequently fail to provide information  

regarding the operating time and memory consumption 

of developed solutions in their publications. 
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Thus, research into the detection of application-

layer DDoS attacks is highly relevant. Analysis of 

modern methods for identifying these cyberattacks, in 

conjunction with experimental evaluation of the time and 

memory utilization of the corresponding software 

implementations during their operation, is essential to 

identify shortcomings and objectively compare the 

efficiency of existing solutions. This  will facilitate the 

formulation of new approaches intended to enhance the 

detection process of application-layer DDoS attacks. 

 

The paper structure 
 

The remainder of this paper is divided into six 

sections and conclusions. The structural organization of 

the article is given below. 

In Section 1, the main purpose of this study is 

outlined, and all objectives, which were fulfilled during 

this research, are enumerated in detail. 

Section 2 presents a comprehensive literature 

review of modern methods for detecting application-

layer DDoS attacks, providing an in-depth analysis of the 

current state-of-the-art techniques. In this section, six 

relevant methods are examined and their respective 

advantages and disadvantages are discussed, followed by 

a comparative analysis. 

Section 3 describes the methodology employed  

during the experiment to assess the efficiency of the 

analysed DDoS attack detection methods. This section 

describes the approach used to generate datasets, the 

tools used to implement selected methods and develop 

the test software system, and the quantitative measures 

used to evaluate the accuracy, operating time, and 

memory usage of the considered methods. 

Section 4 presents the case study of this paper by 

describing the experimental evaluation process of the 

analysed methods and the results of the conducted 

experiments. This section explains the dataset generation 

workflow and how the developed programs process data 

to prepare balanced datasets. In addition, it describes the 

software implementation of the system, which assesses 

the accuracy, speed, and memory consumption of the 

implemented DDoS attack detection methods during 

classification. 

Section 5 discusses the obtained results. This 

section analyses the results of each method across all 

metrics and highlights their strengths and limitations . 

Furthermore, in this section, the methods are described in 

detail, including the selected optimal parameter values. 

In Section 6, hypotheses and an approach to 

improve DDoS attack detection methods are proposed 

based on the analysis of the results of the considered 

methods. This section outlines the architecture of the 

software system for detecting application-layer DDoS 

attacks and describes the developed approach. 

The paper ends with the Conclusions , which  

summarize the findings and highlight the scientific 

novelty and practical significance of this research. In 

addition, future research directions are outlined. 

 

1. Purpose and objectives 
 

The purpose of this study was to develop an 

information technology to evaluate the efficiency of 

DDoS attack detection methods. The technology will 

quantify the time and memory consumption of these 

methods and provide an approximate estimation of their 

average accuracy. Additionally, based on the analysis of 

the quantitative results obtained for existing methods, 

this study aims to propose an approach to improve 

application-layer DDoS attack detection methods with 

the objective of increasing their accuracy and/or 

detection speed. 

To achieve this purpose, the following objectives 

must be performed: to analyse modern methods of 

detecting application-layer DDoS attacks and investigate 

their features and shortcomings; to develop a software 

system to assess DDoS attack detection methods; to 

programmatically implement the considered methods 

and experimentally measure their performance indicators 

(classification accuracy, operating time, memory usage); 

to compare the efficiency of the investigated methods; 

and to formulate hypotheses and propose an approach for 

improving existing methods and/or developing new 

methods based on the results obtained. 

 

2. Application-layer DDoS attack  

detection methods 
 

It is necessary to analyses the specifics of this 

subject area and its terminology. As previously stated, 

DDoS attacks are categorized into two distinct classes 

according to the OSI model employed: network-layer 

(NL-DDoS) and application-layer (AL-DDoS) attacks. 

In fact, DDoS attacks utilize a specific communication  

protocol, such as ICMP, TCP, UDP, DNS, HTTP, and 

others, according to which the affiliation to the 

corresponding class is determined. However, regardless 

of the protocol used, each class has its  own specific 

characteristics: NL-DDoS attacks aim at overloading the 

bandwidth of communication channels, switches, and 

other network devices by sending an excessive number 

of packets per unit of time, whereas AL-DDoS attacks 

aim at exhausting the computing resources of the server 

that processes the requests. In addition, the following  

types of DDoS attacks are distinguished by the speed of 

malicious traffic generation: high-rate and low-rate. The 

majority of NL-DDoS attacks are high-rate (HR-DDoS) 

attacks because modern data require an extremely large 

amount of data to overload them. This is achieved by 
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continuously sending network packets from numerous 

devices simultaneously with minimal delays, i.e. the 

transmission speed under such conditions is very high. 

However, AL-DDoS attacks do not require sending a 

substantial amount of data at high speed because the 

target server can be overwhelmed by a relatively small 

number of special requests, which nevertheless require a 

considerable amount of computational resources (e.g., 

CPU time or RAM) for processing. This is the reason 

why application-layer attacks are commonly low-rate 

(LR-DDoS), which significantly complicates the 

detection process [9]. For example, uploading large files 

to a server involves a resource-intensive write operation 

on disk, yet this activity often appears to be a typical 

client behaviour. Thus, the peculiarity of detecting 

application-layer DDoS attacks lies in focusing more on 

the content of requests and their attributes when 

analysing Internet traffic data rather than on the speed at 

which requests are received. To gain a more 

comprehensive understanding of the classification of 

DDoS attack types, Fig. 1 shows a diagram that organizes 

the types of attacks into several categories. 

The identification of DDoS attacks is a binary 

classification task, whereby each sender of web requests 

should be assigned to one of two classes: benign or 

malicious user. To determine the appropriate class, 

network traffic data are collected, processed, and 

analysed. This information is then used to identify the 

sources of DDoS attacks using a specific classification 

method. Cybersecurity experts have identified two 

distinct categories of DDoS detection methods: those 

based on signature detection and those bas ed on anomaly 

detection [10]. Furthermore, the latter category 

encompasses a number of additional approaches that 

employ statistical analysis, information theory, artificial 

neural networks, and other techniques. It is evident that 

algorithms that search for matches between traffic 

attributes and attack signatures in a database can identify 

attacks almost instantly. However, signature-based 

methods are not suitable for detecting AL-DDoS attacks 

because such attacks do not have stable attribute values 

that can be used to identify them. In contrast, anomaly-

based methods can detect even new types of attacks, but 

require more time for classification. Consequently, this 

paper considers anomaly-based methods, which perform 

more in-depth data analysis based on certain 

mathematical techniques and are able to 

comprehensively classify application-layer DDoS 

attacks. A clear representation of the classification of 

DDoS attack detection methods is provided in Fig. 2, 

which shows the hierarchical structure of these methods, 

dividing them into categories and types. 

No et al. [11] proposed a method for detecting 

DDoS attacks using information theory to reduce the 

computational complexity of calculating the information  

entropy of the rate of incoming network packets from 

users. The primary advantage of the Fast Entropy method 

is its ability to accelerate the detection of DDoS attacks, 

thereby enabling their rapid blocking and mitigation. In 

addition, No et al. [11] provided experimental evidence 

that their Fast Entropy method has the shortest 

identification time and the highest classification accuracy 

among existing methods based on information entropy. 

However, the main limitation of the proposed algorithm 

is that it was evaluated only in the context of HR-DDoS 

attacks at the network layer. Therefore, the proposed 

method cannot detect application layer attacks due to its 

reliance on a single network layer feature. 

In contrast to No et al. [11], Zhao et al. [12] selected 

other attributes to analyse user behavior on websites and 

used such attributes to detect AL-DDoS attacks. 

Similarly to the previously mentioned method, this 

method is based on information entropy but employs 

other formulas for new attributes. Specifically, it utilizes  

the Uniform Resource Locator (URL) of the requested 

resource and the client's IP address as attributes to 

calculate two entropy values for each unique client and 

web server resource. The entropy of URL resources 

requested by a given client's IP address is as follows : 
 

       
K

URL URL
k i 2 k i

k 1

EUPI i P x log P x



 , (1) 

 

where  EUPI i  is the information entropy of URLs from 

the ith IP address ix ; 

 URL
k iP x  is the probability of occurrence of the 

kth URL in requests from the ith IP address ix ; 

K  is the number of unique URLs in requests from 

the ith IP address ix . 

Formula (1) can be used to identify a DDoS attack 

on a specific web server resource. However, during 

periods of high user activity, such as a flash crowd event 

where a large number of users visit, for example, a 

promotional product page in an online store, this 

indicator may falsely signal a DDoS attack. Therefore, 

the authors proposed another formula for calculating the 

entropy of IP addresses that have accessed a particular 

URL resource on the server: 
 

       
N

IP IP
i k 2 i k

i 1

EIPU k P u log P u



 , (2) 

 

where  EIPU k  is the information entropy of IP ad-

dresses for the kth URL ku ; 

 IP
i kP u  is the probability of occurrence of the ith IP 

address in requests to the kth URL ku ; 
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Fig. 1. Classification scheme for DDoS attack types  

 

 
 

Fig. 2. Classification scheme of DDoS attack detection methods  
 

N  is the number of unique IP addresses in requests 

to the kth URL ku . 

It is argued that the proposed method can accurately 

detect HTTP DDoS attacks on web servers and 

distinguish them from flash crowd events by checking the 

entropy of IP addresses that accessed a URL resource 

with suspicious activity using the formula (2). However, 

this approach does not consider other attributes of web 

requests that could cover a wider range of attacks against 

web server resources. Furthermore, it is unclear how 

DDoS attack detection software can obtain specified 

attributes from user requests using an HTTPS protocol, 

which encrypts all data between the server and client. 

Laptyev et al. [13] proposed a method to detect LR-

DDoS attacks executed via slow HTTP  

requests. The proposed method leverages time series 

analysis to predict future user behavior, thereby allowing 

for the pre-emptive classification of all site visitors and 

blocking suspicious ones. A key attribute is the delay 

time between packets received from the client, which is 

quantified using the following formula: 

 

 

 
k

i 1 i
i 1

t t

T
k 1










, (3) 

 
where T  is the average delay between received packets; 

k  is the number of packets received for analysis; 

i 1t   is the time of receipt of the i+1st packet; 

it  is the time of receipt of the ith packet. 
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The construction of this time series involves 

analysing the time intervals between successive user 

packets using the formula (3), and the focus of the 

method is to identify abnormally large delays or a trend 

toward increasing delays, which is indicative of an LR-

DDoS attack. One disadvantage of this  method is that 

analysing the time series data for each website visitor is 

time-consuming, potentially requiring a separate high-

performance computer. A further limitation of this study 

was that it only analysed the time delay between packets. 

In addition, the authors of this method did not provide 

any conclusions regarding the optimal threshold value for 

packet delay that should signal a DDoS attack. 

Dong et al. [14] proposed a method to detect DDoS 

attacks based on the k-nearest neighbours (KNN) 

algorithm and proposed an improvement to this method. 

The KNN method classifies network packets using their 

attributes, represented as a vector 

      1 1 2 2 n nf x ,f x ,..., f x . This vector contains 

information about the number of packets, duration of 

receiving all packets, total number of received bytes, and 

average number of received bytes per second. This 

representation creates a Euclidean space, allowing the 

calculation of distances between packet vectors. As a 

result, by analysing the nearest neighbors of a packet 

being classified, we can determine whether it is benign or 

malicious. To enhance the classification precision, the 

authors of this method improved the KNN model by 

introducing an additional weighting factor into the 

formula to determine the class of an object as follows: 

 

 
p id(x ,x )

1
w

e
 , (4) 

 
where w  is the weight factor in the formula used to 

determine the class of the object; 

p id(x ,x )  is the distance between the object under 

classification px  and the current object ix , which is se-

lected for comparison with the given data set. 

The application of formula (4) yielded a commend -

ably high classification accuracy of 91%. Another 

noteworthy aspect of this method is its ability to gather 

attributes in software-defined networking (SDN) through 

the API of network controllers. However, a significant 

limitation of this method is its requirement for 

preliminary training using a dataset that provides 

comprehensive information about common types of 

application-layer DDoS attacks. In addition, this study 

does not specify how to determine the optimal value of 

parameter k, which determines the number of nearest 

objects considered when classifying a packet. In addition, 

the proposed solution has yet to be evaluated for its 

efficacy in detecting low-rate attacks. 

Johnson Singh et al. [15] presented a method to 

classify HTTP DDoS attacks that employs artificial 

neural networks (ANN), specifically, the multilayer 

perceptron (MLP) and genetic algorithm (GA). The 

structure of the proposed neural network comprises three 

layers: an input layer, a hidden layer, and an output layer. 

Each layer contains three neurons, with the exception of 

the output layer, which contains only one node. This 

method distinguishes itself from other ANN-based 

approaches by using a genetic algorithm to initialize 

weights during model training, as opposed to the 

conventional use of gradient descent during the backward 

error propagation phase. Johnson Singh et al. [15] 

proposed using three attributes as inputs to the neural 

network: the number of HTTP requests, entropy, and 

variance of requests within each user session. Data 

collection was conducted over a recurring 20 s interval, 

which, according to the authors, was sufficient for a 

DDoS attack to make a website inaccessible. It is also 

important to note that in this method, only HTTP GET 

requests are considered for analysis . The entropy of 

HTTP GET requests during the session of the ith user 

within the tw  timeframe is: 

 

 
 

 

 

 

 
t t 1

t
tt

1

i,w i,w

i,w n
i,wj,wj 1

C C
E log log

CC









 
   
 
 

, (5) 

 

where  ti,wE  is the information entropy of the web re-

quests of the ith user within the time interval tw ; 

 ti,wC  is the number of requests received from the 

ith user within the time interval tw ; 

n  is the number of unique users captured within the 

time interval tw ; 

  is the parameter whose value is 0 when 

   t t 1i,w i,wC C


 , or 1 when    t t 1i,w i,wC C


 . 

Upon calculating the entropy indicators of user web 

requests using formula (5) over several time intervals, the 

variance of these entropy values is obtained as follows : 

 

 
 j

2
N

ij i,w

i

E M

V
N

 
 

 



, (6) 

 

where iV  is the variance of the entropy values of the web 

requests of the ith user; 

iM  is the mean value of the entropy values of the web 

requests of the ith user; 

N  is the number of time intervals within which all 

entropy values for the ith user are obtained. 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2024, no. 3(111)               ISSN 2663-2012 (online) 
138 

Formulas (5) and (6) are used to calculate the values 

of the key attributes which characterize the client's 

behaviour during communication with the HTTP server. 

The proposed method can detect application-layer DDoS 

attacks on web servers with a high degree of accuracy, 

and the detection rate was approximately 98% based on 

the experimental results. Furthermore, the proposed 

method can distinguish between DDoS attacks and flash 

crowd events by comparing the variance in the entropy 

values of web requests and the total number of requests 

for each suspicious user. However, the proposed method 

has certain limitations. It is only capable of analysing 

GET requests, which represents a significant restriction 

because numerous HTTP DDoS attacks employ other 

web request methods, such as POST, PUT, and PATCH. 

Another drawback of this method is that the proposed 

attributes are based solely on the number of user requests. 

Consequently, although the proposed method can 

identify LR-DDoS attacks generated by Slowloris and 

SlowHTTPTest, it is unlikely to be able to detect other 

types of low-rate DDoS attacks. In addition, 

classification accuracy depends on the training dataset 

that contains sample requests from various types of 

HTTP DDoS attacks. 

Muraleedharan et al. [16] proposed a deep neural 

network (DNN) model to identify slow DDoS attacks at 

the HTTP protocol level. The choice of DNN in the given 

study is justified by the fact that, among all artificial 

neural networks, this type has one of the highest data 

classification accuracy rates. Furthermore, deep neural 

networks have gained significant popularity, as 

evidenced by the rapid development of large language 

models (LLMs), which are constructed using DNN 

architectures and have demons trated remarkab le 

capabilities in natural language processing tasks. The 

difference between a deep neural network and a 

conventional ANN (e.g., MLP) is that a DNN has 

multiple hidden layers with neurons rather than a single 

layer. In addition, a DNN is a fully connected feed-

forward neural network; thus, each neuron is connected 

to all neurons in the subsequent layer. This allows us to 

recognize nonlinear relationships between data. The 

DNN model proposed in this study incorporates four 

hidden layers, with each layer containing the same 

number of neurons as the input layer. The input data for 

this model comprise a set of 80 attributes from the flow 

of network packets, including protocol type, number of 

received bytes, packet count, and transmission speed. 

Thus, the input and hidden layers contain 80 neurons. In 

order to train the model, the open dataset CICIDS2017, 

which contains all of the aforementioned attributes, was 

employed, as well as a class label for each packet. This 

label indicates benign traffic or one of the four DDoS 

tools: Slowloris, SlowHTTPTest, Hulk, and GoldenEye. 

The main feature of the proposed method is that it 

performs multi-class classification, which enables 

determination of the name of the program that generated 

the detected DDoS attack. Thus, the output layer of the 

DNN comprises five neurons, each responsible for a dis -

tinct class: benign traffic and four DDoS utilities. Among 

the aspects of the implementation of this neural network, 

the following should be noted: ReLU (rectified linear 

unit) and Softmax activation functions were used for the 

hidden layers and the output layer, respectively; the 

Adam (adaptive moment estimation) optimization  

algorithm was used to train the model; and the categorical 

cross-entropy loss function was chosen for classification. 

The proposed method exhibits a remarkably high 

classification accuracy rate of nearly 99%, which 

significantly outperforms the existing methods. 

However, the accuracy of the proposed method was 

derived from a relatively small dataset comprising only 

6000 attribute vectors, with only 2000 representing 

benign traffic. The limited sample size raises concern 

about the practical applicability of the findings. To obtain 

more objective results, it is advisable to employ a 

balanced dataset and a more substantial and diverse data 

collection to thoroughly evaluate the proposed method. 

Although this study did not measure the classifier's 

operating time, given the complexity of DNN and the 

high dimensionality of the data, it is fair to say that this 

method has a relatively low attack detection rate 

compared to the other analysed methods. In the DDoS 

attack detection context, any delay is a significant 

disadvantage because it is important to identify the attack 

before it makes the website unavailable to users. Another 

challenge in implementing this method is the 

considerable time required to train the model and the 

necessity to find a balanced dataset with different types 

of HTTP DDoS attacks. 

This section presents a comprehensive analysis of 

six DDoS attack detection methods, evaluates their 

advantages and weaknesses, pinpoints their limitations , 

and explores their potential use in identifying DDoS 

attacks at the application layer. In addition, a set of key 

criteria was established to compare the abovementioned 

methods (Table 1). 

According to Table 1, the EUPI-EIPU [12], Time 

series [13], MLP-GA [15], and DNN [16] methods can 

be employed to detect application-layer DDoS attacks. In 

addition, the KNN [14] method can be used if new 

attributes that characterize AL-DDoS attacks are 

selected, and in such cases, the model is trained on a 

dataset containing the corresponding features. In 

addition, almost each of the above methods is capable of 

identifying LR-DDoS attacks; however, the authors have 

not conducted exhaustive experimental trials to test their 

proposed solutions against different types of attacks. For 

example, the authors of the MLP-GA [15] method did not 

assess   the   classification   accuracy   of   low-rate   DDoS 
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Table 1 

Comparative characteristics of DDoS attack detection methods  

Criteria 

 

Method 

OSI model 

layers; 

protocols 

Attributes 

employed 

Requirements for usage Type of DDoS attacks 

supervised 

learning 

parameters 

tuning 
NL AL HR LR 

Fast entropy [11] 
3, 4; ICMP, 

TCP, UDP 

speed of 

receiving 

packets 

– + + – + – 

EUPI-EIPU [12] 7; HTTP 

URL of the 

request, IP 

address of the 

client 

– + – + – + 

Time series [13] 
4, 7; TCP, 

HTTP 

delay time 

between packets 
– + – + – + 

KNN [14] 
3, 4; ICMP, 

TCP, UDP 

number of 

packets and 

bytes, speed and 

duration of 

receiving bytes 

+ + + – + – 

MLP-GA [15] 7; HTTP 

number of 

requests, their 

entropy, 

variance 

+ – – + + – 

DNN [16] 
4, 7; TCP, 

HTTP 

properties of 

network packet 

flow 

+ – – + – + 

 
attacks. In addition, the number of requests does not 

adequately characterize LR-DDoS attacks, it is advisable 

to use other attributes in entropy calculations when using 

this method. Therefore, selecting the optimal attributes to 

detect low-rate AL-DDoS attacks is an important task. 

Upon examination of the data presented in Table 1, it is 

evident that the HTTP is the most prevalent application-

layer attack protocol. It is also important to note that all 

methods require preliminary preparation prior to use, 

including finding thresholds for correctly signalling an 

attack, selecting parameters (e.g., k for KNN), and 

training a model for machine learning methods. 

In order to draw final conclusions about the analysis 

of modern methods for detecting application-layer DDoS 

attacks, it is necessary to compare the classification 

accuracy, operating time, and memory consumption of 

these solutions under the same experimental conditions, 

specifically, with the same set of test data, the same 

amount of free computing resources of the same 

computer, and the same programming language for 

simple meeting software components and their 

dependencies. 

 

3. Methodology 
 

The methodology of the experiment to determine 

the efficiency of the analysed AL-DDoS attack detection 

methods requires discussion. This step is necessary to 

objectively evaluate the considered solutions in a 

common environment using the same test data. The 

experimental study consists of three parts: preparation of 

the dataset, implementation of the methods  and software 

system for testing, and quantitative evaluation of the 

method efficiency. 

The purpose of the dataset preparation phase is to 

generate a dataset comprising network packets typical of 

both benign and malicious traffic, which are 

subsequently employed to train models and verify the 

accuracy of the classification methods. Because the 

available public datasets contain a limited number of 

examples of HTTP LR-DDoS attacks [17], we decided to 

generate a new dataset. This involves preparing a web 

server, finding utilities to simulate relevant DDoS 

attacks, capturing the generated network traffic, 

processing the captured data according to the 

requirements of the classifiers, and saving the resulting 

data in a structured format. To generate low-rate DDoS 

attacks at the HTTP protocol level, several utilities have 

been selected, each differing in their method of 

generating malicious traffic [18]. Specifically, the 

following programs are involved: Rudy [19], 

Slowloris [20], SlowHTTPTest [21], PyDDoZ [22], 

Hulk [23], and GoldenEye [24], most of which generate 

LR-DDoS attacks. The victim is a web server serving a 
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website with multiple pages (URLs) using the HTTP 

protocol, which provides web request attributes in an 

unencrypted format, allowing them to be obtained 

directly from the network packet. This server is launched 

from the source code [25] on a local computer, where 

DDoS attacks are generated. 

To obtain user traffic, it is proposed to manually  

visit website pages. However, the number of such visits 

will be too small; thus, a special algorithm should be 

employed to increase the number of minority class 

examples to correct the dataset imbalance. It is also 

crucial that such algorithm should be responsive to non-

stationary processes of traffic changes, thereby ensuring 

that synthetic data generated accurately reflect the 

dynamic nature of network traffic. However, given that 

each dataset in this study contains only a single manually 

generated instance of a DDoS attack without any 

additional concurrent events, the requirement for this 

algorithm to adapt to fluctuating traffic patterns is not 

applicable in this case. 

Additionally, it is necessary to develop a program 

that analyses and processes the captured network packets 

to select and store the necessary attributes in a structured 

format. The Python programming language should be 

used to create such a program because it offers many 

libraries for processing network data (e.g., CICFlowMe -

ter [26] and pyshark [27]), which significantly simplifies  

the process of searching and selecting network packet 

attribute values. Moreover, software development using 

Python is fast because of its concise syntax. Despite the 

low execution speed of Python programs, primarily due 

to the use of an interpreter, this is not a significant 

disadvantage in this case because the primary goal in this 

case is to obtain processed data. 

The analysed methods for detecting DDoS attacks, 

as well as the software system for testing, were 

implemented in the Go programming language since it is 

important to obtain values for the operating time of the 

corresponding solutions under the same conditions. Go is 

a compiled programming language, so the execution 

speed of developed programs is high and comparable to 

other compiled languages. In contrast, Python is 

relatively slow. Although Python offers numerous 

packages for data processing and machine learning, these 

often execute calls to compiled libraries written in C, 

which compromises the objectivity of comparing  

different methods. To implement the software system, a 

strategy design pattern was selected to facilitate the 

convenient interchange of different DDoS attack 

detection methods during testing. Furthermore, methods 

requiring supervised learning are trained on a training 

dataset, which is a subset of a previously prepared 

dataset. In addition, the training dataset is used to select 

optimal parameter values as required. 

A quantitative evaluation of the methods was 

conducted by measuring the following indicators: 

average classification accuracy, operating time, and 

RAM usage using the developed software. The efficiency 

of the methods was evaluated using a test dataset that was 

extracted from the main dataset generated during the first 

phase. In particular, the accuracy of DDoS attack 

detection methods is calculated as binary classification 

accuracy, which represents the proportion of correctly 

classified vectors to the total number of classified 

vectors. This approach only provides a general estimation 

of accuracy, which means that the resulting value is 

somewhat approximate and may not fully reflect the true 

accuracy of the method. This limitation arises because 

DDoS attacks are typically non-stationary processes, and 

the characteristics of traffic may vary over time. In 

dynamic network environments, short-lived DDoS 

attacks may go undetected, resulting in a small number 

of false negatives that do not significantly impact the 

overall accuracy score. Therefore, the accuracy score 

may be misleadingly high. However, in this study, each 

DDoS dataset was designed to contain only a manually  

generated DDoS attack, resulting in a more uniform 

traffic pattern. In addition, benign traffic was assumed to 

be evenly distributed throughout the attack duration, 

which simplified the evaluation process. Although this 

approach to calculate accuracy may not be suitable for 

more complex, real-world scenarios with multiple attacks 

and highly dynamic traffic, it is a reasonable 

approximation in the current controlled setting. Given  

these constraints, the goal of this study is not to determine 

the exact accuracy of DDoS attack detection methods; 

rather, we evaluate their performance under controlled 

conditions. Accordingly, binary classification accuracy 

was employed, and it was calculated using the following  

formula: 

 

 
TP TN

AC
TP FP TN FN




  
, (7) 

 

where AC  is the average classification accuracy; 

TP  is the number of correctly classified attribute 

vectors of DDoS traffic; 

TN  is the number of correctly classified attribute 

vectors of benign traffic; 

FP  is the number of vectors incorrectly classified 

as DDoS traffic attribute vectors ; 

FN  is the number of vectors incorrectly classified 

as benign traffic attribute vectors . 

For all the analysed methods, it is necessary to 

calculate the average classification accuracy for each 

type of HTTP DDoS attack generated by the previously 

mentioned utilities using formula (7). Future research 

may investigate more comprehensive metrics and 

adaptive approaches for evaluating classification 
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accuracy, which would be better suited to varying traffic 

conditions and multiple attack scenarios. In addition, the 

operating time and RAM consumption of the developed 

software solutions should be measured several times 

using the built-in profiling tools in Go. The analysis 

should be based on the average values of these metrics to 

eliminate the impact of random factors. 

It is important to note that the Fast entropy [11] 

method has not been experimentally evaluated, i.e., its 

accuracy, operating time, and memory consumption have 

not been measured. This is due to the fact that this method 

was designed for the specific purpose of detecting only 

network-layer DDoS attacks and relies on an attribute 

that characterizes only high-rate attacks. 

 

4. Experimental evaluation of methods 
 

During the preparation of the test dataset, several 

Bash scripts and Python programs were developed and 

employed to perform the necessary tasks. These tasks 

included deploying a web server, collecting Internet 

traffic parameters, generating DDoS attacks, processing 

network packets, and extracting the necessary packet and 

web request attributes for the analysed methods. To 

capture the traffic, the tcpdump utility was used to listen 

to all network interfaces and to save any network packets 

sent to or from the running web server. In other words, 

all incoming and outgoing traffic from the test website 

was monitored, and filtering was based on the port 

number of the sender or receiver matching the port 

number on which the website was running. Packets were 

captured during the execution of each DDoS attack 

generation tool for 5 min, except for Hulk [23] and 

GoldenEye [24], for which the capture duration was 5 s 

because these tools generate high-rate attacks. The traffic 

capture results were recorded in PCAP files. 

The simulation of user traffic was conducted by 

manually opening website pages from three different 

browsers simultaneously and performing typical user 

actions such as registering on the site, authorization, 

creating and editing elements and uploading photos. To 

generate DDoS attacks, relevant utilities are launched 

from the corresponding source code [19 – 24]. Each 

utility was executed sequentially via scripts while the 

network traffic was captured, resulting in 6 PCAP files 

for the respective DDoS utilities and one additional 

PCAP file describing the user traffic. The settings used 

for the DDoS utilities are listed in Table 2. In addition, it 

should be noted that whenever possible, DDoS tools are 

configured to generate random URLs, headers, and 

request bodies. 

Two distinct approaches were employed to process 

the obtained PCAP files with the objective of extracting  

the necessary attributes of Internet traffic from both the 

network and application layers. This was necessary be-

cause the Time series [13], KNN [14], and DNN [16] 

methods rely on the attributes of network packet flow, 

whereas the other analysed methods rely on information  

from HTTP requests. To calculate packet flow 

characteristics from the PCAP files, the 

CICFlowMeter [26] program was employed, which was 

used to create a dataset for training the DNN [16] model. 

The CICFlowMeter [26] program provides a total of 80 

attributes about packet flow, including all necessary 

network layer attributes for the Time series [13] and 

KNN [14] methods. Finally, the calculated attributes are 

exported to CSV files. A Python program was developed 

and used to obtain information about HTTP requests. 

This program analyses the contents of packets in the 

PCAP file using the pyshark [27] library and extracts the 

parameters of each HTTP request from the TCP protocol 

data into a separate array even if the request is not fully 

completed. Subsequently, all captured web request 

attributes are written to a CSV file, including the IP 

address, port number, date and time the request was 

received, request method, URL, and the User-Agent of 

the request. Therefore, for seven different classes of 

captured data, the two programs produced 14 CSV files. 

The number of packets and requests from each Internet 

traffic source obtained as a result of the above data 

processing steps is shown in Table 3. 

Since almost all of the DDoS detection methods 

analysed in this study perform only binary classification, 

and their identification accuracy can vary significantly 

depending on the type of attack, it was decided to create 

 

Table 2 

Parameters of utilities for generating DDoS attacks  

Parameter 

 

DDoS utility 

Request methods 

Request 

body size, 

KB 

Delay 

between 

requests, s 

Number of 

threads 

Number of 

client 

sockets 

Operating 

time, s 

Rudy [19] POST 5120 3 100 100 300 

Slowloris [20] GET – 15 1 150 300 

SlowHTTPTest [21] GET – 10 1 150 300 

PyDDoZ [22] GET and POST – 0.4 128 128 300 

Hulk [23] GET – – 1022 1022 5 

GoldenEye [24] GET and POST – – 5 150 5 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2024, no. 3(111)               ISSN 2663-2012 (online) 
142 

Table 3 

The amount of information after processing the generated traffic from various sources  

Source or type of traffic 
Number of obtained attribute vectors  

at the network layer at the application layer 

Benign 67 492 

Rudy [19] 346 100 

Slowloris [20] 600 600 

SlowHTTPTest [21] 430 210 

PyDDoZ [22] 739 1484 

Hulk [23] 2887 3008 

GoldenEye [24] 2473 2471 

 
datasets in which user traffic data are combined with data 

from each DDoS attack source for the network and 

application layers separately. This approach allows for a 

more accurate determination of the efficiency of these 

methods by classifying specific DDoS utilities, thereby 

identifying potential gaps in their implementation. 

As shown in Table 3, combining benign traffic with  

any other source of DDoS attacks into a single dataset 

creates an unbalanced dataset, which typically results in 

inefficient training of machine learning models and, 

consequently, degrades classification accuracy. 

Therefore, another Python program was developed that 

combines information from two CSV files, one 

representing benign traffic, into one dataset and balances 

it by increasing the number of minority class values using 

the SMOTE [28] algorithm. However, it is important to 

acknowledge the limitations of using the SMOTE 

algorithm when balancing datasets containing network 

traffic data because it does not account for the non-

stationary behaviour of DDoS attacks. Despite this 

limitation, the relatively stable network environment 

captured in the datasets, which were generated under 

controlled conditions in this study, allows for the 

utilization of more straightforward balancing 

approaches. Because benign traffic remains cons istent 

throughout a single instance of a DDoS attack, the 

SMOTE algorithm remains a feasible choice for this 

study. However, in future research involving more 

dynamic network environments, it will be essential to 

develop a more advanced algorithm that can adapt to 

non-stationary traffic changes to ensure the reliability of 

the measured classification accuracy values of detection 

methods. Additionally, a dataset containing network 

traffic attributes from all sources of DDoS 

attacks [19 – 24] was generated and balanced for the 

DNN [16] method to evaluate the accuracy of the multi-

class classification. As a result, 13 balanced datasets were 

created. The number of classes in each of the prepared 

datasets is given in Table 4. 

For experimental evaluation of application-layer 

DDoS attack detection methods, a software system was 

developed in Golang, implementing the analysed meth-

ods [12 – 16]. The proposed system performs the 

following tasks: reading data from the generated datasets, 

training models or tuning parameter values for the 

corresponding methods, measuring their classification 

accuracy, operating time and memory usage, and 

exporting the obtained metric values to CSV files. 

Although Golang lacks the concepts of classes and 

inheritance, it supports interfaces, structures, and 

methods, thus enabling interface implementation  

features. In addition, Golang facilitates code reuse and 

modularity via the composition of structures. 

The developed software system is the core 

component of the information technology designed to 

evaluate the efficiency of DDoS attack detection 

methods, and its primary workflow is illustrated in Fig. 3. 

 

 

Table 4 

Number of instances of each class in generated datasets  

Dataset name 
Class name in the 

dataset 

Number of Internet traffic attribute vectors  

at the network layer at the application layer 

by class in total by class in total 

1 2 3 4 5 6 

Benign and Rudy [19] 
Benign 346 

692 
492 

984 
Rudy [19] 346 492 

Benign and Slowloris [20] 
Benign 600 

1200 
600 

1200 
Slowloris [20] 600 600 

Benign and SlowHTTPTest [21] 
Benign 430 

860 
492 

984 
SlowHTTPTest [21] 430 492 
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Continuation of Table 4 

1 2 3 4 5 6 

Benign and PyDDoZ [22] 
Benign 739 

1748 
1484 

2968 
PyDDoZ [22] 739 1484 

Benign and Hulk [23] 
Benign 2887 

5774 
3008 

6016 
Hulk [23] 2887 3008 

Benign and GoldenEye [24] 
Benign 2473 

4946 
2471 

4942 
GoldenEye [24] 2473 2471 

Benign, Rudy [19], Slowloris [20], 

SlowHTTPTest [21], PyDDoZ [22], 

Hulk [23] and GoldenEye [24] 

Benign 2887 

20209 – 

Rudy [19] 2887 

Slowloris [20] 2887 

SlowHTTPTest [21] 2887 

PyDDoZ [22] 2887 

Hulk [23] 2887 

GoldenEye [24] 2887 

 

 
 

Fig. 3. IDEF0 diagram of information technology for evaluating  

the efficiency of DDoS attack detection methods  

 
Fig. 3 shows an IDEF0 diagram that illustrates the 

processes involved in assessing DDoS attack detection 

methods, as well as their inputs, outputs, controls, 

resources, and interconnections. The main process (A0) 

is divided into five constituent steps: loading datasets, 

initializing detection methods, evaluating the accuracy of 

each method across all datasets, assessing their operating 

time and memory usage, and exporting the results to CSV 

files. This diagram provides a high-level overview of 

how the developed software system orchestrates these 

tasks in the overall information technology framework. It 

is important to note that the evaluation processes in 

NODE: TITLE: NUMBER:Evaluating the efficiency of DDoS attack detection

methodsA0

1

Array of dataset

properties and traffic

attribute vectors

Instances of DDoS

attack detection

methods with

interfaces for training

and evaluation of

classification

CSV files

of datasets

Obtained operating

time and memory

usage values of

DDoS attack

detection methods

across batches of

the dataset

Obtained accuracy

values of DDoS

attack detection

methods across all

datasets

CSV files of

evaluation

results

Datasets

settings

(file path,

name,

and type)

Specifications of

existing DDoS attack

detection methods

Names of DDoS

attack detection

methods

Batch sizes of dataset

to assess operating

time and memory usage

Name of dataset to

assess operating time

and memory usage

Path to output

directory

Output directory for

saving the resulting files

1

Load datasets

of benign and

DDoS network

traffic

2

Initialise DDoS

attack detection

methods

3

Evaluate accuracy

of all DDoS attack

detection methods

across all datasets

4

Evaluate operating

time and memory

usage for all DDoS

attack detection

methods across

batches of the

dataset

5

Export evaluation

results into

CSV files
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activities A3 (accuracy evaluation) and A4 (operating 

time and memory usage evaluation) are crucial and 

closely interrelated and are managed by the same module 

in the software system. Because of the similarities  

between these two processes, only the first is explored in 

depth. For a more detailed breakdown, the decomposition 

of process A3 is illustrated in Fig. 4. 

Fig. 4 illustrates the IDEF0 decomposition of 

activity A3 from the top-level diagram in Fig. 3. This 

decomposition highlights that the process of evaluating 

the accuracy of DDoS attack detection methods is 

divided into five principal stages: selecting appropriate 

datasets for each method, splitting datasets into training, 

validation, and test subsets, training models of each 

method on all datasets, predicting traffic types for test 

subsets, and calculating classification accuracy using the 

predicted and expected values. The selection of an 

appropriate dataset is essential because this study utilizes 

two distinct types of datasets: one representing traffic 

data at the network layer and application layer. Each 

considered DDoS attack detection method is designed to 

operate with only one of these data types; thus, it is 

necessary to filter and match the supported datasets for 

each method during the initial step (A31). The model 

training process (A33) and traffic type prediction (A34) 

processes are implemented in accordance with the 

specifications of the respective DDoS attack detection 

methods, as detailed in Section 2 of this paper. The 

classification accuracy at the final step (A35) was 

calculated using the methodology outlined earlier in this 

article. 

IDEF0 diagrams do not fully illustrate how the 

corresponding stages handle arrays of input data and 

other detailed operations, which are crucial for 

understanding the process. Therefore, Fig. 5 presents a 

flowchart of the algorithm to evaluate the accuracy, 

operating time, and memory usage of DDoS attack 

detection methods. The algorithm is implemented as a 

universal software module that is applicable to processes 

A3 and A4, as shown in Fig. 3. 

 

 

 
 

Fig. 4. IDEF0 diagram of the accuracy evaluation process  

for all DDoS attack detection methods on all datasets 
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Fig. 5. Scheme of the algorithm for evaluating accuracy, operating time,  

memory usage of DDoS detection methods  
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The algorithm, which is illustrated in Fig. 5, 

outlines the steps involved in selecting datasets, training 

models, classifying test data, and calculating 

performance metrics. It accepts various input parameters, 

such as dataset specifications, method names, batch sizes, 

and repetition count. The flow of the algorithm begins by 

iterating through all considered DDoS attack detection 

methods. For each method, the algorithm processes all 

datasets and splits them into training and tes ting subsets. 

Once a method is trained, the algorithm determines 

whether batch sizes have been specified and, if so, 

iterates through them, slicing the test dataset accordingly. 

During evaluation, it measures the cumulative allocated 

heap bytes before and after the prediction process, as well 

as the time required to make predictions on the test 

dataset's attribute vectors. The results, including the 

calculated accuracy, operating time, memory usage, and 

associated input parameters, are then appended to a 

dedicated array. If a repetition count is specified, the 

evaluation is repeated with the same parameters for the 

number of provided repetitions. Finally, the consolidated 

results are written as CSV files. Note that the inputs of 

the batch size and repetition count are optional. When 

only the accuracy needs to be measured, the batch sizes 

are provided as an empty set, and the repetition count is 

set to zero. However, to evaluate the operating time and 

memory usage, the algorithm takes a set of batch sizes 

and a repetition count, which enables the assessment of 

performance across different input sizes and the 

generation of average results through repeated 

evaluations. 

It is essential to examine the details of the software 

implementation of the proposed system, which is 

designed to evaluate the efficiency of DDoS attack 

classification methods. The source code is organized into 

several packages, each containing elements intended for 

the same purpose. The “Dataset” structure in the package 

of the same name represents a dataset and includes fields 

where relevant information is stored. Additionally, this 

structure implements methods for loading data from a 

CSV file and retrieving various data, including an array 

of attribute value vectors, a set of class names found in  

the dataset, the OSI model layer corresponding to the 

stored attributes, and the total number of vectors in the 

dataset. In the “results” package, the “PredictionResult” 

and “ResourceUsage” structures represent information  

about classification accuracy and computing resources 

used, respectively. Together, they are included in the 

“EvaluationResult” structure, which, through 

composition, describes the performance indicators of a 

method during testing on a specific dataset, with the 

dataset's name also reflected in the structure. Each DDoS 

attack detection method is evaluated through a series of 

experiments, during which the datasets and size of the 

test samples are varied. The quantitative indicators 

calculated during each experiment were stored in the 

“EvaluationResults” structure, which consisted of the 

method name and an array of “EvaluationResult” 

instances that reflected the results of each experiment. In 

the “methods” package, each DDoS attack detection 

method is encapsulated within its own structure, which 

implements the “DDoSDetectionMethod” interface. This 

interface includes several functions essential for utilizing  

classification methods, such as “GetName”, which 

returns the full name of the method; 

“IsDatasetAccepted”, used to verify compatibility  of the 

method with a given dataset; “Train”, which takes a 

dataset to either train the model or initialize method 

parameters; and “Evaluate”, which assesses the method's 

classification accuracy using a specified test sample size 

and returns results. The above elements from the 

“methods” package implement the strategy design 

pattern, where the “DDoSDetectionMethodsAssessor” 

structure from the “benchmarks” package plays the role 

of the context. This structure evaluates all DDoS attack 

detection methods in the “EvaluateAllMethods” 

function, where it sequentially changes strategies, i.e., 

instances of the corresponding method structures, that are 

added in advance by the “AddDetectionMethod” 

function. Then, this structure executes the “Train” and 

“Evaluate” functions for each new strategy. In addition, 

when “EvaluateAllMethods” is executed, each strategy is 

tested on all datasets added by the “AddDataset” 

function. Finally, the obtained results are exported to 

CSV files using the “ExportEvaluationResultsToCS V” 

function from the “DDoSDetectionMethodsAssessor” 

structure. The UML class diagram for the developed 

structures and interfaces (Fig. 6) provides a 

comprehensive overview of the software system, 

highlighting the interrelationships among the various 

components. 

During the implementation of the software system, 

third-party modules were used: sklearn [29] to search for 

k-nearest neighbors and construct a multilayer 

perceptron, go-deep [30] to generate a deep neural 

network model, and gonum [31] to manipulate the 

matrix. The experimental evaluation results of the 

average classification accuracy of application-layer 

DDoS attack detection methods [12 – 16] for all 

considered datasets are presented in Table 5. 

As illustrated in Table 5, the DNN [16] method was 

the sole approach evaluated on a large-scale dataset that 

incorporated the generated data from all DDoS 

utilities [19 – 24], as it is the only method capable of 

performing multi-class classification. It is important to 

note that in this case, the average classification accuracy 

was calculated based on the proportion of correctly 

matched predictions to the expected class names for each 

network flow relative to the total number of vectors in the 

sample. 
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To evaluate the operating speed of the meth-

ods [12 – 16], three consecutive measurements of the 

classification time were taken for samples from the Be-

nign and Hulk [23] dataset of different sizes: 100, 500, 

1000, 2500, and 5000 vectors. Subsequently, the 

arithmetic means of the obtained values from the three 

measurements were calculated for each experiment. The 

results of measuring the operating times of the methods 

are given in Table 6. 

 

 
 

Fig. 6. UML class diagram of a software system to test DDoS attack detection methods  
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Table 5 

Average classification accuracy of application-layer DDoS attack detection methods on different datasets 

Dataset name 

Average classification accuracy of the method, % 

EUPI-EIPU 

[12] 

Time series 

[13] 

KNN  

[14] 

MLP-GA 

[15] 

DNN  

[16] 

Benign and Rudy [19] 91.67 94.42 99.42 97.17 99.44 

Benign and Slowloris [20] 95.74 97.24 99.83 96.33 99.5 

Benign and SlowHTTPTest [21] 94.55 87.04 97.91 97.01 99.07 

Benign and PyDDoZ [22] 93.72 80.66 99.46 96 99.72 

Benign and Hulk [23] 98.39 83.18 97.26 85.53 99.97 

Benign and GoldenEye [24] 98.6 90.1 96.93 97.49 99.63 

Benign, Rudy [19], Slowloris [20], 

SlowHTTPTest [21], PyDDoZ [22], 

Hulk [23] and GoldenEye [24] 

– – – – 98.19 

 

Table 6 

Operating time of application-layer DDoS attack detection methods for different sizes of input data 

Number of vectors  

in the test dataset 

Time consumed by the method for vector classification, ms  

EUPI-EIPU [12] Time series [13] KNN [14] MLP-GA [15] DNN [16] 

100 0.27 0.04 24.33 0.05 8 

500 2 0.13 119.33 0.2 31.33 

1000 4 0.24 221.33 3 64.33 

2500 224.33 0.74 562.67 25.33 145.67 

5000 585.33 1.33 1097 93.33 273.67 

 
Similarly, the amount of RAM consumed by the 

application-layer DDoS attack detection methods was 

measured in each experiment, and the results are 

presented in Table 7. 

 
Table 7 

Memory consumption of application-layer DDoS attack detection methods for different sizes of input data 

Number of vectors  

in the test dataset 

The amount of RAM consumed by the method for vector classification, KB 

EUPI-EIPU [12] Time series [13] KNN [14] MLP-GA [15] DNN [16] 

100 436.68 17.71 4658.43 33.93 0.82 

500 4832.54 123.57 23246.17 206.24 3.94 

1000 10385.1 251.95 46540.19 2130.96 7.85 

2500 274278.01 524.37 116123.43 14400.84 19.56 

5000 723350.22 1049.29 228863.96 56322.25 39.09 

 
In conclusion, the values of average classification 

accuracy (Table 5), operating time (Table 6), and 

memory consumption (Table 7) for the analysed DDoS 

attack detection methods [12 – 16] were obtained. 

 

5. Results discussion 
 

A brief review of the obtained results indicates that 

among the methods [12 – 16], no single method 

simultaneously achieved the highest average 

classification accuracy, the lowest operating time, and 

the lowest memory consumption. Therefore, to gain a 

more detailed understanding of the data presented in 

Tables 5–7, it is necessary to analyze each method 

separately, highlighting the specific advantages and 

limitations of each method against different DDoS 

utilities. 

It is important to acknowledge that the accuracy of 

DDoS attack detection methods was evaluated using 

manually generated datasets, each comprising a single 

instance of a specific DDoS attack type generated by the 

corresponding DDoS utility. Furthermore, the benign 

traffic in each dataset was replicated and distributed 

evenly throughout the attack duration using the SMOTE 

algorithm to achieve a more balanced representation. 

These two factors resulted in a discrepancy between the 

reported average classification accuracy in this study and 

the accuracy that could be observed in real-world 

scenarios. This is due to a significant limitation of the 

current methodology, namely that it does not consider 
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dynamic network environments, where traffic 

characteristics can fluctuate more unpredictably. 

Therefore, the actual accuracy under real-life conditions 

may be lower than that observed in this study. Despite 

these limitations, the results provide a valuable basis for 

comparing the relative performance of the considered 

methods, particularly in terms of their average 

classification accuracy in relatively stable traffic 

environments. Further research can address this issue by 

evaluating the detection accuracy in more complex and 

dynamic network scenarios and employing a more 

comprehensive approach, thereby providing a more 

accurate assessment of real-life performance. 

It should also be mentioned that all the experiments  

and measurements conducted in this research were 

performed on a computer with the following  

configuration: Intel Core i5-10210U processor with a 

clock speed 2.11 GHz; DDR4 RAM of 16 GB. 

The EUPI-EIPU [12] method demonstrated 

satisfactory classification accuracy (exceeding 90%) for 

malicious traffic across all considered DDoS utilities. 

However, using this criterion, it is inferior to the majority  

of the other methods. For high-rate DDoS attacks 

(Hulk [23] and GoldenEye [24]), classification accuracy 

reaches 98%, while for low-rate attacks it fluctuates 

between 91% and 95%. This discrepancy can be 

explained by the lower frequency of requests during low-

rate attacks, which causes the entropy value to potentially 

align with that of benign traffic. In addition, the entropy 

value of a particular URL resource is significantly 

influenced by the size of the time window. This 

parameter determines the time interval within which the 

collected requests are analysed and classified, 

segmenting the continuous stream of Internet traffic into 

discrete intervals, i.e., information arrays, for further 

processing. The findings indicated that a 30 s time 

window was optimal for detecting both HR- and LR-

DDoS attacks, achieving the highest classification 

accuracy for both types compared to other time window 

values. The entropy threshold for this method was 

calculated as the average between the mathematical 

expectations of the entropy values for benign and 

malicious traffic, adjusted by subtracting and adding the 

standard deviation, respectively. Although the EUPI-

EIPU [12] method can perform classification at high 

speed, this speed significantly decreases as the number of 

input data increases. For example, classification time 

increased to 0.2 s for 2500 vectors , whereas for 1000 

vectors it took 0.004 s. Another disadvantage of this 

method is the high RAM consumption (700 MB for 5000 

vectors), which is one of the highest among the evaluated 

methods. This high memory usage is likely due to the 

dynamic creation of hash tables to group requests by 

URL and senders by IP address during method execution, 

which consumes additional memory. 

The highest DDoS attack classification speed was 

observed with the Time series [13] method, which 

represents a significant advantage given the urgency of 

reducing the time required to detect and block DDoS 

attacks. The Time series [13] method consumed 

significantly less time for classification compared to its 

nearest competitor, taking only 0.001 s to process 5000 

vectors, whereas the MLP-GA [15] method took 0.09 s 

for the same task. The rationale behind this high 

processing speed is that the Time series [13] method does 

not attempt to identify attacks by processing all input 

data. Instead, it selects a subset of the first packets from 

each source (50% of the packets in this study) and 

predicts future delays between packets. In addition, in 

contrast to the other methods analysed, this method 

employs only a single network-layer attribute, thereby 

reducing the computational complexity. However, the 

average classification accuracy of the Time series [13] 

method was the lowest among the obtained results. This 

method relies solely on the time delay between packets, 

resulting in an approximate accuracy of 83% for high-

rate DDoS attacks and a peak accuracy of 90% for 

GoldenEye [24]. In addition, the classification accuracy 

for HR-DDoS attacks could have been even lower 

because the original version was designed to detect only 

slow attacks, which are identified when the time delay 

between packets exceeds a given threshold. 

Consequently, the Time series [13] method was modified  

in this study to also detect high-rate attacks. DDoS class 

assignment for a client occurs when the time delay 

between received packets is either large or small, i.e., 

when it exceeds or falls below the predefined thresholds, 

depending on the type of attack identified during training. 

The classification accuracy of LR-DDoS attacks ranges 

from 87% to 97%, except for PyDDoZ [22], for which 

the generated malicious traffic was identified with the 

lowest accuracy of 80%. This poor accuracy is likely due 

to the rate of sending requests by PyDDoZ [22] being 

substantially similar to the rate of benign traffic. Another 

advantage of the Time series [13] method is that it has 

one of the smallest memory consumptions among the 

others, requiring only 1 MB for 5000 vectors. 

The accuracy of the KNN [14] method fluctuates 

between 97% and 99% for all considered sources of 

DDoS attacks, making it one of the best-performing 

methods analysed in this study. In experiments, we 

determined that the optimal value for parameter k, at 

which classification accuracy reaches its maximu m 

value, is 3. This corresponds to selecting the three nearest 

neighbours to determine the object’s class. However, the 

KNN [14] method had the longest operating time among 

all considered methods, taking 1.1 s to process 5000 

vectors, which is twice as slow as EUPI-EIPU [12] with 

the same input data. The classification process could be 

even longer without the use of the k-d tree (KD-
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Tree) [32] in the software implementation, which speeds 

up the search for nearest neighbouring objects. The low 

classification speed can be attributed to the use of four 

network-layer attributes, which significantly increases 

the number of computational operations while ensuring 

high accuracy of DDoS attack identification. Another 

limitation of the KNN [14] method is its high RAM 

consumption, which renders it one of the least memory-

efficient methods to be evaluated. Notably, classifying 

only 5000 vectors requires 220 MB of memory. This 

large memory footprint can be attributed to the inherent 

characteristics of the KD-Tree data structure employed 

by KNN. 

As previously stated, the MLP-GA [15] method 

exhibits relatively low time consumption for data 

classification (0.09 seconds for 5000 vectors) and 

moderate memory consumption, requiring only 55 MB to 

process 5000 vectors. It is worth noting that the sigmoid  

function was selected as the activation function, and 

Adam was employed as the optimization algorithm in the 

implementation of this neural network. The maximu m 

number of training iterations in this model was 300 

epochs, and an early stopping mechanism was employed 

to prevent overtraining. The requests submitted by each 

website visitor were divided into groups of 10 requests 

each, within which the required attributes for this method 

were calculated, including the entropy value of the user 

requests. The MLP-GA [15] achieves high average 

classification accuracy of 97%, with a slight reduction to 

85% for requests originating from the Hulk [23] utility. 

During the implementation of the proposed method, it 

was determined that filtering web requests using the GET 

method, as previously assumed in the study [15], was not 

necessary. Therefore, the obtained accuracy values are 

satisfactory, particularly for low-rate attacks. 

In this study, the DNN [16] method demonstrated 

the highest efficiency in classifying application-layer 

DDoS attacks, achieving an accuracy of 99% for all 

considered malicious traffic sources. Furthermore, the 

accuracy of the multi-class classification was 98%. This 

high performance can be attributed to the use of 

numerous attributes (80 in total) in detecting malicious  

traffic with a deep neural network, which is also known 

for its high performance. Although requiring a relatively  

low number of training iterations (10 epochs for binary 

classification and 30 for multi-class), this method 

exhibits a significantly longer training time compared to 

MLP-GA [15], which is one of its notable disadvantages. 

In addition, the operating time of DNN [16] is relatively  

high, taking 0.3 seconds to process 5000 vectors, which 

is approximately three times slower than MLP-GA [15]. 

However, in terms of RAM consumption, this method is 

the most efficient, as it uses only 0.04 MB for 5000 input 

vectors. This memory efficiency can be explained by the 

lack of need for preprocessing input data prior to 

classification. Furthermore, prediction operations (input 

data processing) in a deep neural network are executed 

without creating additional data structures. 

Thus, among the analysed methods for detecting 

application-layer DDoS attacks, none simultaneously 

achieved the best average classification accuracy and 

operating time, which highlights the relevance of 

developing an improved method. Specifically, the 

average accuracy of methods with relatively short 

operating times (e.g., Time series [13]) can be enhanced 

by incorporating additional attributes from web requests. 

However, using an excessive number of attributes may 

increase the operating time of the method, as observed in 

DNN [16]. Therefore, it is critical to identify Internet 

traffic features that are highly correlated with DDoS 

attack requests. For example, prior to training a 

DNN [16] model, techniques, such as principal 

component analysis (PCA) or autoencoders, can be 

employed to reduce the dimensionality of the input data 

by discarding irrelevant information, which can increase 

the speed of DDoS classification. 

 

6. Hypotheses and approach for improving 

AL-DDoS attack detection methods 
 

Several hypotheses need to be considered to 

develop an application-layer DDoS attack detection 

method that can outperform existing methods in terms of 

both classification accuracy and speed. 

The first hypothesis proposes improving the Time 

series [13] method by incorporating the analysis of 

information entropy changes in HTTP request attributes, 

in addition to examining the time delay between network 

packets. Specifically, further investigation can be 

conducted to determine whether the classification 

accuracy of the proposed method can be enhanced by 

including parameters such as the HTTP request method, 

request URL, number and length of request headers, and 

size of the request body. This approach involves 

constructing additional time series for these attributes 

and predicting their future entropy values to detect 

abnormal deviations from typical benign traffic values. 

Furthermore, parameters related to the web server, such 

as CPU load, RAM usage, and disk activity, could also 

be considered, as high values may indicate a DDoS 

attack. However, it must be experimentally proven that 

these new attributes improve the classification accuracy 

of the proposed method. 

The second hypothesis proposes the creation of a 

new method to detect AL-DDoS attacks, focusing on 

analysing the graph representing transitions between 

URL resources (pages) of a website by each user to 

identify anomalous behavior. It is evident that the 

majority of ordinary users visit popular pages on a 

website, and the order in which they access such pages 
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may be slightly similar (even for different users), as they 

typically navigate to the next page by clicking on one of 

the available hyperlinks on the current page, depending 

on the navigation options offered on the website. In 

contrast, DDoS attacks are typically directed either at a 

specific URL or by crawling all available pages of a 

website. Therefore, to identify suspicious behaviour 

typical of DDoS attacks, it is advisable to focus on 

factors, such as the number of cycles, path length in the 

graph, and other relevant features during the analysis of 

the transition graph. 

The main challenge in implementing the proposed 

hypotheses is the difficulty in capturing HTTP request 

attributes when the HTTPS is used, which is currently the 

most prevalent protocol among web servers [33]. This 

problem arises because all data transmitted via HTTPS 

are protected by asymmetric cryptography, which makes  

it impossible to decrypt the value of any web request 

attribute without a private key. It is obvious that 

providing access to private keys to third-party software is 

a risky and unsafe practice. Therefore, a more reliable 

alternative approach is preferred. One potential solution 

is to use a specific software architecture for designing 

Internet services, which enables the encryption of 

requests not directly within the web framework (i.e. the 

program that directly processes web requests and is 

responsible for the functioning of the website) but in a 

separate module for traffic routing. This module allows 

the user to inspect web requests in unencrypted form for 

software extensions within the system. For example, 

Istio, a framework created for Kubernetes clusters to 

configure networks for microservices and control the 

routing of Internet traffic between clusters, can serve as 

such a router. Istio allows for the encryption of web 

requests sent outside the internal system to the global 

network, the setting of special rules, and the integration 

of middleware to process HTTP requests, thereby 

providing access to all attributes of the requests [34]. In 

other words, it is possible to read all parameters of web 

requests in Istio, even when using the HTTPS protocol 

by implementing an application embedded in Istio that 

uses the provided interface for this purpose. Furthermore, 

the Istio framework was adapted for the Kubernetes 

platform, which is the most popular environment for 

deploying microservices [35]. Istio is widely used in 

cloud services, including Kubernetes-based projects. 

Therefore, an application-layer DDoS attack detection 

software system is proposed exactly for the Kubernetes 

platform, where the attributes of Internet traffic are 

collected using the Istio framework. 

Based on the above hypotheses and software 

architecture, a potential approach to improving current 

application-layer DDoS attack detection methods is 

described below, with a focus on software engineering 

aspects. As previously stated, DDoS detection software 

should be deployed on a Kubernetes cluster and interact 

with the Istio framework. Given the increasing popularity 

of microservice architecture and containerisation (a 

method of virtualizing and packaging applications and 

their dependencies in an isolated container that allows 

them to run in any environment), this requirement is 

reasonable. Kubernetes is designed for applications that 

require high performance, fault tolerance, and scalability. 

Consequently, multiple websites can be hosted on the 

same cluster, thereby allowing the DDoS detection 

system to effectively monitor and protect all deployed 

web servers by leveraging the cluster's distributed 

computing resources. This approach assumes that traffic 

encryption for HTTPS (TLS termination) is performed in 

a virtual gateway in Istio that connects the cluster's 

internal network to the Internet. To capture the 

unencrypted web request attributes required for the 

proposed DDoS detection methods, an EnvoyFilter [36] 

should be created in the Istio network, through which all 

Internet traffic directed to the web servers will pass. This 

filter forwards each HTTP request to middleware, where 

the required attributes of the web requests are sent to a 

separate software module for further classification of 

DDoS attacks. Communication between different 

software components in the system should be performed  

using a message broker. This facilitates the decoupling of 

components, their asynchronous interactions, scalability, 

and fault tolerance. The web request classification 

module should implement one of the proposed DDoS 

detection methods and be able to scale horizontally  

during peak loads. Identified sources of malicious traffic 

can be stored in a non-relational key-value database, 

where it is sufficient to retain information about the IP 

address of each DDoS generator and the time of its 

detection. These data can be further used to create rules 

to block Internet traffic from DDoS sources in the Istio 

network. 

 

Conclusions 
 

This study analyses modern methods to detect 

application-layer DDoS attacks on web server resources. 

This study examines several relevant methods in this 

field, revealing their main concepts, operational 

mechanisms, advantages, and disadvantages. 

Furthermore, this study evaluates the average 

classification accuracy of these methods and measures 

their operating time using generated datasets that include 

examples of malicious requests from popular utilities to 

conduct low-rate and high-rate DDoS attacks at the 

HTTP protocol level. The experimental results 

demonstrate that none of the analysed methods achieves 

high average classification accuracy and operating speed 

simultaneously, which indicates the need to develop a 

new method to detect application-layer DDoS attacks 
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with the desired characteristics. Two hypotheses are 

proposed for creating new methods, one of which 

involves the additional use of HTTP request attributes in 

the classification of Internet traffic, and the other 

involves an analysis of user transition graphs between 

website pages. In addition, this paper presents a brief 

overview of a potential architectural solution within the 

proposed approach for a software system designed to 

detect DDoS attacks based on the Kubernetes platform 

and the Istio framework. If further developed and 

implemented, this solution could address the challenge of 

collecting web request parameter values for websites that 

use the cryptographically protected HTTPS protocol. 

The scientific novelty of this study lies in obtaining 

average classification accuracy values, as well as 

measuring the operating time and RAM consumption 

during the classification of network packets and web 

requests from prepared datasets under the same 

conditions for six modern and promising methods for 

detecting application-layer DDoS attacks, namely: 

EUPI-EIPU [12], Time series [13], KNN [14], MLP-

GA [15], and DNN [16]. To conduct this experimental 

study, balanced datasets were generated with malicious  

requests created using popular DDoS utilities: Rudy [19], 

Slowloris [20], SlowHTTPTest [21], PyDDoZ [22], 

Hulk [23], and GoldenEye [24]. The results demonstrate 

that the Time series [13] method exhibits the shortest 

operating time (1.33 ms for 5000 vectors), and the 

DNN [16] method exhibits the highest average 

classification accuracy (ranging from 99.07% to 99.97%) 

and the lowest memory consumption (39.09 KB for 5000 

vectors). In addition to the comparative analysis of 

existing DDoS attack detection methods based on the 

obtained values, the scientific novelty lies in formulating  

two hypotheses to create a new method to identify DDoS 

attacks at the HTTP protocol level, which will combine 

high accuracy and classification speed to outperform 

existing analogues in these metrics. 

The practical significance of this study lies in the 

development of a software system to test DDoS attack 

detection methods, as well as in the software 

implementation of all analysed methods. In future, this 

system will enable the evaluation of new methods by 

measuring the accuracy, operating time, and memory  

usage. In addition, the practical significance is 

demonstrated by describing a potential software 

architecture for a system that collects web request 

attributes using a dedicated software module for Istio in 

a Kubernetes cluster. Although the architectural design is 

presented in a relatively superficial way, it nevertheless 

provides a conceptual framework that can be further 

developed and refined in future research. 

A potential approach to improve existing methods 

for detecting application-layer DDoS attacks is proposed. 

This approach encompasses the realization of the 

formulated hypotheses to improve DDoS attack 

classification methods, along with the implementation of 

the proposed software system architecture. A concise 

description is provided that offers insights into the 

processes involved in collecting, processing, and 

classifying Internet traffic data from a software 

engineering perspective. 

Future research directions. Future research will 

focus on the development and validation of the hypothe-

ses proposed in this paper to develop a method for 

detecting application-layer DDoS attacks with the 

highest accuracy and classification speed among known 

analogues. This involves software implementation of the 

methods based on the proposed hypotheses and 

evaluation using the developed information technology. 

Furthermore, the proposed approach requires further 

refinement and implementation of the outlined 

architectural design, and the resulting software system 

should then be experimentally evaluated in the 

Kubernetes cluster environment. 

In addition, the next steps involve developing a new 

methodology to evaluate the accuracy of DDoS attack 

detection methods. This methodology will be sensitive to 

sudden and significant traffic changes in dynamic 

network environments, which will make it more 

applicable to real-world scenarios. The current approach 

is insufficient to address the issue of traffic fluctuations 

and non-stationary behaviours inherent to DDoS attacks, 

which limits the reliability of the obtained results. The 

implementation of a more comprehensive evaluation 

approach will facilitate precise measurement of the 

classification accuracy of DDoS attack detection 

methods. Furthermore, the methodology for generating 

and balancing DDoS datasets requires further revision. In 

particular, the use of the SMOTE algorithm to balance 

datasets introduces a limitation because it generates 

synthetic data without considering the non-stationary 

nature of DDoS attacks. Therefore, it is necessary to 

employ a more sophisticated algorithm to address the 

imbalances in the datasets, ensuring that the generated 

data more accurately suit the dynamic network 

environment. Moreover, future evaluations may consider 

testing detection methods on datasets containing multiple 

instances of different types of DDoS attacks potentially 

generated by different DDoS utilities to simulate more 

complex and realistic attack scenarios. The 

implementation of these improvements will lead to more 

precise assessments of the accuracy of DDoS attack 

detection methods, which will enhance the reliability of 

experimental results . 
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РОЗРОБЛЕННЯ ІНФОРМАЦІЙНОЇ ТЕХНОЛОГІЇ ДЛЯ ОЦІНКИ ТА ВДОСКОНАЛЕННЯ 

МЕТОДІВ ВИЯВЛЕННЯ DDOS-АТАК ПРИКЛАДНОГО РІВНЯ 

А. А. Кравчук, М. В. Онай 

Предметом дослідження в статті є методи розпізнавання DDoS-атак на рівні протоколу HTTP для об-

ґрунтування вимог до створення програмного забезпечення для ідентифікації зловмисних клієнтів вебсер -

верів. Метою є розроблення інформаційної технології для оцінки ефективності методів виявлення DDoS-атак, 

яка дозволить кількісно визначити час їх роботи, споживання пам’яті та приблизну точність класифікації. 

Крім того, ця стаття має на меті запропонувати гіпотези та перспективний підхід для вдосконалення наявних 

методів виявлення DDoS-атак прикладного рівня з метою збільшення їхньої точності та швидкості ідентифі -

кації. Завдання: проаналізувати сучасні методи виявлення DDoS-атак прикладного рівня, дослідити їх особ-

ливості та недоліки; розробити програмний комплекс для оцінки методів виявлення DDoS-атак; програмно 
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реалізувати розглянуті методи і експериментально виміряти показники їх роботи, а саме: точність класифіка -

ції, час роботи, використання пам’яті; порівняти ефективність досліджених методів; сформулювати гіпотези 

та підхід для вдосконалення наявних та/або розроблення нових методів на основі отриманих результатів. Ме-

тодами, що використовуються, є: абстрагування, аналіз, системний підхід, емпіричне дослідження. З окрема, 

здійснено збір даних Інтернет-трафіку, що генерувався утилітами для проведення DDoS-атак, та виконано  

оброблення цих наборів даних за допомогою методу SMOTE (synthetic minority over-sampling technique) для 

їх збалансування. Крім цього, програмно реалізовано методи, що досліджуються, включно з підбором не-

обхідних параметрів та навчанням моделей штучних нейронних мереж, для їх оцінки та аналітичного по -

рівняння. Отримано такі результати. Обчислено значення показників середньої точності класифікації, а та-

кож часу роботи та обсягів споживання оперативної пам’яті під час виконання класифікації Інтернет-трафіку  

для шістьох методів виявлення DDoS-атак за однакових умов. Доведено, що розроблення нового методу ви-

явлення DDoS-атак на рівні протоколу HTTP із кращими значеннями показників точності та часу класифікації 

є актуальним завданням. Результати експериментів показали, що метод на основі аналізу часових рядів має 

найменший час роботи (1,33 мс для 5000 векторів), а метод на основі глибокої нейронної мережі – найвищу 

середню точність класифікації (від 99,07 % до 99,97 %) та найменші обсяги використання оперативної пам’яті 

(39,09 КБ для 5000 векторів). Висновки. У даному дослідженні розроблено програмну систему для оцінки 

середньої точності класифікації методів виявлення DDoS-атак та вимірювання обчислювальних ресурсів, які 

вони використовують. Наукова новизна отриманих результатів полягає в формулюванні двох гіпотез та пер -

спективного підходу щодо створення нового методу ідентифікації DDoS-атак на рівні протоколу HTTP, який 

матиме одночасно високу точність класифікації та швидкість роботи для того, щоб перевершити досліджені 

аналоги за цими показниками. Зокрема, одна з гіпотез ґрунтується на додатковому застосуванні атрибутів 

HTTP-запитів під час класифікації Інтернет-трафіку, а інша має здійснювати аналіз графа переходів користу -

вачів між сторінками вебсайту. Також у статті поверхнево описано перспективний підхід, який полягає в 

реалізації описаних гіпотез та впровадженні запропонованої архітектури програмної системи виявлення 

DDoS-атак прикладного рівня для платформи Kubernetes і фреймворку Istio, що вирішує питання збору зна-

чень параметрів вебзапитів для сайтів, які використовують криптографічно захищений протокол HTTPS. 

Ключові слова: DDoS; виявлення DDoS-атак; аналіз мережевого трафіку; захист інформації; AL-DDoS;  

HTTP; криптографія; програмна система; Kubernetes; Istio. 
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