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DESCRIPTION STYLES OF FAULT-TOLERANT FINITE STATE MACHINES  

FOR UNMANNED AERIAL VEHICLES 
 

The subject matter of this article is finite state machines (FSMs), which are used as control devices in unmanned 
aerial vehicles (UAVs). The goal of this study is to develop description styles for fault-tolerant FSMs in hardware 

description languages (HDLs) that prevent failures in the state register and in the input vector of the FSM. The 

tasks to be solved are as follows: development of description methods for FSM transitions from illegal states in 

case of failure in the state register, as well as for FSM transitions from each state in case of failure in the input 

vector; determination of FSM output vector values in case of the above failures; development of description 

styles for fault-tolerant FSMs; and investigation of the efficiency of the proposed description styles for fault-

tolerant FSMs. The methods used are: the theory of finite state machines, state encoding methods of FSMs, 

description styles of FSMs, and Verilog hardware description language. The following results were obtained: 

two styles of describing fault-tolerant FSMs have been developed, safe0 and safe1, which do not increase the 

area and do not decrease the performance of FSMs, and in some cases allow the area to be reduced (for some 

examples by a factor of 4.8) and increase the performance (for some examples by a factor of 2.355). In addition, 
the description styles of fault-tolerant FSMs neutralize design errors when transitions are described in each 

state but not for all possible values of input variables. Conclusions. In this paper, the problem of designing fault-

tolerant FSMs when the values of bits in the state register or in the input vector of the FSM change because of 

the negative external impact is described. Different ways of solving the problem at the level of FSM description 

in HDL are considered. Two description styles for fault-tolerant FSMs are proposed: safe0 and safe1. The fault 

tolerance of FSMs is provided in the following manner. When the input vector is not defined in the FSM specifi-

cation for a specific state, the FSM will remain in the initial transition state, i.e. the FSM will not transit to 

another state. If the code of the illegal state is set in the state register, the FSM will transition to the start state. 

For all these faults, the safe0 style provides a zero output vector at the FSM output, whereas the safe1 style 

preserves the value of the previous output vector. A promising direction for future research seems to be the 

development of new styles and methods of FSM description, aimed at improving the FSM parameters (an area, 

a performance and a power consumption), as well as improving the reliability and fault tolerance of FSMs.  

 

Keywords: finite state machine (FSM); fault tolerance; hardware description language (HDL); Verilog; field 

programmable gate array (FPGA); unmanned aerial vehicle (UAV). 

 

1. Introduction 

 

Fault detection and neutralization is an important 

task in creating fault-tolerant control devices in space 

technology, avionics, life-support medical equipment, 

nuclear reactors, banking systems, and telecommunica-

tion servers. Finite state machines (FSMs) are also 

widely used as control devices in unmanned aerial vehi-

cles (UAVs) or drones. Currently, UAVs are used in 

many areas of human activity, including military con-

flicts. One of the ways to combat UAVs is to influence 

the UAV with an electromagnetic pulse (EMP) or a laser 

beam, which causes numerous failures in the electrical 

circuits of the control device. 

To build a fault-tolerant FSM, it is important to 

specify it correctly. The FSM is defined correctly when 

in each state all possible transitions are defined (i.e. the 

logical OR of transition conditions from each state are 

equal to a logical unit), at least one transition from other 

states leads to each state, each transition condition from 

some state does not intersect with other transition condi-

tions from this state. When these rules are executed in the 

FSM specification, invalid transitions between states and 

transitions to illegal states should not occur. However, 

often for various reasons the above rules for correct de-

scription of FSMs are not enforced. When designing 

complex FSMs, the last of the above rules is most often 

violated. For example, from 49 MCNC benchmark exam-

ples of FSMs [1], this condition is violated in 22 exam-

ples. 

The source of FSM failures (for example, because 

of negative external impacts) can be a fault in the state 

register. If one or more bits are changed in the state reg-

ister, the FSM may transit to an illegal state, the transition 

from which has not been defined in the FSM specifica-

tion. It is also possible that, because of a negative impact, 

the code of the legal state will be set in the state register. 

This corresponds to an invalid transition between legal 

states. In both cases, normal operation of the FSM will 

be disrupted. 

 Valery Salauyou, 2024 
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Let the FSM have M states encoded by a code of 

length R bits, R ≥ ]log2 M[, ]A[ is the smallest integer 

greater than or equal to A. The number MI of illegal states 

whose codes can be set in the state register is determined 

by Eq. (1). 

 

MI = 2R −M.          (1) 
 

In case of failure in the state register there is a high 

probability of FSM transition to an illegal state. The 

problem becomes especially acute when using the one-

hot code, which is popular when an FSM is implemented 

in a field programmable gate array (FPGA). 

FSM failures can also be caused by errors in the 

specification of FSM when transitions from each state are 

not defined for all possible combinations of input varia-

bles. Usually, the FSM specification defines the transi-

tion conditions to certain states for specific values of in-

put vectors, while the behavior of the FSM for other val-

ues of input variables remains undefined. In addition, for 

some states it is possible that transition conditions may 

intersect for transitions to different states, i.e. non-deter-

ministic behavior of the FSM is possible. 

 

2. Related works 

 
2.1. UAV warfare 

 

To combat UAVs, a wide variety of methods are 

used, which can be divided into two large classes: de-

structive (machine guns, missiles, ramming by other 

drones) and non-destructive (all others). The main non-

destructive methods of UAV warfare are jamming sig-

nals to and from the UAV, noise suppression, powerful 

EMPs and laser beams. 

The problems of UAV warfare by non-destructive 

methods such as jamming uplink, jamming downlink, 

GPS jamming, GPS spoofing, and deauthentication pack-

ets are considered in [2]. Jamming downlink jamming is 

also considered in [3]. A swarm of UAVs to track mali-

cious UAVs is used in [4]. The classification of cyber at-

tacks on UAVs is given in [5]. In [6], the issue of jam-

ming UAVs with a concentration of signal power toward 

the UAV is studied. The UAV countermeasure technol-

ogy based on partial-band noise jamming is presented in 

[7]. In [8], the problem of influencing a UAV with a pow-

erful EMP is considered. The use of noise and EMR for 

jamming UAVs has also been studied [9]. In [10], a soft-

ware-based Wi-Fi jammer for UAV warfare is proposed. 

The UAV-controlled interceptor using the parallel ap-

proach guidance method is considered in [11]. In [12], 

self-jamming caused by unintentional electromagnetic 

noise from multiple electronic devices installed in a UAV 

is studied. 

In this study, EMPs and laser beams are considered 

as external influences on UAV control devices, which 

cause failures in the input vector and in the state register 

of the FSM. 

 

2.2. Fault-tolerant FSMs 

 

FSMs play an important role in digital circuit design 

because they store the system status and control system 

functionality. Hence, if errors occur in the FSM, they 

cause serious problems for the system. Therefore, mod-

ern digital systems use fault-tolerant FSMs as control de-

vices. 

Failures of FSMs can be caused: 

 by radiation or cosmic rays (affecting hardware 

in nuclear power plants or spacecraft); 

 by electromagnetic pulses (EMBs) or laser 

beams (used in UAV warfare); 

 by fault injection attacks (FIA) (used by attack-

ers in cryptographic applications); 

 by laser-based fault injection (LFI), when an at-

tacker changes the values of individual flip-flops of the 

FSM state register, etc. 

The problem of designing fault-tolerant FSMs can 

be solved at different levels:  

 at the level of gates (transistors) [13];  

 at the register-transfer level (RTL) [14];  

 at the logical level by applying special synthesis 

methods [15, 16], state encoding (state assignment) [17 - 

23], and using embedded memory blocks of FPGAs [24, 

25];  

 at the structural level using special structural 

models of FSMs [26, 27]. 

Often, the logical level is linked to the structural 

level [28]. The above problem can also be solved at the 

system level [29]. 

In [13], the structure of a flip-flop for the FSM state 

register is proposed, which protects the FSM from FIA. 

In [14], solutions at the RTL level are proposed to ensure 

the reliability of the FSM in the case of single event up-

sets (SEUs). 

In [15], the FSM state encoding algorithm is con-

sidered which, in addition to providing fault tolerance, 

allows for area and power optimization. In [16], a method 

to insert hidden state transitions (HSTs) and logic cone 

modifications into a netlist to enhance the security of the 

FSM from FIA is presented. 

In [17], convolutional codes are used to detect and 

correct errors in the FSM state register. In [18], secure 

FSM architectures are proposed based on the idea of ran-

domly selecting one code from the set of codes for each 

encoding and decoding operation. In [19], SEC-DED 

(single error correction and double error detection) code 

is used, and in [20], Hamming 3 code is used to detect 

and correct SEUs when the FSM is implemented in an 
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FPGA. In [21], fault-tolerant techniques like Triple Mod-

ular Redundancy (TMR), Hamming-3 encoding, and safe 

FSM synthesis are analyzed, which are implemented in 

live designs targeted at Nuclear Power Plants. In [22], the 

technique for designing FSMs considering the security 

requirements for FIAs is discussed. This technique in-

cludes secure state encoding and the building of a secure 

FSM architecture to eliminate vulnerabilities from setup-

time violation-based fault attacks. In [23], a transition-

based encoding CAD framework (TAMED) is presented 

that provides FSM robustness to multiple LFI models. 

In [24] and in [25], embedded memory blocks of the 

FPGA are used to design fault-tolerant FSMs in the case 

of SEUs. 

In [26] and in [27], structural models for Moore 

FSMs and Mealy FSMs are presented, which allow de-

tection and neutralization of faults caused by EMPs and 

laser beams. The proposed structural models allow to de-

tect and to neutralize the following faults: invalid input 

and output vectors for the entire FSM and in each state; 

invalid present and next state code; and invalid transi-

tions between states. 

In [28], a method for designing FSMs by selectively 

applying the fault-tolerant circuit according to the im-

portance of the state is discussed. 

In [29], a formal analysis based on symbolic algebra 

is used to find the FSM vulnerabilities; this allows detect-

ing unauthorized access to the states of the design. 

However, all the approaches considered, as a rule, 

require significant hardware overhead and often lead to a 

decrease in the performance of the FSMs. Note that re-

searchers pay little attention to methods for optimizing 

parameters and improving the properties of FSMs, which 

can be achieved by ways (styles) of describing FSMs in 

a hardware description language (HDL), as well as by 

methods implemented in design tools. 

  

3. Aim and tasks of the work 
 

Let us devise the design of a fault-tolerant FSM in 

the following manner. 

Task. Create a FSM that corresponds to the given 

specification and remains operational when an invalid in-

put vector (which is not defined in the FSM specification) 

arrives at the FSM input and when the code of an illegal 

state is set in the status register because of a failure. 

Solving this problem is especially important when 

developing control devices for UAVs. The fact is that the 

UAV can be affected by EMPs or laser beams, called ex-

ternal negative impacts, which can change the values of 

bits in the input vector or in the state register of FSMs. 

Thus, this study aims to develop description styles 

for fault-tolerant FSMs in HDLs that prevent failures in 

the state register and the input vector of the FSM.  

To achieve the aim of the research, the following 

tasks have been developed. 

1. To develop ways of describing transitions of the 

FSM from illegal states in case of failure in the state reg-

ister.  

2. To develop ways of describing the transitions of 

the FSM from each state in case of failure in the input 

vector;  

3. In the case of the above failures, to develop ways 

of describing the outputs of the FSM.  

4. Develop description styles for building fault-tol-

erant FSMs.  

5. To investigate the effectiveness of the proposed 

styles of FSM description on the FSM benchmark exam-

ples. 

 

4. Design of fault-tolerant FSMs  

using the description in HDL 
 

The Verilog language has been chosen as the HDL-

language, but all the approaches discussed in this paper 

can also be used in the SystemVerilog and VHDL lan-

guages. 

 

4.1. The demonstration example 

 

As an example of an FSM, consider the Mealy 

FSM, whose state transition graph (STG) is shown in Fig. 

1. Note that the methods discussed in this paper can also 

be used to design fault-tolerant Moore FSMs. 

 

 
 

Fig. 1. State transition graph of Mealy FSM 

 

Our FSM has 3 inputs, 3 outputs and 4 states. The 

vertices of the STG correspond to the states s0,...,s3, and 

the edges of the STG correspond to the transitions of the 

FSM. The input vector that initiates this transition is writ-

ten near each edge of the STG, and the output vector that 

produced during this transition is written with a slash 

(“/”). Here, the hyphen (“-”) can take any bit value: 0 

or 1. 

s0 s1

s2s3

---/001

100/001

---/010

001/010
01-/100---/100
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Transitions from state s0 are defined for vectors 100, 

001, and 01-, where the vector 01- corresponds to the two 

vectors 010 and 011. Note that transitions from state s0 

are not defined for vectors 000, 101, 110, and 111. The 

transitions from states s1, s2 and s3 to state s0 are uncon-

ditional, i.e., they are performed for all possible input 

vectors. 

The traditional description of our FSM in the Veri-

log HDL is as follows: 

 

module FSM_Mealy ( 

input clk, reset, // sync and reset signals 
    input [2:0] x,  // inputs 

    output reg [2:0] y); // outputs 

   reg[2:0] state, next; // state variables 

   localparam [2:0]  // state declaration 

s0 = 0, s1 = 1, s2 = 2, s3 = 3; 

// state register description 

    always @(posedge clk, negedge reset)  

        if (~reset)  state <= s0; 

        else         state <= next; 

    always @(*) // transition description  

        case(state) 

   s0: casex(x) 
    3'b100:  next = s1; 

    3'b001:  next = s2; 

    3'b01?:  next = s3; 

        endcase 

   s1: next = s0; 

   s2: next = s0;      

   s3: next = s0; 

        endcase 

    always @(*) // output description 

        case(state) 

   s0: casex(x) 
    3'b100:   y = 3'b001; 

    3'b001:   y = 3'b010; 

    3'b01?:   y = 3'b100; 

         endcase 

   s1: y = 3'b001;  

   s2: y = 3'b010; 

   s3: y = 3'b100; 

        endcase 

endmodule 

 

Here we use the style of FSM describing three pro-

cesses [30], where the first process describes the state 

register, the second process describes the transitions, and 

the third process describes the outputs of the FSM. Note 

that the logic of transitions and outputs of the FSM is de-

scribed using two levels of case statements, where the 

first level defines the behavior of the FSM depending on 

the present state (state), and the second level defines the 

behavior of the FSM in each state depending on the input 

vector (x). 

When realizing the traditional description of the 

FSM, the synthesis tools (in our case Quartus system) 

output warning messages and implement the FSM state 

register not by flip-flops but by latches. In addition, the 

latches will be installed on the FSM outputs. Therefore, 

the number of FPGA logic elements used (an area or an 

implementation cost) will be quite large. FPGAs do not 

have latches. The latches in FPGA are implemented us-

ing flip-flops and additional logic. 

Although the behavior of the FSM will follow the 

defined specification, the FSM will not operate in illegal 

states because the traditional description of the FSM does 

not specify the behavior of the FSM in illegal states. 

 

4.2. FSM transition from illegal states 

 

When a failure occurs in the state register, the FSM 

can transits to an illegal state and (if the behavior of the 

FSM in the illegal state is not defined) the FSM fails, i.e. 

the FSM stops working. Several solutions are possible 

when the FSM transits to one of the illegal states (Fig. 2): 

 

 
 

Fig. 2. Variants of FSM transitions from illegal states: a 

– return to the start state; b – transition to the state idle 

with return to the start state; c – transition to the state 

idle with return to the state si, from which the transition 

to the illegal state occurred 

 

a) the FSM transits to the start state s0; 

b) the FSM transits to the additional state idle, in 

which an error flag can be generated or certain actions 

s0

s0 si

s0

legal

states

legal
states

legal
states

illegal

states

illegal
states

illegal
states

idle

idle

a)

b)

c)
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can be performed to resume the FSM operation, after 

which the FSM transits to the start state s0; 

c) same as b), but the FSM returns to the state si 

from which the transition to the illegal state occurred. 

The state in which the transition begins is called the 

initial transition state, and the state in which the transi-

tion ends is called the final transition state. In Verilog, it 

is easier to describe variant a). For this purpose, it is suf-

ficient to add the construction default to the first level 

case statements with the FSM transition to the start state 

s0, for example: 

 

always @(*)  // transition description 

case (state) 

 s0: … 

 … 

 s3: … 

 default: next = s0; // transitions from  

         // illegal states 

endcase 

 

To realize the variant b), the idle state is added to 

the FSM description. Using the default construction in 

the first-level case statement, transitions to the idle state 

are defined; this corresponds to the FSM transition from 

the illegal states. In addition, the transition from the idle 

state to the start state is added, for example: 

 
localparam [2:0]  // state declaration 

s0 = 0, s1 = 1, s2 = 2, s3 = 3, idle = 4;  

… 

always @(*)  // transition description 

case (state) 

 s0: … 

 … 

 s3: … 

 idle: next = s0; // from idle to start state 

 default: next = idle; // from illegal states 

endcase 
 

When implementing variant c), the intermediate 

variable sr is declared, which stores the code of the state 

si from which the FSM transitioned to the illegal state. 

For variant c), the description of transitions in our exam-

ple has the following view: 

 

reg [2:0] sr;  // intermediate variable 

… 
always @(*)  // transition description 

case(state) 

 s0: begin sr = s0; next =… end 

 s1: begin sr = s1; next =… end 

 s2: begin sr = s2; next =… end 

 s3: begin sr = s3; next =… end 

 idle: next = sr; // to the initial transition state 

 default: next = idle; // from illegal states 

endcase 

 

Here, the following statement is added to the de-

scription of transitions from each state: “sr = si; …”, 

where si is the initial transition state. In case of an erro-

neous change in the present state code, the sr variable 

stores the code of the last legal state from which the tran-

sition to the illegal state occurred. 

When describing outputs, in the state idle and in the 

construct default, can optionally be set to the flag ille-

gal_state that indicates the illegal state, for example: 

 

output reg illegal_state, // flag declaration 

… 

always @(*)  // output description 

begin 

illegal_state = 1’b0; 

case (state) 

 s0: … 

  … 

 s3: … 

 idle: illegal_state = 1’b1; // for idle state 

 default: illegal_state = 1’b1; // for all illegal 
     // states 

endcase 

end 
 

Instead of the flag illegal_state in the state idle as 

well as in the illegal states, it is possible to form a certain 

value of the output vector (e.g. zero value), which indi-

cates that the FSM is in the illegal state. For example: 

 

always @(*)  // output description 

case (state) 

s0: … 

 … 

 s3: … 
 idle: y = 3’b000; // for idle state 

 default: y = 3’b000; // for all illegal states 

endcase 
 

4.3. Definition of transitions from each state 

 

In the proposed styles of describing fault-tolerant 

FSMs, transitions from each state are described using 

second-level case statements. Note that if-else-if chains 

can be used for the same purpose because case and if 

statements are interchangeable in this case. 

The input vectors of the FSM may contain do not 

care values, which are denoted in the Verilog description 

by a question mark ("?"). Because constant elements of 

case statements may contain don't care values, here the 

casex statement is used instead of the case statement. 

Constant elements of the case statement define the 

transition conditions of the FSM to the legal states. The 

default construct defines the transition of the FSM in the 

case of mismatch of any constant element with the input 

vector x, i.e., it defines the final transition state for tran-

sition conditions that are not defined in the specification 
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of the FSM. When describing fault-tolerant FSMs, the in-

itial transition state is taken as the final transition state in 

the default construction. For example, in our example, 

the description of transitions from state s0 has the follow-

ing view: 

 

s0: casex(x) 

3'b100:   next = s1; 

3'b001:   next = s2; 

3'b01?:   next = s3; 
default:   next = s0; 

endcase 
 

The described behavior of the FSM is shown in Fig. 3. 

 

 
 

Fig. 3. Transitions of an FSM from state si:  

a – in the case of traditional description; b – in the case 

of the description of a fault-tolerant FSM 

 

The transitions from each state si of the fault-toler-

ant FSM are shown in Fig. 3,b, where X(si,sj) is the tran-

sition condition (input vector) that initiates the transition 

from state si to state sj, sj, si S, S is the set of the FSM 

states. The transition condition defined in the default 

construction corresponds to expression (2): 

 

X(si, si) = X(s)\{X(si, sj),… , X(si, sk)},     (2) 

 

where X(s) is the set of all input vectors of the FSM. 

 

4.4. Formation of the output vectors  

of fault-tolerant FSMs 
 

Let X(si) be the set of input vectors that initiate tran-

sitions from state si, X(si)  X(s).  Question: what output 

vector (set of values of output variables) should be 

formed at the FSM output when any of the vectors of the 

set X(si) do not arrive at the FSM input? These variants 

are possible: 

1) zero output vectors; 

2) output vector of values do not care (x…x); 

3) output remains the value of the previous output 

vector; 

4) for each state, the value of the output vector is 

determined by the developer. 

In the case of variant 1, there are no active control 

signals acting on the controlled object, which is not al-

ways permissible. The zero output vectors indicates that 

an invalid input vector arrives at the FSM input. How-

ever, if the zero output vector is valid for the FSM, i.e., it 

is formed in some state (or at some transition) of the 

FSM, it may indicate a false failure. 

The difficulties of using variant 2 lie in the fact that 

often synthesis tools automatically redefine the values of 

outputs to optimize the FSM circuit. As a result, do not 

care values at the output of the FSM will not be formed. 

The use of variant 2 is allowed only for modeling the be-

havior of the FSM. 

Variant 3 can be used when the sequence of clock 

cycles of the FSM allows repetition of output vectors; if 

not, variant 4 should be used. 

In the case of variant 4, for transitions from each 

state, the value of the output vector is determined by the 

designer and does not result in the negative consequences 

specified for variants 1 through 3. 

The same reasoning holds for the generated values 

of output vectors in illegal states. For example, in our ex-

ample, when using variant 1, the description of outputs 

has the following view: 
 

always @(*)  // output description 

case(state) 

 s0: casex(x) 

      3'b100:   y = 3'b001; 

      3'b001:   y = 3'b010; 

      3'b01?:   y = 3'b100; 

      default:  y = 3'b000;  // zero output vector  

       // from the state s0 

endcase 

s1: y = 3'b001;  
s2: y = 3'b010; 

s3: y = 3'b100; 

default:  y = 3'b000;  // zero output vector  

       // from the illegal states  

endcase 
 

4.5. Description styles of fault-tolerant FSMs 
 

Two styles are proposed for describing fault-toler-

ant FSMs in Verilog: safe0 and safe1. In both styles, 

when describing transitions from each state, the initial 

transition state is defined in the default construct 

(Fig. 3,b). When the FSM transits to the illegal state, us-

ing the variant when the FSM returns to the start state 

(Fig. 2,a), for example: 

 

always @(*)  // transition description 

case(state) 

si

si

sj

sj

sk

sk

…
…

…
…

X(s ,
s )
i j

X(s
,s )i j

X(s ,s )i i

X(s ,s )i k

X(s ,s )i k

a)

b)
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 si: casex(x) 

         … 

          default: next = si; // return to the initial 

          // transition state 

    endcase 

 … 

 default: next = s0; // return to the start state 

endcase 

  

The styles safe0 and safe1 differ in the way they 

form the values of output signals. In the safe0 style, the 

zero output vector is formed in the default constructs, 

which corresponds to variant 1. In the safe1 style, the de-

scription of FSM outputs coincides with the traditional 

description. In this case, when not all possible values of 

input variables are specified in the case statements, the 

synthesis tool will set latches on the FSM outputs. As a 

result, the FSM will maintain the value of the previous 

output vector at the output, which corresponds to vari-

ant 3. 

Figure 4 shows the functional modeling results of 

the FSM from our example for the safe0 and safe1 de-

scription styles. 

From Fig. 4 shows that for the safe0 style, in case 

of invalid input vectors arriving at the input of the FSM, 

zero vectors are formed at the FSM outputs, while for the 

safe1 style, the FSM outputs retain the same values of the 

outputs. 

Note that based on the considered methods for de-

scribing fault-tolerant FSMs, other styles of describing 

fault-tolerant FSMs can be constructed that are better 

suited for the design of a specific FSM. 

 

5. Experimental Results 

 

The effectiveness of the proposed safe0 and safe1 

styles for describing fault-tolerant FSMs has been tested 

on the FSM benchmarks of the MCNC center [1]. The 

synthesis was performed using Quartus version 23.1 for 

the Cyclone 10 LP FPGA family.  

Because the FSM parameters (area and perfor-

mance) depend heavily on state encoding, all state encod-

ing methods provided by the Quartus system (One-Hot, 

Gray, Johnson, Minimal Bits and Sequential) were ap-

plied for each example. Then, the best results were se-

lected from the obtained results: the minimum area and 

the maximum performance. 

The use of safe0 and safe1 description styles 

changed the parameters of the FSM for the 20 bench-

marks. The experimental results for these examples are 

shown in Table 1, where i, o, p, and s are the number of 

inputs, outputs, transitions, and states of the FSM, respec-

tively; LO, LS0, and LS1 are the number of FPGA logic 

elements used to implement the FSM (i.e. area or cost of 

implementation) in the case of the traditional description, 

using the style safe0 and using the style safe1; FO, FS0 and 

FS1 – the same, but with respect to the FSM performance, 

which is measured in megahertz; LO/LS0, LO/LS1, FS0/FO, 

and FS1/FO – relations of the corresponding parameters; 

Av and Max – arithmetic mean and maximum value of 

the parameters. 

Table 1 shows that using the safe0 style reduces the 

area for 17 examples. On average, the area is reduced by 

a factor of 2.148, and the maximum area reduction by a 

factor of 4.8 is observed for example lion9. Similarly, us-

ing safe1 style reduces the area for 19 examples. On av-

erage, the area is reduced by a factor of 1.774, and the 

maximum area reduction by a factor of 4.8 is also ob-

served for the lion9 example. 

Using the safe0 style increases the performance for 

six examples. On average, the performance increases by 

a factor of 1.192, and the maximum performance increase 

by a factor of 2.355 is observed for the pma example. 

Similarly, using safe1 style increases the performance for 

9 examples, on average the performance increases by a 

factor of 1.193, the maximum performance increase by a 

factor of 2.355 is also observed for the pma example. 

 

a) 

 
 

b) 

 
 

Fig. 4. Results of functional modeling of the Mealy FSM:  

a – with description in safe0 style;  b – with description in safe1 style 
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Table 1 

Experimental results of description styles of fault-tolerant FSMs (Safe0 and Safe1)  

compared with the traditional description (Original) 
 

FSM i o p s 
Original Safe0 Safe1 

LO/LS0 LO/LS1 FS0/FO FS1/FO 
LO FO LS0 FS0 LS1 FS1 

bbsse 7 7 56 16 42 253 42 253 39 284 1 1.077 1 1.123 

beecount 3 4 28 7 32 0 14 364 15 383 2.286 2.133 1 1 

cse 7 7 91 16 100 0 70 268 82 288 1.429 1.220 1 1 

ex1 9 19 233 18 119 0 78 247 111 211 1.526 1.072 1 1 

ex2 2 2 72 18 60 166 35 254 35 273 1.714 1.714 1.530 1.645 

ex3 2 2 36 10 34 0 20 349 23 300 1.7 1.478 1 1 

ex4 6 9 21 14 44 0 26 312 33 374 1.692 1.333 1 1 

ex5 2 2 32 9 32 298 14 332 16 314 2.286 2 1.114 1.054 

ex6 5 8 34 8 57 0 46 256 49 272 1.239 1.163 1 1 

ex7 2 2 36 10 32 0 8 346 9 397 4 3.555 1 1 

keyb 7 2 170 19 65 217 65 217 65 218 1 1 1 1.005 

lion 2 1 11 4 13 0 3 1287 7 364 4.333 1.857 1 1 

lion9 2 1 25 9 48 0 10 608 10 608 4.8 4.8 1 1 

pma 8 8 73 24 118 141 93 332 93 332 1.269 1.269 2.355 2.355 

sand 11 9 184 32 208 121 153 241 175 205 1.359 1.189 1.992 1.694 

sse 7 7 56 16 42 253 42 253 39 284 1 1.077 1 1.123 

styr 9 10 166 30 183 200 130 233 147 237 1.408 1.245 1.165 1.185 

tma 7 6 44 20 128 160 59 269 59 269 2.169 2.169 1.681 1.681 

train11 2 1 25 11 41 0 17 656 18 380 2.412 2.278 1 1 

train4 2 1 14 4 13 0 3 1285 7 414 4.333 1.857 1 1 

Av 5.9 6.5 139.6 22.4 69.7 301.3 60.2 438.3 62.5 394.9 2.148 1.774 1.192 1.193 

Max 19 19 1569 218 387 1269 387 1287 387 1269 4.8 4.8 2.355 2.355 

 

6. Discussions 
 

In this paper, the following tasks have been solved 

to design fault-tolerant FSMs. 

1. In case of a failure in the state register, three ways 

for the FSM transit from the illegal state are proposed: (a) 

return to the start state; (b) transition to the idle state with 

return to the start state; (c) transition to the idle state with 

return to the state si, from which the transition to the ille-

gal state occurred (see Fig. 2). For each way, the tem-

plates for description in HDL are presented. 

2. In case of a failure in the input vector, a method 

is proposed for describing the FSM transitions from each 

state (see Fig. 3), while the FSM remains in the initial 

transition state, the conditions of transitions to which are 

determined by expression (2). 

3. In case of failure in the state register or in the in-

put vector of the FSM, four variants are proposed to  

determine the values of the output vector: (1) zero vector, 

(2) vector of don’t care values, (3) value of the previous 

output vector, (4) the output vector specified by the de-

veloper. This paper analyzes the advantages and disad-

vantages of each variant (subsection 4.4). 

4. On the basis of the considered descriptions of 

transitions and outputs of FSMs, two styles of description 

of fault-tolerant FSMs have been proposed: safe0 and 

safe1 (subsection 4.5). In both styles, when describing 

transitions from each state, the construction default of 

the second-level case statement defines the initial transi-

tion state (see Fig. 3,b). If the FSM transits to an illegal 

state for both styles, the variant is selected when the FSM 

returns to the start state (see Fig. 2,a). The styles safe0 

and safe1 differ in the way they form the values of output 

signals. In the safe0 style, the zero output vector is 

formed in the default constructs, which corresponds to 

variant 1. In the safe1 style, the FSM will save the value 

of the previous output vector at the output, which corre-

sponds to variant 3. 

5. The effectiveness of the proposed styles for de-

scribing fault-tolerant FSMs has been studied using FSM 

benchmarks of the MCNC center in two parameters: area 

and performance when implementing FSMs in FPGAs 

(see Table 1). 

The experimental results have shown that using the 

style safe0, compared to the traditional HDL description 

of FSMs, reduces the area on average by a factor of 2.148 
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(for some examples by a factor of 4.8) and increases the 

performance on average by a factor of 1.192 (for some 

examples by a factor of 2.355). 

Similarly, using the style safe1, compared to the tra-

ditional HDL description of FSMs, reduces the area on 

average by a factor of 1.774 (for some examples by a fac-

tor of 4.8) and increases the performance on average by 

a factor of 1.193 (for some examples by a factor of 

2.355). 

Following features provide the advantages of the 

proposed safe0 and safe1 styles for describing fault-tol-

erant FSMs: 

 in the case of a failure in the input vector or 

when the transition from some state is not defined in the 

FSM specification, the next state (the initial transition 

state) is defined explicitly using the construction default 

of the second-level case statement; 

 in the case of a failure in the state register, the 

FSM transition to the start state is defined explicitly using 

the construction default of the first-level case operator; 

 in case of all the above failures, the FSM outputs 

are defined using the construction default of the case 

statement in safe0 style as a zero vector, and in safe1 style 

as the value of the previous output vector. 

The advantage of this study over the known ones is 

that the problem of designing fault-tolerant FSMs is 

solved at the level of FSM description in HDL. This 

made it possible not only to implement fault-tolerant 

FSMs but also to reduce the area and increase the perfor-

mance of FSMs. 

Note that known methods for designing fault-toler-

ant FSMs usually require significant area overhead, 

which decreases the performance of the original FSM. 

EPMs and laser beams that impact the UAV cause 

failures in the input vector and state register of FSMs that 

act as control devices for the UAV. Therefore, the pro-

posed description styles for fault-tolerant FSMs are pri-

marily designed for UAV control systems. 

Thus, the considered safe0 and safe1 styles of de-

scribing fault-tolerant FSMs not only allow improving 

the fault tolerance but also contribute to the reduction of 

the area and increase the performance of FSMs, so they 

can be recommended for practical use. 

 

7. Conclusions 
 

In this paper, the problem of designing fault-toler-

ant FSMs when the values of bits in the state register or 

in the input vector of the FSM change because of the  

negative external impact is described. Different ways of 

solving the problem at the level of FSM description in 

HDL are considered. Two styles of describing fault-tol-

erant FSMs have been proposed, which allow the detec-

tion of faults in the state register and in the input vector 

of the FSM. This prevents transitions of the FSM to ille-

gal states and invalid transitions to legal states. 

The fault tolerance of FSM functioning described 

using the safe0 and safe1 styles is provided as follows. 

When the input vector is not defined in the FSM specifi-

cation for a specific state, the FSM will remain in the in-

itial transition state, i.e. the FSM will not transit to an-

other state. If an illegal state code is set in the state regis-

ter, the FSM will transition to the start state. For all these 

faults, the safe0 style provides a zero output vector at the 

FSM output, whereas the safe1 style preserves the value 

of the previous output vector. 

The proposed styles of description of fault-tolerant 

FSMs do not degrade the parameters of FSMs, which are 

described by the traditional style, but in some cases allow 

the reduction of the area (for some examples by a factor 

of 4.8) and increase of the performance (for some exam-

ples by a factor of 2.355). In addition, the description 

styles of fault-tolerant FSMs allow us to neutralize design 

errors when transitions in each state are not described for 

all possible values of input variables. 

In addition, the proposed description styles for 

fault-tolerant FSMs allow neutralizing design errors 

when transitions in each state are not described for all 

possible values of input variables. 

Thus, the main contributions are as follows: 

 - in case of a failure in the FSM state register, three 

methods have been proposed for the FSM transit from the 

illegal state, which can be implemented using the HDL; 

- the method proposed to describe in HDL the FSM 

behavior in each state in the case of an invalid input vec-

tor or an input vector that is not defined in the FSM spec-

ification; 

- four variants have been proposed for describing in 

HDL the FSM output vectors in the case of an invalid 

input vector or an input vector that is not defined in the 

FSM specification; 

- based on these methods of FSM description, two 

styles for describing fault-tolerant FSMs are proposed. 

The effectiveness of the proposed description styles 

of fault-tolerant FSMs in terms of area and performance 

has been investigated on the FSM benchmarks of MCNC 

center. 

Future research development.  A promising direc-

tion for future research seems to be the development of 

new styles and methods of FSM description, aimed at im-

proving the FSM parameters (an area, a performance and 

a power consumption), as well as improving the reliabil-

ity and fault tolerance of FSMs. 
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СТИЛІ ОПИСУ НАДІЙНИХ СКІНЧЕННИХ АВТОМАТІВ  

ДЛЯ БЕЗПІЛОТНИХ ЛІТАЛЬНИХ АПАРАТІВ 

Валерій Соловйов 

Об'єктом дослідження є скінченні автомати (ССА), які використовуються як пристрої керування в безпі-

лотних літальних апаратах (БПЛА). Метою роботи є розробка стилів опису робастних (відмовостійких) авто-

матів на мовах опису апаратури (HDL), які запобігають виникненню збоїв у регістрі станів та вхідному векторі 

автомата. Задачі, що вирішуються: розробка методів опису переходу автомата з недопустимих станів у випа-

дку збою в регістрі стану, а також переходу автомата з кожного стану у випадку збою у вхідному векторі; 

визначення вихідних векторів автомата у випадку зазначених вище збоїв; розробка стилів опису надійних 

(відмовостійких) автоматів; дослідження ефективності запропонованих стилів опису надійних автоматів. Ви-
користані методи: теорія скінченних автоматів, методи кодування станів автоматів, методи представлення 

автоматів, мова опису апаратури Verilog. Отримані наступні результати: розроблено два стилі опису надійних 

автоматів safe0 та safe1, які не збільшують площу та не зменшують швидкодію автоматів, а в деяких випадках 

дозволяють зменшити площу (для деяких прикладів у 4.8 рази) та збільшити швидкодію (для деяких прикладів 

у 2.36 рази). Крім того, стилі опису надійних автоматів нейтралізують помилки проектування, коли переходи 

описуються в кожному стані не для всіх можливих значень вхідних змінних. Висновки. У статті сформульо-

вано проблему проектування надійних автоматів, коли значення бітів у регістрі стану або у вхідному векторі 

автомата змінюються внаслідок негативного зовнішнього впливу. Розглянуто різні способи розв'язання про-

блеми на рівні опису ШПМ мовою HDL. Запропоновано два стилі опису надійних автоматів: safe0 та safe1. 

Надійність функціонування ШНМ, описаних за допомогою стилів safe0 та safe1, забезпечується наступним 

чином. Якщо вхідний вектор не визначений у специфікації FSM для певного стану, то FSM залишиться у 
початковому перехідному стані, тобто FSM не перейде в інший стан. Якщо у регістрі станів задано недопус-

тимий код стану, то FSM перейде у початковий стан. Для всіх цих помилок стиль safe0 забезпечує нульовий 

вихідний вектор на виході FSM, тоді як стиль safe1 зберігає значення попереднього вихідного вектора. Перс-

пективним напрямком подальших досліджень видається розробка нових стилів та способів опису FSM, спря-

мованих на покращення параметрів FSM (площі, продуктивності та енергоспоживання), а також на підви-

щення надійності та відмовостійкості FSM. 

Ключові слова: скінченний автомат; надійність; відмовостійкість; мова опису апаратного забезпечення; 

Verilog; польова програмована логічна матриця; безпілотний літальний апарат (БПЛА). 
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