
Methods and means of image processing

99

UDC 629.7.014-519.058.6:004.932 doi: 10.32620/reks.2024.1.09

Bohdan KARAPET, Roman SAVITSKYI, Tetiana VAKALIUK

Zhytomyr Polytechnic State University, Zhytomyr, Ukraine

METHOD OF COMPARING AND TRANSFORMING IMAGES OBTAINED

USING UAV

The subject matter of this article involves reviewing and developing methods for the comparison and
transformation of images obtained using UAV via Computer Vision tools. The goal is to improve methods for

image comparison and transformation. Various image-processing methods were employed to achieve the goal

of this study, thereby contributing to the development of practical algorithms and approaches for image

analysis and comparison. The tasks can be described as follows: 1) development of image comparison

methods: design tools for the comparison of images from UAV that efficiently detect differences using

algorithms such as cv2.absdiff and the PIL module; 2) Image transformation: implement transformation

methods for images from UAV, including perspective transformation and thresholding, to enhance the quality

and accuracy of image analysis. The methods used were algorithm development, image transformation

methods, statistical analysis, experimental testing, and performance evaluation. The metrics used in this

article are response time and accuracy. Algorithms for image comparison have also been refined, particularly

those transformed through Global Threshold Value, Adaptive Mean Thresholding, and Adaptive Gaussian
Thresholding. A novel change filtering method was introduced to enhance the precision of image comparison

by filtering out insignificant alterations following image transformation. Comprehensive investigation of image

comparison involving edge detection methods has been systematically presented. The results contain the

development of practical algorithms and approaches for image analysis and comparison applicable in diverse

areas such as military, security, and agriculture. Possibilities of applying our methods and algorithms in the

context of drones were also considered, which is particularly relevant in tasks related to computer vision in

unmanned aerial vehicles, where limited resources and the need for real-time processing of a large volume of

data create unique challenges. Conclusions. The results contain OpenCV and PIL image comparison methods.

OpenCV pixel-by-pixel comparison algorithm showed a better response time with the same accuracy. OpenCV

method has 92,46% response time improvement compared with PIL and is 276ms. As for image thresholding

with comparison, a method based on Global Threshold Value showed the shortest response time (266ms) and

the lowest accuracy. The highest accuracy and response time (366ms) were obtained using the Adaptive
Gaussian Thresholding method.

Keywords: UAV; computer vision; image comparison; image transformation; image processing.

1. Introduction

1.1. Motivation

Nowadays, a crucial area of study revolves around

developing innovative solutions in computer vision and

unmanned aerial vehicle (UAV) technologies. This

research domain involves an analysis of image

comparison and transformation tools in Computer

Vision, their practical applications, and the resolution of

various theoretical and practical challenges faced by

modern scientific communities.

Drones with image analysis hardware can

effectively analyze data and provide operators with

valuable real-time information.

Computer vision has significantly evolved with

technological advancements, particularly the increase in

computational power and the improvement of

algorithms. Following this, pivotal methodologies have

emerged, including but not limited to image processing

and object recognition. With the introduction of neural

networks and deep learning, significant strides have

been made in the field of computer vision.

This advancement empowers developers to craft

sophisticated systems capable of precisely parsing

images captured by drones, ensuring accurate

identification and categorization of objects within both

images and videos [1].

The initial methods included image filtering and

enhancement, edge detection, and essential shape

recognition. With the development of machine learning

algorithms, object classification and localization

methods have been introduced, allowing for more

accurate identification and analysis of visual data.

Computer Vision plays a crucial role in many

modern technologies, providing essential technological

support from automated quality control in

manufacturing to facial recognition in smartphones and

from security systems to autonomous transportation [2].

 Bohdan Karapet, Roman Savitskyi, Tetiana Vakaliuk, 2024

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)

100

Despite significant advancements in this area,

there are situations where computer vision systems may

still make errors, especially in complex lighting

conditions or when detecting beautiful details.

Another crucial challenge is the speed of image

processing. Processing speed is critically important for

many applications, particularly those requiring real-time

capabilities such as automated driving or video

surveillance systems [3].

1.2. State of the Art

Over the past few years, drones have become

integral components of computer vision and the Internet

of Things (IoT).

Researchers such as Volodymyr Rebrov and

Vladimir Lukin focus on the post-processing of

compressed noisy images using BM3D filters.

Researchers explored the use of the BM3D filter to

improve the quality of noisy, compressed images,

finding that it surpasses traditional options and offers

valuable parameter setting recommendations [4].

Another important application area for drones is

video stream brightness stabilization. The work of

Vladyslav Bilozerskyi, Kostyantyn Dergachov, Leonid

Krasnov, Anatolii Zymovin, and Anatoliy Popov tackles

video brightness fluctuations caused by lighting and

noise. This study proposes a novel brightness stability

method using the "average frame brightness" indicator

and digital filtering algorithms, achieving promising

results in real-world scenarios [5].

The adaptation of FPGA architecture for

accelerated image preprocessing, presented in the work

of Olesia Barkovska, Inna Filippenko, Ivan Semenenko,

Valentyn Korniienko, Peter Sedlaček, shown how to

improve slow image processing by building a

reconfigurable FPGA system, demonstrating a 60x

speed-up compared to software solutions. The resilient

design offers real-time reconfiguration and high

throughput, making it ideal for embedded tasks

requiring fast image processing [6].

Zhaolong Ning, H. Hu, and Xiaojie Wang explore

the use of edge computing and machine learning in the

Internet of Things (IoT) for Unmanned Aerial Vehicles

(UAVs). This study examines the potential use of UAV

resources for distributed data processing and real-time

decision-making. The research emphasizes the

significance of leveraging edge computing and machine

learning to enhance efficiency and automate UAV

operations in various sectors, including monitoring and

rescue operations [7].

Research conducted by Arsen Petrosian, Ruslan

Petrosian, Ihor Pilkevych, and Maryna Graf is focused

on advancing and refining Unmanned Aerial Vehicle

(UAV) control systems. The primary emphasis of this

study lies in optimizing algorithms and using cloud and

distributed computing for efficient management and

processing of the substantial amount of data generated

by drones. The research also considers the growing

complexity of the drone flight environment, particularly

the presence of moving obstacles [8].

Ming-You Ma, Shang-En Shen, and Yi-Cheng

Huang [9], has studied areas of object detection ability

and finding the emergent landing platform and for

future reconnaissance.

Lijia Cao, Pinde Song, Yongchao Wang, Yang

Yang, and Baoyu Peng [10] studied algorithms for

image recognition of unmanned aerial vehicles for

military countermeasures and disaster search and

rescue.

In research, provided by Sergio Bemposta

Rosende, Sergio Ghisler, Javier Fernández-Andrés, and

Javier Sánchez-Soriano, different computer vision

models and reduced-board (and small-power) hardware

were developed, evaluated, and compared to optimize

traffic management in these scenarios [11].

All of these studies emphasize the importance of

using drones in various applications because they

facilitate real-time data collection and analysis, which is

crucial.

1.3. Objectives and Approach

This study aims to develop and implement

methods for image comparison and transformation in

the field of Computer Vision to enhance the efficiency

of visual data analysis from UAVs and across various

application domains.

The tasks can be described as follows:

1) development of image comparison methods:

design tools for image comparison that efficiently detect

differences using algorithms such as cv2.absdiff and the

PIL module;

2) image transformation: implement image

transformation methods, including perspective

transformation and thresholding, to enhance the quality

and accuracy of image analysis.

The assistance of Copilot was used to refactor the

code and provide insights into identifying and rectifying

errors encountered during the development process.

ChatGPT was used to help with the article translation

and to check parts of the text to avoid

misinterpretations.

The approach to this research included the

analysis of various image comparison methods,

designing algorithms and architecture of image

comparison, and improving existing algorithms.

Research contained the next stages:

- analysis of the existing image comparison

methods;

Methods and means of image processing

101

- implementation PoС of image comparison

algorithms;

- architecture design and solution validation;

- development;

- testing and measuring;

- improvement of existing image comparison

algorithms.

In this study, we will use the following metrics:

response time in milliseconds, response time compared

to other methods, and accuracy.

Response time (in milliseconds) shows the amount

of time from sending the request with images that we

must compare to achieve the result.

Response time will also be compared between

methods in this research to show differences as a

percentage.

Accuracy in terms of this research is a boolean

value which indicates were differences found or not.

Additional details will be provided for this value.

Current research includes only methods that can be

automated and do not require human interaction or

routine.

2. Materials and methods of research

2.1. Pixel-wise comparison using cv2.absdiff

with difference highlighting

Pixel-wise image comparison is a method that

allows detection of the difference between two images

at the most minor level. OpenCV (or cv2 in Python) is a

popular library for implementing such a comparison.

This library's cv2.absdiff() function enables the quick

obtaining of an image representing the difference

between two other images.

OpenCV (Open Source Computer Vision Library)

is an open-source computer vision and machine-learning

library. Licensed under the Apache 2 license, OpenCV

enables companies to easily use and modify the

code [12].

The cv2.absdiff() function takes two input images

and returns a new image representing their absolute

difference. For each pixel in the input images, the

corresponding pixels are subtracted, and the result is

taken as an absolute value, forming the output image's

pixels.

To make the difference more noticeable in the

resulting image, you can apply the following specific

highlighting methods:

- binarisation: after obtaining the difference

image, you can use thresholding (cv2.threshold()) to

highlight changed areas;

- colour map: to enhance visibility, you can use

a colour map (cv2.applyColorMap()) that makes the

difference more pronounced with contrasting colours;

- dilation: to widen and make the difference

more noticeable, you can apply dilation (cv2.dilate()).

Pixel-by-pixel comparison using cv2.absdiff() is

an effective method for detecting differences between

two images, especially when the shooting conditions are

almost 100% similar (stationary). When photos were

taken at different angles, changed shooting locations, or

under altered conditions, the results may be inaccurate.

2.2. Overlaying two BGR2GRAY photos

Overlaying photos, whether in colour or

monochrome format, can create a visual effect useful

for analyzing and demonstrating changes. Converting

images from the BGR (Blue-Green-Red) format to the

GRAY (monochrome) format helps emphasize

brightness and contrast by discarding colour

information.

When referring to overlaying two images, it

implies creating a composite image where one image is

superimposed on another. This can be done using

various merging methods such as simple addition,

averaging, and multiplication [13].

To overlay two grayscale (GRAY) images, follow

these steps [14]:

1. Load images and convert them to grayscale.

2. Overlaying images. One method uses the mean

squared error.

3. Displaying or saving the result.

Overlaying grayscale images can be used in

various scenarios:

- difference analysis: if you have two similar

photos taken at different times, overlaying them can

help identify changes between them;

- information merging: for example, if you have

a topographic map and a rainfall map, you can combine

them to obtain an image that shows both sets of

information together.

Comparing two BGR2GRAY drone photos using

overlaying may show a less effective result than

comparison using cv2.absdiff().

Converting to grayscale somewhat mitigates the

impact of changes in the shooting angle and, to some

extent, reduces the influence of lighting and weather

conditions at the time of shooting.

Therefore, overlaying grayscale images helps to

combine, analyze, and create new visual compositions.

2.3. Comparison using the PIL module

The Python Imaging Library (PIL) is a library for

image processing in Python. It provides tools for

loading, processing, and saving images in various

formats. One of its key features is the ability to compare

images at different levels [15].

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)

102

The main comparison methods include:

- Pixel-by-pixel: this straightforward method

involves checking each pixel of one image against the

corresponding pixel of another image. Although this

method is linear, it may not always be efficient, as

minor changes in the image can result in several pixel

differences.

- Histograms: comparing images using their

histograms allows assessing the distribution of

brightness and colour components in the image. This

can be useful when finding general differences between

two images rather than specific pixel discrepancies;

- shape and features: instead of directly

comparing pixels or histograms, more complex

algorithms can be used to detect shapes or features in an

image and then compare these features between images.

PIL is well-suited for simple image comparison

tasks. For example, it can be useful for detecting

duplicates or checking for changes on a website.

However, it is recommended to use specialised

libraries such as OpenCV for more complex tasks, such

as finding differences in drone images or comparing

faces,.

2.4. Image Transformation

with Subsequent Comparison

Perspective Transformation

OpenCV, or Open Source Computer Vision

Library, is one of the most popular libraries for

computer vision. It provides a range of tools for image

processing, including perspective transformation. The

method cv2.warpPerspective allows altering the

perspective of an image in OpenCV, which can be

useful for correcting distortions or changing the

viewpoint.

Key concepts [16]:

1. Defining points: to perform a perspective

transformation, it is necessary to define four points on

the input image and four corresponding points on the

output image. These points are used to create a

prospective matrix.

2. Creating a prospective matrix: the

cv2.getPerspectiveTransform function takes two arrays

of four points each for the input and output images and

returns the prospective matrix.

3. Applying the transformation: the

cv2.warpPerspective function uses the prospective

matrix to change the image’s perspective.

Perspective transformation can be applied in the

following cases:

- distortion correction: if a photo was taken at an

angle to a flat surface, perspective transformation can be

used to obtain a "top-down" view;

- changing the viewpoint: perspective

transformation can be used to simulate a change in the

observer's position;

- augmented reality: integrating virtual world

objects into the real world requires changing the

perspective to make them look natural.

Let us consider the perspective transformation on a

drone image. For example, to create a map of the terrain

or, more accurately, determine the coordinates of a point

on the terrain by referencing landmarks, it is necessary

to transform an image taken at an angle into an image

with a "top-down" view [17].

The limitations of perspective transformation

include the choice of key points, data loss, and

computational complexity. Proper selection of

corresponding points is crucial for obtaining an accurate

prospective matrix. Correct choices can lead to proper

transformation. Significant perspective changes may

result in the loss of parts of the image or low-quality

resulting images.

While OpenCV is optimized for image processing,

high-resolution perspective transformation can be

resource-intensive.

2.5. Global Threshold Value

Thresholding, or image binarization, is one of the

most common image processing methods. This

technique allows the highlighting of specific areas of an

image by converting it into a binary (black and white)

representation. A global threshold value means setting a

single threshold value for the entire image.

The same threshold value is applied to the entire

image when referring to a global threshold value.

This means that all pixels with brightness values

lower than the threshold value will be converted to

black and all others to white (Figure 1).

Fig. 1. Image Transformation Using

a Global Threshold Value

The thresholding process consists of:

1. Loading the image: load the input image that

requires binarisation.

Methods and means of image processing

103

2. Conversion to grayscale: typically, images are

converted to grayscale (grey levels) to work only with

brightness rather than three colour channels.

3. Applying the threshold value: all pixels with

brightness below the threshold value are converted to

black and others to white (Figure 2).

Advantages of global thresholding include

simplicity - global thresholding is a straightforward

method that does not require complex calculations or

parameters. Because of its simplicity, this method is

speedy and efficient for processing large images.

Limitations include suboptimal performance for

imperfect images - global thresholding may need to be

more efficient for images with varying lighting or low

contrast.

Fig. 2. Thresholding process

Another limitation is the loss of details – some

details may be lost after binarisation, especially in

images with low contrast between the object and

background.

Therefore, image thresholding is a fundamental

tool in image processing that can be used in various

applications, from object highlighting to preparing data

for machine learning. Global thresholding is a simple

and fast method for obtaining binary images. However,

its effectiveness may depend on the quality of the input

image and the tasks’ specific requirements.

2.6. Adaptive Mean Thresholding

Image thresholding allows the highlighting of

important areas by converting them into a binary

representation. Adaptive thresholding attempts to

calculate an adaptive threshold for different regions of

the image.

Adaptive mean thresholding, for instance,

determines the threshold for each pixel by calculating

the average brightness value in its neighbouring pixels

(Figure 3).

Fig. 3. Example of Applying the Adaptive

Mean Thresholding

Process of adaptive mean thresholding:

1. Loading and preparing the image: load it and

convert it to grayscale.

2. Choosing the window size: select the window

size in pixels (e.g., 11x11) used to determine the

threshold for each pixel.

3. Calculating the threshold: for each pixel in the

image, calculate the average brightness value from all

pixels in the selected window and use this average value

as the threshold.

4. Binarisation: using the calculated threshold,

convert each pixel to black or white depending on its

brightness (Figure 4).

Fig. 4. Adaptive Mean Thresholding process

The advantages of the algorithm include handling

uneven illumination and preserving details. Because of

the local threshold calculation, this method effectively

works with images with uneven lighting. In addition, it

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)

104

often preserves details that may be lost with global

thresholding.

Limitations include computational complexity

because adaptive thresholding requires more

computations than global thresholding. The choice of

window size is crucial, and an incorrect selection may

lead to the loss of details or unwanted noise in the

image.

Therefore, adaptive mean thresholding is an

effective method for thresholding images with uneven

illumination or contrast. Determining the threshold

helps achieve more accurate binarisation than global

methods. However, the correct selection of parameters,

such as window size, is crucial for obtaining the best

results.

2.7. Adaptive Gaussian Threshold Value

Threshold image adjustment converts images into

binary (black-and-white) representations. However, not

all images have a uniform background or lighting. In

such cases, a global threshold value may not provide

optimal results. Adaptive thresholding comes to the

rescue, and one of its variants is Adaptive Gaussian

thresholding (Figure 5).

Fig. 5. Example of applying Adaptive

Gaussian Thresholding

With Adaptive Gaussian thresholding, the

threshold for each pixel in the image is calculated on the

basis of the weighted sum of pixel intensities in the

window around that pixel. A Gaussian function gives

the weights, so close pixels will significantly influence

the threshold value more than those farther away [18].

The process of Adaptive Gaussian Thresholding

involves:

1. Loading and preparing the image: load it and

convert it to grayscale.

2. Choosing the window size: select the local

window size used to calculate the threshold value.

3. Calculating the threshold: for each pixel in the

image, calculate the threshold based on the weighted

sum of pixel intensities in the corresponding window

using the Gaussian function.

4. Binarisation: apply the calculated threshold to

each pixel, converting it to black or white, depending on

its intensity (Figure 6).

Advantages of Adaptive Gaussian Thresholding

include:

- accuracy in unevenly illuminated areas:

because of the use of weighting coefficients, the method

is more sensitive to local features of the image, such as

shadows or highlights;

- preservation of details: simple binarisation

often leads to detail loss, but the Gaussian method can

retain more details because of its adaptability.

The limitations of this algorithm include higher

computational complexity and the need to choose

appropriate parameters. Adaptive Gaussian thresholding

is computationally more demanding than other

thresholding methods.

Fig. 6. Adaptive Gaussian Thresholding process

Therefore, Adaptive Gaussian Thresholding is a

powerful tool for thresholding images with uneven

backgrounds or lighting. It considers local image

information and applies a Gaussian weighting scheme to

obtain more accurate threshold values. If properly

tuned, this method can provide clear, detailed binary

images.

2.8. Edge Detection

Edge detection is one of the fundamental

operations in image processing used to identify areas

where there is a change in the intensity of brightness or

colour in an image. This change in intensity may

Methods and means of image processing

105

indicate an edge, which in turn can suggest the

boundary between two objects or parts of an object.

Methods of edge detection [19]:

1. Gradient-based methods: using gradient

operations, you can determine the direction in which the

intensity of the image changes most rapidly. Key

methods include:

- sobel method: uses two 3x3 kernels to

determine horizontal and vertical intensity changes;

- prewitt method: similar to Sobel but with a

different kernel;

- scharr's method uses larger kernels for

increased accuracy.

2. Laplace method: Applies the second derivative

to detect edges, which can identify edges where the

image gradient passes through zero.

3. The canny method is one of the most popular

and involves several steps, including smoothing,

gradient detection, non-maximum suppression, and

double thresholding (Figure 7).

Fig. 7. Example of applying

the edge detection algorithm.

Challenges of this algorithm include noise in the

image, which can detect incorrect edges. Often, before

edge detection, images undergo smoothing to reduce the

impact of noise.

Another challenge is the discontinuous edges and

thickness of the edges. Ideally, the edge should be a

one-pixel-wide line. However, some methods may result

in wide or blurry edges.

The algorithm is applied in various fields:

- medical imaging: for detecting pathological

changes such as tumours;

- automatic object recognition: to determine the

object boundaries in an image;

- video surveillance: for detecting moving

objects.

Edge detection is a crucial component in image

processing. It helps highlight important information in

an image and can be used in various applications, from

medical diagnostics to object recognition.

3. Results and Discussion

3.1. Pixel-wise Comparison

Using Computer Vision

Overlaying two BGR2GRAY images and

subsequent comparison.

Developing server applications to handle requests

is integral to many information technologies. In this

context, one of the popular libraries for creating web

servers in the Python programming language is Flask.

Flask is a lightweight and flexible framework

designed for rapid web application development. Using

Flask, you can create a server that handles HTTP

requests and sends HTTP responses [20]. Flask is based

on the principles of web application development using

the "routing-function" model. A URL to which HTTP

requests can be sent, associated with a specific

processing function, represents the «route». Processing

functions define the logic of responding to requests and

may include operations such as data processing and

interaction with a database, and more. Creating a server

with Flask involves importing the Flask class and

defining routes using decorators.

In many cases, image processing on the server is

an important task. Using Flask, you can create a server

that accepts images as requests and returns the results of

their processing.

A "compare_gray" endpoint (Listing 1) compares

two images in grayscale mode. One approach to

implementing this is to create the

"compare_gray_image_pixels" function, which takes

two images in PNG format and compares them using

pixels. Subsequently, the "compare_gray" endpoint,

which handles POST requests, accepts files and calls the

specified function, was created.

Listing 1

Implementation of the server

with the «compare_gray» endpoint

from flask import Flask, request,

send_file

from compare_gray_image_pixels import

compare_gray_image_pixels

app = Flask(__name__)

@app.route('/compare_gray',

methods=['POST'])

def compare_gray():

 if 'file1' is not requested.files

or 'file2' is not in request.files:

 Return 'Files are not uploaded',

400

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)

106

 file1 = request.files['file1']

 file2 = request.files['file2']

 fileMimeType = file1.mime-type

 if

file1.mimetype.startswith('image/')

and

file2.mimetype.startswith('image/'):

 # Save the files to disk or

process them in memory

file1.save('./compare/pixel_compare_i

mg_1.png')

file2.save('./compare/pixel_compare_i

mg_2.png')

 # Compare the images

compare_gray_image_pixels('./compare/

pixel_compare_img_1.png',

'./compare/pixel_compare_img_2.png')

 result =

open('./compare/pixel_compare_result.

png', 'rb')

 return send_file(result,

mimetype=fileMimeType)

 else:

 return 'Invalid file type', 400

Let us take a closer look at the

"compare_gray_image_pixels" function (Listing 2):

1. The function should include importing the cv2

(OpenCV) and imutils libraries. OpenCV is used for

image processing operations [12], while imutils

provides several convenient functions for working with

images.

2. It takes the paths to the original and new

images as arguments.

3. The original and new images are read using

OpenCV and resized using the imutils.resize function.

4. A copy of the original image is created, and the

absolute difference between the original and new

images is computed.

5. The comparison result is converted to

grayscale [13], and dilation highlights the differences.

6. Binarisation is used to determine the contours,

which are then used to highlight differences in the new

image [21].

7. A rectangle is drawn for each contour on the

new image, and the result is saved in the

"pixel_compare_result.png" file [14].

8. Adding function export using __all__.

Postman is used to test the web server endpoint.

Postman simplifies the testing process, allowing

efficient verification of the correctness of endpoint

operations and confident implementation of changes in

web applications.

The choice and use of Postman in the project were

driven by its high functionality and convenience for

testing and interacting with APIs.

Listing 2

Implementation of «compare_gray_image_pixels»

import cv2

import imutils

def

compare_gray_image_pixels(original_pa

th: str, new_path: str):

 original =

cv2.imread(original_path)

 new = cv2.imread(new_path)

 original = imutils.resize(original,

height = 600)

 new = imutils.resize(new, height =

600)

 diff = original.copy()

 cv2.absdiff(original, new, diff)

 gray = cv2.cvtColor(diff,

cv2.COLOR_BGR2GRAY)

 for i in range(0, 3):

 dilated = cv2.dilate(gray.copy(),

None, iterations= i + 1)

 (T, thresh) =

cv2.threshold(dilated, 3, 255,

cv2.THRESH_BINARY)

 cnts = cv2.findContours(thresh,

cv2.RETR_LIST,

cv2.CHAIN_APPROX_SIMPLE)

 cnts = imutils.grab_contours(cnts)

 for c in cnts:

 (x, y, w, h) =

cv2.boundingRect(c)

 cv2.rectangle(new, (x, y), (x +

w, y + h), (0, 255, 0), 2)

cv2.imwrite("./compare_gray/pixel_com

pare_result.png", new)

__all__ =

['compare_gray_image_pixels']

Methods and means of image processing

107

The images for comparison are provided below

(Figure 8). The obtained result is shown in Figure 9.

Fig. 8. Images for Comparison

Fig. 9. Comparison Result of «compare_gray»

The average response time for images with

resolution 2400x1597 pixels is 276ms. All images in

this research contain one object as a difference to make

measurements more accurate and to be able to find

average values.

This method was chosen as a comparison point

and the relative response time for it is 100%.

This method is accurate because it found the

difference between two compared images.

3.2. Comparison using the PIL module

Continuing the functionality already implemented

in the 'compare_gray' endpoint, a new endpoint

'compare_pillow' has been added. This new endpoint

further expands the image comparison capabilities in the

Flask-based web application.

The 'compare_pillow' endpoint takes two PNG

format files for comparison and invokes the

'compare_pillow' function (Listing 3), which

implements the photo comparison algorithm using the

Pillow library. This algorithm allows for a more detailed

comparison and detection of differences in various

aspects of the images.

Listing 3

Implementation of the «compare_pillow» function

from PIL import Image, ImageDraw

import numpy as np

def compare_pillow(image1, image2):

 #Opening images and converting to

B&W

 original = Image.open(image1)

 new = Image.open(image2)

 original_converted =

original.convert("L") # I and L have

the same result

 new_converted = new.convert("L") #

I and L have the same result

 original_data =

original_converted.getdata()

 new_data = new_converted.getdata()

 #Subtracting pixels

 diff_pix =

np.subtract(original_data, new_data)

 #Creating a new image with only the

different pixels

 img_final = Image.new("L",

original.size)

 img_final.putdata(diff_pix)

 #Calculating box coordinates

 threshold = 25

 box_width = 50

 Drawer = ImageDraw.Draw(new)

 for y in range(original.size[1]):

 for x in range(original.size[0]):

 i = y * original.size[0] + x

 if abs(diff_pix[i]) >

threshold:

 Drawer.rectangle((x, y,

x+box_width, y+box_width),

outline="red", width=3)

 #Saving the image with box

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)

108

new.save('./compare_pil/pillow_compar

e_result.png')

__all__ = ['compare_pillow']

The main idea of 'compare_pillow' is as follows:

1. Two images are read and converted to

grayscale.

2. Pixel values of one image are subtracted from

the other.

3. A new image is created, where each pixel

represents the difference between the corresponding

pixels of the original image.

4. Coordinates of rectangles (boxes) are

determined to highlight the differences outlined in red

on the new image.

5. The image with highlighted differences is

saved in the specified directory.

For comparison, the images shown in Figure 9

were used. The obtained result is depicted in the figure

below (Figure 10).

Fig. 10. Result

of the «compare_pillow» comparison

The "compare_gray" and "compare_pillow"

endpoints represent two different approaches to image

comparison in a Flask-based web application.

The "compare_gray" endpoint uses the OpenCV

library to compare images in grayscale. This method

allows for quick detection of differences, but it is

sensitive to changes in lighting and colour.

On the other hand, the "compare_pillow" endpoint

uses the Pillow library and presents a more flexible

approach. It utilizes black-and-white versions of the

images and identifies differences in pixel intensity. This

method is less sensitive to colour variations and allows

for more accurate highlighting of differences in images.

The average response time for image comparison

via PIL is 3230ms. This algorithm showed a 1070%

increase in response time compared with an algorithm

based on OpenCV.

Similar to OpenCV, the current algorithm is

accurate as it could find a difference between 2 images.

3.3. Image Transformation

with Subsequent Perspective Comparison

Perspective transformation in the OpenCV library

is a crucial aspect of image processing that allows

changing and adapting the perspective of an image by

considering its geometric characteristics.

We create the 'perspective_transform' endpoint,

which takes a PNG file and known coordinates to

perform a perspective transformation. For convenience,

the coordinates are specified in percentages.

Afterwards, the 'perspective_transform' function is

called, which executes the transformation of the image,

considering the specified parameters and transformation

settings [16].

We will not provide a listing of the

'perspective_transform' endpoint. The code for creating

a new endpoint is analogous to the abovementioned

ones.

Let us delve into the details of the

'perspective_transform' function (Listing 4), which is

called in the endpoint.

Listing 4

Implementation

of the «perspective_transform» function.

import cv2

import numpy as np

def perspective_transform(img_path,

inputPoints):

 img = cv2.imread(img_path)

 assert img is not None, "file could

not be read, check with

os.path.exists()"

 height, width, channel = img.shape

 pixelCoords = [((point[0] / 100) *

width, (point[1] / 100) * height) for

point in inputPoints]

 resultPoints = np.float32([[0,

0],[width, 0],[0, height],[width,

height]])

 M =

cv2.getPerspectiveTransform(np.float3

2(pixelCoords), resultPoints)

 dst = cv2.warpPerspective(img, M,

(width, height))

cv2.imwrite('./transformation/transfo

rm_result.png', dst)

__all__ = ['perspective_transform']

Let us take a closer look at how it works:

1) img_path is the path to the input image that

Methods and means of image processing

109

will be transformed;

2) inputPoints is a list of coordinates on the input

image that define the region for the perspective

transformation. Coordinates are specified as percentages

of the image width and height;

3) cv2.imread(img_path) reads the input image

from the specified path;

4) assert img is not None checks if the image was

successfully read;

5) pixelCoords translates percentage coordinates

into pixel coordinates to determine the perspective

transformation points;

6) resultPoints are the final coordinates for the

transformation specified as a quadrilateral;

7) cv2.getPerspectiveTransform(np.float32

(pixelCoords),resultPoints) obtains the perspective

transformation matrix based on the input and output

coordinates;

8) cv2.warpPerspective(img, M, (width, height))

applies the transformation to the input image;

9) cv2.imwrite('./transformation/transform_

result.png',dst) saves the transformed image to the

specified path.

The photo for the transformation and the results

are shown in Figure 11.

Fig. 11. Perspective Transformation Result

3.4. Global threshold value (V=127)

The next endpoints focus on image thresholding

and subsequent comparison. In particular, the

global_thresholding endpoint will receive two images in

PNG format and invoke the global_thresholding

function. In this function, a global threshold is applied

to each pixel in the image, changing its value based on

the threshold value. The modified images represent the

result of threshold processing [22].

After obtaining the modified images, the

global_thresholding endpoint invokes the

compare_thresholded_image method, comparing the

corresponding pixels on the two images and

highlighting areas where changes occurred due to

threshold processing.

This approach efficiently identifies differences

between two photos resulting from global threshold

value changes in pixel values. Let us now provide the

code implementation for applying a global threshold

value (Listing 5).

Listing 5

Implementation

of the «global_thresholding» function

import cv2

def global_thresholding(image_path,

result_path):

 img = cv2.imread(image_path,

cv2.IMREAD_GRAYSCALE)

 assert img is not None, "file could

not be read, check with

os.path.exists()"

 img = cv2.medianBlur(img, 5)

 thresholdedImage =

cv2.threshold(img, 127, 255,

cv2.THRESH_BINARY)[1]

 cv2.imwrite(result_path,

thresholdedImage)

__all__ = ['global_thresholding']

Next, we carefully examine the code of the

"compare_thresholded_image" function (Listing 6).

This function plays a crucial role in comparing images

that have undergone global thresholding. We will

analyze each step of this code, revealing how the

comparison and determination of differences between

images occur.

Listing 6

Implementation of the «compare_thresholded_image»

function

import cv2

def

compare_thresholded_image(original_im

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)

110

g_path: str, new_img_path: str,

result_img_path: str,

min_contour_area: int = 100):

 original =

cv2.imread(original_img_path)

 new = cv2.imread(new_img_path)

 result = new.copy()

 diff = cv2.absdiff(original, new)

 diff_gray = cv2.cvtColor(diff,

cv2.COLOR_BGR2GRAY)

 _, thresh =

cv2.threshold(diff_gray, 25, 255,

cv2.THRESH_BINARY)

 contours, _ =

cv2.findContours(thresh,

cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

 contours = [cnt for cnt in contours

if cv2.contourArea(cnt) >

min_contour_area]

 for contour in contours:

 (x, y, w, h) =

cv2.boundingRect(contour)

 cv2.rectangle(result, (x, y), (x

+ w, y + h), (0, 255, 0), 2)

 cv2.imwrite(result_img_path,

result)

__all__ =

['compare_thresholded_image']

First, the function loads the original and new

images. Then, it calculates the difference between them

using the cv2.absdiff() function, which subtracts the

value of each pixel in one image from the corresponding

pixel in the other.

The obtained difference is transformed into a

black-and-white image, and thresholding is applied to

highlight areas where changes have occurred. The

contours in this image help identify the boundaries of

the altered areas.

The function uses the min_contour_area parameter

to filter out small contours, which can be useful for

ignoring minor changes or noise in the image.

Finally, the contours are displayed on the new

image with green rectangles highlighting the changed

areas. The comparison result is saved at the specified

result_img_path.

It is worth noting that the function also saves the

original and new images in the

compare_thresholded_image.original and

compare_thresholded_image.new properties,

respectively.

Photos for comparison are shown in Figure 9.

Below are the results of applying a global threshold,

comparing two photos, and highlighting the differences

(Figures 12 and 13).

Fig. 12. Comparison of the results of photos with an

applied global threshold value and noise filtering

Fig. 13. Comparison of the results of photos with the

applied global threshold value without noise filtering

The average response time for transforming

images via Global threshold value and subsequent

comparison is 266ms. Transforming images via Global

threshold value was chosen as a comparison point and

relative response time for it is 100%.

This algorithm is based on OpenCV image

comparison and shows accurate results. The difference

was found and the response time was improved.

3.5. Adaptive mean threshold value

Similar to comparing images using a global

threshold value, we are introducing the

"mean_thresholding" endpoint (Listing 7). This

endpoint identifies the changed areas in photos by

applying the mean thresholding method.

Methods and means of image processing

111

Listing 7

Implementation of the «mean_thresholding» function

import cv2

def mean_thresholding(image_path,

result_path):

 img = cv2.imread(image_path,

cv2.IMREAD_GRAYSCALE)

 assert img is not None, "file could

not be read, check with

os.path.exists()"

 img = cv2.medianBlur(img,5)

 thresholdedImage =

cv2.adaptiveThreshold(img, 255,

cv2.ADAPTIVE_THRESH_MEAN_C,

 cv2.THRESH_BINARY, 11, 2)

 cv2.imwrite(result_path,

thresholdedImage)

__all__ = ['mean_thresholding']

After obtaining the modified images using this

method, their comparison is conducted using the

"compare_thresholded_image" function. Using the

images from Figure 8, we obtain the result in the image

below (Figure 14).

Fig. 14. Result of comparing images

using adaptive thresholding

The average response time for transforming

images via Adaptive mean threshold value is 350ms.

This method shows a 32% increase compared to Global

threshold value.

This algorithm is also based on OpenCV image

comparison and shows accurate results.

The difference between the previous and current

algorithms is that Adaptive mean threshold shows more

detailed results. For example, a car was shown as a

single difference. In the Global threshold value

algorithm, the car was shown as two objects.

3.6. Adaptive Gaussian thresholding

The last example of thresholding presented in this

study is adaptive Gaussian thresholding. The

'gaussian_thresholding' endpoint (Listing 8) invokes the

corresponding function to perform adaptive Gaussian

thresholding and compares the resulting transformed

images [21].

The request in Postman is similar to the previous

endpoints and contains two images.

The comparison result is shown in the figure

below (Figure 15).

Listing 8

Implementation

of the «gaussian_thresholding» function.

import cv2

def gaussian_thresholding(image_path,

result_path):

 img = cv2.imread(image_path,

cv2.IMREAD_GRAYSCALE)

 assert img is not None, "file could

not be read, check with

os.path.exists()"

 img = cv2.medianBlur(img,5)

 thresholdedImage =

cv2.adaptiveThreshold(img,255,cv2.ADA

PTIVE_THRESH_GAUSSIAN_C,\

 cv2.THRESH_BINARY,11,2)

 cv2.imwrite(result_path,

thresholdedImage)

__all__ = ['gaussian_thresholding']

Fig. 15. The result of comparing the images

with the application of adaptive Gaussian thresholding

Table 1 presents the response time analysis for

various image processing methods, including OpenCV,

PIL (Python Imaging Library), Global Thresholding,

Adaptive Thresholding, and Gaussian Thresholding.

The response time was measured in milliseconds, and

the percentage values were calculated relative to the

response time of the OpenCV method, which served as

the baseline (100%).

The analysis of the presented table (see Table 1)

reveals distinct response time characteristics for

different image processing methods.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)

112

Notably, the OpenCV method exhibited a response

time of 276 ms, serving as the baseline with a relative

percentage of 100%. In contrast, the PIL method

demonstrated a considerably higher response time of

3,230 ms, representing an increase of approximately

1170% compared with OpenCV. The Global threshold

value method showed a response time of 266 ms,

aligning closely with the OpenCV baseline. However,

the Adaptive mean threshold value and Adaptive

Gaussian thresholding methods displayed response

times of 350 ms and 366 ms, respectively,

corresponding to a percentage increase of approximately

132% for both.

Table 1

Response time analysis for various

image-processing methods

Method
Response

time, ms

Response

time, %

OpenCV 276 100

PIL 3 230 1170

Global threshold

value

266 100

Adaptive mean

threshold value

350 132

Adaptive

Gaussian

thresholding

366 132

Variation in response times underscores the

importance of selecting an appropriate image processing

method based on the specific requirements and

constraints of the application.

Based on the results of the research, we can

definitely say that OpenCV provides a more effective

pixel-by-pixel comparison. OpenCV consumes fewer

resources and provides faster results.

The decision that images thresholding algorithm to

choose can be made based on requirements to accuracy

and available resources.

The use of global threshold values consumes fewer

resources and provides faster results. However, the

results provide worse accuracy compared to other

methods.

Adaptive mean threshold values and adaptive

Gaussian thresholding provide results that are more

accurate but consume more resources.

With additional configuration, we can increase the

number of pixels (window around pixel) that will affect

pixel transformation. Such configuration increases the

accuracy of image comparison, but requires more

resources.

Based on available computer capacity and

requirements for accuracy, the decision on which

thresholding method should be made. For example, for

devices with low computer capacity and low demand for

comparison accuracy, it is suggested to use a global

threshold value.

3.7. Edge Detection

The edge detection method, represented by the

"edge_detection" endpoint, proved interesting for

further image comparison. This method highlights the

prominent edges of objects in the image, allowing

identification of their shapes and positions. However, its

use is broader than just detecting the contours of

objects.

The "edge_detection" endpoint (Listing 9) can be

an effective tool for identifying changes in images, as

changes often accompany alterations in the contours of

objects. This approach enables highlighting areas where

changes have occurred, which can be useful for

analyzing the dynamics of changes in an image.

The edge detection and comparison results are

shown in the figure below (Figure 16).

Listing 9

Implementation of the «detect_edges» function

import cv2

import numpy as np

def detect_edges(image_path,

result_path):

 img = cv2.imread(image_path)

 gray = cv2.cvtColor(img,

cv2.COLOR_BGR2GRAY)

 edges = cv2.Canny(gray, 50, 150,

apertureSize = 3)

 cv2.imwrite(result_path, edges)

__all__ = ['detect_edges']

Fig. 16. Result of comparing the images

with detected edges

Methods and means of image processing

113

4. Conclusions

Efficient image comparison algorithms were

developed and improved, enabling the detection of

minor differences and highlighting similarities with high

precision. These algorithms served as a basis for further

research and ensured high accuracy in detecting changes

in images.

In addition, image transformation methods were

optimized to enhance quality and prepare them for

further analysis. This approach improved working with

visual data and provided more accurate results in

various tasks.

Measurements collected during the research

showed that the OpenCV method had a response time of

276 ms (100%), whereas PIL had a significantly higher

response time of 3,230 ms (~1170% increase). The

Global threshold value method closely matched the

OpenCV baseline at 266 ms. However, the Adaptive

mean threshold value and Adaptive Gaussian

thresholding methods had response times of 350 ms and

366 ms, respectively, representing approximately a

132% increase for both.

For future scientific research, it is recommended

that efforts be focused on improving algorithms to

reduce computational complexity and increase

processing speed. Exploring opportunities for

integrating the developed methods into other computer

systems and software complexes is also essential.

Further development of deep learning algorithms could

be a crucial direction, providing even greater accuracy

and efficiency when working with visual data.

Author Contributions

Conceptualization, methodology – Roman

Savitskyi; formulation of tasks, analysis – Bohdan

Karapet, Roman Savitskyi; development of model,

software, verification – Bohdan Karapet; analysis of

results, visualization – Bohdan Karapet, Tetiana

Vakaliuk; writing – original draft preparation, writing –

review and editing – Tetiana Vakaliuk.

Financing

This study was conducted without financial

support.

Conflicts of Interest

The authors declare no conflict of interest.

Data availability
Data will be made available upon reasonable

request.

Use of Artificial Intelligence

The authors have used artificial intelligence

technologies within acceptable limits to provide their

own verified data, as described in the research

methodology section.

Acknowledgments

The authors would like to thank the scientific and

teaching staff of Zhytomyr Polytechnic State University

for their support.

All the authors have read and agreed to the

published version of this manuscript.

References

1. Bhatt, D., Patel, C., Talsania, H., Patel, J.,

Vaghela, R., Pandya, S., & Ghayvat, H. CNN variants

for computer vision: History, architecture, application,

challenges and future scope. Electronics, 2021, vol. 10,

iss. 20, article no. 2470. DOI: 10.3390/

electronics10202470.

2. Davies, E. R. Computer vision: principles,

algorithms, applications, learning. Academic Press

Publ., 2018. DOI: 10.1016/C2015-0-05563-0.

3. Janai, J., Güney, F., Behl, A., & Geiger, A.,

2020. Computer vision for autonomous vehicles:

Problems, datasets and state of the art. Foundations and

Trends® in Computer Graphics and Vision, 2020, vol.

12, iss. 1-3, pp. 1-308. DOI: 10.1561/0600000079.

4. Rebrov, V., & Lukin, V. Post-processing of

compressed noisy images using BM3D filter.

Radioelectronic and Computer Systems, 2023, no. 4, pp.

100-111. DOI: 10.32620/reks.2023.4.09.

5. Bilozerskyi, V., Dergachov, K., Krasnov, L.,

Zymovin, A., & Popov, A. New method for video

stream brightness stabilization: algorithms and

performance evaluation. Radioelectronic and Computer

Systems, 2023, no. 3, pp. 125-135. DOI:

10.32620/reks.2023.3.10.

6. Barkovska, O., Filippenko, I., Semenenko, I.,

Korniienko, V., & Sedlaček, P. Adaptation of FPGA

architecture for accelerated image preprocessing.

Radioelectronic and Computer Systems, 2023, no. 2, pp.

94-106. DOI: 10.32620/reks.2023.2.08.

7. Ning, Z., Hu, H., Wang, X., Guo, L., Guo, S.,

Wang, G., & Gao, X. Mobile edge computing and

machine learning in the internet of unmanned aerial

vehicles: A survey. ACM Computing Surveys, 2023, vol.

56, iss. 1, article no. 13, pp. 1-31. DOI:

10.1145/3604933.

8. Petrosian, A. R., Petrosyan, R. V., Pilkevych, I.

A., & Graf, M. S. Efficient model of PID controller of

unmanned aerial vehicle. Journal of Edge Computing,

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)

114

2023, vol. 2, iss. 2, pp. 104–124. DOI:

10.55056/jec.593.

9. Ma, M.-Y., Shen, S.-E., & Huang, Y.-C.

Enhancing UAV Visual Landing Recognition with

YOLO’s Object Detection by Onboard Edge

Computing. Sensors, 2023, vol. 23, iss. 21, article no.

8999. DOI: 10.3390/s23218999.

10. Cao, L., Song, P., Wang, Y., Yang, Y., &

Peng, B. An Improved Lightweight Real-Time

Detection Algorithm Based on the Edge Computing

Platform for UAV Images. Electronics, 2023, vol. 12,

iss. 10, article no. 2274. DOI: 10.3390/

electronics12102274.

11. Bemposta Rosende, S., Ghisler, S., Fernández-

Andrés, J., & Sánchez-Soriano, J. Implementation of an

Edge-Computing Vision System on Reduced-Board

Computers Embedded in UAVs for Intelligent Traffic

Management. Drones, 2023, vol. 7, iss. 11, article no.

682. DOI: 10.3390/drones7110682.

12. Gollapudi, S. OpenCV with Python. In: Learn

Computer Vision Using OpenCV, Apress, Berkeley, CA,

2019, pp. 31-50. DOI: 10.1007/978-1-4842-4261-2_2.

13. Yulina, S. Implementation of Haar Cascade

Classifier for Face Detection and Grayscale Image

Transformation Using OpenCV. Jurnal Komputer

Terapan, 2021, vol. 7, iss. 1, pp. 100-109. DOI:

10.35143/jkt.v7i1.3411.

14. Chadha, A., Kashyap, S., Gupta, M., & Kumar,

V. License plate recognition system using OpenCV &

PyTesseract. CSI Journal of Computing, 2020, vol. 3,

iss. 3, pp. 31-35. Available at: https://www.

researchgate.net/profile/Jyoti-Deone/publication/

348232599_CSI_Journal_of_COMPUTING/links/5ff44

163299bf14088707fa8/CSI-Journal-of-COMPUTING.

pdf?_sg[0]=started_experiment_milestone&origin=jour

nalDetail&_rtd=e30%3D (Accessed 17 Jan. 2024).

15. Lindblad, T., & Kinser, J. M. NumPy, SciPy

and Python Image Library. Image Processing using

Pulse-Coupled Neural Networks. Biological and

Medical Physics, Biomedical Engineering. Springer,

Berlin, Heidelberg, 2013, pp. 35-56. DOI: 10.1007/978-

3-642-36877-6_3.

16. Zhang, Ju., Zhang, Ji., Chen, B., Gao, J., Ji, S.,

Zhang, X., & Wang, Z. A perspective transformation

method based on computer vision. 2020 IEEE

International Conference on Artificial Intelligence and

Computer Applications (ICAICA), Dalian, China, 2020,

pp. 765-768. DOI: 10.1109/ICAICA50127.2020.

9182641.

17. Batubara, M. A., Alam, S., Nisa, K., Utami, R.

W., Fitriawan, H., & Ulvan, A. Estimating the number

of trees in Margasari mangrove forests of Lampung

through aerial images using adaptive thresholding and

contour extraction methods. Proceedings of the

International Conference on Sustainable Biomass (ICSB

2019), Atlantis Press Publ., 2021, vol. 202, pp. 131-136.

DOI: 10.2991/aer.k.210603.022.

18. Rehman, N. A., & Haroon, F. Adaptive

Gaussian and double thresholding for contour detection

and character recognition of two-dimensional area using

computer vision. Engineering Proceedings, 2023, vol.

32, iss. 1, article no. 23. DOI: 10.3390/

engproc2023032023.

19. Sultana, H., Kamal, A. H. M., Apon, T. S., &

Alam, M. G. R. Increasing embedding capacity of stego

images by exploiting edge pixels in prediction error

space. Cyber Security and Applications, 2024, vol. 2,

article no. 100028. DOI: 10.1016/j.csa.2023.100028.

20. Grinberg, M. Flask web development:

developing web applications with Python. 2nd edition.

O’Reilly Media, Inc., 2018. 312 p. ISBN: 978-

1491991732.

21. Orban, C. How to track objects with stationary

background? Available at: https://www.authentise.com/

post/how-to-track-objects-with-stationary-background

(Accessed 17 Jan. 2024).

22. Devi, R. Geometric transformations and

thresholding of images using Opencv-Python. GRD

Journal for Engineering, 2017, vol. 2, iss. 11, pp. 49-52.

Available at: https://www.grdjournals.com/uploads/

article/GRDJE/V02/I11/0020/GRDJEV02I110020.pdf

(Accessed 17 Jan. 2024).

Received 15.01.2024, Accepted 20.02.2024

МЕТОД ПОРІВНЯННЯ ТА ТРАНСФОРМУВАННЯ ЗОБРАЖЕНЬ,

ОТРИМАНИХ ЗА ДОПОМОГОЮ БПЛА

Богдан Карапет, Роман Савіцький,

Тетяна Вакалюк

Предметом цього дослідження є перегляд і розробка методів порівняння та трансформації зображень,

отриманих за допомогою БПЛА, засобами комп’ютерного зору. Мета полягає в удосконаленні методів

порівняння та трансформації зображень. Для досягнення цієї мети використовувалися різні методи обробки

зображень, включаючи порівняння та трансформацію зображень, що сприяло розробці практичних

Methods and means of image processing

115

алгоритмів і підходів для аналізу та порівняння зображень. Завдання можна сформулювати наступним

чином: 1) розробка методів порівняння зображень: створення інструментів для порівняння зображень,

отриманих за допомогою БПЛА, які ефективно виявляють відмінності за допомогою алгоритмів, таких як

cv2.absdiff та модуль PIL; 2) трансформація зображень: впровадження методів трансформації зображень з

БПЛА, включаючи перспективну трансформацію та порогову зміну, для покращення якості та точності

аналізу зображень. Використані методи включають розробку алгоритмів, методи трансформації зображень,

статистичний аналіз, експериментальне тестування та оцінку продуктивності. Метрики, які були

використані в цій статті, - це час відгуку, точність та ефективність. Дослідження та вдосконалення

порівняння зображень за допомогою OpenCV і PIL є важливим аспектом цього дослідження. Також було

покращено алгоритми порівняння зображень, які були трансформовані за допомогою Global Threshold Value,

Adaptive Mean Thresholding та Adaptive Gaussian Thresholding. Було введено новий метод фільтрації змін,

щоб підвищити точність порівняння зображень шляхом фільтрації незначних змін після трансформації

зображення. Крім того, було систематично представлено комплексне дослідження та пояснення порівняння

зображень із застосуванням методів виявлення країв. Отримані результати включають розробку

ефективних алгоритмів та підходів для аналізу та порівняння зображень, що можуть бути використані у

різних областях, таких як військова, безпекова, сільськогосподарська тощо. Зважаючи на зростаючий

інтерес до БПЛА, також було враховано можливості застосування наших методів та алгоритмів у контексті

зображень, отриманих за допомогою БПЛА. Що особливо актуально в задачах, пов'язаних з комп'ютерним

зором у безпілотних літальних апаратів, де обмежені ресурси та необхідність обробки великого обсягу

даних в реальному часі створюють унікальні виклики. Результати містять методи порівняння зображень

OpenCV та PIL. Алгоритм порівняння пікселів OpenCV показав кращий час відгуку з такою ж точністю.

Метод OpenCV показав поліпшення часу відгуку на 92,46% у порівнянні з PIL та становить 276 мс. Щодо

порівняння зображень з використанням порогової обробки, метод, заснований на глобальному значенні

порогу, показав найкоротший час відгуку (266 мс) та найнижчу точність. Найвищу точність та час відгуку

(366 мс) показав метод адаптивної гаусівської порогової обробки.

Ключові слова: БПЛА; Computer Vision; порівняння зображень; трансформація зображень; обробка

зображень.

Карапет Богдан Васильович – здобувач вищої освіти каф. інженерії програмного забезпечення,

Державний університет «Житомирська політехніка», Житомир, Україна.
Савіцький Роман Святославович – старш. викл. каф. інженерії програмного забезпечення,

Державний університет «Житомирська політехніка», Житомир, Україна.

Вакалюк Тетяна Анатоліївна – д-р пед. наук, проф., зав. каф. інженерії програмного забезпечення,

Державний університет «Житомирська політехніка», Житомир, Україна.

Bohdan Karapet – Student of the Department of Software Engineering, Zhytomyr Polytechnic State

University, Zhytomyr, Ukraine,

e-mail: bogdankarapet@gmail.com, ORCID: 0009-0009-4104-8362.
Roman Savitskyi – Senior Lecturer of the Department of Software Engineering, Zhytomyr Polytechnic State

University, Zhytomyr, Ukraine,

e-mail: roman.savitskyi@gmail.com, ORCID: 0000-0001-9804-3604.

Tetiana Vakaliuk – Doctor of Pedagogical Sciences, Professor, Head of the Department of Software

Engineering, Zhytomyr Polytechnic State University, Zhytomyr, Ukraine,

e-mail: tetianavakaliuk@gmail.com, ORCID: 0000-0001-6825-4697, Scopus Author ID: 57211133927.

