
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
120

UDC [004.2+004.75]:504.062:620.9:519.216.3 doi: 10.32620/reks.2024.2.10

Oleksandr MAMCHYCH, Maksym VOLK

Kharkiv National University of Radioelectronics, Kharkiv, Ukraine

A UNIFIED MODEL AND METHOD FOR FORECASTING ENERGY

CONSUMPTION IN DISTRIBUTED COMPUTING SYSTEMS BASED

ON STATIONARY AND MOBILE DEVICES

The subject of research in this article is the forecasting of energy consumption when computing distributed tasks

on computer networks built on the basis of server solutions and distributed systems based on personal
smartphones. The goal of this study was to create a universal computing energy cost prediction model that can

be applied to both traditional and mobile cloud systems. Tasks: conduct an analysis of energy-saving approaches

and technologies used to calculate data; consider computer system models and actions with them, n amely: model

of distributed job, model of distributed computing system, model of distribution strategy; develop a common and

uniform dynamic method of forecasting spent energy with a focus on heterogeneous systems; conduct a study of

the proposed approach on stationary and mobile devices. The obtained results include. The results of the

experimental measurement of the energy consumption of mobile digital systems and stationary ones are

presented. The energy efficiency of computing on GPUs of a stationary device based on CUDA technology and

GPUs on mobile devices based on Apple Metal technology was determined. Computation during the calculation

of 600 frames on a distributed system from mobile devices with failure settings showed a consumption of 15320

joules of energy. Simulation of computing on a distributed system with stationary devices showed a consumption

of 52806 joules of energy. This gives us 3,45 times the consumption benefit from computing on mobile devices.
Forecasted consumption is also very accurate. Conclusions. The energy consumption assessment model proved

to be quite effective. The results of the experiments show that the energy consumption estimation model takes

into account the features of the hardware platform where data processing is perfo rmed. Computation of data on

the GPU of stationary devices loses energy efficiency to a similar implementation on the GPU of Apple Metal

from mobile devices. Therefore, the presented results demonstrate the rationality of using mobile graphics

processors for energy-efficient information processing.

Keywords: graphics processor; energy efficiency; distributed system; cloud computing; green computing;

model; mobile device; multithreading.

1. Introduction

1.1. Motivation

Information technologies implement the functions

of monitoring, information processing, and management,

which directly affect the technical level of energy

systems for both traditional and green energy. Without

information technologies, it is impossible to effectively

respond to challenges in the field of conservation and

increase energy resources. However, every year,

information technologies in this context acquire an

independent role as IT systems become more and more

active consumers of energy [1, 2]. According to various

sources, they account for up to 3% of the total amount of

energy consumed.

Various calculation tasks are integral components

of information systems. The increasing complexity of

these tasks increases the demand for computing power [3,

4]. If the task cannot be computed using local resources,

it is usually computed in large data centers on specialized

equipment. This, in turn, leads to an increase in the

demand for cloud computing power. To expand the

available cloud computing capacities, it is necessary to

manufacture new hardware and create new data centers.

1.2. State of the art

At the level of energy savings in electronic

components, researchers distinguish between two

groups: hardware (technical) and software. They allow

for detail in the context of information technology.

Hardware [5, 6]. For hardware, primarily

microcircuits of various purposes and designs, there are

solutions that reduce energy consumption. They are

based on the application of special electronic circuits,

technologies, and computing paradigms; modes of

reduced energy consumption ("sleeping" and "semi-

sleeping") for the entire crystal or its individual parts;

schematic design solutions that minimize the number of

simultaneously switching crystal elements and thus

reduce current surges; adaptation schemes in redundant

structures, the channels of which operate at the limit

 Oleksandr Mamchych, Maksym Volk, 2024

Applied mathematics, optimization, modelling

121

reduced voltage (in this case, failures caused by unstable

operation are possible); and special settings for

programmable crystals, etc. Similar approaches are used

in more complex hardware components (modules,

channels), where various combinations of methods can

be used [7, 8].

Software tools [9, 10]. The approaches used for

software tools are not as clear-cut as their impact on

energy savings is indirect. However, the concept of

"green software" [11, 12] has been established in the

scientific and technical lexicon, based on the

understanding that: each operator, language construct

and program module can have its own energy metric (that

is, it is characterized by the energy consumed by the

platform on which the program is implemented);

different software solutions vary in the amount of

resources used (not only energy) and can be optimized

(including according to the energy criterion); since

energy consumption or energy efficiency become

attributes of software quality, it is advisable to use a

process approach for their assessment and provision; to

evaluate energy meters of software options, it is

necessary to use special hardware and software solutions

that will ensure the accuracy of measurements of the

energy consumed during the execution of various

applications. Thus, for green software, the tasks of

clarifying the quality model, which should include

characteristics that directly and/or indirectly consider the

energy component, defining a set of metrics used,

developing methods for measuring relevant

characteristics, and optimizing processes and products

obtained, are important at different stages of the software

life cycle according to the specified criteria.

In absolute terms, this is a colossal amount that can

be compared with the energy consumption of the largest

European economies. For example, a modern cloud IT

infrastructure, including a data center and several

thousand computers, consumes 10-15 megawatts daily.

Currently, there are up to 20 billion personal mobile

devices in the world, which have a very impressive

aggregate computing power [13, 14]. They can also be

used to calculate a whole range of problems.

In addition, most existing scientific research works

are aimed at maximizing the efficiency of execution of

certain algorithms. Usually, the main metrics are the

minimizat ion of task execution time and the

minimizat ion of idle time of individual parts of computer

systems. Very little attention is paid to minimizing

energy and traffic costs. Therefore, potential computing

networks built from personal smartphones receive very

little attention or remain outside the scope of newest

approaches.

This work aims to study methods for forecasting

energy consumption when computing distributed tasks

on computing networks built from smartphones, as well

as compare the energy consumption of traditional

distributed computing systems based on server solutions

and distributed computing systems based on personal

smartphones.

The objective of this work is to create a universal

model for forecasting energy costs in computing, which

can be applied to both a traditional cloud system and a

cloud system based on mobile devices. The model must

meet the following criteria: the same dynamic algorithm

for scheduling tasks, focus on heterogeneous systems, the

ability to measure and predict energy costs, take into

account the limited reliability of node access to the

network and related overheads, and be able to estimate

the energy costs of both mobile equipment and

conventional computing hardware.

Modern microprocessor manufacturers strive daily

not only to increase the performance of their chips but

also to reduce their overall energy consumption. Mobile

phones (smartphones), tablets, laptops, and other devices

that are convenient to carry and use in everyday life have

become integral attributes of our time. To increase

energy efficiency, manufacturers use various circuit-

technical and software solutions. One straightforward

method to extend a device’s lifespan is by increasing the

battery capacity [15]. Further, there are methods of

reducing energy consumption by the periphery, namely

special low-power displays, low-voltage microcircuits in

communication and navigation modules, and low-

voltage processors [16]. The next stage is the special

operating modes of processor devices, which allow the

device to be put into standby, sleep or deep sleep mode,

with the possibility of quick awakening, but at the same

time power consumption is reduced from hundreds of

mA to tens of μA [17]. The final stage is energy-saving

software [18]. There are many programs that help save

the resources of the already voracious computing core of

any microprocessor device. Such programs have gained

popularity since the days of computers and are now

actively used by mobile devices.

The paper [19] presents a comprehensive study on

forecasting energy consumption in electrical buildings

using smart grid technologies, focusing on the

application of artificial neural networks and k-nearest

neighbor algorithms. This study emphasizes green

computing by optimizing the computational efficiency of

the GPU processing unit during the forecasting process.

This paper outlines an approach to outlier detection and

correction, which significantly enhances the quality of

the dataset used for training forecasting models.

The paper [20] provides an insightful exploration of

the use of Particle Swarm Optimization (PSO) for

enhancing energy efficiency in smart home

environments. This study addresses the critical issue of

high energy consumption in smart homes by developing

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
122

a mobile application that employs PSO for task

scheduling of smart home appliances .

 One notable study describes methodologies related

to RAM energy consumption. The authors propose to

transform the program code in such a way as to organize

work with smaller memory areas and with less energy

consumption for each memory access operation. In

another study [21], instruction-level models with high

clock accuracy were used to evaluate the complex impact

of software and hardware optimization on energy

efficiency (the processor operation was simulated before

each operating cycle). However, despite all previous

work, the energy consumption of a specific program has

always been estimated using a specific target

architecture.

Many studies have investigated the advantages of

certain approaches to planning the distribution of tasks

on a distributed system. However, the primary metric

remains the minimization of computational task

execution time. Any model suffers from distribution

overhead to one degree or another, so such methods are

forced to duplicate part of the calculations or transfer a

lot of data many times, which leads to a decrease in the

energy efficiency of the task even compared to the

execution on a single computing device. In addition, task

planning models for distributed systems usually expect

fairly large bandwidth and fast response of network

interfaces, but personal mobile devices have limited

bandwidth and long response times. All such works

cannot automatically be applied to a distributed system

from mobile devices; any such system will be purely

heterogeneous [22].

There are many studies devoted to cloud computing

[23, 24] that assess energy efficiency calculations and

energy consumption forecasting in cloud computing.

However, they always work with server equipment

traditional for data centers, almost not considering data

exchange and consumption of peripheral devices [25,

26]. These are usually limited to the telemetry data of the

computing devices themselves (CPUs and GPUs), while

peripherals and network infrastructure can also consume

significant amounts of power. When calculating energy

costs on a smartphone, it is much easier to consider the

consumption of the device as a whole, together with the

costs of data transmission and peripherals.

Some studies describe the behavior of computing

systems with limited reliability, but they do not study the

effect of limited reliability of a node on energy

consumption [27].

Studies have shown that mobile computing systems

themselves are more energy-efficient than traditional

data center equipment [28].

To evaluate the energy efficiency of the computing

cloud from mobile devices, it should be considered as a

purely heterogeneous system with limited reliability of

nodes, limited bandwidth of network interfaces, and

exclusively dynamic planning. There is no work that

looks at the cloud from mobile devices from this point of

view and compares it with traditional clouds based on

data centers on the same tasks and considers the

maximum total energy costs .

1.3. Features of computing and energy
efficiency of CPU and GPU

Computing equipment has long ceased to be a

simple device. Today, tasks solved with its help represent

the modeling of processes occurring in reality. Therefore,

the natural parallelism of the real world flows into the

formulation of the problem and the corresponding

mathematical model. The extent to which the architecture

of computing devices is consistent with the properties of

the real world determines how effective the solution of

the tasks will be. In recent years, it has become clearly

noticeable that the evolution of the CPU has lowed due

to many technological limitations. Manufacturers can no

longer significantly increase the operating frequencies of

the CPU, and a simple increase in the number of

processor cores while preserving the original architecture

(Table 1) does not provide the desired increase in

performance when solving real problems. Additionally,

the complexity of a single core growth to achieve higher

performance per tick at the cost of higher energy

consumption. At the same time, exponential growth is

observed in GPU performance and in its architecture,

which reflects the properties of the real world. Initially ,

the final result of graphic data processing on the GPU

was a set of pixel colors. The computation of pixel colors

perfectly fits an array of simple processors performing

similar computations. Therefore, GPUs are mainly

intended for work with large amounts of similar data.

Focusing on the processing of many independent

pixels, the GPU was originally built as a parallel matrix

calculator. With the expansion of the set of graphic

operations in the graphic core, pipeline parallelism was

added to matrix parallelism. These properties of the

architecture, originally laid down in the GPU, also

determined other features, such as the command system

and thread management.

The CUDA computing architecture is based on the

concept of Single Instruction Multiple Data (SIMD) and

the concept of a multiprocessor. The SIMD concept

assumes that one instruction can simultaneously process

a large amount of data. A multiprocessor is a multi-core

SIMD processor that allows only one instruction to be

executed on all its cores at any given time.

This architectural solution allows calculations to be

performed on the GPU more efficiently than on the

central processor, provided that the task can be divided

into multiple threads. Similar to running on a CPU, a

Applied mathematics, optimization, modelling

123

bottleneck in a computing system is memory access. On

GPUs, memory is usually accessed through a wide

memory bus, which supports overwhelming resulting

throughput if the data is properly organized. The result

performance is great, yet it highly depends on the smooth

and predictable loading of multiple cores. This is one of

the main principles of CUDA, which can significantly

improve the performance of the system as a whole.

Another opportunity to improve performance is to

combine several global memory requests into one, called

a transaction or coalescing global memory access. To

combine requests into a transaction, several conditions

must be met. First, concurrently executing threads must

access either 32-bit words, resulting in one 64-byte block,

or 64-bit words, resulting in one 128-byte block. If 128-

bit word access is used, the result will be two

transactions, each returning 128 bytes of information.

Table 1

Comparison of the characteristics of CPU and GPU

Parameter CPU GPU

Architecture

Serial architecture

with added vector

instructions

Initially

parallel

architecture

Command

system
SISD SIMD

ALU Complex Simple

Solving the

memory

access

problem

Large cache

memory, branch

prediction

Wide bus,

simplified

prediction,

batch access

Number of

threads

1-2 per core, up to

dozens of cores per

chip

Thousands of

cores per

multiprocessor

Data format

All formats:

integers, reals of

various precision

Mostly single

and half

precision

Second, threads must access memory locations

sequentially, each subsequent thread must be assigned

the next word in memory, and all words must be within

the memory block being accessed. In software

implementations based on CUDA technology, data must

be structured in such a way that it is almost always

possible to combine it into transactions when accessing

global memory, because otherwise the performance of

calculations on the GPU is sharply reduced and may even

be lower than sequential data processing on the central

processor. The primary goal of moving calculations to

the GPU is usually to obtain significant performance

gains. However, the GPU architecture has another

important property - high energy efficiency for many

high-paralleled tasks [29]. The main prerequisites for this

are two factors: most of the area of the GPU crystal is

allocated to ALUs, which are directly involved in data

processing, and not in the tasks of controlling the

sequence of commands; Due to the massive parallelis m

of calculations, it becomes possible to reduce the

frequency and, as a result, energy consumption while

maintaining high performance.

1.4. Objectives and the approach

We can distinguish 2 major objectives in this

article:

1. Develop a model that is able to evaluate energy

consumption on distributed systems based on

conventional servers and mobile devices during the

execution of similar useful payloads.

2. Comparison of energy consumption of 2 systems:

based on conventional server equipment (GPU) and

mobile devices (mobile SoC)

The approach is based on identical evaluation tasks

having similar algorithms and implementations and

being run on different distributed systems. In addition,

the approach takes into account not only the energy

consumed by the computation unit itself but also the

energy consumed during data transferring; since this is a

very important aspect of computing systems based on

personal mobile devices.

The structure of this article is as follows:

1. Description of a model of distributed computing

as a union of 3 models: a distributed computing system,

a distributed job, and a distribution strategy model

(subsections 2.1-2.4).

2. Initialization and running of the distributed

computing model with estimated parameters (subsections

2.5-2.6).

3. Benchmarking of real hardware to estimate

energy consumption during computing. To run the

model, we need to set up the hardware parameters, which

cannot be taken from public sources; hence, we need to

collect them (subsection 3.1).

4. Running the real computation. Collecting

measurements from computing a real job on real

hardware: consumed energy and duration (subsection

3.2).

5. Comparison of the model output and real

computing run and discussion of the results. The purpose

here is to understand the accuracy of the model from an

energy consumption perspective (section 4).

6. Summarizing the achieved results from the

accuracy and universalism perspective. Suggesting

potential ways for future improvements in accuracy,

universalism, and security (Conclusion).

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
124

2. Case study. Development of a model

for forecasting energy consumption

2.1. Discrete model of a distributed computing

To simulate a distributed system, we will use a

discrete model because of the relative simplicity of its

further implementation. To successfully model the

energy costs of computing, the model must consider the

specifics of the hardware, the structure of the task itself,

and the distribution method. Therefore, the general

model can be represented as a system of three smaller,

relatively independent discrete models: the model of the

computing system, the model of the computing job, and

the model of the computing strategy. We denote them as

follows:

 C J SM M ;M ;M , (1)

where MC – model of the computing system;

MJ – model of computing job;

MS – model of computing strategy.

Each model is a set of interrelated constants and

variables. For example, a model of a computing system

should contain information about the computing

resources of all nodes included in the model, as well as

information about the state of the node at the moment :

online or offline. The job model is a set of constants that

describe the complexity of certain operations in the

execution process. The computing strategy model

contains a set of variables and rules for transitions

between states that describe the general state of job on

the computing system at each discrete moment in time -

a flow. Then the computational energy is a function of

these three models:

  C J SE(M) M ;M ;M . (2)

2.2. A model of a distributed computing system

The distributed computing system of a traditional

data center may be homogeneous, but the distributed

computing system of mobile devices is heterogeneous by

default because it consists of devices with different

computing powers and communication channel speeds.

Furthermore, unlike traditional servers, the typical

operation of a mobile device includes periodic losses of

network communication, and consequently, connectivity

with the computing system's control center. Let's assume

that if the node has a network connection with the control

center, it is in online mode; otherwise, it is in offline

mode. Thus, the simplest model of a single mobile device

can be described as computing power (as the number of

computing operations per tick), network access speed (as

the maximum amount of data that can be transferred per

tick), and network access state (online and offline). To

describe the state in the network, we use the Markov

process: as the probability of changing one state to

another during one tick. Since the main interest for this

study is energy consumption, for each device it is also

necessary to specify the computing device energy

consumption (as the amount of energy consumed by a

node in computing per tick) and the data transmission

energy consumption (as the amount of energy consumed

by the device in data transmission per tick). Therefore, a

computing device can be defined as follows :

pon off c

i i i i i i ii
N n ;R ;R ;p ;c ;e ;e , (3)

where ni – availability at the moment of time;

Ri
on – probability of transition to the online s tate;

Ri
off – probability of transition to the offline state;

pi – computing power in operations per 1 tick;

ci – channel bandwidth in bytes per 1 tick;

ei
p – energy consumption in joules during

calculation for 1 tick;

ei
c – energy consumption in joules during data

transfer for 1 tick.

If n i is equal to 1, then the node is considered online

and can perform calculations, if 0, then it is offline and

cannot perform calculations. A transition from 0 to 1 has

a probability Ri
on every tick, a transition from 1 to 0 has

a probability Ri
off. Therefore, ni` on the next tick is

calculated according to the formula

on
i i

i off
i i

p(R), n 0;
n '

1 p(R), n 1;

 

  

 (4)

where p(Ri
on) and p(Ri

off) are probabilistic values of

uniform distribution.

The other parameters N i are constant and do not

change during the calculation. Then the model of the

computing system can be represented as an array of all

computing nodes. Let C be the number of nodes in the

model. The computer network model can then be defined

as follows.

 C iM C;N , i 0...C 1 .   (5)

Or in the expanded view:

pon off c
C i i i i i ii

M C;n ;R ;R ;p ;c ;e ;e ,i 0...C 1 ,   (6)

where C – number of nodes in the model.

Applied mathematics, optimization, modelling

125

2.3. A model of distributed job

The model of distributed computing can be

represented as a set of interconnected tasks and

intermediate data - artifacts. Let each task require a

certain set of artifacts for computation and generate one

artifact in the computation process. Let the artifacts used

to calculate the problem and generated as a result of the

calculation be characterized by the amount of data and

denoted by A i. Let the task be characterized by the

number of computational operations that must be

performed to obtain its result, which is denoted by Ti. _

Let the result of the task T i be the artifact Ai.

Computation of artifact Ai by task Ti requires some

artifacts to be computed and available. Let such a

dependence be given by the matrix Dij: if the calculation

of the i-th artifact requires the j-th, then Dij =1, otherwise

Dij =0. Let J be the number of artifacts and tasks in the

work.

Thus, the computational work can be represented as

follows:

 J i i ijM T ;A ;D , i 0...J 1, j 0...J 1 ,     (7)

where Ti – computation complexity of a task;

Ai – amount of data contained in an artifact;

Dij – matrix denoting dependencies between tasks

and artifacts.

The number of artifacts needed to calculate the i-th

artifact is calculated by the following formula:

J 1

j ij
j 0

In(M ,i) D .




 (8)

The number of artifacts, for the calculation of which

it is necessary to have the data of the i-th artifact, is

calculated according to the formula:

J 1

j ij
i 0

Out(M , j) D .




 (9)

Some artifacts are primary inputs, which are inputs

to the work itself. Some artifacts are not used to calculate

other artifacts, such artifacts are the raw data of the work.

Let the artifacts for which In(MJ,i)=0 be called inputs,

and the artifacts for which Out(MJ,j)=0 be called outputs.

Input artifacts do not require computation and are

assumed to be known at the beginning of the

computation. In addition, Ti is assumed to be 0 for all

input artifacts.

2.4. Distribution strategy model

For the task to be completed, it must be assigned to

some node. A node must receive a computation

instruction, download the required artifacts to perform a

task, execute the task, and then transmit the computed

artifact to the system, i.e., the control center of the

computing network. Thus, the model should describe:

– a list of artifacts available to the system at a

moment in time; let such a list be called the scope of the

system;

– a list of artifacts available to each node at a point

in time; let such a list be called the scope of the node;

– the task assigned to be performed on a node at a

moment in time;

– the task that a certain node performs at a given

moment in time;

– an artifact that a certain node transmits at a given

moment in time;

The scope of all nodes can be described by the

matrix s of size CxJ, s ij = 1 if the i-th node has data of the

j-th artifact, otherwise - 0. The scope of the system can

be described by the array g of dimension J, g j =1 if the

system has data of the j-th artifact, otherwise - 0. Initially ,

no node possesses any artifact data, and the system

contains only data for incoming artifacts, as outlined in

Formula (10). In order for an artifact to become available

in a scope, this artifact must either be transferred to this

scope from another, or calculated from existing artifacts.

Transmission is possible only between the system and

node, i.e., from node to system or from system to nodes.

For simplicity, transmission between nodes within this

model is not possible.

Task assignment to a computing node defines the

task’s relationship with that node. Since each node and

task is ordered by index, such a relation can be specified

by an array a of size J, where ai is the destination node

number or -1 if the task is not assigned to any node.

The instantaneous status of the task calculation on

the node contains the task number and the number of

operations that must be performed on the node to perform

the assigned task and obtain the corresponding artifact.

They can be described as arrays x and x' of size C. Let x

i be the number of the task running on the i-th node, or -1

if no task is currently running on the i-th node. Let xi ' be

the number of operations that must be performed to

complete the task on the i-th node.

The current data transfer status encompasses the

artifact number and the volume of data required to

finalize the transfer. They can be described as arrays t and

t' of size C. Let ti be the number of artifact transmitted by

the i-th node, or -1 if no transmission occurs. Let t i' be the

amount of data that must be transferred to complete the

transfer of the artifact by the i-th node.

The direction of transmission on the i-th node is

determined by the presence of this artifact in the system's

scope: if the data artifact is in the system's scope, then the

transmission goes from the system to the node, if this

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
126

artifact is not in the system's scope, then the transmission

goes from the node to the system .

Therefore, the distribution strategy model can be

articulated as a set of the following variables:

j ij i i i i i

S

g ;s ;a ;x ;x ' ; t ; t ' ,
M ,

i 0...C 1, j 0...J 1


   
 (10)

where gj – presence of j-th artifact’s data in the system

scope;

s ij – presence of j-th artifact in the scope of i-th

node;

ai – node number i-th task is assigned to;

xi – number of a task currently running on i-th node;

xi’ – number of operations to finish xi task;

ti – number of an artifact being transferred by the i-

th node;

ti’ – amount of data to be transferred to finish ti

transferring.

Let the number of tasks assigned to node i be

calculated using the following formula:

J
j

S
jj 0

0, a i;
Assign(M ,i)

1, a i;



 


 (11)

The amount of data that needs to be transferred to

the i node to start calculating the j subtask:

J 1

ij

S jk
ijk 0

0, s 1
Dl(M ,i, j) D .

1, s 0





  
  
  

 (12)

A task is considered available for distribution when

all the artifacts necessary for its calculation are within the

scope of the system. The availability of a subtask for

distribution is calculated using the following formula:

J 1

S ij i
j 0

Avail(M ,i) D g .




  (13)

The computation of work is considered complete

when all artifacts are available within the scope of the

system. The number of artifacts available in the system

scope is calculated as the sum of all non-zero values in

the g array:

J 1

j
j 0

g .




 (14)

Subtask i is considered available for computation on

the j-th node when all artifacts required are within the

scope of the corresponding node. Availability can be

determined by the following formula:

J 1

S ik ji
k 0

Avail(M ,i, j) D g .




  (15)

2.5. A model initialization

Models MJ and MC contain constants other than ni;

therefore, they are assumed to be given from the

beginning. Array n is filled with 0 – all nodes are

considered offline at the beginning. Next, the Markov

process is simulated according to formula (1) for a

sufficiently large number of ticks to bring the system to

a general state.

Array g is filled as follows:

j

i
j

1, In(M ,i) 0;
g

0, In(M ,i) 1.


 



 (16)

Arrays a, x, x', t, t' and matrix s are filled with 0.

Let E = 0 – the accumulated amount of spent

energy, the calculation of which is the goal of this model.

2.6. A method for calculating spent energy

The method for calculating the spent energy in a

general form. This method is based on the application of

a cyclic algorithm, in which certain steps can have

different implementations. This article offers

implementations for all steps, but other implementations

are possible that better reflect certain practical tasks:

1. Simulation of the Markov process of node

availability according to formula (4) for n.

2. Unassigning tasks from offline nodes: for all

i = 0. . . J − 1 execute: if nai=0, set ai = -1.

3. Canceling the assignment of tasks to offline

nodes. For all i=0...C-1 execute: if ni =0, set xi =-1,

set xi`=0, set t i =-1, set ti`=0; if ni=0, for all j=0...J-1 set

s ij =0.

4. Execute a naive heuristic task assignment

strategy for each node described.

5. Implementation of the local scheduling strategy

for each node.

6. Perform data transfer simulation for each node.

7. Running a simulation calculation for each node.

8. Checking the condition of the task according to

formula (8): if
J 1

jj 0
g J




 , completion.

Implementation of a naive heuristic strategy for

subtask assignment to nodes . In this case, it is possible

to use different distribution models; however, within the

scope of this work, a naive heuristic distribution model is

used. This strategy model is based on a greedy algorithm.

Applied mathematics, optimization, modelling

127

At each step, it tries to allocate to each node the task that

will require the least energy costs from the point of view

of data transmission.

Algorithm for the i-th node:

1. If ni = 0, the node is not reachable, go to the end.

2. If ai >= 0, the node already has an assigned

subtask, go to completion.

3. If there is such j∈[0; J-1] a value Avail(MS, j)=0

according to formula (7), go to destination, otherwise -

go to completion.

4. Set the value ai = j.

5. Completion.

The same scheduling strategy is executed for each

node. It provides the following principles :

1. If no subtask is assigned to a node, the node does

not load data from the system or compute, but can

perform data load on the system.

2. Data transfer and calculations are performed

independently and in parallel.

3. If there is an artifact in the node's scope that is

not available in the system's scope, then downloading

that artifact is the highest priority and the node tries to

download it immediately

4. If the node is allocated a subtask, then the node

starts downloading artifacts from the system necessary

for its calculation

5. If the artifacts needed to compute the assigned

subtask are available in the node's scope, the node starts

computing the subtask

6. If a node goes offline, all local transfer and

computation progress is lost

7. When a node goes online, its scope is assumed

to be empty, and all data must be loaded from the

beginning for calculation

Algorithm for the i-th node:

1. If x i ≠ ai and xi ≠-1, set xi = -1.

2. If ti ≠ -1, go to point 5.

3. If s iai = 1 and gai = 0, set ti = ai, set ti' = Aai ,

go to step 5.

4. For all j=0...J-1 execute: if ti ≠ -1, go to point 5;

if Dij = 1 and s ij = 0 and gj = 1, set ti = j, set ti' = Aj.

5. If xi ≠ -1, the algorithm ends.

6. According to (9) if Avail(MS , a, i) = 0, set

xi = ai, set xi' = Tai, completion of the algorithm.

The local scheduling strategy for node i populates t

i and t i ', which show the current artifact to be transferred

and the amount of data that needs to be transferred to

complete the transfer. The direction of transmission

depends on whether this artifact is visible in the system.

That is, if g ti = 1, then the data is transmitted to the node,

and if g ti = 0, then from the node to the system.

Algorithm for the i-th node:

1. If ti = -1, the algorithm ends.

2. Set ti' = ti' - ci.

3. Set E = E + ei
c.

4. If ti' > 0, the algorithm ends.

5. If g ti = 1, set s i,ti = 1, otherwise set g ti = 1.

6. Set ti = -1, set t i' = 0.

The local scheduling strategy for node i populates x

i and xi', which show the current subtask to be computed

and the number of operations required to complete the

computation.

Algorithm for the i-th node:

1. If xi = -1, the algorithm ends.

2. Set xi' = xi' - pi.

3. Set E = E + ei
p.

4. If xi' > 0, the algorithm ends.

Set s i,ti = 1, set xi = -1, set xi' = 0.

3. Experiment and research results

3.1. Experiment description

The problem of ray tracing was chosen for model

verification. Ray tracing is a reference problem from the

viewpoint of parallel computing. The basic idea of ray

tracing is that for each pixel of the image, the algorithm

models the path of a light ray, tracking its interaction with

objects in the scene.

Ray tracing is ideal as a reference problem for

several reasons:

– a large degree of parallelism. Each ray can be

calculated independently of the others. This allows you

to efficiently distribute tasks between CPU cores and

thousands of GPU cores;

– a large number of calculations. Ray tracing often

involves working with large volumes of data, which

requires high computing power;

– the ray tracing algorithm is computationally

intensive for each ray, especially when realistically

rendering lighting, shadows, reflections, and refractions ;

– parallel computing allows the ray tracing

algorithm to scale, using more resources to speed up

processing or improve image quality;

– use of specialized hardware such as GPUs

(Graphic Processing Units) optimized for parallel

computing, which can significantly speed up the ray

tracing process;

– in summary, the use of parallel computing for ray

tracing allows you to efficiently process complex scenes

with a high level of realism in a relatively short time.

Another important requirement for the reference

task in the context of this study is its identity on different

platforms. For an adequate comparison of energy costs,

it is necessary that the volume of calculations on each

distributed system is completely identical. Therefore, it

was decided to develop our own implementation of ray

tracing for the following platforms: CPU (support for

x86-64, arm64 architectures), Apple Metal and NVid ia

CUDA. The C++ programming language and its s pecific

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
128

variants for Metal and CUDA were used.

For simplicity, the ray tracing algorithm only works

with spheres and considers diffuse lighting, directional

lighting, and reflections from the material properties .

NVidia GeForce RTX 3090 graphics card

(traditional server equipment) and iPhone 12 min i

(mobile equipment) were used as the hardware. Standard

Ethernet is used for data exchange between the desktop

computer and the control center, that is, the control center

and the computer will be physically close and on the

same network. The mobile Internet is used for data

exchange between mobile nodes, and the control center

is deployed in the data center. Such conditions are typical

considering the principle of operation of the

corresponding distributed systems.

The simulation of multiple nodes in a distributed

computer system is implemented with virtual nodes: each

node is an isolated virtual entity. If one node physically

has the artifact and another does not, the first one still

should download it as it was a dedicated physical node.

This approach is still accurate from an energy

consumption perspective because all operations and

calculations are conducted in a similar way on a system

of physically dedicated nodes. However, the computation

time depends on the amount of computing resources in

the system, but accurate time estimation is not the

purpose of this work.

Since the purpose of this study is to compare the

energy efficiency of a distributed system based on

traditional server hardware and mobile devices, it is not

necessary to describe the complexity of the task in

elementary operations. The main thing is that the same

measure is used to assess the difficulty of the task. Given

the completely identical implementation on all platforms,

in this case, we choose the number of rays per unit of

energy as the unit of efficiency.

The standard resolution of the output renders is the

so-called "2k" and "4k" or 3840x2160 pixels. 64 rays are

traced for each pixel. Thus, for "4k" it is about 530

million rays are traced for the rendering of one frame, for

"2k" – 133 million rays.

Energy consumption is calculated as follows.

1. The GPU Z program is used to calculate the

energy consumption of the graphics adapters. The

average background energy consumption in an unloaded

state is measured, followed by the consumption during

the execution of a computing task. The measurements are

summed, and the instantaneous power is multiplied by

the time between the measurements and the obtained

result. The costs of the central processor in this case can

be neglected. The accumulated energy is converted into

the number of rays per joule.

2. To calculate the energy consumption of a mobile

device, the device is charged to 100% and the total

battery discharge is calculated. The battery capacity is

taken as the nominal value for the mobile device

multiplied by the state of the battery. When the device is

turned off, we measure the number of calculated frames

and convert it into the number of rays per joule.

3. To calculate the energy consumption of the

central processor of a stationary computer, we use a

method similar to that of a stationary graphics processor,

but with different software. To calculate the energy

consumption of energy consumption on the central

processor of a mobile device, an approach that is

completely identical to that of a mobile graphics

processor is used.

The main disadvantage of this method is that it does

not consider the costs of a stationary computer for data

transfer. However, they can be considered insignificant.

At the same time, energy costs for data transmission will

be taken into account and are expected to be significant.

3.2. Calculation of the consumption

of the computing system based on the model

To calculate the energy consumption in distributed

system computing, the parameters of the computing

process must be entered for each system: the computing

system model, the computing task model (or work

model), and the computing strategy model.

A model of the computer system configuration:

– let the simulation duration be 1 s;

– the number of nodes C for this distributed problem

is not of great importance, because both the problem

itself and the principle of parallelism do not impose

restrictions on this parameter. Since we emulate multiple

virtual nodes with a single physical node, the actual

number of nodes C > 1 will not affect the amount of

energy we spend, but it will affect computing time

estimation. To reach some accuracy in time estimation,

we can assume C=1, but with the condition that no data

for the calculation of the problem will be transferred

between nodes and that all artifacts are always loaded

into the system; however, calculations of energy

consumption for C>1 will be provided;

– availability n i node is a dynamic value with an

initial value of 0;

– Ri
on and Ri

off will be selected on the basis that a

mobile device with a probability of 0.5 loses connection

once every 100 s:

on 100 on 100
j j(1 R) 0.5; R 1 0.5 0.0069075046;    

and returns online with a probability of 0.5 within 10 s :

on 10 on 10
j j(1 R) 0.5; R 1 0.5 0.0669670085;    

these values are selected to simulate devices that are

Applied mathematics, optimization, modelling

129

online most of the time and drop off for comparatively

smaller periods of time;

– computing power p i = 62,955,597 p/t (rays per

current);

– bandwidth ci = 1.2 Mb/t (megabyte per tick)

Energy consumption per current during calculation

ei
p = 2.91 J;

– energy consumption per stream during data

transmission ei
c = 0.43 J;

– values pi, ci, ei
p and ei

c calculated by the

benchmark execution method. For this, the mobile device

(iPhone 12 mini) was fully charged, after which the

device traced the scene until it was fully discharged.

Nominal battery capacity 8.57 Wh = 8.57 3600 =

= 30852 J. The battery life of the test device is estimated

to be 81% of the nominal capacity, i.e. 24990 J. For the

benchmark, a scene from a real task was chosen, and the

resolution was the same: 4k and 64 rays per pixel. Thus,

530 million rays are traced to calculate one frame. The

full discharge took 8572 seconds, 1017 frames were

rendered. The rendering time of one frame is 8.43s, so

every second the mobile device traces about 63 million

rays consumes 2.91 J of energy. A comparable test was

conducted for data downloading via HTTPS. The

bandwidth when transmitting consecutive packets of 500

KB via mobile Internet without saving the connection is

1.2 Mb /s, the device was fully discharged in 57813

seconds, which means that the device consumed an

average of 0.43 W.

A model of the computer system configuration:

– let the simulation run also be 1 s ;

– the number of nodes C for a given distributed task

is also not very important. Therefore, for simplicity, we

consider C=1;

– availability of the n i node is a dynamic value, but

for stationary equipment it is considered that the node is

always available, therefore n i = 1;

– the hardware of a datacenter is considered reliable

hence Ri
on = 1 and Ri

off = 0;

– computing power p i = 1,271,476,886 p/t (rays per

current);

– bandwidth ci = 10 Mb/t (megabyte per tick);

– energy consumption per current during

calculation ei
p = 205 J;

– energy consumption per stream during data

transmission ei
c = 0 J;

– values pi, ci, ei
p and ei

c calculated by the

benchmark execution method. For this, the GeForce RTX

3090 stationary graphics accelerator rendered 800 frames

with a resolution of 3840x2160 pixels with 64 rays per

pixel. Rendering was performed with power tracking

enabled per second. Rendering took 334 seconds and

used 68,483 joules of energy. The average frame

rendering time is 0.42s. Every second, the graphics

adapter traces about 760 million rays and consumes 218

joules of energy.

The distributed work in this case is general and

represents the rendering of 600 frames. Each frame

requires a scene to render, and the result is a frame with

a resolution of 3840x2160. A typical scene is a 5 kb

JSON file, a typical JPEG frame is 450 kb. Rendering

occurs at a density of 64 rays per pixel. That is, to

perform the task of rendering one frame, you need to

download 5 KB from the system, trace 530 million

(3840·2160·64) rays, and upload the 450 KB result to the

system. This is represented in the system as follows: we

have 600 scene generation service tasks that have no

input artifacts and do not need to be executed, and 600

real frame rendering tasks, each of which depends on one

artifact and each task generates one artifact:

– for 0 ≤ i < 600 Ti = 0 rays;

– for 0 ≤ i < 600 Ai = 5 kb;

– for 600 ≤ i < 1200 Ti = 530,000,000 rays;

– for 600 ≤ i < 1200 Ai = 450 kb;

– for i = j + 600 Dij = 1, otherwise Dij = 0;

– J = 1200.

As a distribution strategy, we use a naive heuristic

distribution strategy.

Let's create a model of a distributed computing

problem. The input (the scene) is an artifact, and the

result of the rendering is also an artifact. Each task (task)

contains information about computing resources in

millions of rays and contains identifiers of input and

output data (artifact). The program implementation is

given in Listing 1.

Listing 1

Composing a program representation of Job model

void Job::generateRT(Job& job,

 int frames,

 int download,

 int upload,

 int oops)

{

 for (int i=0; i<frames; ++i)

 {

 Artifact a_in;

 a_in.id = job.artifacts.size();

 a_in.type =

Artifact::Type::Input;

 a_in.data = download ;

 // The amount of data

 // to download is 5 kb

 job.artifacts.push_back(a_in);

 Artifact a_out;

 a_out.id = job.artifacts.size();

 a_out.type =

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
130

Artifact::Type::Output ;

 a_out.data = upload;

 // Volume of output data

 // 450 kb

 job.artifacts.push_back(a_out);

 Task task;

 task.id = job.tasks.size();

 task.ops = ops;

 // computational complexity

 // 530 million rays

 task.depIds.push_back(a_in.id);

 // Reference to input data

 task.outputId = a_out.id;

 // Reference to output data

 job.tasks.push_back(task);

 }

}

A model of a computing node based on mobile

devices is given in Listing 2.

Listing 2

Composing a program representation of a mobile device

as a computing node in a distributed system

static NodeConfig

iPhone12miniIdealNodeConfig()

{

 NodeConfig nodeConfig;

 nodeConfig.rateOn = 1;

 // Within the framework

 // of this test

 // it is assumed that the node

 nodeConfig.rateOff = 0;

 // always reachable for

 // calculations

 nodeConfig.networking = 1200;

 // kilobytes per second

 nodeConfig.computing = 63;

 // Computational resources

 // million rays per stream

 nodeConfig.eNetworking = 430;

 // Millijoules

 nodeConfig.eComputing = 2910;

 // Millijoules

 return nodeConfig;

}

Computational simulation results based on one

mobile device for 1017 frames: 10171 ticks and 25062

Joules of expenditure. The execution time differs from

the benchmark because of the peculiarities of the system

implementation: any task is performed for an integer

number of ticks, therefore, instead of 8.43 seconds, the

model spends 9 ticks on the task. If the task is completed

on a given log, the new one will be executed only on the

next one. In addition, the naive task allocation strategy

allocates a task to a node only when the node is free.

Immediately after the distribution, the node starts

downloading the input data, which lasts at least 1 thread.

Thus, we have 1 additional thread for each task + 1 thread

for downloading the last artifact to the system. If we

allow the naive strategy to add a task to the node's queue,

each task will be executed in 9 ticks because the node will

download data for the tasks in the queue. However, it

does not affect energy consumption, so complicating the

strategy within the scope of this work is not advisable.

The energy consumption in the simulation is also

different, but only because the model considers data

transmission over the network. If we set the energy costs

for energy transfer to 0, we obtain a value of 24896

joules, which is 0.4% less than the measured value. The

number of computing nodes in the simulation does not

affect the energy consumption, which makes sense.

The calculation model of the processing node based

on stationary computers is given in Listing 3.

Listing 3

Composing a program representation of a stationary

GPU as a computing node in a distributed system

static NodeConfig

rtx3090NodeConfig()

{

 NodeConfig nodeConfig ;

 nodeConfig.rateOn = 1;

 nodeConfig.rateOff = 0;

 nodeConfig.networking = 10000;

 // Bandwidth is considered

 // high enough

 nodeConfig.computing = 1271;

 // Computing resources

 nodeConfig.eNetworking = 0;

 // Data transfer costs are

considered

 // insignificant

 nodeConfig.eComputing = 205000;

 // Millijoules

 return nodeConfig;

}

Because of simulating (Table 2) a distributed

calculation of 800 frames, we received 1601 ticks and

68386 joules of energy. The length in ticks is also

calculated by rounding up + 1 tick per download + 1 last

tick. The obtained energy consumption deviates from the

measured value by 0.2%.

Applied mathematics, optimization, modelling

131

Table 2

Comparison of characteristics of mobile and stationary

GPUs for 4k and 2k frames

Measurem

ent
Forecast

Deviati

on

Execution time

4k (stationary)
276 s 1200 s 335%

Execution time

4k (mobile)
6061 s 6696 s 10.5%

Consumption

4k (stationary)
52806 J

51.3 kJ, C=1

2.7% 51.3 kJ, C=10

51.3 kJ, C=50

Consumption

4k (mobile)
15320 J

15.1 kJ, C=1

1.6% 15.1 kJ, C=10

15.1 kJ, C=50

Execution time

2k (stationary)
71 s 1200 s -

Execution time

2k (mobile)
6122 s 7007 s 14%

Consumption

2k (stationary)
53337 J

54.5 kJ, C=1

2.2% 54.5 kJ, C=10

54.5 kJ, C=50

Consumption

2k (mobile)
15320 J

15.2 kJ, C=1

1% 15.2 kJ, C=10

15.2 kJ, C=50

The error in the calculated energy consumption in

both cases comes from the fact that both the

computational complexity of the tasks and the computing

power of the devices are represented by whole numbers

for convenience and speed.

The physical computation of 600 frames on a

distributed system will occur on a single device that will

simulate different compute nodes so that it will not

maintain connections and will not use input data from

other computations to possibly avoid overhead. Failure

simulation is performed using the node software. In

addition, considering the peculiarity of the battery, the

calculation will proceed from a charge level of 80%.

Running the calculation on the system from a single

mobile device reduced the battery charge to 19%, thus

consuming 15,320 joules of energy. The calculation took

6061 s. The computation of 600 frames on a distributed

system with stationary equipment took 276 s and

consumed 52806 joules of energy.

A simulation of computing 600 frames on a mobile

distributed system with failover settings shows 6696

ticks and 15078 joules of energy. A simulation of

computing on a distributed system from stationary

devices shows 1200 ticks and a consumption of 51290

joules of energy. Changing the number of nodes in the

simulation does not change the energy consumption,

which is expected. Only the general computation time is

changed in this case.

The result of a typical scene rendered with ray

tracing is shown in Figure 1.

4. Discussion

The significant variance in execution time on

stationary devices can also be attributed to the model's

discrete nature and specific characteristics. To obtain a

more accurate forecast, it is necessary to obtain a lower

resolution of the simulation. However, estimating the

execution time is not the purpose of the work.

The smaller deviation of the execution time of the

mobile model compared to the benchmark is due to the

fact that each frame on the mobile device is now

processed for almost exactly 9 seconds, which reduces

the error of the discrete model.

A distributed system based on mobile devices

consumes 3.45 times less energy for the same

calculations. Compared to the difference of 2.2 times in

the previous work [20], this is a lot, but there are several

explanations for this. Initially, the prior study contrasted

the same mobile device against the GeForce RTX 3080,

noted for its higher energy efficiency compared to the

3090. Second, the previous work used a synthetic

benchmark that loaded only the graphics card processor,

without loading the memory at all. In this case, the

memory is used more intensively, and the RTX 3090

memory controller consumes more than the RTX 3080.

Third, the benchmark in this work is worse optimized for

CUDA than for Metal, but it would be more accurate to

say that Metal is more "forgiving" to the developer.

Fourth, the graphics card of a desktop computer has

additional consumers, such as an active cooling system,

and their consumption has been considered.

A better implementation of ray tracing can reduce

the gap between stationary and mobile equipment, but

you can't expect equal or close power consumption to do

the same job.

Conclusions

This paper presents the development and testing of

a universal model for predicting energy costs during

calculations that can be applied to both a traditional

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
132

Fig 1. Rendering result

stationary computer system and a system based on

mobile devices.

The approach proposed in this study allows us to

evaluate energy efficiency without specialized measuring

equipment, determine the energy efficiency of GPUs

based on CUDA technology, evaluate the impact of

various parameters on performance and energy

efficiency, and compare them with a similar

implementation using Apple Metal GPUs. The results of

the experiments conducted by the author show that the

energy consumption assessment model considers the

features of the hardware platform on which data

processing is carried out. Thus, the GPU implementation

using CUDA technology with small data packet sizes,

such as 1 input vector and even 1000 input vectors, is

inferior in energy efficiency to a similar implementation

on the Apple Metal GPU.

Therefore, during experimental testing, the energy

consumption estimation model turned out to be quite

effective. However, the model requires a clear goal for

both the task and the device used. This, in turn, requires

the creation of a benchmark for each model, which is a

disadvantage of this model. This drawback is planned to

be eliminated by accumulating quantitative data and

modeling results, which will allow generalizing some

parts of the model. In addition, the task in this work was

chosen quite ideally: it does not require intensive data

exchange between computing nodes .

Including future research directions, it is planned to

apply the model to more coherent calculations. Thus, the

presented results and the described measurement

methods can be used as a basis for conducting large scale

studies in the field of assessing the energy consumption

of mobile and stationary GPUs.

Another direction for future research is information

security. Calculations on personal mobile devices require

additional information security solutions because it is

impossible to physically protect the hardware from

unauthorized access.

Contributions of authors: conceptualization,

methodology, analysis development of model, software,

verification visualization, writing original text –

Oleksandr Mamchych; scientific supervising, analysis

of results, reviewing and editing – Maksym Volk.

Conflict of interest

The authors declare that they have no conflict of

interest in relation to this research, whether financial,

personal, authorship or otherwise, that could affect the

research and its results presented in this paper.

Financing

This research was conducted without financial

support.

Data availability

Manuscript has no associated data.

Applied mathematics, optimization, modelling

133

Use of artificial intelligence

The authors confirm that they did not use artificial

intelligence methods while creating the presented work.

All the authors have read and agreed to the

published version of this manuscript.

References

1. Javed, A., Alyas Shahid, M., Sharif, M., &

Yasmin, M. Energy consumption in mobile

phones. International Journal of Computer Network and

Information Security, 2017, vol. 9, no. 12, pp. 18-28.

DOI: 10.5815/ijcn is.2017.12.03

2. Roth, K., Goldstein, F., & Kleinman, J. Energy

consumption by office and telecommunications

equipment in commercial buildings volume I: energy

consumption baseline, National Technical Information

Service (NTIS), US Department of Commerce,

Springfield, 2002. 211 p. Available at: https://biblioite.

ethz.ch/downloads/Roth_ADL_1.pdf (Accessed

01.03.2024)

3. Giri, A., & Patil, P. Design of a parallel multi-

threaded programming model for multicore architecture

with resource sharing. Indian Journal of Scientific

Research, 2015, vol. 11, no. 1, pp. 85-89. Available at:

https://go.gale.com/ps/i.do?id=GALE%7CA454619960

&sid=googleScholar&v=2.1&it=r&linkaccess=abs&iss

n=09762876&p=AONE&sw=w&userGroupName=ano

n%7Eaed63acc&aty=open-web-entry (Accessed

01.03.2024)

4. Caspart, R., Ziegler, S.; Weyrauch, A.;

Obermaier, H., Raffeiner, S., Schuhmacher, Leon P.,

Scholtyssek, J., Trofimova, Darya., Nolden, M.,

Reinartz, I., Isensee, F., Götz, M., & Debus, C. Precise

energy consumption measurements of heterogeneous

artificial Intelligence workloads. ISC High Performance

2022: High Performance Computing. ISC High

Performance 2022 International Workshops, 2022, pp.

108-121. DOI: 10.1007/978-3-031-23220-6_8.

5. Chandrakasan, A. P., Sheng, S., & Brodersen,

R. W. Low-power CMOS digital design. IEEE Journal

of Solid-State Circuits, 1992, vol. 27, no. 4. pp. 473–484.

DOI: 10.1109/4.126534.

6. Dong, M., & Zhong, L. Self-constructive high-

Rate system energy modeling for battery-powered

mobile systems. ACM/USENIX International Conference

on Mobile Systems, Applications, and Services

(MobiSys’2011), Association for Computing Machinery,

New York, NY, USA, pp. 335–348. DOI:

10.1145/1999995.2000027.

7. Saipullah, K. M., Anuar, A., Atiqah Ismail, N.,

& Soo, Y. Measuring power consumption for image

processing on android smartphone. American Journal of

Applied Sciences. 2012, vol. 9, no. 12, pp. 2052–2057.

DOI: 10.3844/ajassp.2012.2052.2057.

8. Bekaroo, G., & Santokhee, A. Power

consumption of the Raspberry Pi: A comparative

analysis. In 2016 IEEE International Conference on

Emerging Technologies and Innovative Business

Practices for the Transformation of Societies

(EmergiTech). Balaclava, Mauritius, 2016, pp. 361-366.

DOI: 10.1109/EmergiTech.2016.7737367.

9. Dean, J., & Ghemawat, S. MapReduce:

simplified data processing on large clusters .

Communications of the ACM, 2008, vol. 51, no. 1, pp.

107-113. DOI: 10.1145/1327452.1327492.

10. Carvalho, S. A., Lima, R. N., Cunha, D. C., &

Silva-Filho, A. G. A hardware and software web-based

environment for Energy Consumption analysis in mobile

devices. In 2016 IEEE 15th International Symposium on

Network Computing and Applications (NCA) ,

Cambridge, MA, USA, 2016, pp. 242–245. DOI:

10.1109/NCA.2016.7778625.

11. Kharchenko, V., Brezhnev, E., & Sklyar, V.

Green information technologies: paradigm and

cooperation in research, development and education

domains . 8th International Green Energy Conference ,

Kyiv, Ukraine, 2013, pp. 1-5.

https://www.researchgate.net/publication/305787567_G

reen_Information_Technologies_Paradigm_and_Cooper

ation_in_Research_Development_and_Education_Dom

ains (Accessed 01.03.2024)

12. Kharchenko, V., Gorbenko, A., Sklyar, V., &

Phillips, C. Green computing in critical application

domains: challenges and solutions. 10th Conference on

Digital Technologies, DT2013 . Žilina, Slovakia, 2013,

pp 191-197. DOI: 10.1109/DT.2013.6566310

13. Mamchych, O., & Volk, M. Smartphone based

computing cloud and energy efficiency published in:

2022. 12th International Conference on Dependable

Systems, Services and Technologies (DESSERT), Athens,

Greece, 2022. DOI: 10.1109/DESSERT58054.2022.

10018740.

14. Hamza, S. Distributed computing system on a

smartphones-based network in book: Software

Technology: Methods and Tools, 2019, pp. 313-325.

DOI: 10.1007/978-3-030-29852-4_26.

15. Yu, J., Williams, E., & Ju, M. Analysis of

material and energy consumption of mobile phones in

China. Energy Policy, 2010, vol. 38, no. 8, pp. 4135-

4141. DOI: 10.1016/j.enpol.2010.03.041.

16. Damaševičius, R., Štuikys, V., & Toldinas, J.

Methods for measurement of energy consumption in

mobile devices. Metrology and measurement systems,

2013, vol. 20, no. 3, pp. 419-430. DOI: 10.2478/mms -

2013-0036

17. Comito, C., & Talia, D. Energy consumption of

data mining algorithms on mobile phones: Evaluation

https://link.springer.com/book/10.1007/978-3-031-23220-6
https://link.springer.com/book/10.1007/978-3-031-23220-6
https://ieeexplore.ieee.org/author/37089710933
https://ieeexplore.ieee.org/author/37086255896
https://doi.org/10.1109/DESSERT58054.2022.10018740
https://doi.org/10.1109/DESSERT58054.2022.10018740

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
134

and prediction. Pervasive and Mobile Computing , 2017,

vol. 42, pp. 248-264. DOI: 10.1016/j.pmcj.2017.10.006

18. Fekete, K., Csorba, K., Forstner, B., Fehér, M.,

& Vajk, T. Energy-efficient computation offloading

model for mobile phone environment. In 2012 IEEE 1st

International Conference on Cloud Networking

(CLOUDNET), Paris, France, 2012, pp. 95-99. DOI:

10.1109/CloudNet.2012.6483662.

19. Ramos, R., Faria P., Gomes L., & Vale Z.

Building Energy Consumption Forecast under Different

Anticipations on a Green Computation Perspective

IFAC-PapersOnLine, 2023, vol. 56, Issue 2, pp. 10923-

10928. DOI: 10.1016/j.ifacol.2023.10.778.

20. Lee, K. P., Chng, C.W, Tong, D.L., & Tseu, K.

L. Optimizing Energy Consumption on Smart Home

Task Scheduling using Particle Swarm Optimization .

Procedia Computer Science, 2023, vol. 220, pp. 195-201.

DOI: 10.1016/j.procs.2023.03.027.

21. Catthoor, F., Wuytack, S., De Greef, E., Balasa,

F., Nachtergaele, L., & Vandecappelle, A. Custom

Memory Management Methodology: Exploration of

Memory Organization for Embedded Multimedia System

Design. Boston, Kluwer Academic Publishers, 1998. 356

p.

22. Ivanisenko, I. M., & Volk, M. O. Simulation

methods for load balancing in dis tributed computing.

Proceedings of IEEE East-West Design & Test

Symposium (EWDTS’2017) , Novi Sad, Serbia, 2017, pp.

690-695. DOI: 10.1109/EWDTS.2017.8110078.

23. Kondratenko, Y., Kozlov, O., Korobko, O., &

Topalov, A. Complex industrial systems automation

based on the internet of things implementation .

Communications in Computer and Information Science ,

Springer, Cham, 2018, pp. 164–187. DOI: 10.1007/978-

3-319-76168-8_8.

24. Kondratenko, Y. P., Kozlov, O. V., Korobko, O.

V., & Topalov, A. M. Internet of Things approach for

automation of the complex industrial systems. 13th

International Conference on ICT in Education, Research

and Industrial Applications. Integration, Harmonization

and Knowledge Transfer, Kyiv, Ukraine, 2017, pp. 3-18.

Available at: https://ceur-ws.org/Vol-1844/

10000003.pdf (Accessed 01.03.2024)

25. Güçyetmez, M., & Farhan, H.S., Enhancing

smart grids with a new IOT and cloud-based smart meter

to predict the energy consumption with time series.

Alexandria Engineering Journal, 2023, vol. 79, pp. 44-

55. DOI: 10.1016/j.aej.2023.07.071.

26. Zakaria, S., Mativenga P., & Ariff, E.A.R

Engku. An Investigation of Energy Consumption in

Fused Deposition Modelling using ESP32 IoT

Monitoring System. Procedia CIRP, 2023, vol. 116, pp.

263-268. DOI: 10.1016/j.procir.2023.02.045.

27. Cheng-Fu, H., Ding-Hsiang, H., & Yi-Kuei, L.

Network Reliability Evaluation for a Distributed

Network with Edge Computing. Computers & Industrial

Engineering, vol. 147, 2020. DOI:

10.1016/j.cie.2020.106492.

28. Guobin, Z., Jian, Z., Jian, T., & Junwu, Z.

Collaboration Energy Efficiency with Mobile Edge

Computing for Data Collection in IoT. Advances in

Artificial Intelligence and Security, Beijing, 2021, pp.

279-285. DOI: 10.1007/978-3-030-78615-1_24.
29. Qasaimeh, M., Denolf, K., Lo, J., & Vissers, K.

Comparing Energy Efficiency of CPU, GPU and FPGA

Implementations for Vision Kernels, The 15th IEEE

International Conference on Embedded Software and

Systems, Nevada, US, 2019, pp. 4-8. DOI:

10.1109/ICESS.2019.8782524.

Received 27.02.2024, Accepted 15.04.2024

УНІФІКОВАНА МОДЕЛЬ ТА МЕТОД ПРОГНОЗУВАННЯ ЕНЕРГОСПОЖИВАННЯ

В РОЗПОДІЛЕНИХ ОБЧИСЛЮВАЛЬНИХ СИСТЕМАХ

НА ОСНОВІ СТАЦІОНАРНИХ ТА МОБІЛЬНИХ ПРИСТРОЇВ

О. О. Мамчич, М. О. Волк

Предметом дослідження в даній статті є прогнозування енергоспоживання при обчисленні розподілених

завдань у комп’ютерних мережах, побудованих на базі серверних рішень та розподілених персональних

смартфонів. Метою цього дослідження було створення універсальної моделі прогнозування вартості

обчислювальної енергії, яку можна застосувати як до традиційної хмарної системи, так і до мобільної хмарної

системи. Завдання: провести аналіз енергозберігаючих підходів і технологій, що використовуються для

розрахунку даних; розглянути моделі комп’ютерної системи та дії з ними, а саме: модель розподіленої роботи,

модель стратегії розподілу, ініціалізацію моделі; розробити єдиний і єдиний динамічний метод прогнозування

витраченої енергії з акцентом на гетерогенні системи; проведення дослідження запропонованого підходу на

стаціонарних та мобільних пристроях. Отримані результати роботи включають результати

експериментальних вимірювань енергоспоживання мобільних цифрових систем та стаціонарних. Була

визначена енергоефективність обчислень на графічних процесорах стаціонарного пристрою на основі

Applied mathematics, optimization, modelling

135

технології CUDA та графічних процесорів на мобільних пристроях на основі технології Apple Metal.

Обчислення 600 кадрів в розподіленій системі з мобільних пристроїв з налаштуванням и відмов показало

споживання 15078 джоулів енергії. Моделювання обчислень на розподіленій системі зі стаціонарними

пристроями показало споживання 51290 джоулів енергії. Це означає що мобільна система дає виграш у 3,45

разів в споживанні енергії. Висновки. Модель оцінки енергоспоживання виявилася досить ефективною.

Результати авторських експериментів показують, що модель оцінки енергоспоживання враховує особливості

апаратної платформи, на якій виконується обробка даних. Обчислення даних на GPU стаціонарних пристроїв

програє в енергоефективності аналогічній реалізації на GPU Apple Metal з мобільних пристроїв. Отже,

представлені результати доводять раціональність використання мобільних графічних процесорів для

енергоефективної обробки інформації.

Ключові слова: графічний процесор; енергоефективність; розподілена система; хмарні обчислення;

зелені обчислення; мобільний пристрій; багатопоточність.

Мамчич Олександр Олександрович – асп. каф. Електронних Обчислювальних Машин, Харківський

Національний Університет Радіоелектроніки, Харків, Україна.

Волк Максим Олександрович – д-р техн. наук, проф. каф. Електронних Обчислювальних Машин,

Харківський Національний Університет Радіоелектроніки, Харків, Україна.

Oleksandr Mamchych – PhD Student at the Department of Electronic Computers (ECM), Kharkiv National

University of Radioelectronics , Kharkiv, Ukraine,

e-mail: mamont0207@gmail.com, ORCID: 0009-0001-6602-2929, Scopus Author ID: 58099399400.

Maksym Volk – Doctor of Technical Science, Professor at the Department of Electronic Computers (ECM),

Kharkiv National University of Radioelectronics , Kharkiv, Ukraine,

e-mail: maksym.volk@nure.ua, ORCID: 0000-0003-4229-9904, Scopus Author ID: 9636701100.

https://orcid.org/0009-0001-6602-2929
https://orcid.org/0000-0003-4229-9904

