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A UNIFIED MODEL AND METHOD FOR FORECASTING ENERGY
CONSUMPTION IN DISTRIBUTED COMPUTING SYSTEMS BASED
ON STATIONARY AND MOBILE DEVICES

The subject of research in thisarticle isthe forecasting of energy consumption when computing distributed tasks
on computer networks built on the basis of server solutions and distributed systems based on personal
smartphones. The goal of this study was to create a universal computing energy cost prediction model that can
be applied to both traditional andmobile cloud systems. Tasks: conduct an analysis ofenergy-saving approaches
and technologies used to calculate data; consider computer systemmodels and actions with them, namely: model
of distributed job, model of distributed computing system, model of distribution strategy; develop a common and
uniform dynamic method of forecasting spent energy with a focus on heterogeneous systems; conduct a study of
the proposed approach on stationary and mobile devices. The obtained results include. The results of the
experimental measurement of the energy consumption of mobile digital systems and stationary ones are
presented. The energy efficiency of computing on GPUs of a stationary device based on CUDA technology and
GPUs onmobile devices based on Apple Metal technology was determined. Computation during the calculation
of 600 frames on a distributed system from mobile deviceswith failure settings showed a consumption of 15320
joules of energy. Simulation of computing on a distributed systemwith stationary devices showed a consumption
of 52806 joules of energy. This gives us 3,45 times the consumption benefit from computing on mobile devices.
Forecasted consumption is also very accurate. Conclusions. The energy consumption assessment model proved
to be quite effective. The results of the experiments show that the energy consumption estimation model takes
into account the features of the hardware platform where data processing is performed. Computation ofdata on
the GPU of stationary devices loses energy efficiency to a similar implementation on the GPU of Apple Metal
from mobile devices. Therefore, the presented results demonstrate the rationality of using mobile graphics
processors for energy-efficient information processing.

Keywords: graphics processor; energy efficiency; distributed system; cloud computing; green computing;
model; mobile device; multithreading.

demand for cloud computing power. To expand the
available cloud computing capacities, it is necessary to

1. Introduction

1.1. Motivation

Information technologies implement the functions
of monitoring, information processing, and management,
which directly affect the technical level of energy
systems for both traditional and green energy. Without
information technologies, it is impossible to effectively
respond to challenges in the field of conservation and
increase energy resources. However, every year,
information technologies in this context acquire an
independent role as IT systems become more and more
active consumers of energy [1, 2]. According to various
sources, they account for up to 3% of the total amount of
energy consumed.

Various calculation tasks are integral components
of information systems. The increasing complexity of
these tasks increases the demand for computing power [3,
4]. If the task cannot be computed using local resources,
it is usually computed in large data centers on specialized
equipment. This, in turn, leads to an increase in the

manufacture new hardware and create new data centers.

1.2. State ofthe art

At the level of energy savings in electronic
components, researchers distinguish between two
groups: hardware (technical) and software. They allow
for detail in the context of information technology.

Hardware [5,6]. For hardware, primarily
microcircuits of various purposes and designs, there are
solutions that reduce energy consumption. They are
based on the application of special electronic circuits,
technologies, and computing paradigms; modes of
reduced energy consumption (“sleeping” and "semi-
sleeping") for the entire crystal or its individual parts;
schematic design solutions that minimize the number of
simultaneously switching crystal elements and thus
reduce current surges; adaptation schemes in redundant
structures, the channels of which operate at the limit
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reduced voltage (in this case, failures caused by unstable
operation are possible); and special settings for
programmable crystals, etc. Similar approaches are used
in more complex hardware components (modules,
channels), where various combinations of methods can
be used [7, 8].

Software tools [9, 10]. The approaches used for
software tools are not as clear-cut as their impact on
energy savings is indirect. However, the concept of
"green software" [11, 12] has been established in the
scientific and technical lexicon, based on the
understanding that: each operator, language construct
and program module can have its own energy metric (that
is, it is characterized by the energy consumed by the
platform on which the program is implemented);
different software solutions vary in the amount of
resources used (not only energy) and can be optimized
(including according to the energy criterion); since
energy consumption or energy efficiency become
attributes of software quality, it is advisable to use a
process approach for their assessment and provision; to
evaluate energy meters of software options, it is
necessary to use special hardware and software solutions
that will ensure the accuracy of measurements of the
energy consumed during the execution of various
applications. Thus, for green software, the tasks of
clarifying the quality model, which should include
characteristics that directly and/or indirectly considerthe
energy component, defining a set of metrics used,
developing  methods  for measuring  relevant
characteristics, and optimizing processes and products
obtained, are important at different stages ofthe software
life cycle according to the specified criteria.

In absolute terms, this is a colossalamount that can
be compared with the energy consumption of the largest
European economies. For example, a modern cloud IT
infrastructure, including a data center and several
thousand computers, consumes 10-15 megawatts daily.

Currently, there are up to 20 billion personalmobile
devices in the world, which have a very impressive
aggregate computing power [13, 14]. They can also be
used to calculate a whole range of problems.

In addition, most existing scientific research works
are aimed at maximizing the efficiency of execution of
certain algorithms. Usually, the main metrics are the
minimization  of task execution time and the
minimization of idle time of individual parts of computer
systems. Very little attention is paid to minimizing
energy and traffic costs. Therefore, potential computing
networks built from personal smartphones receive very
little attention or remain outside the scope of newest
approaches.

This work aims to study methods for forecasting
energy consumption when computing distributed tasks
on computing networks built from smartphones, as well

as compare the energy consumption of traditional
distributed computing systems based on server solutions
and distributed computing systems based on personal
smartphones.

The objective of this work is to create a universal
model for forecasting energy costs in computing, which
can be applied to both a traditional cloud system and a
cloud systembased on mobile devices. The model must
meet the following criteria: the same dynamic algorithm
for scheduling tasks, focus on heterogeneous systems, the
ability to measure and predict energy costs, take into
account the limited reliability of node access to the
network and related overheads, and be able to estimate
the energy costs of both mobile equipment and
conventionalcomputing hardware.

Modern microprocessor manufacturers strive daily
not only to increase the performance of their chips but
also to reduce their overall energy consumption. Mobile
phones (smartphones), tablets, laptops, and other devices
that are convenientto carry and use in everyday life have
become integral attributes of our time. To increase
energy efficiency, manufacturers use various circuit-
technical and software solutions. One straightforward
method to extend a device’s lifespan is by increasing the
battery capacity [15]. Further, there are methods of
reducing energy consumption by the periphery, namely
special low-power displays, low-voltage microcircuits in
communication and navigation modules, and low-
voltage processors [16]. The next stage is the special
operating modes of processor devices, which allow the
device to be put into standby, sleep or deep sleep mode,
with the possibility of quick awakening, but at the same
time power consumption is reduced from hundreds of
mA to tens of pA [17]. The final stage is energy-saving
software [18]. There are many programs that help save
the resources of the already voracious computing core of
any microprocessor device. Such programs have gained
popularity since the days of computers and are now
actively used by mobile devices.

The paper [19] presents a comprehensive study on
forecasting energy consumption in electrical buildings
using smart grid technologies, focusing on the
application of artificial neural networks and k-nearest
neighbor algorithms. This study emphasizes green
computing by optimizing the computational efficiency of
the GPU processing unit during the forecasting process.
This paper outlines an approach to outlier detection and
correction, which significantly enhances the quality of
the dataset used for training forecasting models.

The paper[20] provides an insightful exploration of
the use of Particle Swarm Optimization (PSO) for
enhancing energy efficiency in  smart home
environments. This study addresses the critical issue of
high energy consumption in smart homes by developing
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a mobile application that employs PSO for task
scheduling of smart home appliances.

One notable study describes methodologies related
to RAM energy consumption. The authors propose to
transform the program code in such a way as to organize
work with smaller memory areas and with less energy
consumption for each memory access operation. In
another study [21], instruction-level models with high
clock accuracy were used to evaluate the complex impact
of software and hardware optimization on energy
efficiency (the processoroperation was simulated before
each operating cycle). However, despite all previous
work, the energy consumption of a specific program has
always been estimated wusing a specific target
architecture.

Many studies have investigated the advantages of
certain approaches to planning the distribution of tasks
on a distributed system. However, the primary metric
remains the minimization of computational task
execution time. Any model suffers from distribution
overhead to one degree or another, so such methods are
forced to duplicate part of the calculations or transfer a
lot of data many times, which leads to a decrease in the
energy efficiency of the task even compared to the
execution on a single computing device. In addition, task
planning models for distributed systems usually expect
fairly large bandwidth and fast response of network
interfaces, but personal mobile devices have limited
bandwidth and long response times. All such works
cannot automatically be applied to a distributed system
from mobile devices; any such system will be purely
heterogeneous [22].

There are many studies devoted to cloud computing
[23, 24] that assess energy efficiency calculations and
energy consumption forecasting in cloud computing.
However, they always work with server equipment
traditional for data centers, almost not considering data
exchange and consumption of peripheral devices [25,
26]. These are usually limited to the telemetry dataof the
computing devices themselves (CPUs and GPUs), while
peripherals and network infrastructure can also consume
significant amounts of power. When calculating energy
costs on a smartphone, it is much easier to consider the
consumption of the device as a whole, together with the
costs ofdata transmission and peripherals.

Some studies describe the behavior of computing
systems with limited reliability, but they do notstudy the
effect of limited reliability of a node on energy
consumption [27].

Studies have shown that mobile computing systens
themselves are more energy-efficient than traditional
data centerequipment [28].

To evaluate the energy efficiency of the computing
cloud from mobile devices, it should be considered as a
purely heterogeneous systemwith limited reliability of

nodes, limited bandwidth of network interfaces, and
exclusively dynamic planning. There is no work that
looks at the cloud from mobile devices from this point of
view and compares it with traditional clouds based on
data centers on the same tasks and considers the
maximum total energy costs.

1.3. Features of computing and energy
efficiency of CPU and GPU

Computing equipment has long ceased to be a
simple device. Today, tasks solved with its help represent
the modeling of processes occurring in reality. Therefore,
the natural parallelism of the real world flows into the
formulation of the problem and the corresponding
mathematical model. The extent to which the architecture
of computing devices is consistent with the properties of
the real world determines how effective the solution of
the tasks will be. In recent years, it has become clearly
noticeable that the evolution of the CPU has lowed due
to many technological limitations. Manufacturers can no
longer significantly increase the operating frequencies of
the CPU, and a simple increase in the number of
processorcores while preserving the original architecture
(Table 1) does not provide the desired increase in
performance when solving real problems. Additionally,
the complexity of a single core growth to achieve higher
performance per tick at the cost of higher energy
consumption. At the same time, exponential growth is
observed in GPU performance and in its architecture,
which reflects the properties of the real world. Initially,
the final result of graphic data processing on the GPU
was a setofpixel colors. The computation of pixel colors
perfectly fits an array of simple processors performing
similar computations. Therefore, GPUs are mainly
intended for work with large amounts of similar data.

Focusing on the processing of many independent
pixels, the GPU was originally built as a parallel matrix
calculator. With the expansion of the set of graphic
operations in the graphic core, pipeline parallelism was
added to matrix parallelism. These properties of the
architecture, originally laid down in the GPU, also
determined other features, such as the command system
and thread management.

The CUDA computing architecture is based on the
conceptof Single Instruction Multiple Data (SIMD) and
the concept of a multiprocessor. The SIMD concept
assumes that one instruction can simultaneously process
a large amount of data. A multiprocessor is a multi-core
SIMD processor that allows only one instruction to be
executed onall its cores at any given time.

This architectural solution allows calculations to be
performed on the GPU more efficiently than on the
central processor, provided that the task can be divided
into multiple threads. Similar to running on a CPU, a
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bottleneck in a computing systemis memory access.On
GPUs, memory is usually accessed through a wide
memory bus, which supports overwhelming resulting
throughput if the data is properly organized. The result
performance is great, yetit highly depends on the smooth
and predictable loading of multiple cores. This is one of
the main principles of CUDA, which can significantly
improve the performance of the system as a whole.
Another opportunity to improve performance is to
combine several global memory requests into one, called
a transaction or coalescing global memory access. To
combine requests into a transaction, several conditions
must be met. First, concurrently executing threads must
access either 32-bit words, resulting in one 64-byte block,
or 64-bit words, resulting in one 128-byte block. If 128-
bit word access is used, the result will be two
transactions, each returning 128 bytes of information.

Table 1
Comparison of the characteristics of CPU and GPU
Parameter CPU GPU
Serial architecture Initially
Architecture | with added vector parallel
instructions architecture
Command SISD SIMD
system
ALU Complex Simple
S mery | Large cache cimplited
Yy memory, branch pIT
access rediction prediction,
problem P batch access
- Thousands of
Number of jozzeazr;fogilr:sf) tt(e)r cores per
threads . P .
chip multiprocessor
All formats: Mostly single
Data format integers, reals of and half
various precision precision

Second, threads must access memory locations
sequentially, each subsequent thread must be assigned
the next word in memory, and all words must be within
the memory block being accessed. In software
implementations based on CUDA technology, data must
be structured in such a way that it is almost always
possible to combine it into transactions when accessing
global memory, because otherwise the performance of
calculations on the GPU is sharply reduced and may even
be lower than sequential data processing on the central
processor. The primary goal of moving calculations to
the GPU is usually to obtain significant performance
gains. However, the GPU architecture has another

important property - high energy efficiency for many
high-paralleled tasks [29]. The main prerequisites for this
are two factors: most of the area of the GPU crystal is
allocated to ALUs, which are directly involved in data
processing, and not in the tasks of controlling the
sequence of commands; Due to the massive parallelism
of calculations, it becomes possible to reduce the
frequency and, as a result, energy consumption while
maintaining high performance.

1.4. Objectives and the approach

We can distinguish 2 major objectives in this
article:

1. Develop a model that is able to evaluate energy
consumption on distributed systems based on
conventional servers and mobile devices during the
execution of similar useful payloads.

2. Comparison of energy consumption of 2 systems:
based on conventional server equipment (GPU) and
mobile devices (mobile SoC)

The approach is based onidentical evaluation tasks
having similar algorithms and implementations and
being run on different distributed systems. In addition,
the approach takes into account not only the energy
consumed by the computation unit itself but also the
energy consumed during datatransferring; since this is a
very important aspect of computing systems based on
personal mobile devices.

The structure of this article is as follows:

1. Description of a model of distributed computing
as a union of 3 models: a distributed computing system,
a distributed job, and a distribution strategy model
(subsections 2.1-2.4).

2. Initialization and running of the distributed
computing model with estimated parameters (subsections
2.5-2.6).

3. Benchmarking of real hardware to estimate
energy consumption during computing. To run the
model, we need to set up the hardware parameters, which
cannot be taken from public sources; hence, we need to
collect them (subsection 3.1).

4. Running the real computation. Collecting
measurements from computing a real job on real
hardware: consumed energy and duration (subsection
3.2).

5. Comparison of the model output and real
computing run and discussion ofthe results. The purpose
here is to understand the accuracy of the model from an
energy consumption perspective (section 4).

6. Summarizing the achieved results from the
accuracy and universalism perspective. Suggesting
potential ways for future improvements in accuracy,
universalism, and security (Conclusion).
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2. Case study. Development of a model
for forecasting energy consumption

2.1. Discrete model of a distributed computing

To simulate a distributed system, we will use a
discrete model because of the relative simplicity of its
further implementation. To successfully model the
energy costs of computing, the model must consider the
specifics of the hardware, the structure of the task itself,
and the distribution method. Therefore, the general
model can be represented as a system of three smaller,
relatively independent discrete models: the model of the
computing system, the model of the computing job, and
the model of the computing strategy. We denote them as
follows:

M:<MC;MJ;M3>, @
where Mc — model of the computing system;

M; — model of computing job;

Ms — model of computing strategy.

Each model is a set of interrelated constants and
variables. For example, a model of a computing system
should contain information about the computing
resources of all nodes included in the model, as well as
information about the state of the node at the moment:
online or offline. The job model is a set of constants that
describe the complexity of certain operations in the
execution process. The computing strategy model
contains a set of variables and rules for transitions
between states that describe the general state of job on
the computing systemat each discrete moment in time -
a flow. Then the computational energy is a function of
these three models:

E(M) =(Mc;M;;Mg). @

2.2. A model ofadistributed computing system

The distributed computing system of a traditional
data center may be homogeneous, but the distributed
computing systemof mobile devices is heterogeneous by
default because it consists of devices with different
computing powers and communication channel speeds.
Furthermore, unlike traditional servers, the typical
operation of a mobile device includes periodic losses of
network communication, and consequently, connectivity
with the computing system's control center. Let's assume
that if the node has a network connection with the control
center, it is in online mode; otherwise, it is in offline
mode. Thus, the simplest model of asingle mobile device
can be described as computing power (as the number of
computing operations per tick), network access speed (as

the maximum amount of data that can be transferred per
tick), and network access state (online and offline). To
describe the state in the network, we use the Markov
process: as the probability of changing one state to
another during one tick. Since the main interest for this
study is energy consumption, for each device it is also
necessary to specify the computing device energy
consumption (as the amount of energy consumed by a
node in computing per tick) and the data transmission
energy consumption (as the amount of energy consumed
by the device in datatransmission per tick). Therefore, a
computing device can be defined as follows:

N; = (i RO RE™ piscisefef ), ®
where nj —availability at the moment of time;
Ri°" —probability of transition to the online state;
Ri°f — probability of transition to the offline state;
pi—computing power in operations per 1 tick;
ci— channelbandwidth in bytes per 1 tick;

e’ — energy consumption in
calculation for 1 tick;

joules during

ei® — energy consumption in joules during data
transfer for 1 tick.

If njis equal to 1, then the node is considered online
and can perform calculations, if 0, then it is offline and
cannot perform calculations. A transition from 0 to 1 has
a probability Ri°"every tick, a transition from 1 to 0 has
a probability Ri°". Therefore, ni" on the next tick is
calculated according to the formula

| PRM™), ni=0;
1—p(Ri°ﬁ), n =1;

n'i

Q)

where p(Ri°") and p(Ri°") are probabilistic values of
uniform distribution.

The other parameters N jare constant and do not
change during the calculation. Then the model of the
computing systemcan be represented as an array of all
computing nodes. Let C be the number of nodes in the
model. The computer network model can then be defined
as follows.

Mc =<C;Ni, i=0...C—1>. ")
Or in the expanded view:
MC=<C;ni;Ri°”;R?‘°f;pi;ci;ef’;ef,i=o...c:—1>, ©)

where C — number of nodes in the model.
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2.3. Amodel of distributed job

The model of distributed computing can be
represented as a set of interconnected tasks and
intermediate data - artifacts. Let each task require a
certain set of artifacts for computation and generate one
artifact in the computation process. Let the artifacts used
to calculate the problem and generated as a result of the
calculation be characterized by the amount of data and
denoted by Aj. Let the task be characterized by the
number of computational operations that must be
performed to obtain its result, which is denoted by Ti. _
Let the result of the task T i be the artifact A..
Computation of artifact Ai by task Ti requires some
artifacts to be computed and available. Let such a
dependence be given by the matrix Dj;: if the calculation
of the i-th artifact requires the j-th, then Djj =1, otherwise
Dij=0. Let J be the number of artifacts and tasks in the
work.

Thus, the computational work can be represented as
follows:

M, =(Ti; Aj: Dy

i 1=0.0-1 j=0...J—1>, @)

where Ti — computation complexity of a task;
Ai—amount of data contained in an artifact;

Dij— matrix denoting dependencies between tasks
and artifacts.

The number of artifacts needed to calculate the i-th
artifact is calculated by the following formula:

J-1
In(Mj,i) = > Dj;. (8)
j=0

The number ofartifacts, for the calculation of which
it is necessary to have the data of the i-th artifact, is
calculated according to the formula:

J-1
Out(Mj, ) = > Dj;. )
i=0

Some artifacts are primary inputs, which are inputs
to the work itself. Some artifacts are notused to calculate
otherartifacts, such artifacts are the raw data of the work.
Let the artifacts for which In(M4i)=0 be called inputs,
and the artifacts for which Out(M;,j)=0 be called outputs.
Input artifacts do not require computation and are
assumed to be known at the beginning of the
computation. In addition, Tiis assumed to be 0 for all
input artifacts.

2.4. Distribution strategy model

For the taskto be completed, it must be assigned to

some node. A node must receive a computation
instruction, download the required artifacts to perform a
task, execute the task, and then transmit the computed
artifact to the system, i.e., the control center of the
computing network. Thus, the model should describe:

—a list of artifacts available to the system at a
moment in time; let sucha list be called the scope of the
system;

—a list of artifacts available to each node at a point
in time; let sucha list be called the scope of the node;

—the task assigned to be performed on a node at a
moment in time;

— the task that a certain node performs at a given
moment in time;

—an artifact that a certain node transmits at a given
moment in time;

The scope of all nodes can be described by the
matrix s of size CxJ, sij=1if the i-th node has data of the
j-th artifact, otherwise - 0. The scope of the systemcan
be described by the array g of dimension J, g j=1 if the
systemhas data of the j-th artifact, otherwise - 0. Initially,
no node possesses any artifact data, and the system
contains only data for incoming artifacts, as outlined in
Formula (10). In order for an artifact to become available
in a scope, this artifact must either be transferred to this
scope from another, or calculated from existing artifacts.
Transmission is possible only between the systemand
node, i.e., from node to systemor from systemto nodes.
For simplicity, transmission between nodes within this
model is notpossible.

Task assignment to a computing node defines the
task’s relationship with that node. Since each node and
task is ordered by index, sucha relation can be specified
by an array a of size J, where ajis the destination node
number or -1 if the task is not assigned to any node.

The instantaneous status of the task calculation on
the node contains the task number and the number of
operations that must be performed on the node to perform
the assigned task and obtain the corresponding artifact.
They can be described as arrays x and X of size C. Let x
i be the number of the task running on the i-th node, or -1
if no task is currently running on the i-th node. Let x ' be
the number of operations that must be performed to
complete the task on the i-th node.

The current data transfer status encompasses the
artifact number and the volume of data required to
finalize thetransfer. They can be described as arrays tand
t' of size C. Let tibe the number of artifact transmitted by
thei-th node, or -1 if no transmission occurs. Let t;i' be the
amount of data that must be transferred to complete the
transfer of the artifact by the i-th node.

The direction of transmission on the i-th node is
determined by the presence of this artifact in the systenis
scope:if the dataartifact is in the system's scope, then the
transmission goes from the system to the node, if this
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artifact is notin the system's scope, then the transmission
goes from the node to the system.

Therefore, the distribution strategy model can be
articulated as a set of the following variables:

Mo = 9jsSij: @i X X5 s i,
> \iz0.c-1j=0.3-1/"
where gj — presence of j-th artifact’s data in the system
scope;

(10)

sij—presence of j-th artifact in the scope of i-th
node;

aj — node number i-th task is assigned to;
¥ —number of a task currently running on i-th node;
X’ —number of operations to finish xi task;

ti — number of an artifact being transferred by the i-
th node;

ti’ — amount of data to be transferred to finish ti
transferring.

Let the number of tasks assigned to node i be
calculated using the following formula:

) o &[0 a5 =i
Assign(Ms,i) =" La—i
j=0 1 aJ _I!

(11)

The amount of data that needs to be transferred to
the i node to start calculating the j subtask:

= 0, sj=1
DI(Ms.,i,j) = D> D Ls ol (12)
1 |] -

k=0

A taskis considered available for distribution when
all the artifacts necessary forits calculation are within the
scope of the system. The availability of a subtask for
distribution is calculated using the following formula:

J-1
AVB.”(MS, I) = z DIJ -0i-
j=0

(13)

The computation of work is considered complete
when all artifacts are available within the scope of the
system. The number of artifacts available in the system
scope is calculated as the sum of all non-zero values in
the g array:

(14)

J-1
2.9;
=0

Subtaski is considered available for computation on

the j-th node when all artifacts required are within the
scope of the corresponding node. Availability can be
determined by the following formula:

I

Avall(MS,l,J)I lengI (15)
k=0

2.5. A model initialization

Models Mjand Mc contain constants other than n;;
therefore, they are assumed to be given from the
beginning. Array n is filled with 0 — all nodes are
considered offline at the beginning. Next, the Markov
process is simulated according to formula (1) for a
sufficiently large number of ticks to bring the systemto
a general state.

Array g is filled as follows:

1 In(Mj,i) =0;

~ |0, In(M;,i) =1. (10

Gi

Arrays a, X, X, t, t'and matrix s are filled with 0.
Let E = 0 — the accumulated amount of spent
energy, the calculation of which is the goal of this model.

2.6. A method for calculating spent energy

The method for calculating the spent energyina
general form. This method is based on the application of
a cyclic algorithm, in which certain steps can have
different  implementations.  This article  offers
implementations for all steps, but other implementations
are possible that better reflect certain practical tasks:

1. Simulation of the Markov process of node
availability according to formula (4) for n.

2. Unassigning tasks from offline nodes: for all
i=0...] — 1 execute: if na=0, set ai=-1.

3. Canceling the assignment of tasks to offline
nodes. For all i=0..C-1 execute: if nj =0, set x =-1,
set x'=0, setti=-1, sett;'=0; if n;=0, for all j=0..J-1 set
sij=0.

4. Execute a naive heuristic task assignment
strategy for each node described.

5. Implementation of the local scheduling strategy
for each node.

6. Perform data transfer simulation for each node.

7. Running a simulation calculation for each node.

8. Checking the condition of the task according to

formula (8): if Z;;égj =J, completion.

Implementation of a naive heuristic strategy for
subtask assignment to nodes. In this case, it is possible
to usedifferent distribution models; however, within the
scope of this work, a naive heuristic distribution model is
used. This strategy model is based on agreedy algorithm.
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At eachstep, it tries to allocate to each node the taskthat
will require the least energy costs from the point of view
of data transmission.

Algorithm for the i-th node:

1. If ni=0, the node is not reachable, go to the end.

2. If ai >= 0, the node already has an assigned
subtask, go to completion.

3. If thereis such je[0; J-1] a value Avail(Ms, j)=0
according to formula (7), go to destination, otherwise -
go to completion.

4. Setthe value aj =j.

5. Completion.

The same scheduling strategy is executed for each
node. It provides the following principles:

1. Ifnosubtaskis assigned to anode, the nodedoes
not load data from the system or compute, but can
perform data load on the system.

2. Data transfer and calculations are performed
independently and in parallel.

3. If there is an artifact in the node's scope that is
not available in the system's scope, then downloading
that artifact is the highest priority and the node tries to
download it immediately

4. If the node is allocated a subtask, then the node
starts downloading artifacts from the system necessary
for its calculation

5. If the artifacts needed to compute the assigned
subtaskare available in the node's scope, the node starts
computing the subtask

6. If a node goes offline, all local transfer and
computation progress is lost

7. When a node goes online, its scope is assuned
to be empty, and all data must be loaded from the
beginning for calculation

Algorithm for the i-th node:

1. If xi#ajand x #-1, setx = -1.

2. Ifti#-1, gotopoint5.

3. If siai=1 and gai =0, set tj =aj, set ti' = Aai,
go tostep 5.

4. Forall j=0..J-1 execute: if ti# -1, goto point 5;
if Dij=1and sij=0and gj=1, setti=j, setti'= Aj.

5. If x # -1, the algorithm ends.

6. According to (9) if Avail(Mg,a,i) = 0, set
X = ai, setx' = Tai, completion of the algorithm.

The local scheduling strategy for node i populates t
iandt ', which showthe current artifact to be transferred
and the amount of data that needs to be transferred to
complete the transfer. The direction of transmission
depends on whether this artifact is visible in the system.
That is, if g ti =1, then the data is transmitted to the node,
and if g ti =0, then from the node to the system.

Algorithm for the i-th node:

1. If ti=-1, the algorithm ends.

2. Setti'=ti'-ci.

3. SetE=E+ei

4. Ifti'> 0, the algorithm ends.

5 Ifgt=1, setsiti=1, otherwise setgi=1.

6. Setti=-1,setti'=0.

The local scheduling strategy for node i populates x
iand x', which showthe current subtaskto be computed
and the number of operations required to complete the
computation.

Algorithm for the i-th node:

1. If x = -1, the algorithm ends.

2. Setx' =x'-pi.

3. SetE =E+egiP.

4. If x' >0, the algorithm ends.

Setsiti=1, setx =-1, set x' = 0.

3. Experiment and research results

3.1. Experiment description

The problem of ray tracing was chosen for model
verification. Ray tracing is a reference problem from the
viewpoint of parallel computing. The basic idea of ray
tracing is that for each pixel of the image, the algorithm
models the path ofa light ray, tracking its interaction with
objects in the scene.

Ray tracing is ideal as a reference problem for
several reasons:

—a large degree of parallelism. Each ray can be
calculated independently of the others. This allows you
to efficiently distribute tasks between CPU cores and
thousands of GPU cores;

—a large number of calculations. Ray tracing often
involves working with large volumes of data, which
requires high computing power;

—the ray tracing algorithm is computationally
intensive for each ray, especially when realistically
rendering lighting, shadows, reflections, and refractions;

—parallel computing allows the ray tracing
algorithm to scale, using more resources to speed up
processing or improve image quality;

—use of specialized hardware such as GPUs
(Graphic Processing Units) optimized for parallel
computing, which can significantly speed up the ray
tracing process;

—in summary, the use of parallel computing for ray
tracing allows you to efficiently process complex scenes
with a high level of realism in a relatively shorttime.

Another important requirement for the reference
task in the context of this study is its identity on different
platforms. For an adequate comparison of energy costs,
it is necessary that the volume of calculations on each
distributed systemis completely identical. Therefore, it
was decided to develop our own implementation of ray
tracing for the following platforms: CPU (support for
x86-64, arm64 architectures), Apple Metal and NVidia
CUDA. The C++ programming language and its s pecific
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variants for Metal and CUDA were used.

For simplicity, the ray tracing algorithm only works
with spheres and considers diffuse lighting, directional
lighting, and reflections from the material properties.

NVidia GeForce RTX 3090 graphics card
(traditional server equipment) and iPhone 12 mini
(mobile equipment) were used as the hardware. Standard
Ethernet is used for data exchange between the desktop
computer and the control center, that is, the control center
and the computer will be physically close and on the
same network. The mobile Internet is used for data
exchange between mobile nodes, and the control center
is deployed in the data center. Such conditions are typical
considering the principle of operation of the
corresponding distributed systems.

The simulation of multiple nodes in a distributed
computer systemis implemented with virtual nodes:each
node is an isolated virtual entity. If one node physically
has the artifact and another does not, the first one still
should download it as it was a dedicated physical node.
This approach is still accurate from an energy
consumption perspective because all operations and
calculations are conducted in a similar way on a system
of physically dedicated nodes. However, the computation
time depends on the amount of computing resources in
the system, but accurate time estimation is not the
purpose of this work.

Since the purpose of this study is to compare the
energy efficiency of a distributed system based on
traditional server hardware and mobile devices, it is not
necessary to describe the complexity of the task in
elementary operations. The main thing is that the same
measure is used to assessthe difficulty of the task. Given
the completely identical implementation on all platforms,
in this case, we choose the number of rays per unit of
energy as the unit of efficiency.

The standard resolution of the output renders is the
so-called "2k" and "4k" or 3840x2160 pixels. 64 rays are
traced for each pixel. Thus, for "4k" it is about 530
million rays are traced for the rendering of one frame, for
"2Kk" — 133 million rays.

Energy consumption is calculated as follows.

1. The GPU Z program is used to calculate the
energy consumption of the graphics adapters. The
average background energy consumption in an unloaded
state is measured, followed by the consumption during
the execution of acomputing task. The measurements are
summed, and the instantaneous power is multiplied by
the time between the measurements and the obtained
result. The costs of the central processor in this case can
be neglected. The accumulated energy is converted into
the number of rays per joule.

2. To calculate the energy consumption of a mobile
device, the device is charged to 100% and the total
battery discharge is calculated. The battery capacity is

taken as the nominal value for the mobile device
multiplied by the state of the battery. When the device is
turned off, we measure the number of calculated frames
and convertit into the number of rays per joule.

3. To calculate the energy consumption of the
central processor of a stationary computer, we use a
method similar to that of a stationary graphics processor,
but with different software. To calculate the energy
consumption of energy consumption on the central
processor of a mobile device, an approach that is
completely identical to that of a mobile graphics
processoris used.

The main disadvantage ofthis method is that it does
not consider the costs of a stationary computer for data
transfer. However, they can be considered insignificant.
At the same time, energy costs for data transmission will
be taken into accountand are expected to be significant.

3.2. Calculation of the consumption
of the computing system based on the model

To calculate the energy consumption in distributed
system computing, the parameters of the computing
process must be entered for each system: the computing
system model, the computing task model (or work
model), and the computing strategy model.

A model of the computer system configuration:

— let the simulation duration be 1 s;

—the number of nodes Cfor this distributed problem
is not of great importance, because both the problem
itself and the principle of parallelism do not impose
restrictions on this parameter. Since we emulate multiple
virtual nodes with a single physical node, the actual
number of nodes C > 1 will not affect the amount of
energy we spend, but it will affect computing time
estimation. To reach some accuracy in time estimation,
we can assume C=1, butwith the condition that no data
for the calculation of the problem will be transferred
between nodes and that all artifacts are always loaded
into the system; however, calculations of energy
consumption for C>1 will be provided;

—availability ninodeis a dynamic value with an
initial value of 0;

— Ri°"and R;° will be selected on the basis that a
mobile device with a probability of 0.5 loses connection
once every 100 s:

@-R"MP =05, R" =1-'%0.5 =0.0069075046;
and returns online with a probability of 0.5 within 10 s:
@-RM™ =05; R =1-90.5 = 0.0669670085;

these values are selected to simulate devices that are
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online most of the time and drop off for comparatively
smaller periods of time;

— computing power p j = 62,955,597 p/t (rays per
current);

—bandwidth ci = 1.2 Mb/t (megabyte per tick)
Energy consumption per current during calculation
eiP=291;

—energy consumption per stream during data
transmission ei¢=0.43 J;

—values pi, ci, e and ei¢ calculated by the
benchmark execution method. For this, the mobile device
(iPhone 12 mini) was fully charged, after which the
device traced the scene until it was fully discharged.
Nominal battery capacity 857 Wh = 857 3600 =
= 30852 J. The battery life of the testdevice is estimated
to be 81% of the nominal capacity, i.e. 24990 J. For the
benchmark, a scene from a real task was chosen, and the
resolution was the same: 4k and 64 rays per pixel. Thus,
530 million rays are traced to calculate one frame. The
full discharge took 8572 seconds, 1017 frames were
rendered. The rendering time of one frame is 8.43s, so
every second the mobile device traces about 63 million
rays consumes 2.91 J of energy. A comparable test was
conducted for data downloading via HTTPS. The
bandwidth when transmitting consecutive packets of 500
KB via mobile Internet without saving the connection is
1.2 Mb /s, the device was fully discharged in 57813
seconds, which means that the device consumed an
average of 0.43 W.

A model of the computer system configuration:

— let the simulation run also be 1s;

— the number of nodes C for a given distributed task
is also not very important. Therefore, for simplicity, we
consider C=1;

—availability of then jnodeis a dynamic value, but
for stationary equipment it is considered that the node is
always available, therefore nj=1;

— the hardware ofa datacenteris considered reliable
hence Ri°"=1 and Ri°f = 0;

— computing power p = 1,271,476,886 p/t (rays per
current);

— bandwidth ¢i=10 Mb/t (megabyte per tick);

—energy consumption per current during
calculation ejP =205 J;

—energy consumption per stream during data
transmission ei*=0 J;

—values pi, ci, e and ei¢ calculated by the
benchmark execution method. For this, the GeForce RTX
3090 stationary graphics accelerator rendered 800 frames
with a resolution of 3840x2160 pixels with 64 rays per
pixel. Rendering was performed with power tracking
enabled per second. Rendering took 334 seconds and
used 68,483 joules of energy. The average frame
rendering time is 0.42s. Every second, the graphics
adapter traces about 760 million rays and consumes 218

joules of energy.

The distributed work in this case is general and
represents the rendering of 600 frames. Each frame
requires a scene to render, and the result is a frame with
a resolution of 3840x2160. A typical scene is a 5 kb
JSON file, a typical JPEG frame is 450 kb. Rendering
occurs at a density of 64 rays per pixel. That is, to
perform the task of rendering one frame, you need to
download 5 KB from the system, trace 530 million
(3840-2160-64) rays, and upload the 450 KB result to the
system. This is represented in the systemas follows: we
have 600 scene generation service tasks that have no
input artifacts and do not need to be executed, and 600
real frame rendering tasks, each of which depends on one
artifact and each task generates one artifact:

—for 0 <i<600 Ti=0rays;

—for0<i<600 Aj=5 kb;

—for 600 <i< 1200 T;i=530,000,000 rays;

—for 600 <i< 1200 Aj=450 kb;

—fori=j+ 600 Dij= 1, otherwise Dijj= 0;

—J =1200.

As a distribution strategy, we use a naive heuristic
distribution strategy.

Let's create a model of a distributed computing
problem. The input (the scene) is an artifact, and the
result of the rendering is also an artifact. Each task (task)
contains information about computing resources in
millions of rays and contains identifiers of input and
output data (artifact). The program implementation is
given in Listing 1.

Listing 1
Composing a program representation of Job model

void Job::generateRT (Job& job,

int frames,
int
int

download,
upload,

int oops)
for

{

(int 1=0; i<frames; ++1i)
Artifact a in;
a in.id = job.artifacts.size();
a_in.type =
Artifact::Type::Input;
a in.data = download ;
// The amount of data

// to download is 5 kb
job.artifacts.push back(a_in);

Artifact a out;

a_out.id

job.artifacts.size();
a out.type =
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Artifact::Type::Output ;
a_out.data = upload;
// Volume of output data
// 450 kb

job.artifacts.push back(a out);
Task task;

task.id =
task.ops =

job.tasks.size () ;
ops;

// computational complexity
// 530 million rays

task.depIds.push back(a in.id);
// Reference to input data
task.outputlId =
// Reference to output data
job.tasks.push back(task);

a_out.id;

A model of a computing node based on mobile
devices is given in Listing 2.

Listing 2
Composing a program representation of a mobile device
as a computing node in a distributed system

static NodeConfig
iPhonel2miniIdealNodeConfig ()
{

NodeConfig nodeConfig;

nodeConfig.rateOn = 1;

// Within the framework

// of this test

// it is assumed that the node

nodeConfig.rateOff = 0;

// always reachable for

// calculations

nodeConfig.networking = 1200;
// kilobytes per second
nodeConfig.computing = 63;

// Computational resources
// million rays per stream

nodeConfig.eNetworking = 430;
// Millijoules
nodeConfig.eComputing = 2910;

// Millijoules
return nodeConfig;

Computational simulation results based on one
mobile device for 1017 frames: 10171 ticks and 25062
Joules of expenditure. The execution time differs from
the benchmark because of the peculiarities of the system

implementation: any task is performed for an integer
number of ticks, therefore, instead of 8.43 seconds, the
model spends 9ticks on thetask. If thetask is completed
on a given log, the new one will be executed only on the
next one. In addition, the naive task allocation strategy
allocates a task to a node only when the node is free.
Immediately after the distribution, the node stars
downloading the input data, which lasts at least 1 thread.
Thus, we have 1 additional thread for each task + 1 thread
for downloading the last artifact to the system. If we
allow the naive strategy to add a task to the node's queue,
each taskwill be executed in 9 ticks because the node will
download data for the tasks in the queue. However, it
does not affect energy consumption, so complicating the
strategy within the scope of this work is not advisable.
The energy consumption in the simulation is also
different, but only because the model considers data
transmission over the network. If we setthe energy costs
for energy transfer to 0, we obtain a value of 24896
joules, which is 0.4% less than the measured value. The
number of computing nodes in the simulation does not
affect the energy consumption, which makes sense.

The calculation model of the processing node based
on stationary computers is given in Listing 3.

Listing 3
Composing a program representation of a stationary
GPU as a computing node in a distributed system

static NodeConfig
rtx3090NodeConfig ()
{

NodeConfig nodeConfig ;
nodeConfig.rateOn = 1;
nodeConfig.rateOff = 0;
nodeConfig.networking = 10000;
// Bandwidth is considered

// high enough

nodeConfig.computing = 1271;
// Computing resources
nodeConfig.eNetworking = 0;

// Data transfer costs are
considered

// insignificant

nodeConfig.eComputing =

// Millijoules

return nodeConfig;

205000;

Because of simulating (Table 2) a distributed
calculation of 800 frames, we received 1601 ticks and
68386 joules of energy. The length in ticks is also
calculated by rounding up + 1 tick per download + 1 last
tick. The obtained energy consumption deviates from the
measured value by 0.2%.
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Table 2
Comparison of characteristics of mobile and stationary
GPUs for 4k and 2k frames

Measurem Forecast Deviati
ent on
Execution time .
4 (stationary) | 270° 1200 s 335%
Execution time
0,
4k (mobile) 6061 s 6696 s 10.5%
51.3 kJ, C=1
Consumption - .
4k (stationary) 52806 J | 513 kJ,C=10 | 27%
51.3 kJ, C=50
15.1 kJ, C=1
Consumption ~ .
ok (mobile) | 153200 | 151 k), C=10 | 16%
15.1 kJ, C=50
Execution time
2k (stationary) s 1200 s -
Execution time
2k (mobile) 6122 s 7007 s 14%
545 kJ, C=1
COnsur_npt|0n 53337 J | 54.5 kJ, C=10 2.2%
2k (stationary)
54.5 kJ, C=50
15.2 kJ, C=1
Consumption ~
2k (mobile) 15320 J | 15.2 kJ, C=10 1%
15.2 kJ, C=50

The error in the calculated energy consumption in
both cases comes from the fact that both the
computational complexity of the tasks and the computing
power of the devices are represented by whole numbers
for convenience and speed.

The physical computation of 600 frames on a
distributed systemwill occur on a single device that will
simulate different compute nodes so that it will not
maintain connections and will not use input data from
other computations to possibly avoid overhead. Failure
simulation is performed using the node software. In
addition, considering the peculiarity of the battery, the
calculation will proceed from a charge level of 80%.
Running the calculation on the system from a single
mobile device reduced the battery charge to 19%, thus
consuming 15,320 joules of energy. The calculation took
6061 s. The computation of 600 frames on a distributed
system with stationary equipment took 276 s and

consumed 52806 joules of energy.

A simulation of computing 600 frames on a mobile
distributed system with failover settings shows 6696
ticks and 15078 joules of energy. A simulation of
computing on a distributed system from stationary
devices shows 1200 ticks and a consumption of 51290
joules of energy. Changing the number of nodes in the
simulation does not change the energy consumption,
which is expected. Only the general computation time is
changed in this case.

The result of a typical scene rendered with ray
tracing is shown in Figure 1.

4. Discussion

The significant variance in execution time on
stationary devices can also be attributed to the model's
discrete nature and specific characteristics. To obtain a
more accurate forecast, it is necessary to obtain a lower
resolution of the simulation. However, estimating the
execution time is not the purpose of the work.

The smaller deviation of the execution time of the
mobile model compared to the benchmark is due to the
fact that each frame on the mobile device is now
processed for almost exactly 9 seconds, which reduces
the error of the discrete model.

A distributed system based on mobile devices
consumes 3.45 times less energy for the same
calculations. Compared to the difference of 2.2 times in
the previous work [20], this is a lot, but there are several
explanations for this. Initially, the prior study contrasted
the same mobile device againstthe GeForce RTX 3080,
noted for its higher energy efficiency compared to the
3090. Second, the previous work used a synthetic
benchmark that loaded only the graphics card processor,
without loading the memory at all. In this case, the
memory is used more intensively, and the RTX 3090
memory controller consumes more than the RTX 3080.
Third, the benchmark in this work is worse optimized for
CUDA than for Metal, but it would be more accurate to
say that Metal is more "forgiving" to the developer.
Fourth, the graphics card of a desktop computer has
additional consumers, such as an active cooling system,
and their consumption has been considered.

A better implementation of ray tracing can reduce
the gap between stationary and mobile equipment, but
you can't expect equal or close power consumption to do
the same job.

Conclusions

This paper presents the development and testing of
a universal model for predicting energy costs during
calculations that can be applied to both a traditional



132

Radioelectronic and Computer Systems, 2024, no. 2(110)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Fig 1. Rendering result

stationary computer system and a system based on
mobile devices.

The approach proposed in this study allows us to
evaluate energy efficiency without specialized measuring
equipment, determine the energy efficiency of GPUs
based on CUDA technology, evaluate the impact of
various parameters on performance and energy
efficiency, and compare them with a similar
implementation using Apple Metal GPUs. The results of
the experiments conducted by the author show that the
energy consumption assessment model considers the
features of the hardware platform on which data
processing is carried out. Thus,the GPU implementation
using CUDA technology with small data packet sizes,
such as 1 input vector and even 1000 input vectors, is
inferior in energy efficiency to a similar implementation
on the Apple Metal GPU.

Therefore, during experimental testing, the energy
consumption estimation model turned out to be quite
effective. However, the model requires a clear goal for
both the task and the device used. This, in turn, requires
the creation of a benchmark for each model, which is a
disadvantage of this model. This drawback is planned to
be eliminated by accumulating quantitative data and
modeling results, which will allow generalizing some
parts of the model. In addition, the task in this work was
chosen quite ideally: it does not require intensive data
exchange between computing nodes.

Including future research directions, it is planned to
apply the model to more coherent calculations. Thus, the
presented results and the described measurement

methods can be used as a basis for conducting large scale
studies in the field of assessing the energy consumption
of mobile and stationary GPUs.

Anotherdirection for future research is information
security. Calculations on personalmobile devices require
additional information security solutions because it is
impossible to physically protect the hardware from
unauthorized access.
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YHI®IKOBAHA MOJIEIb TA METOJ INPOTHO3YBAHHSA EHEPI'OCIIO’KHMBAHHSA
B PO3INOJAUTEHUX OBYMCIIOBAJIBHUX CHUCTEMAX
HA OCHOBI CTAIIOHAPHUX TA MOBUIBHUX IIPUCTPOIB

0. 0. Mamuuu, M. O. Boak

IIpeaMeToM NOCIHIMKEHHS B JaHIA CTATTI € IPOTHO3YBAHHS €HEPTOCHOXKUBAHHS IIPH 00YHCICHHI PO3MOAIe HUX
3aBIaHbh y KOMII'FOTEPHHX Mepekax, IMoOyJoBaHHX Ha 0a3l CepBEpHHX DillleHb Ta PO3MOAUICHUX IIePCOHAIBHUX
cmapThoHiB. MeTol0 I1HOTO JIOCHMKEHHS OyJ0 CTBOPEHHS YHIBEpCANIbHOI MOJEN MPOTHO3YBAaHHS BapTOCTI
00YHCIIOBAILHOT SHEPTI], IKY MOYKHA 3aCTOCYBATH SIK JI0 TPAIUIIIHHOT XMapHOT CUCTEMH, TaK 1 0 MOOLIHHOT XMapHOT
CHUCTEMH. 3aBIaHHS: NPOBECTH aHANI3 €Heproz0epiraroumx MiIXOMB 1 TEXHOJIOTIH, 10 BUKOPUCTOBYIOTHCS IS
PO3paxyHKy JaHUX; PO3IISIHYTA MOJEI KOMII IOTEpHOT CHCTEMU Ta Jii 3 HUIMHU, a caMme: MOJeJb PO3MOaiieHo1 poOoTH,
MOJIeNb CTpaTeTii po3NolLy, HImiam3aIiio MOoJAeN; pO3pOOUTH €AMHUI 1 € MHIH JMHAMIYHUH METOJ IPOTHO3YBaHHS
BUTpadeHOI eHepril 3 aKIEHTOM Ha TeTepOTeHHI CHUCTEMH; MPOBEACHHS JOCIIMKEHHS 3alpOMOHOBAHOTO MMIIX0Ay Ha
CTAI[IOHAPHIX npuctposix.  OTpuMaHi  pe3yabTaTH  poOOTH pe3yibTaTu
eKCIICpPUMCHTAIbHUX BHMIPIOBAaHh CHEPTOCIIOKUBAaHHA MOOUIBHHUX IMM(POBHX CHCTEM Ta CTalioHapHUX. byra
BU3HAUCHA CHEProe(eKTHBHICTH OOYHCICHh Ha rpadiqyHHX IpOLEcOopax CTALIOHAPHOTO MPHCTPOK HA OCHOBI

Ta MOOUILHHX BKJIIOYAIOThH
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texdogiorii. CUDA Ta rpadidHuX mpollecopiB Ha MOOUIBHHUX MPHUCTPOSIX Ha OCHOBI TexHojorii Apple Metal.
OoOuucienHs 600 kampiB B pO3MOAUICHIH CHCTEMi 3 MOOUILHHX MPUCTPOIB 3 HAJANITYBAHHAM M BiIMOB IMOKA3aJio
crnoxkuBanHs 15078 mkoyniB eHeprii. MognemoBaHHs 0OYMCIEHb Ha PO3MOAUICHIH CHCTEMi 31 CTAalliOHAPHUMH
HIPUCTPOSIMU TIOKa3ano croxuBanHA 51290 mxoyni eneprii. le o3Hauae mo MoOUIBHA cucTeMa Jae BUrpam y 3,45
pasiB B CHOXWBaHHI eHeprii. BucHOBKkH. Mojenb ONIHKM E€HEPTOCIIOXKWBAHHS BHSBMIACS JOCHTH €(EeKTHBHOIO.
Pe3ynpraTi aBTOPCHKUX €KCIIEPHMEHTIB ITOKa3yIOTh, 10 MOJIETh OI[IHKH €HEPTOCIIOKUBAHHS BPAaXOBYE OCOOIMBOCTI
amapaTHol mIaThopMu, Ha AKIiH BUKOHYEThCS 00poOKa nanux. O0uncienHs Aanux Ha GPU cTamioHapHUX M PHUCTPOIB
nmporpae B eHeproe(eKTUBHOCTI aHajorivHid peamsanii Ha GPU Apple Metal 3 MmoOumbHUX mpucTpois. Omke,
MpeACTaBICHI Pe3yJbTATH JOBOJATH PAIliOHANBHICTD BHKOPUCTAHHS MOOUBHHX TIpadiyHUX MNPOLECOpPIiB WIS
eHeproedektuBHOT 00poOKH iH(opMaIii.

KarouoBi ciaoBa: rpadiunuii mpouecop; eHeproeeKTHBHICTb, PO3MOJUIEHA CHCTEMA; XMapHi OOYHCIICHHS;
3eJIeHi 00YNCIIeHHs; MOOUTbHHI MPHUCTPili; 6araTONOTOYHICTS.
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