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The subject of research in this article is the forecasting of energy consumption when computing distributed tasks 

on computer networks built on the basis of server solutions and distributed systems based on personal 
smartphones. The goal of this study was to create a universal computing energy cost prediction model that can 

be applied to both traditional and mobile cloud systems. Tasks: conduct an analysis of energy-saving approaches 

and technologies used to calculate data; consider computer system models and actions with them, n amely: model 

of distributed job, model of distributed computing system, model of distribution strategy; develop a common and 

uniform dynamic method of forecasting spent energy with a focus on heterogeneous systems; conduct a study of 

the proposed approach on stationary and mobile devices. The obtained results include. The results of the 

experimental measurement of the energy consumption of mobile digital systems and stationary ones are 

presented. The energy efficiency of computing on GPUs of a stationary device based on CUDA technology and 

GPUs on mobile devices based on Apple Metal technology was determined. Computation during the calculation 

of 600 frames on a distributed system from mobile devices with failure settings showed a consumption of 15320 

joules of energy. Simulation of computing on a distributed system with stationary devices showed a consumption 

of 52806 joules of energy. This gives us 3,45 times the consumption benefit from computing on mobile devices. 
Forecasted consumption is also very accurate. Conclusions. The energy consumption assessment model proved 

to be quite effective. The results of the experiments show that the energy consumption estimation model takes 

into account the features of the hardware platform where data processing is perfo rmed. Computation of data on 

the GPU of stationary devices loses energy efficiency to a similar implementation on the GPU of Apple Metal 

from mobile devices. Therefore, the presented results demonstrate the rationality of using mobile graphics 

processors for energy-efficient information processing. 

 
Keywords: graphics processor; energy efficiency; distributed system; cloud computing; green computing; 

model; mobile device; multithreading. 

 

1. Introduction 

 

1.1. Motivation 
 
Information technologies implement the functions 

of monitoring, information processing, and management, 

which directly affect the technical level of energy 

systems for both traditional and green energy. Without 

information technologies, it is impossible to effectively  

respond to challenges in the field of conservation and 

increase energy resources. However, every year, 

information technologies in this context acquire an 

independent role as IT systems become more and more 

active consumers of energy [1, 2]. According to various 

sources, they account for up to 3% of the total amount of 

energy consumed. 

Various calculation tasks are integral components 

of information systems. The increasing complexity of 

these tasks increases the demand for computing power [3, 

4]. If the task cannot be computed using local resources, 

it is usually computed in large data centers on specialized  

equipment. This, in turn, leads to an increase in the 

demand for cloud computing power. To expand the 

available cloud computing capacities, it is necessary to  

manufacture new hardware and create new data centers. 

 

1.2.  State of the art 
 
At the level of energy savings in electronic  

components, researchers distinguish between two 

groups: hardware (technical) and software. They allow 

for detail in the context of information technology. 

Hardware [5, 6]. For hardware, primarily  

microcircuits of various purposes and designs, there are 

solutions that reduce energy consumption. They are 

based on the application of special electronic circuits, 

technologies, and computing paradigms; modes of 

reduced energy consumption ("sleeping" and "semi-

sleeping") for the entire crystal or its individual parts; 

schematic design solutions that minimize the number of 

simultaneously switching crystal elements and thus 

reduce current surges; adaptation schemes in redundant 

structures, the channels of which operate at the limit  
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reduced voltage (in this case, failures caused by unstable 

operation are possible); and special settings for 

programmable crystals, etc. Similar approaches are used 

in more complex hardware components (modules, 

channels), where various combinations of methods can 

be used [7, 8]. 

Software tools [9, 10]. The approaches used for 

software tools are not as clear-cut as their impact on 

energy savings is indirect. However, the concept of 

"green software" [11, 12] has been established in the 

scientific and technical lexicon, based on the 

understanding that: each operator, language construct 

and program module can have its own energy metric (that 

is, it is characterized by the energy consumed by the 

platform on which the program is implemented);  

different software solutions vary in the amount of 

resources used (not only energy) and can be optimized  

(including according to the energy criterion); since 

energy consumption or energy efficiency become 

attributes of software quality, it is advisable to use a 

process approach for their assessment and provision; to 

evaluate energy meters of software options, it is 

necessary to use special hardware and software solutions 

that will ensure the accuracy of measurements of the 

energy consumed during the execution of various 

applications. Thus, for green software, the tasks of 

clarifying the quality model, which should include 

characteristics that directly and/or indirectly consider the 

energy component, defining a set of metrics used, 

developing methods for measuring relevant 

characteristics, and optimizing processes and products 

obtained, are important at different stages of the software 

life cycle according to the specified criteria. 

In absolute terms, this is a colossal amount that can 

be compared with the energy consumption of the largest 

European economies. For example, a modern cloud IT 

infrastructure, including a data center and several 

thousand computers, consumes 10-15 megawatts daily. 

Currently, there are up to 20 billion personal mobile 

devices in the world, which have a very impressive 

aggregate computing power [13, 14]. They can also be 

used to calculate a whole range of problems. 

In addition, most existing scientific research works 

are aimed at maximizing the efficiency of execution of 

certain algorithms. Usually, the main metrics are the 

minimizat ion of task execution time and the 

minimizat ion of idle time of individual parts of computer 

systems. Very little attention is paid to minimizing  

energy and traffic costs. Therefore, potential computing 

networks built from personal smartphones receive very 

little attention or remain outside the scope of newest 

approaches. 

This work aims to study methods for forecasting 

energy consumption when computing distributed tasks 

on computing networks built from smartphones, as well 

as compare the energy consumption of traditional 

distributed computing systems based on server solutions 

and distributed computing systems based on personal 

smartphones. 

The objective of this work is to create a universal 

model for forecasting energy costs in computing, which 

can be applied to both a traditional cloud system and a 

cloud system based on mobile devices. The model must 

meet the following criteria: the same dynamic algorithm 

for scheduling tasks, focus on heterogeneous systems, the 

ability to measure and predict energy costs, take into 

account the limited reliability of node access to the 

network and related overheads, and be able to estimate 

the energy costs of both mobile equipment and 

conventional computing hardware. 

Modern microprocessor manufacturers strive daily  

not only to increase the performance of their chips but 

also to reduce their overall energy consumption. Mobile 

phones (smartphones), tablets, laptops, and other devices 

that are convenient to carry and use in everyday life have 

become integral attributes of our time. To increase 

energy efficiency, manufacturers use various circuit-

technical and software solutions. One straightforward 

method to extend a device’s lifespan is by increasing the 

battery capacity [15]. Further, there are methods of 

reducing energy consumption by the periphery, namely  

special low-power displays, low-voltage microcircuits in 

communication and navigation modules, and low-

voltage processors [16]. The next stage is the special 

operating modes of processor devices, which allow the 

device to be put into standby, sleep or deep sleep mode, 

with the possibility of quick awakening, but at the same 

time power consumption is reduced from hundreds of 

mA to tens of μA [17]. The final stage is energy-saving 

software [18]. There are many programs that help save 

the resources of the already voracious computing core of 

any microprocessor device. Such programs have gained 

popularity since the days of computers and are now 

actively used by mobile devices. 

The paper [19] presents a comprehensive study on 

forecasting energy consumption in electrical buildings 

using smart grid technologies, focusing on the 

application of artificial neural networks and k-nearest 

neighbor algorithms. This study emphasizes green 

computing by optimizing the computational efficiency of 

the GPU processing unit during the forecasting process. 

This paper outlines an approach to outlier detection and 

correction, which significantly enhances the quality of 

the dataset used for training forecasting models. 

The paper [20] provides an insightful exploration of 

the use of Particle Swarm Optimization (PSO) for 

enhancing energy efficiency in smart home 

environments. This study addresses the critical issue of 

high energy consumption in smart homes by developing 
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a mobile application that employs PSO for task 

scheduling of smart home appliances . 

 One notable study describes methodologies related 

to RAM energy consumption. The authors propose to 

transform the program code in such a way as to organize 

work with smaller memory areas and with less energy 

consumption for each memory access operation. In 

another study [21], instruction-level models with high 

clock accuracy were used to evaluate the complex impact  

of software and hardware optimization on energy 

efficiency (the processor operation was simulated before 

each operating cycle). However, despite all previous 

work, the energy consumption of a specific program has 

always been estimated using a specific target 

architecture. 

Many studies have investigated the advantages of 

certain approaches to planning the distribution of tasks 

on a distributed system. However, the primary metric 

remains the minimization of computational task 

execution time. Any model suffers from distribution 

overhead to one degree or another, so such methods are 

forced to duplicate part of the calculations or transfer a 

lot of data many times, which leads to a decrease in the 

energy efficiency of the task even compared to the 

execution on a single computing device. In addition, task 

planning models for distributed systems usually expect 

fairly large bandwidth and fast response of network 

interfaces, but personal mobile devices have limited  

bandwidth and long response times.  All such works 

cannot automatically be applied to a distributed system 

from mobile devices; any such system will be purely 

heterogeneous [22]. 

There are many studies devoted to cloud computing 

[23, 24] that assess energy efficiency calculations and 

energy consumption forecasting in cloud computing. 

However, they always work with server equipment 

traditional for data centers, almost not considering data 

exchange and consumption of peripheral devices [25, 

26]. These are usually limited to the telemetry data of the 

computing devices themselves (CPUs and GPUs), while 

peripherals and network infrastructure can also consume 

significant amounts of power. When calculating energy 

costs on a smartphone, it is much easier to consider the 

consumption of the device as a whole, together with the 

costs of data transmission and peripherals. 

Some studies describe the behavior of computing 

systems with limited reliability, but they do not study the 

effect of limited reliability of a node on energy 

consumption [27]. 

Studies have shown that mobile computing systems 

themselves are more energy-efficient than traditional 

data center equipment [28]. 

To evaluate the energy efficiency of the computing 

cloud from mobile devices, it should be considered as a 

purely heterogeneous system with limited reliability of 

nodes, limited bandwidth of network interfaces, and 

exclusively dynamic planning. There is no work that 

looks at the cloud from mobile devices from this point of 

view and compares it with traditional clouds based on 

data centers on the same tasks and considers the 

maximum total energy costs . 

 

1.3. Features of computing and energy 
efficiency of CPU and GPU 

 

Computing equipment has long ceased to be a 

simple device. Today, tasks solved with its help represent 

the modeling of processes occurring in reality. Therefore, 

the natural parallelism of the real world flows into the 

formulation of the problem and the corresponding 

mathematical model. The extent to which the architecture 

of computing devices is consistent with the properties of 

the real world determines how effective the solution of 

the tasks will be. In recent years, it has become clearly  

noticeable that the evolution of the CPU has lowed due 

to many technological limitations. Manufacturers can no 

longer significantly increase the operating frequencies of 

the CPU, and a simple increase in the number of 

processor cores while preserving the original architecture 

(Table 1) does not provide the desired increase in 

performance when solving real problems. Additionally, 

the complexity of a single core growth to achieve higher 

performance per tick at the cost of higher energy 

consumption.  At the same time, exponential growth is 

observed in GPU performance and in its architecture, 

which reflects the properties of the real world. Initially , 

the final result of graphic data processing on the GPU 

was a set of pixel colors. The computation of pixel colors 

perfectly fits an array of simple processors performing  

similar computations. Therefore, GPUs are mainly  

intended for work with large amounts of similar data. 

Focusing on the processing of many independent 

pixels, the GPU was originally built as a parallel matrix 

calculator. With the expansion of the set of graphic 

operations in the graphic core, pipeline parallelism was 

added to matrix parallelism. These properties of the 

architecture, originally laid down in the GPU, also 

determined other features, such as the command system 

and thread management. 

The CUDA computing architecture is based on the 

concept of Single Instruction Multiple Data (SIMD) and 

the concept of a multiprocessor. The SIMD concept 

assumes that one instruction can simultaneously process 

a large amount of data. A multiprocessor is a multi-core 

SIMD processor that allows only one instruction to be 

executed on all its cores at any given time. 

This architectural solution allows calculations to be 

performed on the GPU more efficiently than on the 

central processor, provided that the task can be divided 

into multiple threads. Similar to running on a CPU, a 
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bottleneck in a computing system is memory access. On 

GPUs, memory is usually accessed through a wide 

memory bus, which supports overwhelming resulting 

throughput if the data is properly organized. The result 

performance is great, yet it highly depends on the smooth 

and predictable loading of multiple cores. This is one of 

the main principles of CUDA, which can significantly 

improve the performance of the system as a whole. 

Another opportunity to improve performance is to 

combine several global memory requests into one, called 

a transaction or coalescing global memory access. To 

combine requests into a transaction, several conditions 

must be met. First, concurrently executing threads must 

access either 32-bit words, resulting in one 64-byte block, 

or 64-bit words, resulting in one 128-byte block. If 128-

bit word access is used, the result will be two 

transactions, each returning 128 bytes of information. 

 

Table 1 

Comparison of the characteristics of CPU and GPU 

Parameter CPU GPU 

Architecture 

Serial architecture 

with added vector 

instructions 

Initially 

parallel 

architecture 

Command 

system 
SISD SIMD 

ALU Complex Simple 

Solving the 

memory 

access 

problem 

Large cache 

memory, branch 

prediction 

Wide bus, 

simplified 

prediction, 

batch access 

Number of 

threads 

1-2 per core, up to 

dozens of cores per 

chip 

Thousands of 

cores per 

multiprocessor 

Data format 

All formats: 

integers, reals of 

various precision 

Mostly single 

and half 

precision 

 

Second, threads must access memory locations 

sequentially, each subsequent thread must be assigned 

the next word in memory, and all words must be within  

the memory block being accessed. In software 

implementations based on CUDA technology, data must 

be structured in such a way that it is almost always 

possible to combine it into transactions when accessing 

global memory, because otherwise the performance of 

calculations on the GPU is sharply reduced and may even 

be lower than sequential data processing on the central 

processor. The primary goal of moving calculations to 

the GPU is usually to obtain significant performance 

gains. However, the GPU architecture has another 

important property - high energy efficiency for many 

high-paralleled tasks [29]. The main prerequisites for this 

are two factors: most of the area of the GPU crystal is 

allocated to ALUs, which are directly involved in data 

processing, and not in the tasks of controlling the 

sequence of commands; Due to the massive parallelis m 

of calculations, it becomes possible to reduce the 

frequency and, as a result, energy consumption while 

maintaining high performance. 

 

1.4. Objectives and the approach 
 
We can distinguish 2 major objectives in this 

article: 

1. Develop a model that is able to evaluate energy 

consumption on distributed systems based on 

conventional servers and mobile devices during the 

execution of similar useful payloads. 

2. Comparison of energy consumption of 2 systems: 

based on conventional server equipment (GPU) and 

mobile devices (mobile SoC) 

The approach is based on identical evaluation tasks 

having similar algorithms and implementations and 

being run on different distributed systems. In addition, 

the approach takes into account not only the energy 

consumed by the computation unit itself but also the 

energy consumed during data transferring; since this is a 

very important aspect of computing systems based on 

personal mobile devices. 

The structure of this article is as follows: 

1. Description of a model of distributed computing 

as a union of 3 models: a distributed computing system, 

a distributed job, and a distribution strategy model  

(subsections 2.1-2.4).  

2. Initialization and running of the distributed 

computing model with estimated parameters (subsections 

2.5-2.6). 

3. Benchmarking of real hardware to estimate 

energy consumption during computing. To run the 

model, we need to set up the hardware parameters, which 

cannot be taken from public sources; hence, we need to 

collect them (subsection 3.1).  

4. Running the real computation. Collecting  

measurements from computing a real job on real 

hardware: consumed energy and duration (subsection 

3.2). 

5. Comparison of the model output and real 

computing run and discussion of the results. The purpose 

here is to understand the accuracy of the model from an 

energy consumption perspective (section 4). 

6. Summarizing the achieved results from the 

accuracy and universalism perspective. Suggesting 

potential ways for future improvements in accuracy, 

universalism, and security (Conclusion). 
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2. Case study. Development of a model  

for forecasting energy consumption 
 

2.1. Discrete model of a distributed computing 
 
To simulate a distributed system, we will use a 

discrete model because of the relative simplicity of its 

further implementation. To successfully model the 

energy costs of computing, the model must consider the 

specifics of the hardware, the structure of the task itself, 

and the distribution method. Therefore, the general 

model can be represented as a system of three smaller, 

relatively independent discrete models: the model of the 

computing system, the model of the computing job, and 

the model of the computing strategy. We denote them as 

follows: 

 

 C J SM M ;M ;M ,  (1) 

where MC – model of the computing system; 

MJ – model of computing job; 

MS – model of computing strategy. 

Each model is a set of interrelated constants and 

variables. For example, a model of a computing system 

should contain information about the computing 

resources of all nodes included in the model, as well as 

information about the state of the node at the moment : 

online or offline. The job model is a set of constants that 

describe the complexity of certain operations in the 

execution process. The computing strategy model 

contains a set of variables and rules for transitions 

between states that describe the general state of job on 

the computing system at each discrete moment in time - 

a flow. Then the computational energy is a function of 

these three models: 

 

  C J SE(M) M ;M ;M .  (2) 

 

2.2. A model of a distributed computing system 
 
The distributed computing system of a traditional 

data center may be homogeneous, but the distributed 

computing system of mobile devices is heterogeneous by 

default because it consists of devices with different 

computing powers and communication channel speeds. 

Furthermore, unlike traditional servers, the typical 

operation of a mobile device includes periodic losses of 

network communication, and consequently, connectivity 

with the computing system's control center. Let's assume 

that if the node has a network connection with the control 

center, it is in online mode; otherwise, it is in offline 

mode. Thus, the simplest model of a single mobile device 

can be described as computing power (as the number of 

computing operations per tick), network access speed (as 

the maximum amount of data that can be transferred per 

tick), and network access state (online and offline). To 

describe the state in the network, we use the Markov 

process: as the probability of changing one state to 

another during one tick. Since the main interest for this 

study is energy consumption, for each device it is also 

necessary to specify the computing device energy 

consumption (as the amount of energy consumed by a 

node in computing per tick) and the data transmission 

energy consumption (as the amount of energy consumed 

by the device in data transmission per tick). Therefore, a 

computing device can be defined as follows : 

 

 
pon off c

i i i i i i ii
N n ;R ;R ;p ;c ;e ;e ,  (3) 

where ni  – availability at the moment of time; 

Ri
on  – probability of transition to the online s tate; 

Ri
off  – probability of transition to the offline state; 

pi – computing power in operations per 1 tick; 

ci – channel bandwidth in bytes per 1 tick; 

ei
p – energy consumption in joules during 

calculation for 1 tick; 

ei
c – energy consumption in joules during data 

transfer for 1 tick. 

If n i is equal to 1, then the node is considered online 

and can perform calculations, if 0, then it is offline and 

cannot perform calculations. A transition from 0 to 1 has 

a probability Ri
on every tick, a transition from 1 to 0 has 

a probability Ri
off. Therefore, ni` on the next tick is 

calculated according to the formula 

  

 

on
i i

i off
i i

p(R ),  n 0;
n '

1 p(R ),  n 1;

 

  

 (4) 

 

where p(Ri
on) and p(Ri

off) are probabilistic values of 

uniform distribution. 

The other parameters N i are constant and do not 

change during the calculation. Then the model of the 

computing system can be represented as an array of all 

computing nodes. Let C be the number of nodes in the 

model. The computer network model can then be defined 

as follows. 

 

 C iM C;N ,  i 0...C 1 .    (5) 

 

Or in the expanded view: 

 

pon off c
C i i i i i ii

M C;n ;R ;R ;p ;c ;e ;e ,i 0...C 1 ,     (6) 

where C – number of nodes in the model. 
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2.3. A model of distributed job 
 

The model of distributed computing can be 

represented as a set of interconnected tasks and 

intermediate data - artifacts. Let each task require a 

certain set of artifacts for computation and generate one 

artifact in the computation process. Let the artifacts used 

to calculate the problem and generated as a result of the 

calculation be characterized by the amount of data and 

denoted by A i. Let the task be characterized by the 

number of computational operations that must be 

performed to obtain its result, which is denoted by Ti. _ 

Let the result of the task T i be the artifact Ai. 

Computation of artifact Ai by task Ti requires some 

artifacts to be computed and available. Let such a 

dependence be given by the matrix Dij: if the calculation 

of the i-th artifact requires the j-th, then Dij =1, otherwise 

Dij =0. Let J be the number of artifacts and tasks in the 

work. 

Thus, the computational work can be represented as 

follows: 
 

 J i i ijM T ;A ;D ,  i 0...J 1,  j 0...J 1 ,      (7) 

 

where Ti – computation complexity of a task; 

Ai – amount of data contained in an artifact; 

Dij – matrix denoting dependencies between tasks 

and artifacts. 

The number of artifacts needed to calculate the i-th 

artifact is calculated by the following formula: 
 

 

J 1

j ij
j 0

In(M ,i) D .




  (8) 

 

The number of artifacts, for the calculation of which 

it is necessary to have the data of the i-th artifact, is 

calculated according to the formula: 
 

 
J 1

j ij
i 0

Out(M , j) D .




  (9) 

 

Some artifacts are primary inputs, which are inputs 

to the work itself. Some artifacts are not used to calculate 

other artifacts, such artifacts are the raw data of the work. 

Let the artifacts for which In(MJ,i)=0 be called inputs, 

and the artifacts for which Out(MJ,j)=0 be called outputs. 

Input artifacts do not require computation and are 

assumed to be known at the beginning of the 

computation. In addition, Ti is assumed to be 0 for all 

input artifacts. 

 

2.4. Distribution strategy model 
 
For the task to be completed, it must be assigned to 

some node. A node must receive a computation 

instruction, download the required artifacts to perform a 

task, execute the task, and then transmit the computed 

artifact to the system, i.e., the control center of the 

computing network. Thus, the model should describe: 

– a list of artifacts available to the system at a 

moment in time; let such a list be called the scope of the 

system; 

– a list of artifacts available to each node at a point 

in time; let such a list be called the scope of the node; 

– the task assigned to be performed on a node at a 

moment in time; 

– the task that a certain node performs at a given 

moment in time; 

– an artifact that a certain node transmits at a given 

moment in time; 

The scope of all nodes can be described by the 

matrix s of size CxJ, s ij = 1 if the i-th node has data of the 

j-th artifact, otherwise - 0. The scope of the system can 

be described by the array g of dimension J, g j =1 if the 

system has data of the j-th artifact, otherwise - 0. Initially , 

no node possesses any artifact data, and the system 

contains only data for incoming artifacts, as outlined in 

Formula (10). In order for an artifact to become available 

in a scope, this artifact must either be transferred to this 

scope from another, or calculated from existing artifacts. 

Transmission is possible only between the system and 

node, i.e., from node to system or from system to nodes. 

For simplicity, transmission between nodes within this 

model is not possible. 

Task assignment to a computing node defines the 

task’s relationship with that node. Since each node and 

task is ordered by index, such a relation can be specified 

by an array a of size J, where ai is the destination node 

number or -1 if the task is not assigned to any node. 

The instantaneous status of the task calculation on 

the node contains the task number and the number of 

operations that must be performed on the node to perform 

the assigned task and obtain the corresponding artifact. 

They can be described as arrays x and x' of size C. Let x 

i be the number of the task running on the i-th node, or -1 

if no task is currently running on the i-th node. Let xi ' be 

the number of operations that must be performed to 

complete the task on the i-th node. 

The current data transfer status encompasses the 

artifact number and the volume of data required to 

finalize the transfer. They can be described as arrays t and 

t' of size C. Let ti be the number of artifact transmitted by 

the i-th node, or -1 if no transmission occurs. Let t i' be the 

amount of data that must be transferred to complete the 

transfer of the artifact by the i-th node. 

The direction of transmission on the i-th node is 

determined by the presence of this artifact in the system's 

scope: if the data artifact is in the system's scope, then the 

transmission goes from the system to the node, if this 
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artifact is not in the system's scope, then the transmission 

goes from the node to the system . 

Therefore, the distribution strategy model can be 

articulated as a set of the following variables: 

 

 
j ij i i i i i

S

g ;s ;a ;x ;x ' ; t ; t ' ,
M ,

i 0...C 1,  j 0...J 1


   
 (10) 

where gj – presence of j-th artifact’s data in the system 

scope; 

s ij – presence of j-th artifact in the scope of i-th 

node; 

ai – node number i-th task is assigned to; 

xi – number of a task currently running on i-th node; 

xi’ – number of operations to finish xi task;  

ti – number of an artifact being transferred by the i-

th node; 

ti’ – amount of data to be transferred to finish ti 

transferring. 

Let the number of tasks assigned to node i be 

calculated using the following formula: 

 

 

J
j

S
jj 0

0,  a i;
Assign(M ,i)

1,  a i;



 


  (11) 

 

The amount of data that needs to be transferred to 

the i node to start calculating the j subtask: 

 

 
J 1

ij

S jk
ijk 0

0,  s 1
Dl(M ,i, j) D .

1,  s 0





  
  
  

  (12) 

 

A task is considered available for distribution when 

all the artifacts necessary for its calculation are within the 

scope of the system. The availability of a subtask for 

distribution is calculated using the following formula: 

 

 

J 1

S ij i
j 0

Avail(M ,i) D g .




   (13) 

 

The computation of work is considered complete 

when all artifacts are available within the scope of the 

system. The number of artifacts available in the system 

scope is calculated as the sum of all non-zero values in 

the g array: 

 

 

J 1

j
j 0

g .




  (14) 

 

Subtask i is considered available for computation on 

the j-th node when all artifacts required are within the 

scope of the corresponding node. Availability can be 

determined by the following formula: 

 
J 1

S ik ji
k 0

Avail(M ,i, j) D g .




   (15) 

 

2.5. A model initialization 
 

Models MJ and MC contain constants other than ni; 

therefore, they are assumed to be given from the 

beginning. Array n is filled with 0 – all nodes are 

considered offline at the beginning. Next, the Markov 

process is simulated according to formula (1) for a 

sufficiently large number of ticks to bring the system to 

a general state. 

Array g is filled as follows: 

 

 
j

i
j

1,  In(M ,i) 0;
g

0,  In(M ,i) 1.


 



 (16) 

 

Arrays a, x, x', t, t' and matrix s are filled with 0. 

Let E = 0 – the accumulated amount of spent 

energy, the calculation of which is the goal of this model. 

 

2.6. A method for calculating spent energy 
 
The method for calculating the spent energy in a 

general form. This method is based on the application of 

a cyclic algorithm, in which certain steps can have 

different implementations. This article offers 

implementations for all steps, but other implementations  

are possible that better reflect certain practical tasks: 

1. Simulation of the Markov process of node 

availability according to formula (4) for n. 

2. Unassigning tasks from offline nodes: for all  

i = 0. . . J − 1 execute: if nai=0, set ai = -1. 

3. Canceling the assignment of tasks to offline 

nodes. For all i=0...C-1 execute: if ni =0, set xi =-1,  

set xi`=0, set t i =-1, set ti`=0; if ni=0, for all j=0...J-1 set 

s ij =0. 

4. Execute a naive heuristic task assignment 

strategy for each node described. 

5. Implementation of the local scheduling strategy 

for each node. 

6. Perform data transfer simulation for each node. 

7. Running a simulation calculation for each node. 

8. Checking the condition of the task according to 

formula (8): if 
J 1

jj 0
g J




 , completion. 

Implementation of a naive heuristic strategy for 

subtask assignment to nodes . In this case, it is possible 

to use different distribution models; however, within the 

scope of this work, a naive heuristic distribution model is 

used. This strategy model is based on a greedy algorithm. 
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At each step, it tries to allocate to each node the task that 

will require the least energy costs from the point of view 

of data transmission. 

Algorithm for the i-th node: 

1. If ni = 0, the node is not reachable, go to the end. 

2. If ai >= 0, the node already has an assigned 

subtask, go to completion. 

3. If there is such j∈[0; J-1] a value Avail(MS, j)=0 

according to formula (7), go to destination, otherwise - 

go to completion. 

4. Set the value ai = j. 

5. Completion. 

The same scheduling strategy is executed for each 

node. It provides the following principles : 

1. If no subtask is assigned to a node, the node does 

not load data from the system or compute, but can 

perform data load on the system. 

2. Data transfer and calculations are performed  

independently and in parallel. 

3. If there is an artifact in the node's scope that is 

not available in the system's scope, then downloading 

that artifact is the highest priority and the node tries to 

download it immediately 

4. If the node is allocated a subtask, then the node 

starts downloading artifacts from the system necessary 

for its calculation 

5. If the artifacts needed to compute the assigned 

subtask are available in the node's scope, the node starts 

computing the subtask 

6. If a node goes offline, all local transfer and 

computation progress is lost 

7. When a node goes online, its scope is assumed 

to be empty, and all data must be loaded from the 

beginning for calculation 

Algorithm for the i-th node: 

1. If x i ≠ ai and xi ≠-1, set xi = -1. 

2. If ti ≠ -1, go to point 5. 

3. If s iai = 1 and gai = 0, set ti = ai, set ti' = Aai ,  

go to step 5. 

4. For all j=0...J-1 execute: if ti ≠ -1, go to point 5; 

if Dij = 1 and s ij = 0 and gj = 1, set ti = j, set ti' = Aj. 

5. If xi ≠ -1, the algorithm ends. 

6. According to (9) if Avail(MS , a, i) = 0, set  

xi = ai, set xi' = Tai, completion of the algorithm. 

The local scheduling strategy for node i populates t 

i and t i ', which show the current artifact to be transferred 

and the amount of data that needs to be transferred to 

complete the transfer. The direction of transmission 

depends on whether this artifact is visible in the system. 

That is, if g ti = 1, then the data is transmitted to the node, 

and if g ti = 0, then from the node to the system. 

Algorithm for the i-th node: 

1. If ti = -1, the algorithm ends. 

2. Set ti' = ti' - ci. 

3. Set E = E + ei
c. 

4. If ti' > 0, the algorithm ends. 

5. If g ti = 1, set s i,ti = 1, otherwise set g ti = 1. 

6. Set ti = -1, set t i' = 0. 

The local scheduling strategy for node i populates x 

i and xi', which show the current subtask to be computed 

and the number of operations required to complete the 

computation. 

Algorithm for the i-th node: 

1. If xi = -1, the algorithm ends. 

2. Set xi' = xi' - pi. 

3. Set E = E + ei
p. 

4. If xi' > 0, the algorithm ends. 

Set s i,ti = 1, set xi = -1, set xi' = 0. 

 

3. Experiment and research results 

 
3.1. Experiment description 

 

The problem of ray tracing was chosen for model 

verification. Ray tracing is a reference problem from the 

viewpoint of parallel computing. The basic idea of ray 

tracing is that for each pixel of the image, the algorithm 

models the path of a light ray, tracking its interaction with 

objects in the scene. 

Ray tracing is ideal as a reference problem for 

several reasons: 

– a large degree of parallelism. Each ray can be 

calculated independently of the others. This allows you 

to efficiently distribute tasks between CPU cores and 

thousands of GPU cores; 

– a large number of calculations. Ray tracing often 

involves working with large volumes of data, which 

requires high computing power; 

– the ray tracing algorithm is computationally  

intensive for each ray, especially when realistically  

rendering lighting, shadows, reflections, and refractions ; 

– parallel computing allows the ray tracing 

algorithm to scale, using more resources to speed up 

processing or improve image quality; 

– use of specialized hardware such as GPUs  

(Graphic Processing Units) optimized for parallel 

computing, which can significantly speed up the ray 

tracing process; 

– in summary, the use of parallel computing for ray 

tracing allows you to efficiently process complex scenes 

with a high level of realism in a relatively short time. 

Another important requirement for the reference 

task in the context of this study is its identity on different 

platforms. For an adequate comparison of energy costs, 

it is necessary that the volume of calculations on each 

distributed system is completely identical. Therefore, it 

was decided to develop our own implementation of ray 

tracing for the following platforms: CPU (support for 

x86-64, arm64 architectures), Apple Metal and NVid ia 

CUDA. The C++ programming language and its s pecific 
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variants for Metal and CUDA were used. 

For simplicity, the ray tracing algorithm only works 

with spheres and considers diffuse lighting, directional 

lighting, and reflections from the material properties . 

NVidia GeForce RTX 3090 graphics card 

(traditional server equipment) and iPhone 12 min i 

(mobile equipment) were used as the hardware. Standard 

Ethernet is used for data exchange between the desktop 

computer and the control center, that is, the control center 

and the computer will be physically close and on the 

same network. The mobile Internet is used for data 

exchange between mobile nodes, and the control center 

is deployed in the data center. Such conditions are typical 

considering the principle of operation of the 

corresponding distributed systems. 

The simulation of multiple nodes in a distributed 

computer system is implemented with virtual nodes: each 

node is an isolated virtual entity. If one node physically 

has the artifact and another does not, the first one still 

should download it as it was a dedicated physical node. 

This approach is still accurate from an energy 

consumption perspective because all operations and 

calculations are conducted in a similar way on a system 

of physically dedicated nodes. However, the computation 

time depends on the amount of computing resources in 

the system, but accurate time estimation is not the 

purpose of this work. 

Since the purpose of this study is to compare the 

energy efficiency of a distributed system based on 

traditional server hardware and mobile devices, it is not 

necessary to describe the complexity of the task in 

elementary operations. The main thing is that the same 

measure is used to assess the difficulty of the task. Given 

the completely identical implementation on all platforms, 

in this case, we choose the number of rays per unit of 

energy as the unit of efficiency. 

The standard resolution of the output renders is the 

so-called "2k" and "4k" or 3840x2160 pixels. 64 rays are 

traced for each pixel. Thus, for "4k" it is about 530 

million rays are traced for the rendering of one frame, for 

"2k" – 133 million rays. 

Energy consumption is calculated as follows. 

1. The GPU Z program is used to calculate the 

energy consumption of the graphics adapters. The 

average background energy consumption in an unloaded 

state is measured, followed by the consumption during 

the execution of a computing task. The measurements are 

summed, and the instantaneous power is multiplied by 

the time between the measurements and the obtained 

result. The costs of the central processor in this case can 

be neglected. The accumulated energy is converted into 

the number of rays per joule. 

2. To calculate the energy consumption of a mobile 

device, the device is charged to 100% and the total 

battery discharge is calculated. The battery capacity is 

taken as the nominal value for the mobile device 

multiplied by the state of the battery. When the device is 

turned off, we measure the number of calculated frames  

and convert it into the number of rays per joule. 

3. To calculate the energy consumption of the 

central processor of a stationary computer, we use a 

method similar to that of a stationary graphics processor, 

but with different software. To calculate the energy 

consumption of energy consumption on the central 

processor of a mobile device, an approach that is 

completely identical to that of a mobile graphics 

processor is used. 

The main disadvantage of this method is that it does 

not consider the costs of a stationary computer for data 

transfer. However, they can be considered insignificant. 

At the same time, energy costs for data transmission will 

be taken into account and are expected to be significant. 

 

3.2. Calculation of the consumption  

of the computing system based on the model 
 
To calculate the energy consumption in distributed 

system computing, the parameters of the computing 

process must be entered for each system: the computing 

system model, the computing task model (or work 

model), and the computing strategy model. 

A model of the computer system configuration: 

– let the simulation duration be 1 s; 

– the number of nodes C for this distributed problem 

is not of great importance, because both the problem 

itself and the principle of parallelism do not impose 

restrictions on this parameter. Since we emulate multiple 

virtual nodes with a single physical node, the actual 

number of nodes C > 1 will not affect the amount of 

energy we spend, but it will affect computing time 

estimation. To reach some accuracy in time estimation, 

we can assume C=1, but with the condition that no data 

for the calculation of the problem will be transferred 

between nodes and that all artifacts are always loaded 

into the system; however, calculations of energy 

consumption for C>1 will be provided; 

– availability n i node is a dynamic value with an 

initial value of 0; 

– Ri
on and Ri

off will be selected on the basis that a 

mobile device with a probability of 0.5 loses connection 

once every 100 s: 

 

on 100 on 100
j j(1 R ) 0.5;  R 1 0.5 0.0069075046;      

 

and returns online with a probability of 0.5 within 10 s : 

 

on 10 on 10
j j(1 R ) 0.5;  R 1 0.5 0.0669670085;      

  
these values are selected to simulate devices that are 
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online most of the time and drop off for comparatively  

smaller periods of time; 

– computing power p i = 62,955,597 p/t (rays per 

current); 

– bandwidth ci = 1.2 Mb/t (megabyte per tick) 

Energy consumption per current during calculation  

ei
p = 2.91 J; 

– energy consumption per stream during data 

transmission ei
c = 0.43 J; 

– values pi, ci, ei
p and ei

c calculated by the 

benchmark execution method. For this, the mobile device 

(iPhone 12 mini) was fully charged, after which the 

device traced the scene until it was fully discharged. 

Nominal battery capacity 8.57 Wh = 8.57 3600 =  

= 30852 J. The battery life of the test device is estimated 

to be 81% of the nominal capacity, i.e. 24990 J. For the 

benchmark, a scene from a real task was chosen, and the 

resolution was the same: 4k and 64 rays per pixel. Thus, 

530 million rays are traced to calculate one frame. The 

full discharge took 8572 seconds, 1017 frames were 

rendered. The rendering time of one frame is 8.43s, so 

every second the mobile device traces about 63 million  

rays consumes 2.91 J of energy. A comparable test was 

conducted for data downloading via HTTPS. The 

bandwidth when transmitting consecutive packets of 500 

KB via mobile Internet without saving the connection is 

1.2 Mb /s, the device was fully discharged in 57813 

seconds, which means that the device consumed an 

average of 0.43 W. 

A model of the computer system configuration: 

– let the simulation run also be 1 s ; 

– the number of nodes C for a given distributed task 

is also not very important. Therefore, for simplicity, we 

consider C=1; 

– availability of the n i node is a dynamic value, but 

for stationary equipment it is considered that the node is 

always available, therefore n i = 1; 

– the hardware of a datacenter is considered reliable 

hence Ri
on = 1 and Ri

off = 0; 

– computing power p i = 1,271,476,886 p/t (rays per 

current); 

– bandwidth ci = 10 Mb/t (megabyte per tick); 

– energy consumption per current during 

calculation ei
p = 205 J; 

– energy consumption per stream during data 

transmission ei
c = 0 J; 

– values pi, ci, ei
p and ei

c calculated by the 

benchmark execution method. For this, the GeForce RTX 

3090 stationary graphics accelerator rendered 800 frames  

with a resolution of 3840x2160 pixels with 64 rays per 

pixel. Rendering was performed with power tracking 

enabled per second. Rendering took 334 seconds and 

used 68,483 joules of energy. The average frame 

rendering time is 0.42s. Every second, the graphics 

adapter traces about 760 million rays and consumes 218 

joules of energy. 

The distributed work in this case is general and 

represents the rendering of 600 frames. Each frame 

requires a scene to render, and the result is a frame with 

a resolution of 3840x2160. A typical scene is a 5 kb 

JSON file, a typical JPEG frame is 450 kb. Rendering 

occurs at a density of 64 rays per pixel. That is, to 

perform the task of rendering one frame, you need to 

download 5 KB from the system, trace 530 million  

(3840·2160·64) rays, and upload the 450 KB result to the 

system. This is represented in the system as follows: we 

have 600 scene generation service tasks that have no 

input artifacts and do not need to be executed, and 600 

real frame rendering tasks, each of which depends on one 

artifact and each task generates one artifact: 

– for 0 ≤ i < 600 Ti = 0 rays; 

– for 0 ≤ i < 600 Ai = 5 kb; 

– for 600 ≤ i < 1200 Ti = 530,000,000 rays; 

– for 600 ≤ i < 1200 Ai = 450 kb; 

– for i = j + 600 Dij = 1, otherwise Dij = 0; 

– J = 1200. 

As a distribution strategy, we use a naive heuristic 

distribution strategy. 

Let's create a model of a distributed computing 

problem. The input (the scene) is an artifact, and the 

result of the rendering is also an artifact. Each task (task) 

contains information about computing resources in 

millions of rays and contains identifiers of input and 

output data (artifact). The program implementation is 

given in Listing 1.  

 

Listing 1 

Composing a program representation of Job model 

 

void Job::generateRT(Job& job, 

                     int frames,  

                     int download, 

                     int upload, 

                     int oops) 

{ 

  for (int i=0; i<frames; ++i) 

  { 

    Artifact a_in; 

    a_in.id = job.artifacts.size(); 

    a_in.type = 

Artifact::Type::Input; 

    a_in.data = download ;  

    // The amount of data  

    // to download is 5 kb 

     

    job.artifacts.push_back(a_in); 

 

    Artifact a_out; 

    a_out.id = job.artifacts.size(); 

    a_out.type = 
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Artifact::Type::Output ; 

    a_out.data = upload;  

    // Volume of output data  

    // 450 kb 

         

   job.artifacts.push_back(a_out); 

 

    Task task; 

    task.id = job.tasks.size(); 

    task.ops = ops;  

    // computational complexity  

    // 530 million rays 

         

   task.depIds.push_back(a_in.id); 

    // Reference to input data 

    task.outputId = a_out.id;  

    // Reference to output data 

    job.tasks.push_back(task); 

  } 

} 

 

A model of a computing node based on mobile 

devices is given in Listing 2. 

 

Listing 2 

Composing a program representation of a mobile device 

as a computing node in a distributed system 

 

static NodeConfig 

iPhone12miniIdealNodeConfig() 

{ 

  NodeConfig nodeConfig; 

  nodeConfig.rateOn = 1;  

  // Within the framework 

  // of this test 

  // it is assumed that the node 

  nodeConfig.rateOff = 0;  

  // always reachable for 

  // calculations 

  nodeConfig.networking = 1200;  

  // kilobytes per second 

  nodeConfig.computing = 63;  

  // Computational resources  

  // million rays per stream 

  nodeConfig.eNetworking = 430;  

  // Millijoules 

  nodeConfig.eComputing = 2910;  

  // Millijoules 

  return nodeConfig; 

} 

 

Computational simulation results based on one 

mobile device for 1017 frames: 10171 ticks and 25062 

Joules of expenditure. The execution time differs from 

the benchmark because of the peculiarities of the system 

implementation: any task is performed for an integer 

number of ticks, therefore, instead of 8.43 seconds, the 

model spends 9 ticks on the task. If the task is completed 

on a given log, the new one will be executed only on the 

next one. In addition, the naive task allocation strategy 

allocates a task to a node only when the node is free. 

Immediately after the distribution, the node starts 

downloading the input data, which lasts at least 1 thread. 

Thus, we have 1 additional thread for each task + 1 thread 

for downloading the last artifact to the system. If we 

allow the naive strategy to add a task to the node's queue, 

each task will be executed in 9 ticks because the node will 

download data for the tasks in the queue. However, it 

does not affect energy consumption, so complicating the 

strategy within the scope of this work is not advisable. 

The energy consumption in the simulation is also 

different, but only because the model considers data 

transmission over the network. If we set the energy costs 

for energy transfer to 0, we obtain a value of 24896 

joules, which is 0.4% less than the measured value. The 

number of computing nodes in the simulation does not 

affect the energy consumption, which makes sense. 

The calculation model of the processing node based 

on stationary computers is given in Listing 3. 

 

Listing 3 

Composing a program representation of a stationary 

GPU as a computing node in a distributed system 

 

static NodeConfig 

rtx3090NodeConfig() 

{ 

  NodeConfig nodeConfig ; 

  nodeConfig.rateOn = 1; 

  nodeConfig.rateOff = 0; 

  nodeConfig.networking = 10000; 

  // Bandwidth is considered  

  // high enough 

  nodeConfig.computing = 1271; 

  // Computing resources 

  nodeConfig.eNetworking = 0;  

  // Data transfer costs are 

considered 

  // insignificant 

  nodeConfig.eComputing = 205000;  

  // Millijoules 

  return nodeConfig; 

} 

 

Because of simulating (Table 2) a distributed 

calculation of 800 frames, we received 1601 ticks and 

68386 joules of energy. The length in ticks is also 

calculated by rounding up + 1 tick per download + 1 last 

tick. The obtained energy consumption deviates from the 

measured value by 0.2%. 
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Table 2 

Comparison of characteristics of mobile and stationary 

GPUs for 4k and 2k frames 

 
Measurem

ent 
Forecast 

Deviati

on 

Execution time 

4k (stationary) 
276 s 1200 s 335% 

Execution time 

4k (mobile) 
6061 s 6696 s 10.5% 

Consumption 

4k (stationary) 
52806 J 

51.3 kJ, C=1 

2.7% 51.3 kJ, C=10 

51.3 kJ, C=50 

Consumption 

4k (mobile) 
15320 J 

15.1 kJ, C=1 

1.6% 15.1 kJ, C=10 

15.1 kJ, C=50 

Execution time 

2k (stationary) 
71 s 1200 s - 

Execution time 

2k (mobile) 
6122 s 7007 s 14% 

Consumption 

2k (stationary) 
53337 J 

54.5 kJ, C=1 

2.2% 54.5 kJ, C=10 

54.5 kJ, C=50 

Consumption 

2k (mobile) 
15320 J 

15.2 kJ, C=1 

1% 15.2 kJ, C=10 

15.2 kJ, C=50 

 
The error in the calculated energy consumption in 

both cases comes from the fact that both the 

computational complexity of the tasks and the computing 

power of the devices are represented by whole numbers 

for convenience and speed. 

The physical computation of 600 frames on a 

distributed system will occur on a single device that will 

simulate different compute nodes so that it will not 

maintain connections and will not use input data from 

other computations to possibly avoid overhead. Failure 

simulation is performed using the node software. In 

addition, considering the peculiarity of the battery, the 

calculation will proceed from a charge level of 80%. 

Running the calculation on the system from a single 

mobile device reduced the battery charge to 19%, thus 

consuming 15,320 joules of energy. The calculation took 

6061 s. The computation of 600 frames on a distributed 

system with stationary equipment took 276 s and 

consumed 52806 joules of energy. 

A simulation of computing 600 frames on a mobile 

distributed system with failover settings shows 6696 

ticks and 15078 joules of energy. A simulation of 

computing on a distributed system from stationary 

devices shows 1200 ticks and a consumption of 51290 

joules of energy. Changing the number of nodes in the 

simulation does not change the energy consumption, 

which is expected. Only the general computation time is 

changed in this case. 

The result of a typical scene rendered with ray 

tracing is shown in Figure 1. 

 

4. Discussion 
 
The significant variance in execution time on 

stationary devices can also be attributed to the model's 

discrete nature and specific characteristics. To obtain a 

more accurate forecast, it is necessary to obtain a lower 

resolution of the simulation. However, estimating the 

execution time is not the purpose of the work. 

The smaller deviation of the execution time of the 

mobile model compared to the benchmark is due to the 

fact that each frame on the mobile device is now 

processed for almost exactly 9 seconds, which reduces 

the error of the discrete model. 

A distributed system based on mobile devices 

consumes 3.45 times less energy for the same 

calculations. Compared to the difference of 2.2 times in 

the previous work [20], this is a lot, but there are several 

explanations for this. Initially, the prior study contrasted 

the same mobile device against the GeForce RTX 3080, 

noted for its higher energy efficiency compared to the 

3090. Second, the previous work used a synthetic 

benchmark that loaded only the graphics card processor, 

without loading the memory at all. In this case, the 

memory is used more intensively, and the RTX 3090 

memory controller consumes more than the RTX 3080. 

Third, the benchmark in this work is worse optimized for 

CUDA than for Metal, but it would be more accurate to 

say that Metal is more "forgiving" to the developer. 

Fourth, the graphics card of a desktop computer has 

additional consumers, such as an active cooling system, 

and their consumption has been considered. 

A better implementation of ray tracing can reduce 

the gap between stationary and mobile equipment, but 

you can't expect equal or close power consumption to do 

the same job. 

 

Conclusions 
 

This paper presents the development and testing of 

a universal model for predicting energy costs during 

calculations that can be applied to both a traditional  
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Fig 1. Rendering result 

 

stationary computer system and a system based on 

mobile devices. 

The approach proposed in this study allows us to 

evaluate energy efficiency without specialized measuring 

equipment, determine the energy efficiency of GPUs  

based on CUDA technology, evaluate the impact of 

various parameters on performance and energy 

efficiency, and compare them with a similar 

implementation using Apple Metal GPUs. The results of 

the experiments conducted by the author show that the 

energy consumption assessment model considers the 

features of the hardware platform on which data 

processing is carried out. Thus, the GPU implementation  

using CUDA technology with small data packet sizes, 

such as 1 input vector and even 1000 input vectors, is 

inferior in energy efficiency to a similar implementation  

on the Apple Metal GPU. 

Therefore, during experimental testing, the energy 

consumption estimation model turned out to be quite 

effective. However, the model requires a clear goal for 

both the task and the device used. This, in turn, requires 

the creation of a benchmark for each model, which is a 

disadvantage of this model. This drawback is planned to 

be eliminated by accumulating quantitative data and 

modeling results, which will allow generalizing some 

parts of the model. In addition, the task in this work was 

chosen quite ideally: it does not require intensive data 

exchange between computing nodes . 

Including future research directions, it is planned to 

apply the model to more coherent calculations. Thus, the 

presented results and the described measurement 

methods can be used as a basis for conducting large scale 

studies in the field of assessing the energy consumption 

of mobile and stationary GPUs. 

Another direction for future research is information  

security. Calculations on personal mobile devices require 

additional information security solutions because it is 

impossible to physically protect the hardware from 

unauthorized access. 
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УНІФІКОВАНА МОДЕЛЬ ТА МЕТОД ПРОГНОЗУВАННЯ ЕНЕРГОСПОЖИВАННЯ  

В РОЗПОДІЛЕНИХ ОБЧИСЛЮВАЛЬНИХ СИСТЕМАХ  

НА ОСНОВІ СТАЦІОНАРНИХ ТА МОБІЛЬНИХ ПРИСТРОЇВ  

О. О. Мамчич, М. О. Волк 

Предметом дослідження в даній статті є прогнозування енергоспоживання при обчисленні розподілених 

завдань у комп’ютерних мережах, побудованих на базі серверних рішень та розподілених персональних 

смартфонів. Метою цього дослідження було створення універсальної моделі прогнозування вартості 

обчислювальної енергії, яку можна застосувати як до традиційної хмарної системи, так і до мобільної хмарної 

системи. Завдання: провести аналіз енергозберігаючих підходів і технологій, що використовуються для 

розрахунку даних; розглянути моделі комп’ютерної системи та дії з ними, а саме: модель розподіленої роботи, 

модель стратегії розподілу, ініціалізацію моделі; розробити єдиний і єдиний динамічний метод прогнозування 

витраченої енергії з акцентом на гетерогенні системи; проведення дослідження запропонованого підходу на 

стаціонарних та мобільних пристроях. Отримані результати роботи включають результати 

експериментальних вимірювань енергоспоживання мобільних цифрових систем та стаціонарних. Була 

визначена енергоефективність обчислень на графічних процесорах стаціонарного пристрою на основі 
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технології CUDA та графічних процесорів на мобільних пристроях на основі технології Apple Metal. 

Обчислення 600 кадрів в розподіленій системі з мобільних пристроїв з налаштуванням и відмов показало  

споживання 15078 джоулів енергії. Моделювання обчислень на розподіленій системі зі стаціонарними 

пристроями показало споживання 51290 джоулів енергії. Це означає що мобільна система дає виграш у 3,45 

разів в споживанні енергії. Висновки. Модель оцінки енергоспоживання виявилася досить ефективною. 

Результати авторських експериментів показують, що модель оцінки енергоспоживання враховує особливості 

апаратної платформи, на якій виконується обробка даних. Обчислення даних на GPU стаціонарних пристроїв 

програє в енергоефективності аналогічній реалізації на GPU Apple Metal з мобільних пристроїв. Отже, 

представлені результати доводять раціональність використання мобільних графічних процесорів для 

енергоефективної обробки інформації. 

Ключові слова: графічний процесор; енергоефективність; розподілена система; хмарні обчислення; 

зелені обчислення; мобільний пристрій; багатопоточність. 
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