196

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)

UDC 629.7.014-519.05.083:519.713

doi: 10.32620/reks.2024.1.15

Valery SALAUYOU

Bialystok University of Technology, Bialystok, Poland

DESCRIPTION STYLES OF FAULT-TOLERANT FINITE STATE MACHINES
FOR UNMANNED AERIAL VEHICLES

The subject matter of this article is finite state machines (FSMs), which are used as control devices in unmanned
aerial vehicles (UAVSs). The goal of this study is to develop description styles for fault-tolerant FSMs in hardware
description languages (HDLs) that prevent failures in the state register and in the input vector of the FSM. The
tasks to be solved are as follows: development of description methods for FSM transitions from illegal states in
case of failure in the state register, as well as for FSM transitions from each state in case of failure in the input
vector; determination of FSM output vector values in case of the above failures; development of description
styles for fault-tolerant FSMs; and investigation of the efficiency of the proposed description styles for fault-
tolerant FSMs. The methods used are: the theory of finite state machines, state encoding methods of FSMs,
description styles of FSMs, and Verilog hardware description language. The following results were obtained:
two styles of describing fault-tolerant FSMs have been developed, safe0 and safel, which do not increase the
area and do not decrease the performance of FSMs, and in some cases allow the area to be reduced (for some
examples by a factor of 4.8) and increase the performance (for some examples by a factor of 2.355). In addition,
the description styles of fault-tolerant FSMs neutralize design errors when transitions are described in each
state but not for all possible values of input variables. Conclusions. In this paper, the problem of designing fault-
tolerant FSMs when the values of bits in the state register or in the input vector of the FSM change because of
the negative external impact is described. Different ways of solving the problem at the level of FSM description
in HDL are considered. Two description styles for fault-tolerant FSMs are proposed: safe0 and safel. The fault
tolerance of FSMs is provided in the following manner. When the input vector is not defined in the FSM specifi-
cation for a specific state, the FSM will remain in the initial transition state, i.e. the FSM will not transit to
another state. If the code of the illegal state is set in the state register, the FSM will transition to the start state.
For all these faults, the safe0 style provides a zero output vector at the FSM output, whereas the safel style
preserves the value of the previous output vector. A promising direction for future research seems to be the
development of new styles and methods of FSM description, aimed at improving the FSM parameters (an area,
a performance and a power consumption), as well as improving the reliability and fault tolerance of FSMs.

Keywords: finite state machine (FSM); fault tolerance; hardware description language (HDL); Verilog; field
programmable gate array (FPGA); unmanned aerial vehicle (UAV).

some state does not intersect with other transition condi-
tions from this state. When these rules are executed in the

1. Introduction

Fault detection and neutralization is an important
task in creating fault-tolerant control devices in space
technology, avionics, life-support medical equipment,
nuclear reactors, banking systems, and telecommunica-
tion servers. Finite state machines (FSMs) are also
widely used as control devices in unmanned aerial vehi-
cles (UAVs) or drones. Currently, UAVs are used in
many areas of human activity, including military con-
flicts. One of the ways to combat UAVs is to influence
the UAV with an electromagnetic pulse (EMP) or a laser
beam, which causes numerous failures in the electrical
circuits of the control device.

To build a fault-tolerant FSM, it is important to
specify it correctly. The FSM is defined correctly when
in each state all possible transitions are defined (i.e. the
logical OR of transition conditions from each state are
equal to a logical unit), at least one transition from other
states leads to each state, each transition condition from

FSM specification, invalid transitions between states and
transitions to illegal states should not occur. However,
often for various reasons the above rules for correct de-
scription of FSMs are not enforced. When designing
complex FSMs, the last of the above rules is most often
violated. For example, from 49 MCNC benchmark exam-
ples of FSMs [1], this condition is violated in 22 exam-
ples.

The source of FSM failures (for example, because
of negative external impacts) can be a fault in the state
register. If one or more bits are changed in the state reg-
ister, the FSM may transit to an illegal state, the transition
from which has not been defined in the FSM specifica-
tion. Itis also possible that, because of a negative impact,
the code of the legal state will be set in the state register.
This corresponds to an invalid transition between legal
states. In both cases, normal operation of the FSM will
be disrupted.

© Valery Salauyou, 2024

Information security and functional safety

197

Let the FSM have M states encoded by a code of
length R bits, R > Jlog. M[, JA[is the smallest integer
greater than or equal to A. The number M, of illegal states
whose codes can be set in the state register is determined

by Eq. (1).
M, = 2R — M. (1)

In case of failure in the state register there is a high
probability of FSM transition to an illegal state. The
problem becomes especially acute when using the one-
hot code, which is popular when an FSM is implemented
in a field programmable gate array (FPGA).

FSM failures can also be caused by errors in the
specification of FSM when transitions from each state are
not defined for all possible combinations of input varia-
bles. Usually, the FSM specification defines the transi-
tion conditions to certain states for specific values of in-
put vectors, while the behavior of the FSM for other val-
ues of input variables remains undefined. In addition, for
some states it is possible that transition conditions may
intersect for transitions to different states, i.e. non-deter-
ministic behavior of the FSM is possible.

2. Related works

2.1. UAV warfare

To combat UAVs, a wide variety of methods are
used, which can be divided into two large classes: de-
structive (machine guns, missiles, ramming by other
drones) and non-destructive (all others). The main non-
destructive methods of UAV warfare are jamming sig-
nals to and from the UAV, noise suppression, powerful
EMPs and laser beams.

The problems of UAV warfare by non-destructive
methods such as jamming uplink, jamming downlink,
GPS jamming, GPS spoofing, and deauthentication pack-
ets are considered in [2]. Jamming downlink jamming is
also considered in [3]. A swarm of UAVs to track mali-
cious UAVs is used in [4]. The classification of cyber at-
tacks on UAVs is given in [5]. In [6], the issue of jam-
ming UAVSs with a concentration of signal power toward
the UAV is studied. The UAV countermeasure technol-
ogy based on partial-band noise jamming is presented in
[7]. In [8], the problem of influencing a UAV with a pow-
erful EMP is considered. The use of noise and EMR for
jamming UAVs has also been studied [9]. In [10], a soft-
ware-based Wi-Fi jammer for UAV warfare is proposed.
The UAV-controlled interceptor using the parallel ap-
proach guidance method is considered in [11]. In [12],
self-jamming caused by unintentional electromagnetic
noise from multiple electronic devices installed in a UAV
is studied.

In this study, EMPs and laser beams are considered
as external influences on UAV control devices, which
cause failures in the input vector and in the state register
of the FSM.

2.2. Fault-tolerant FSMs

FSMs play an important role in digital circuit design
because they store the system status and control system
functionality. Hence, if errors occur in the FSM, they
cause serious problems for the system. Therefore, mod-
ern digital systems use fault-tolerant FSMs as control de-
vices.

Failures of FSMs can be caused:

— by radiation or cosmic rays (affecting hardware
in nuclear power plants or spacecraft);

— by electromagnetic pulses (EMBs) or laser
beams (used in UAV warfare);

— by fault injection attacks (FIA) (used by attack-
ers in cryptographic applications);

— by laser-based fault injection (LFI), when an at-
tacker changes the values of individual flip-flops of the
FSM state register, etc.

The problem of designing fault-tolerant FSMs can
be solved at different levels:

— at the level of gates (transistors) [13];

— atthe register-transfer level (RTL) [14];

— atthe logical level by applying special synthesis
methods [15, 16], state encoding (state assignment) [17 -
23], and using embedded memory blocks of FPGAs [24,
25];

— at the structural level using special structural
models of FSMs [26, 27].

Often, the logical level is linked to the structural
level [28]. The above problem can also be solved at the
system level [29].

In [13], the structure of a flip-flop for the FSM state
register is proposed, which protects the FSM from FIA.
In [14], solutions at the RTL level are proposed to ensure
the reliability of the FSM in the case of single event up-
sets (SEUS).

In [15], the FSM state encoding algorithm is con-
sidered which, in addition to providing fault tolerance,
allows for area and power optimization. In [16], a method
to insert hidden state transitions (HSTs) and logic cone
modifications into a netlist to enhance the security of the
FSM from FIA is presented.

In [17], convolutional codes are used to detect and
correct errors in the FSM state register. In [18], secure
FSM architectures are proposed based on the idea of ran-
domly selecting one code from the set of codes for each
encoding and decoding operation. In [19], SEC-DED
(single error correction and double error detection) code
is used, and in [20], Hamming 3 code is used to detect
and correct SEUs when the FSM is implemented in an

198

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

FPGA. In [21], fault-tolerant techniques like Triple Mod-
ular Redundancy (TMR), Hamming-3 encoding, and safe
FSM synthesis are analyzed, which are implemented in
live designs targeted at Nuclear Power Plants. In [22], the
technique for designing FSMs considering the security
requirements for FIAs is discussed. This technique in-
cludes secure state encoding and the building of a secure
FSM architecture to eliminate vulnerabilities from setup-
time violation-based fault attacks. In [23], a transition-
based encoding CAD framework (TAMED) is presented
that provides FSM robustness to multiple LFI models.

In [24] and in [25], embedded memory blocks of the
FPGA are used to design fault-tolerant FSMs in the case
of SEUs.

In [26] and in [27], structural models for Moore
FSMs and Mealy FSMs are presented, which allow de-
tection and neutralization of faults caused by EMPs and
laser beams. The proposed structural models allow to de-
tect and to neutralize the following faults: invalid input
and output vectors for the entire FSM and in each state;
invalid present and next state code; and invalid transi-
tions between states.

In [28], a method for designing FSMs by selectively
applying the fault-tolerant circuit according to the im-
portance of the state is discussed.

In [29], a formal analysis based on symbolic algebra
is used to find the FSM vulnerabilities; this allows detect-
ing unauthorized access to the states of the design.

However, all the approaches considered, as a rule,
require significant hardware overhead and often lead to a
decrease in the performance of the FSMs. Note that re-
searchers pay little attention to methods for optimizing
parameters and improving the properties of FSMs, which
can be achieved by ways (styles) of describing FSMs in
a hardware description language (HDL), as well as by
methods implemented in design tools.

3. Aim and tasks of the work

Let us devise the design of a fault-tolerant FSM in
the following manner.

Task. Create a FSM that corresponds to the given
specification and remains operational when an invalid in-
put vector (which is not defined in the FSM specification)
arrives at the FSM input and when the code of an illegal
state is set in the status register because of a failure.

Solving this problem is especially important when
developing control devices for UAVs. The fact is that the
UAV can be affected by EMPs or laser beams, called ex-
ternal negative impacts, which can change the values of
bits in the input vector or in the state register of FSMs.

Thus, this study aims to develop description styles
for fault-tolerant FSMs in HDLs that prevent failures in
the state register and the input vector of the FSM.

To achieve the aim of the research, the following
tasks have been developed.

1. To develop ways of describing transitions of the
FSM from illegal states in case of failure in the state reg-
ister.

2. To develop ways of describing the transitions of
the FSM from each state in case of failure in the input
vector;

3. In the case of the above failures, to develop ways
of describing the outputs of the FSM.

4. Develop description styles for building fault-tol-
erant FSMs.

5. To investigate the effectiveness of the proposed
styles of FSM description on the FSM benchmark exam-
ples.

4. Design of fault-tolerant FSMs
using the description in HDL

The Verilog language has been chosen as the HDL -
language, but all the approaches discussed in this paper
can also be used in the SystemVerilog and VHDL lan-
guages.

4.1. The demonstration example

As an example of an FSM, consider the Mealy
FSM, whose state transition graph (STG) is shown in Fig.
1. Note that the methods discussed in this paper can also
be used to design fault-tolerant Moore FSMs.

---/001

100/001

---/100 01-/100

©

Fig. 1. State transition graph of Mealy FSM

Our FSM has 3 inputs, 3 outputs and 4 states. The
vertices of the STG correspond to the states sq,...,S3, and
the edges of the STG correspond to the transitions of the
FSM. The input vector that initiates this transition is writ-
ten near each edge of the STG, and the output vector that
produced during this transition is written with a slash
(“/’). Here, the hyphen (“-”) can take any bit value: 0
orl

Information security and functional safety

199

Transitions from state so are defined for vectors 100,
001, and 01-, where the vector 01- corresponds to the two
vectors 010 and 011. Note that transitions from state so
are not defined for vectors 000, 101, 110, and 111. The
transitions from states s1, s2 and s3 to state sO are uncon-
ditional, i.e., they are performed for all possible input
vectors.

The traditional description of our FSM in the Veri-
log HDL is as follows:

module FSM_Mealy (
input clk, reset, // sync and reset signals
input [2:0] x, /[inputs
output reg [2:0] y); /1 outputs
reg[2:0] state, next; /I state variables
localparam [2:0] /I state declaration
s0=0,s1=1,52=2,s3=3;
// state register description
always @(posedge clk, negedge reset)

if (~reset) state <= s0;
else state <= next;
always @(*) // transition description

case(state)
s0: casex(x)
3'b100: next=s1;
3'b001: next=s2;
3'h01?: next = s3;

endcase
sl: next = s0;
s2: next = s0;
s3: next = s0;
endcase
always @(*) // output description

case(state)
s0: casex(x)
3'v100: y=3'h001;
3'b001: y=3'h010;
3'b01?: y=3'b100;
endcase
sl:y = 3'b001;
s2:y = 3'h010;
s3: y = 3'h100;
endcase
endmodule

Here we use the style of FSM describing three pro-
cesses [30], where the first process describes the state
register, the second process describes the transitions, and
the third process describes the outputs of the FSM. Note
that the logic of transitions and outputs of the FSM is de-
scribed using two levels of case statements, where the
first level defines the behavior of the FSM depending on
the present state (state), and the second level defines the
behavior of the FSM in each state depending on the input
vector (x).

When realizing the traditional description of the
FSM, the synthesis tools (in our case Quartus system)
output warning messages and implement the FSM state

register not by flip-flops but by latches. In addition, the
latches will be installed on the FSM outputs. Therefore,
the number of FPGA logic elements used (an area or an
implementation cost) will be quite large. FPGAs do not
have latches. The latches in FPGA are implemented us-
ing flip-flops and additional logic.

Although the behavior of the FSM will follow the
defined specification, the FSM will not operate in illegal
states because the traditional description of the FSM does
not specify the behavior of the FSM in illegal states.

4.2. FSM transition from illegal states

When a failure occurs in the state register, the FSM
can transits to an illegal state and (if the behavior of the
FSM in the illegal state is not defined) the FSM fails, i.e.
the FSM stops working. Several solutions are possible
when the FSM transits to one of the illegal states (Fig. 2):

a)

legal
states

illegal
states

legal
states

illegal
states

legal
states

illegal

states

Fig. 2. Variants of FSM transitions from illegal states: a
— return to the start state; b — transition to the state idle
with return to the start state; ¢ — transition to the state
idle with return to the state s;, from which the transition
to the illegal state occurred

a) the FSM transits to the start state So;
b) the FSM transits to the additional state idle, in
which an error flag can be generated or certain actions

200

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

can be performed to resume the FSM operation, after
which the FSM transits to the start state so;
c) same as b), but the FSM returns to the state s;
from which the transition to the illegal state occurred.
The state in which the transition begins is called the
initial transition state, and the state in which the transi-
tion ends is called the final transition state. In Verilog, it
is easier to describe variant a). For this purpose, it is suf-
ficient to add the construction default to the first level
case statements with the FSM transition to the start state
s0, for example:
always @(*) /I transition description
case (state)
sO: ...

s3: ...
default: next = s0; // transitions from
/I illegal states
endcase

To realize the variant b), the idle state is added to
the FSM description. Using the default construction in
the first-level case statement, transitions to the idle state
are defined; this corresponds to the FSM transition from
the illegal states. In addition, the transition from the idle
state to the start state is added, for example:

localparam [2:0] /I state declaration
s0=0,s1=1,s2=2,s3=3,idle=4;

always @(*) /I transition description
case (state)
sO: ...
s3: ...
idle: next =s0; // from idle to start state

default: next = idle; // from illegal states
endcase

When implementing variant c), the intermediate
variable sr is declared, which stores the code of the state
si from which the FSM transitioned to the illegal state.
For variant ¢), the description of transitions in our exam-
ple has the following view:

reg [2:0] sr; /I intermediate variable
;cl.l.ways @(®) /I transition description
case(state)

s0: begin sr = s0; next=... end

s1: begin sr =sl; next=... end

s2: begin sr = s2; next=... end

s3: begin sr = s3; next=... end

idle: next = sr; // to the initial transition state

default: next = idle; // from illegal states
endcase

Here, the following statement is added to the de-
scription of transitions from each state: “sr = si; ...”,
where si is the initial transition state. In case of an erro-
neous change in the present state code, the sr variable
stores the code of the last legal state from which the tran-
sition to the illegal state occurred.

When describing outputs, in the state idle and in the
construct default, can optionally be set to the flag ille-

gal_state that indicates the illegal state, for example:

output reg illegal_state, // flag declaration

always @(*)
begin
illegal state = 1°b0;
case (state)
sO: ...

/[output description

s3: ...
idle: illegal state = 1°bl; // for idle state
default: illegal_state = 1°b1; // for all illegal
/I states
endcase
end

Instead of the flag illegal_state in the state idle as
well as in the illegal states, it is possible to form a certain
value of the output vector (e.g. zero value), which indi-
cates that the FSM is in the illegal state. For example:
always @(*) /I output description
case (state)

sO: ...

$3: ..

idle: y=3’b000; // for idle state

default: y = 3"b000; // for all illegal states
endcase

4.3. Definition of transitions from each state

In the proposed styles of describing fault-tolerant
FSMs, transitions from each state are described using
second-level case statements. Note that if-else-if chains
can be used for the same purpose because case and if
statements are interchangeable in this case.

The input vectors of the FSM may contain do not
care values, which are denoted in the Verilog description
by a question mark ("?"). Because constant elements of
case statements may contain don't care values, here the
casex statement is used instead of the case statement.

Constant elements of the case statement define the
transition conditions of the FSM to the legal states. The
default construct defines the transition of the FSM in the
case of mismatch of any constant element with the input
vector x, i.e., it defines the final transition state for tran-
sition conditions that are not defined in the specification

Information security and functional safety

201

of the FSM. When describing fault-tolerant FSMs, the in-
itial transition state is taken as the final transition state in
the default construction. For example, in our example,
the description of transitions from state sO has the follow-
ing view:

s0: casex(x)
3'b100: next =sl;
3'b001: next=s2;
3'b01?: next =s3;
default: next =s0;
endcase

The described behavior of the FSM is shown in Fig. 3.

®©
®

®

®

Fig. 3. Transitions of an FSM from state s;:
a — in the case of traditional description; b — in the case
of the description of a fault-tolerant FSM

The transitions from each state s; of the fault-toler-
ant FSM are shown in Fig. 3,b, where X(si,s;) is the tran-
sition condition (input vector) that initiates the transition
from state s; to state sj, Sj, Si € S, S is the set of the FSM
states. The transition condition defined in the default
construction corresponds to expression (2):

X(si,50) = XEO\X(si5), - XG50})
where X(s) is the set of all input vectors of the FSM.

4.4. Formation of the output vectors
of fault-tolerant FSMs

Let X(si) be the set of input vectors that initiate tran-
sitions from state si, X(si) = X(s). Question: what output
vector (set of values of output variables) should be
formed at the FSM output when any of the vectors of the
set X(si) do not arrive at the FSM input? These variants
are possible:

1) zero output vectors;

2) output vector of values do not care (x...x);

3) output remains the value of the previous output
vector;

4) for each state, the value of the output vector is
determined by the developer.

In the case of variant 1, there are no active control
signals acting on the controlled object, which is not al-
ways permissible. The zero output vectors indicates that
an invalid input vector arrives at the FSM input. How-
ever, if the zero output vector is valid for the FSM, i.e., it
is formed in some state (or at some transition) of the
FSM, it may indicate a false failure.

The difficulties of using variant 2 lie in the fact that
often synthesis tools automatically redefine the values of
outputs to optimize the FSM circuit. As a result, do not
care values at the output of the FSM will not be formed.
The use of variant 2 is allowed only for modeling the be-
havior of the FSM.

Variant 3 can be used when the sequence of clock
cycles of the FSM allows repetition of output vectors; if
not, variant 4 should be used.

In the case of variant 4, for transitions from each
state, the value of the output vector is determined by the
designer and does not result in the negative consequences
specified for variants 1 through 3.

The same reasoning holds for the generated values
of output vectors in illegal states. For example, in our ex-
ample, when using variant 1, the description of outputs
has the following view:

always @(*) /I output description
case(state)
s0: casex(x)
3'b100: y=3b001;
3'b001: y=3b010;
3'b01?: y=3'b100;
default: y=3'h000; // zero output vector
/I from the state sO
endcase
s1:y=3'h001;
s2:y = 3'h010;
s3: y = 3'h100;
default: y =3'b000; // zero output vector
[from the illegal states

endcase
4.5. Description styles of fault-tolerant FSMs

Two styles are proposed for describing fault-toler-
ant FSMs in Verilog: safe0 and safel. In both styles,
when describing transitions from each state, the initial
transition state is defined in the default construct
(Fig. 3,b). When the FSM transits to the illegal state, us-
ing the variant when the FSM returns to the start state
(Fig. 2,a), for example:

always @(*)
case(state)

/[transition description

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

202
si: casex(x)
default: next = si; // return to the initial
/[transition state
endcase
default: next = s0; // return to the start state
endcase

The styles safe0 and safel differ in the way they
form the values of output signals. In the safe0 style, the
zero output vector is formed in the default constructs,
which corresponds to variant 1. In the safel style, the de-
scription of FSM outputs coincides with the traditional
description. In this case, when not all possible values of
input variables are specified in the case statements, the
synthesis tool will set latches on the FSM outputs. As a
result, the FSM will maintain the value of the previous
output vector at the output, which corresponds to vari-
ant 3.

Figure 4 shows the functional modeling results of
the FSM from our example for the safe0 and safel de-
scription styles.

From Fig. 4 shows that for the safe0 style, in case
of invalid input vectors arriving at the input of the FSM,
zero vectors are formed at the FSM outputs, while for the
safel style, the FSM outputs retain the same values of the
outputs.

Note that based on the considered methods for de-
scribing fault-tolerant FSMs, other styles of describing
fault-tolerant FSMs can be constructed that are better
suited for the design of a specific FSM.

5. Experimental Results

The effectiveness of the proposed safe0 and safel
styles for describing fault-tolerant FSMs has been tested
on the FSM benchmarks of the MCNC center [1]. The
synthesis was performed using Quartus version 23.1 for

a)

the Cyclone 10 LP FPGA family.

Because the FSM parameters (area and perfor-
mance) depend heavily on state encoding, all state encod-
ing methods provided by the Quartus system (One-Hot,
Gray, Johnson, Minimal Bits and Sequential) were ap-
plied for each example. Then, the best results were se-
lected from the obtained results: the minimum area and
the maximum performance.

The use of safe0 and safel description styles
changed the parameters of the FSM for the 20 bench-
marks. The experimental results for these examples are
shown in Table 1, where i, o, p, and s are the number of
inputs, outputs, transitions, and states of the FSM, respec-
tively; Lo, Lso, and Ls; are the number of FPGA logic
elements used to implement the FSM (i.e. area or cost of
implementation) in the case of the traditional description,
using the style safe0 and using the style safel; Fo, Fsoand
Fs1 — the same, but with respect to the FSM performance,
which is measured in megahertz; Lo/Lso, Lo/Ls1, Fso/Fo,
and Fsi/Fo — relations of the corresponding parameters;
Av and Max — arithmetic mean and maximum value of
the parameters.

Table 1 shows that using the safe0 style reduces the
area for 17 examples. On average, the area is reduced by
a factor of 2.148, and the maximum area reduction by a
factor of 4.8 is observed for example lion9. Similarly, us-
ing safel style reduces the area for 19 examples. On av-
erage, the area is reduced by a factor of 1.774, and the
maximum area reduction by a factor of 4.8 is also ob-
served for the lion9 example.

Using the safe0 style increases the performance for
six examples. On average, the performance increases by
a factor of 1.192, and the maximum performance increase
by a factor of 2.355 is observed for the pma example.
Similarly, using safel style increases the performance for
9 examples, on average the performance increases by a
factor of 1.193, the maximum performance increase by a
factor of 2.355 is also observed for the pma example.

Value at | [0 PS 40.0ns

Name

80.0 ns

120,0ns 160,0 ns

0 ps
LS %reset B1
= clk BO
& > x B100 100 000 101 A 110 £ 111 A 001 000 101 A 110 X 111 % 01X 000 101 A 110 A 111
@ oy B 007 001 000 010 000 100 000
b)

Value at | O Ps 40.0ns 80.0ns 120,0 ns 160,0 ns

Name 0

0ps pPs
» reset B1
L ok BO e
& > x B 100 100 000 101 411041117 4001 000 107 4110 4111 401X 000 101 41104111
@y B 001 001 010 100

Fig. 4. Results of functional modeling of the Mealy FSM:
a —with description in safe0 style; b — with description in safel style

Information security and functional safety 203
Table 1
Experimental results of description styles of fault-tolerant FSMs (Safe0 and Safel)
compared with the traditional description (Original)
) Original Safe0 Safel
FSM | (o] p S Lo =N Lso Feo Lo Fo Lo/Lso Lo/Lsy Fso/Fo Fsi/Fo

bbsse 77 56| 16| 42| 253| 42| 253| 39| 284 1| 1077 1| 1.123
beecount 3] 4 28 7| 32 0| 14| 364| 15| 383| 2.286| 2.133 1 1
cse 77 91| 16| 100 0| 70| 268| 82| 288| 1.429| 1.220 1 1
exl1 9| 19| 233| 18] 119 0| 78| 247| 111| 211| 1.526| 1.072 1 1
ex2 2] 2 72| 18| 60| 166| 35| 254| 35| 273| 1.714| 1.714| 1.530| 1.645
ex3 2] 2 36| 10| 34 0| 20| 349| 23| 300 17| 1.478 1 1
ex4 6] 9 21| 14| 44 0| 26| 312| 33| 374 1.692| 1.333 1 1
exs 2| 2 32 9| 32| 298| 14| 332| 16| 314| 2.286 2| 1.114| 1.054
ex6 5/ 8 34 8| 57 0| 46| 256| 49| 272| 1.239| 1.163 1 1
ex’ 2] 2 36| 10| 32 0 8| 346 9| 397 4| 3.555 1 1
keyb 7| 2| 170 19| 65| 217| 65| 217| 65| 218 1 1 1| 1.005
lion 2] 1 11 4| 13 0 3| 1287 7| 364| 4.333] 1.857 1 1
lion9 2] 1 25 9| 48 0| 10| 608 10| 608 4.8 4.8 1 1
pma 8| 8 73| 24| 118| 141| 93| 332| 93| 332| 1.269| 1.269| 2.355| 2.355
sand 11| 9| 184| 32| 208| 121| 153| 241| 175 205| 1.359| 1.189| 1.992| 1.694
sse 707 56| 16| 42| 253| 42| 253| 39| 284 1| 1077 1| 1.123
styr 9| 10| 166| 30| 183| 200| 130| 233| 147| 237| 1.408| 1.245| 1.165| 1.185
tma 7] 6 44| 20| 128| 160| 59| 269| 59| 269| 2169| 2.169| 1.681| 1.681
trainll 2| 1 25| 11| 41 0| 17| 656| 18| 380 2412| 2278 1 1
train4 2 14 4| 13 0 3| 1285 7| 414 4.333] 1.857 1 1
Av 59|6.5|139.6| 22.4| 69.7| 301.3| 60.2| 438.3| 62.5| 394.9| 2.148| 1.774| 1.192| 1.193
Max 19| 19| 1569| 218| 387| 1269| 387| 1287| 387| 1269 4.8 48| 2.355| 2.355

6. Discussions

In this paper, the following tasks have been solved
to design fault-tolerant FSMs.

1. In case of a failure in the state register, three ways
for the FSM transit from the illegal state are proposed: (a)
return to the start state; (b) transition to the idle state with
return to the start state; (c) transition to the idle state with
return to the state s;, from which the transition to the ille-
gal state occurred (see Fig. 2). For each way, the tem-
plates for description in HDL are presented.

2. In case of a failure in the input vector, a method
is proposed for describing the FSM transitions from each
state (see Fig. 3), while the FSM remains in the initial
transition state, the conditions of transitions to which are
determined by expression (2).

3. In case of failure in the state register or in the in-
put vector of the FSM, four variants are proposed to
determine the values of the output vector: (1) zero vector,
(2) vector of don’t care values, (3) value of the previous
output vector, (4) the output vector specified by the de-
veloper. This paper analyzes the advantages and disad-
vantages of each variant (subsection 4.4).

4. On the basis of the considered descriptions of
transitions and outputs of FSMs, two styles of description
of fault-tolerant FSMs have been proposed: safe0 and
safel (subsection 4.5). In both styles, when describing
transitions from each state, the construction default of
the second-level case statement defines the initial transi-
tion state (see Fig. 3,b). If the FSM transits to an illegal
state for both styles, the variant is selected when the FSM
returns to the start state (see Fig. 2,a). The styles safe0
and safel differ in the way they form the values of output
signals. In the safeQ style, the zero output vector is
formed in the default constructs, which corresponds to
variant 1. In the safel style, the FSM will save the value
of the previous output vector at the output, which corre-
sponds to variant 3.

5. The effectiveness of the proposed styles for de-
scribing fault-tolerant FSMs has been studied using FSM
benchmarks of the MCNC center in two parameters: area
and performance when implementing FSMs in FPGAs
(see Table 1).

The experimental results have shown that using the
style safe0, compared to the traditional HDL description
of FSMs, reduces the area on average by a factor of 2.148

204

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

(for some examples by a factor of 4.8) and increases the
performance on average by a factor of 1.192 (for some
examples by a factor of 2.355).

Similarly, using the style safel, compared to the tra-
ditional HDL description of FSMs, reduces the area on
average by a factor of 1.774 (for some examples by a fac-
tor of 4.8) and increases the performance on average by
a factor of 1.193 (for some examples by a factor of
2.355).

Following features provide the advantages of the
proposed safe0 and safel styles for describing fault-tol-
erant FSMs:

— in the case of a failure in the input vector or
when the transition from some state is not defined in the
FSM specification, the next state (the initial transition
state) is defined explicitly using the construction default
of the second-level case statement;

— in the case of a failure in the state register, the
FSM transition to the start state is defined explicitly using
the construction default of the first-level case operator;

— in case of all the above failures, the FSM outputs
are defined using the construction default of the case
statement in safe0 style as a zero vector, and in safel style
as the value of the previous output vector.

The advantage of this study over the known ones is
that the problem of designing fault-tolerant FSMs is
solved at the level of FSM description in HDL. This
made it possible not only to implement fault-tolerant
FSMs but also to reduce the area and increase the perfor-
mance of FSMs.

Note that known methods for designing fault-toler-
ant FSMs usually require significant area overhead,
which decreases the performance of the original FSM.

EPMs and laser beams that impact the UAV cause
failures in the input vector and state register of FSMs that
act as control devices for the UAV. Therefore, the pro-
posed description styles for fault-tolerant FSMs are pri-
marily designed for UAV control systems.

Thus, the considered safe0 and safel styles of de-
scribing fault-tolerant FSMs not only allow improving
the fault tolerance but also contribute to the reduction of
the area and increase the performance of FSMs, so they
can be recommended for practical use.

7. Conclusions

In this paper, the problem of designing fault-toler-
ant FSMs when the values of bits in the state register or
in the input vector of the FSM change because of the
negative external impact is described. Different ways of
solving the problem at the level of FSM description in
HDL are considered. Two styles of describing fault-tol-
erant FSMs have been proposed, which allow the detec-
tion of faults in the state register and in the input vector

of the FSM. This prevents transitions of the FSM to ille-
gal states and invalid transitions to legal states.

The fault tolerance of FSM functioning described
using the safe0 and safel styles is provided as follows.
When the input vector is not defined in the FSM specifi-
cation for a specific state, the FSM will remain in the in-
itial transition state, i.e. the FSM will not transit to an-
other state. If an illegal state code is set in the state regis-
ter, the FSM will transition to the start state. For all these
faults, the safe0 style provides a zero output vector at the
FSM output, whereas the safel style preserves the value
of the previous output vector.

The proposed styles of description of fault-tolerant
FSMs do not degrade the parameters of FSMs, which are
described by the traditional style, but in some cases allow
the reduction of the area (for some examples by a factor
of 4.8) and increase of the performance (for some exam-
ples by a factor of 2.355). In addition, the description
styles of fault-tolerant FSMs allow us to neutralize design
errors when transitions in each state are not described for
all possible values of input variables.

In addition, the proposed description styles for
fault-tolerant FSMs allow neutralizing design errors
when transitions in each state are not described for all
possible values of input variables.

Thus, the main contributions are as follows:

- in case of a failure in the FSM state register, three
methods have been proposed for the FSM transit from the
illegal state, which can be implemented using the HDL,;

- the method proposed to describe in HDL the FSM
behavior in each state in the case of an invalid input vec-
tor or an input vector that is not defined in the FSM spec-
ification;

- four variants have been proposed for describing in
HDL the FSM output vectors in the case of an invalid
input vector or an input vector that is not defined in the
FSM specification;

- based on these methods of FSM description, two
styles for describing fault-tolerant FSMs are proposed.

The effectiveness of the proposed description styles
of fault-tolerant FSMs in terms of area and performance
has been investigated on the FSM benchmarks of MCNC
center.

Future research development. A promising direc-
tion for future research seems to be the development of
new styles and methods of FSM description, aimed at im-
proving the FSM parameters (an area, a performance and
a power consumption), as well as improving the reliabil-
ity and fault tolerance of FSMs.

Acknowledgment. The present study was sup-
ported by a grant WZ/WI-111/5/2023 from Bialystok Uni-
versity of Technology and was founded from the re-
sources for research by the Ministry of Science and
Higher Education.

Information security and functional safety

205

References

1. Yang, S. Logic Synthesis and optimization
benchmarks user guide. Version 3.0. Microelectronics
Center of North Caro-lina (MCNC), 1991. 45 p. DOI:
4a86519e41bb8dbaa8d2c9ba434030f48de85ce7.

2. Kratky, M., & Minarik, V. The non-destructive
methods of fight against UAVSs. International conference
on military technologies (ICMT), Brno, Czech Republic,
2017, pp. 690-694. DOI:
10.1109/MILTECHS.2017.7988845.

3. Curpen, R., Bélan, T., Miclos, L. A., & Comanici,
I. Assessment of signal jamming efficiency against LTE
UAVs. International Conference on Communications
(COMM), Bucharest, Romania, 2018, pp. 367-370. DOI:
10.1109/I1CComm.2018.8484746.

4. Arnold, C., & Brown, J. Performance evaluation
for tracking a malicious UAV using an autonomous UAV
swarm. 11th IEEE Annual Ubiquitous Computing, Elec-
tronics & Mobile Communication Conference
(UEMCON), New York, USA, 2020, pp. 0707-0712.
DOI: 10.1109/UEMCON51285.2020.9298062.

5. Kong, P. Y. A survey of cyberattack counter-
measures for unmanned aerial vehicles. IEEE Ac-
cess. 2021, no. 9, pp. 148244-148263.
DOI: 10.1109/ACCESS.2021.3124996.

6. Jin, W. C., Kim, K., & Choi, J. W. Adaptive jam-
ming considering location information inaccuracy for
anti-UAV system. International Conference on Infor-
mation Networking (ICOIN), Jeju Island, Korea (South),
2021, pp. 480-482. DOI: 10.1109/1COIN50884.
2021.9334027.

7. Lei, Z., Ding, P., Zheng, W., Fei, X., & Fan, H.
UAV countermeasure technology based on partial-band
noise jamming. 33rd Chinese Control and Decision Con-
ference (CCDC), Kunming, China, 2021, pp. 1456-1461.
DOI: 10.1109/CCDC52312.2021.9602343

8. Min, S. H., Jung, H., Kwon, O., Sattorov, M.,
Kim, S., Park, S. H., ... & Park, G. S. Analysis of electro-
magnetic pulse effects under high-power microwave
sources. IEEE Access, 2021, no. 9, pp. 136775-136791.
DOI: 10.1109/ACCESS.2021.3117395.

9. Simon, O., Gotthans, T., & Popela, M. Commer-
cial UAV jamming possibilities. 32nd International
Conference Radioelektronika (RADIOELEKTRONIKA),
Kosice, Slovakia, 2022, pp. 1-6. DOl:
10.1109/RADIOELEKTRONIKA54537.2022.9764904.

10. Kaushik, K., Negi, R., & Dev, P. An electronic
warfare approach for deploying a software-based Wi-Fi
jammer. 5th International Conference on Contemporary
Computing and Informatics (IC3I), Uttar Pradesh, India,
2022, pp. 43-47. DOI: 10.1109/1C3156241.2022.
10073447.

11. Pohasii, S., Korolov, R., Vorobiov, B., Bril, M.,
Serhiienko, O., & Milevskyi, S. UAVSs intercepting pos-
sibility substantiation: economic and technical aspects.
IEEE 4th International Conference on Modern Electrical
and Energy System (MEES), Kremenchuk, Ukraine,

2022, pp. 1-6.
2022.10005710.

12. Watanabe, K., Sakai, R., Tanaka, S., Nagata,
M., Osaka, H., Nakamura, A., ... & Gotoh, K. Electro-
magnetic Interference With the Mobile Communication
Devices in Unmanned Aerial Vehicles and Its Counter-
measures. IEEE Access, 2024, no. 12, pp. 11642-11652.
DOI: 10.1109/ACCESS.2024.3351216.

13. Wang, Z., Cui, A., & Qu, G. A low-cost fault
injection attack resilient FSM design. IEEE 33rd Inter-
national System-on-Chip Conference (SOCC), Las Ve-
gas, USA, 2020, pp. 19-24. DOI: 10.1109/SOCC49529.
2020.9524779.

14. Cassel, M., & Lima, F. Evaluating one-hot en-
coding finite state machines for SEU reliability in
SRAM-based FPGAs. IEEE International On-Line Test-
ing Symposium (IOLTS'06), Lake Como, Italy, 2006, pp.
6-pp. DOI: 10.1109/10LTS.2006.32.

15. El-Maleh, A. H. A sequential circuit fault toler-
ance technique with enhanced area and power. IEEE In-
ternational Symposium on Signal Processing and Infor-
mation Technology (ISSPIT), Abu Dhabi, United Arab
Emirates, 2015, pp. 301-304.
DOI: 10.1109/ISSPIT.2015.7394348.

16. Juretus, K., & Savidis, I. Synthesis of hidden
state transitions for sequential logic locking. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2020, vol. 40, no. 1, pp. 11-23.
DOI: 10.1109/TCAD.2020.2994259.

17. Li, M., Xu, S., Wan, F., Gu, J., Peng, M., &
Jiang, J. Non-intrusive design of self-checking FSM
based on convolutional codes. Tsinghua Science & Tech-
nology, 2007, vol. 12, no. S1, pp. 73-77. DOI:
10.1016/S1007-0214(07)70087-1.

18. Wang, Z., & Karpovsky, M. Robust FSMs for
cryptographic devices resilient to strong fault injection
attacks. IEEE 16th International On-Line Testing Sym-
posium. Corfu, Greece, 2010. DOI:
10.1109/10LTS.2010.5560195.

19. Sooraj, S., Manasy, M., & Bhakthavatchalu, R.
Fault tolerant FSM on FPGA using SEC-DED code algo-
rithm. International Conference on Technological Ad-
vancements in Power and Energy (TAP Energy), Kollam,
India, 2017, pp. 1-6. DOI: 10.1109/TAPENERGY.
2017.83973009.

20. Sooraj, S., & Bhakthavatchalu, R. Hamming 3
algorithm for improving the reliability of SRAM based
FPGAs. International Conference on Communication
and Signal Processing (ICCSP), Chennai, India, 2017,
pp. 0938-0942. DOI: 10.1109/ICCSP.2017.8286508.

21. Nidhin, T. S., Bhattacharyya, A., Behera, R. P.,
Jayanthi, T., & Velusamy, K. Verification of fault toler-
ant techniques in finite state machines using simulation
based fault injection targeted at FPGAs for SEU mitiga-
tion. 4th International Conference on Electronics and
Communication Systems (ICECS), Coimbatore, India,
2017, pp. 153-157. DOI: 10.1109/ECS.2017.8067859.

22. Nahiyan, A., Farahmandi, F., Mishra, P., Forte,
D., & Tehranipoor, M. Security-aware FSM design flow

DOI: 10.1109/MEES58014.

https://doi-org.bazy.pb.edu.pl/10.1109/MILTECHS.2017.7988845
https://doi-org.bazy.pb.edu.pl/10.1109/ICComm.2018.8484746
https://doi-org.bazy.pb.edu.pl/10.1109/UEMCON51285.2020.9298062
https://doi-org.bazy.pb.edu.pl/10.1109/ACCESS.2021.3124996
https://doi-org.bazy.pb.edu.pl/10.1109/ICOIN50884.2021.9334027
https://doi-org.bazy.pb.edu.pl/10.1109/ICOIN50884.2021.9334027
https://doi-org.bazy.pb.edu.pl/10.1109/CCDC52312.2021.9602343
https://doi-org.bazy.pb.edu.pl/10.1109/ACCESS.2021.3117395
https://doi-org.bazy.pb.edu.pl/10.1109/RADIOELEKTRONIKA54537.2022.9764904
https://doi-org.bazy.pb.edu.pl/10.1109/IC3I56241.2022.10073447
https://doi-org.bazy.pb.edu.pl/10.1109/IC3I56241.2022.10073447
https://doi-org.bazy.pb.edu.pl/10.1109/MEES58014.2022.10005710
https://doi-org.bazy.pb.edu.pl/10.1109/MEES58014.2022.10005710
https://doi-org.bazy.pb.edu.pl/10.1109/ACCESS.2024.3351216
https://doi-org.bazy.pb.edu.pl/10.1109/SOCC49529.2020.9524779
https://doi-org.bazy.pb.edu.pl/10.1109/SOCC49529.2020.9524779
https://doi-org.bazy.pb.edu.pl/10.1109/IOLTS.2006.32
https://doi-org.bazy.pb.edu.pl/10.1109/ISSPIT.2015.7394348
https://doi-org.bazy.pb.edu.pl/10.1109/TCAD.2020.2994259
https://doi-org.bazy.pb.edu.pl/10.1016/S1007-0214(07)70087-1
https://doi-org.bazy.pb.edu.pl/10.1109/IOLTS.2010.5560195
https://doi-org.bazy.pb.edu.pl/10.1109/TAPENERGY.2017.8397309
https://doi-org.bazy.pb.edu.pl/10.1109/TAPENERGY.2017.8397309
https://doi-org.bazy.pb.edu.pl/10.1109/ICCSP.2017.8286508
https://doi-org.bazy.pb.edu.pl/10.1109/ECS.2017.8067859

206

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

for identifying and mitigating vulnerabilities to fault at-
tacks. IEEE Transactions on Computer-aided design of
integrated circuits and systems, 2018, vol. 38, no. 6, pp.
1003-1016. DOI: 10.1109/TCAD.2018.2834396.

23. Choudhury, M., Gao, M., Tajik, S., & Forte, D.
TAMED: transitional approaches for LFI resilient state
machine encoding. IEEE International Test Conference
(ITC), Anaheim, USA, 2022, pp. 46-55.
DOI: 10.1109/ITC50671.2022.00011.

24, Tiwari, A., & Tomko, K. A. Enhanced reliabil-
ity of finite-state machines in FPGA through efficient
fault detection and correction. IEEE Transactions on Re-
liability, 2005, wvol. 54, no. 3, pp. 459-467.
DOI: 10.1109/TR.2005.853438.

25. Frigerio, L., & Salice, F. RAM-based fault tol-
erant state machines for FPGAs. 22nd IEEE Interna-
tional Symposium on Defect and Fault-Tolerance in VLSI
Systems (DFT 2007), Rome, Italy, 2007, pp. 312-320.

Computer and Systems Sciences International, 2023, vol.
62, no. 6, pp. 977-990. DOl:
10.1134/S1064230723060102.

27. Salauyou V. Structural models of Mealy finite
state machines detecting faults in control systems. Radi-
oelectronic and Computer Systems, 2023, no. 3, pp. 173-
186. DOI: 10.32620/reks.2023.3.14.

28. Choi, S., Park, J., & Yoo, H. Area-efficient fault
tolerant design for finite state machines. International
Conference on Electronics, Information, and Communi-
cation (ICEIC), Barcelona, Spain, 2020, pp. 1-2. DOI:
10.1109/ICEIC49074.2020.9051122.

29. Farahmandi, F., & Mishra, P. FSM anomaly de-
tection using formal analysis. IEEE International Con-
ference on Computer Design (ICCD), Boston, USA,
2017, pp. 313-320. DOI: 10.1109/1CCD.2017.55.

30. Salauyou, V., & Zabrocki, L. Coding techniques
in Verilog for finite state machine designs in FPGA. IFIP

DOI: 10.1109/DFT.2007.33.
26. Solov’ev V. V. Structural models for failure de-
tection of Moore finite-state machines. Journal of

International Conference on Computer In-formation Sys-
tems and Industrial Management (CISIM), Belgrade,
Serbia, 2019, pp. 493-505. DOI: 10.1007/978-3-030-
28957-7_41.

Received 08.01.2024, Accepted 20.02.2024

CTHJII OIIUCY HAJIIMHUX CKIHYEHHUX ABTOMATIB
JJIA BESINIJIOTHUX JIITAJIBHUX AITAPATIB

Banepii Conosiios

O0'extom mociimkenHs € ckinueHHi aBromatu (CCA), siki BHKOPUCTOBYIOThCS SIK TPUCTPOT KEpyBaHHs B Oe31ti-
noTHuX JitaneHux anaparax (BI1IJIA). Meroro poboTu € po3poOka CTHIIIB onucy podacTHUX (BiIMOBOCTIMKUX) aBTO-
MaTiB Ha MoBax onucy anaparypu (HDL), siki 3ano0iratoTh BAHUKHEHHIO 3001B y peTicTpi CTaHiB Ta BXiJHOMY BEKTOPI
aBTOMara. 3ajiadi, 10 BUPILIYIOThCS: PO3pOOKa METO/IIB OMUCY IIEPEX0ly aBTOMATa 3 HEIONMYCTUMUX CTaHIB Y BHIa-
JIKy 30010 B pETICTpi CTaHy, a TAKOXK MEePexoy aBTOMaTa 3 KOKHOI'O CTaHy y BUIAJIKy 30010 y BXiJJHOMY BEKTOpI;
BH3HAYEHHS BUXIJHUX BEKTOPIB aBTOMAaTa y BMIIAJIKy 3a3HAUEHUX BHIIE 3001B; pOo3pOOKa CTHIIIB OMKUCY HaJTIHHUX
(B1IMOBOCTIMKHX) aBTOMATIB; AOCIIHDKEHHS €(DeKTHBHOCTI 3aIIPOIMIOHOBAHUX CTUJIIB ONKUCY HAJ[IHUX aBTOMAaTiB. Bu-
KOpHCTaHiI METOJIU: TeOpisl CKIHYEHHHX aBTOMATiB, METOIM KOAYBAaHHS CTaHiB aBTOMATiB, METOAU IPEICTABICHHS
aBTOMATIiB, MOBa onucy anapatypu Verilog. OTpuMani HaCTYIHI pe3yJabTaTH: pO3POOIICHO JABAa CTHJII OMUCY Ha I HUX
asromaris Safe0 ta safel, ski He 30IMBIIYIOTE TUTONTY Ta HE 3MEHIIYIOTH IBHIKO/IIF0 aBTOMATIB, & B IESIKUX BHIIAIKAX
JI03BOJISIFOTH 3MEHIIIUTH TUIOITY (IJIS ASSKUX NPUKIAAiB Y 4.8 pa3u) Ta 30UIbIINTH BUAKOAIO (7151 NESKUX TPUKIIAIiB
y 2.36 pa3u). Kpim Toro, cTuiti onucy HaaiifHUX aBTOMATIB HEUTPaTi3yIOTh IOMUJIKHA TIPOSKTYBAHHSI, KOJIH MEPEX OH
OITUCYIOTHCSl B KOXKHOMY CTaHI He JUIS BCIX MOXITUBHX 3Ha4eHb BXIJHUX 3MiHHUX. BUCHOBKH. Y cTaTTi chopmybo-
BaHO MPO0JIeMy MPOEKTYBaHHS Ha IIITHUX aBTOMATIB, KOJIM 3HAYEHHs OITIB y pericTpi crany abo y BXIJIHOMY BEKTOpI
aBTOMATa 3MIHIOIOThCSI BHACHIIOK HETATUBHOI'O 30BHIIIHBOTO BILIMBY. PO3TIISIHYTO Pi3HI COCOOM pO3B'sI3aHHS TIPO-
6;emu Ha pisHi ommcy IITIM mosoro HDL. 3anpornonoBaHo aBa CTHII onucy HafilHux aBTomatis: Safel Ta safel.
Haniiiaicts Qynkitionysanus [IITHM, ommcannx 3a momomororo cruiniB safe0 ta safel, 3abesmeuyeTscs HaCTyITHAM
9pHOM. SIKIIo BXigHWN BEeKTOp He BU3HaueHWH y crermdikarii FSM mis meBHoro crany, To FSM 3amumutbes y
IMOYaTKOBOMY TiepexigHomy craHi, To0to FSM He mepefine B iHImmiA cta. SIKImIo y pericTpi cTaHiB 3a1aHO HEIOMYC-
TUMUH K01 cTany, To FSM tmiepetine y mouatkoBuii cran. Jyist Beix mux mommtok crws Safe0 3aGesneuye HyapoBwmit
BUXiHUA BeKTOp Ha Buxoi FSM, Toxi six ctris Safel 36epirae 3HaueHHs omepeIHporo BUXiqHOTO BekTopa. Ilepc-
MIEKTUBHUM HAIPSMKOM ITOJANBIINX JTOCTIIKEHb BUAAE€THCS PO3POOKA HOBHUX CTHIIB Ta criocobi onmcy FSM, crpsi-
MOBAaHMX Ha IMOKparmieHHs mapamerpiB FSM (rwromi, mpoayKTUBHOCTI Ta €HEPrOCIOXKUBAHHS), a TAKOXK Ha IIi/IBH-
LIEHHS HamIHHOCTI Ta BimMoBocCTIMKocTI FSM.

Ki104oBi cjioBa: CKiHUEHHUI aBTOMAT; HaIiiHICTh; BIIMOBOCTIHKICTh; MOBa OMNFCY allapaTHOTO 3a0e3MeUeHHS;
Verilog; mosipoBa porpamMoBaHa JIOTidYHa MAaTPHIL; Ge3MiTOTHHIA JliTanbauit amapat (BITJIA).

CoJoBiioB Banepiii BacmiboBuu — mpodecop, TOKTOp TEXHIYHUX HayK, DakymbTeT KOMITIOTEPHUX HAyK
BimocroipKoro momiTeXHIYHOrO YHiBepcHTETY, bioctok, [Tombma

Prof. Valery Salauyou, DSc, PhD, Eng, Faculty of Computer Science, Bialystok University of Technology,
Bialystok, Poland,
e-mail: v.salauyou@pb.edu.pl, ORCID: 0000-0002-9174-8588, Scopus Author ID: 55699021000

https://doi-org.bazy.pb.edu.pl/10.1109/TCAD.2018.2834396
https://doi-org.bazy.pb.edu.pl/10.1109/ITC50671.2022.00011
https://doi-org.bazy.pb.edu.pl/10.1109/TR.2005.853438
https://doi-org.bazy.pb.edu.pl/10.1109/DFT.2007.33
https://doi-org.bazy.pb.edu.pl/10.1109/ICEIC49074.2020.9051122
https://doi-org.bazy.pb.edu.pl/10.1109/ICCD.2017.55

