
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
196

UDC 629.7.014-519.05.083:519.713 doi: 10.32620/reks.2024.1.15

Valery SALAUYOU

Bialystok University of Technology, Bialystok, Poland

DESCRIPTION STYLES OF FAULT-TOLERANT FINITE STATE MACHINES

FOR UNMANNED AERIAL VEHICLES

The subject matter of this article is finite state machines (FSMs), which are used as control devices in unmanned
aerial vehicles (UAVs). The goal of this study is to develop description styles for fault-tolerant FSMs in hardware

description languages (HDLs) that prevent failures in the state register and in the input vector of the FSM. The

tasks to be solved are as follows: development of description methods for FSM transitions from illegal states in

case of failure in the state register, as well as for FSM transitions from each state in case of failure in the input

vector; determination of FSM output vector values in case of the above failures; development of description

styles for fault-tolerant FSMs; and investigation of the efficiency of the proposed description styles for fault-

tolerant FSMs. The methods used are: the theory of finite state machines, state encoding methods of FSMs,

description styles of FSMs, and Verilog hardware description language. The following results were obtained:

two styles of describing fault-tolerant FSMs have been developed, safe0 and safe1, which do not increase the

area and do not decrease the performance of FSMs, and in some cases allow the area to be reduced (for some

examples by a factor of 4.8) and increase the performance (for some examples by a factor of 2.355). In addition,
the description styles of fault-tolerant FSMs neutralize design errors when transitions are described in each

state but not for all possible values of input variables. Conclusions. In this paper, the problem of designing fault-

tolerant FSMs when the values of bits in the state register or in the input vector of the FSM change because of

the negative external impact is described. Different ways of solving the problem at the level of FSM description

in HDL are considered. Two description styles for fault-tolerant FSMs are proposed: safe0 and safe1. The fault

tolerance of FSMs is provided in the following manner. When the input vector is not defined in the FSM specifi-

cation for a specific state, the FSM will remain in the initial transition state, i.e. the FSM will not transit to

another state. If the code of the illegal state is set in the state register, the FSM will transition to the start state.

For all these faults, the safe0 style provides a zero output vector at the FSM output, whereas the safe1 style

preserves the value of the previous output vector. A promising direction for future research seems to be the

development of new styles and methods of FSM description, aimed at improving the FSM parameters (an area,

a performance and a power consumption), as well as improving the reliability and fault tolerance of FSMs.

Keywords: finite state machine (FSM); fault tolerance; hardware description language (HDL); Verilog; field

programmable gate array (FPGA); unmanned aerial vehicle (UAV).

1. Introduction

Fault detection and neutralization is an important

task in creating fault-tolerant control devices in space

technology, avionics, life-support medical equipment,

nuclear reactors, banking systems, and telecommunica-

tion servers. Finite state machines (FSMs) are also

widely used as control devices in unmanned aerial vehi-

cles (UAVs) or drones. Currently, UAVs are used in

many areas of human activity, including military con-

flicts. One of the ways to combat UAVs is to influence

the UAV with an electromagnetic pulse (EMP) or a laser

beam, which causes numerous failures in the electrical

circuits of the control device.

To build a fault-tolerant FSM, it is important to

specify it correctly. The FSM is defined correctly when

in each state all possible transitions are defined (i.e. the

logical OR of transition conditions from each state are

equal to a logical unit), at least one transition from other

states leads to each state, each transition condition from

some state does not intersect with other transition condi-

tions from this state. When these rules are executed in the

FSM specification, invalid transitions between states and

transitions to illegal states should not occur. However,

often for various reasons the above rules for correct de-

scription of FSMs are not enforced. When designing

complex FSMs, the last of the above rules is most often

violated. For example, from 49 MCNC benchmark exam-

ples of FSMs [1], this condition is violated in 22 exam-

ples.

The source of FSM failures (for example, because

of negative external impacts) can be a fault in the state

register. If one or more bits are changed in the state reg-

ister, the FSM may transit to an illegal state, the transition

from which has not been defined in the FSM specifica-

tion. It is also possible that, because of a negative impact,

the code of the legal state will be set in the state register.

This corresponds to an invalid transition between legal

states. In both cases, normal operation of the FSM will

be disrupted.

 Valery Salauyou, 2024

Information security and functional safety

197

Let the FSM have M states encoded by a code of

length R bits, R ≥]log2 M[,]A[is the smallest integer

greater than or equal to A. The number MI of illegal states

whose codes can be set in the state register is determined

by Eq. (1).

MI = 2R −M. (1)

In case of failure in the state register there is a high

probability of FSM transition to an illegal state. The

problem becomes especially acute when using the one-

hot code, which is popular when an FSM is implemented

in a field programmable gate array (FPGA).

FSM failures can also be caused by errors in the

specification of FSM when transitions from each state are

not defined for all possible combinations of input varia-

bles. Usually, the FSM specification defines the transi-

tion conditions to certain states for specific values of in-

put vectors, while the behavior of the FSM for other val-

ues of input variables remains undefined. In addition, for

some states it is possible that transition conditions may

intersect for transitions to different states, i.e. non-deter-

ministic behavior of the FSM is possible.

2. Related works

2.1. UAV warfare

To combat UAVs, a wide variety of methods are

used, which can be divided into two large classes: de-

structive (machine guns, missiles, ramming by other

drones) and non-destructive (all others). The main non-

destructive methods of UAV warfare are jamming sig-

nals to and from the UAV, noise suppression, powerful

EMPs and laser beams.

The problems of UAV warfare by non-destructive

methods such as jamming uplink, jamming downlink,

GPS jamming, GPS spoofing, and deauthentication pack-

ets are considered in [2]. Jamming downlink jamming is

also considered in [3]. A swarm of UAVs to track mali-

cious UAVs is used in [4]. The classification of cyber at-

tacks on UAVs is given in [5]. In [6], the issue of jam-

ming UAVs with a concentration of signal power toward

the UAV is studied. The UAV countermeasure technol-

ogy based on partial-band noise jamming is presented in

[7]. In [8], the problem of influencing a UAV with a pow-

erful EMP is considered. The use of noise and EMR for

jamming UAVs has also been studied [9]. In [10], a soft-

ware-based Wi-Fi jammer for UAV warfare is proposed.

The UAV-controlled interceptor using the parallel ap-

proach guidance method is considered in [11]. In [12],

self-jamming caused by unintentional electromagnetic

noise from multiple electronic devices installed in a UAV

is studied.

In this study, EMPs and laser beams are considered

as external influences on UAV control devices, which

cause failures in the input vector and in the state register

of the FSM.

2.2. Fault-tolerant FSMs

FSMs play an important role in digital circuit design

because they store the system status and control system

functionality. Hence, if errors occur in the FSM, they

cause serious problems for the system. Therefore, mod-

ern digital systems use fault-tolerant FSMs as control de-

vices.

Failures of FSMs can be caused:

 by radiation or cosmic rays (affecting hardware

in nuclear power plants or spacecraft);

 by electromagnetic pulses (EMBs) or laser

beams (used in UAV warfare);

 by fault injection attacks (FIA) (used by attack-

ers in cryptographic applications);

 by laser-based fault injection (LFI), when an at-

tacker changes the values of individual flip-flops of the

FSM state register, etc.

The problem of designing fault-tolerant FSMs can

be solved at different levels:

 at the level of gates (transistors) [13];

 at the register-transfer level (RTL) [14];

 at the logical level by applying special synthesis

methods [15, 16], state encoding (state assignment) [17 -

23], and using embedded memory blocks of FPGAs [24,

25];

 at the structural level using special structural

models of FSMs [26, 27].

Often, the logical level is linked to the structural

level [28]. The above problem can also be solved at the

system level [29].

In [13], the structure of a flip-flop for the FSM state

register is proposed, which protects the FSM from FIA.

In [14], solutions at the RTL level are proposed to ensure

the reliability of the FSM in the case of single event up-

sets (SEUs).

In [15], the FSM state encoding algorithm is con-

sidered which, in addition to providing fault tolerance,

allows for area and power optimization. In [16], a method

to insert hidden state transitions (HSTs) and logic cone

modifications into a netlist to enhance the security of the

FSM from FIA is presented.

In [17], convolutional codes are used to detect and

correct errors in the FSM state register. In [18], secure

FSM architectures are proposed based on the idea of ran-

domly selecting one code from the set of codes for each

encoding and decoding operation. In [19], SEC-DED

(single error correction and double error detection) code

is used, and in [20], Hamming 3 code is used to detect

and correct SEUs when the FSM is implemented in an

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
198

FPGA. In [21], fault-tolerant techniques like Triple Mod-

ular Redundancy (TMR), Hamming-3 encoding, and safe

FSM synthesis are analyzed, which are implemented in

live designs targeted at Nuclear Power Plants. In [22], the

technique for designing FSMs considering the security

requirements for FIAs is discussed. This technique in-

cludes secure state encoding and the building of a secure

FSM architecture to eliminate vulnerabilities from setup-

time violation-based fault attacks. In [23], a transition-

based encoding CAD framework (TAMED) is presented

that provides FSM robustness to multiple LFI models.

In [24] and in [25], embedded memory blocks of the

FPGA are used to design fault-tolerant FSMs in the case

of SEUs.

In [26] and in [27], structural models for Moore

FSMs and Mealy FSMs are presented, which allow de-

tection and neutralization of faults caused by EMPs and

laser beams. The proposed structural models allow to de-

tect and to neutralize the following faults: invalid input

and output vectors for the entire FSM and in each state;

invalid present and next state code; and invalid transi-

tions between states.

In [28], a method for designing FSMs by selectively

applying the fault-tolerant circuit according to the im-

portance of the state is discussed.

In [29], a formal analysis based on symbolic algebra

is used to find the FSM vulnerabilities; this allows detect-

ing unauthorized access to the states of the design.

However, all the approaches considered, as a rule,

require significant hardware overhead and often lead to a

decrease in the performance of the FSMs. Note that re-

searchers pay little attention to methods for optimizing

parameters and improving the properties of FSMs, which

can be achieved by ways (styles) of describing FSMs in

a hardware description language (HDL), as well as by

methods implemented in design tools.

3. Aim and tasks of the work

Let us devise the design of a fault-tolerant FSM in

the following manner.

Task. Create a FSM that corresponds to the given

specification and remains operational when an invalid in-

put vector (which is not defined in the FSM specification)

arrives at the FSM input and when the code of an illegal

state is set in the status register because of a failure.

Solving this problem is especially important when

developing control devices for UAVs. The fact is that the

UAV can be affected by EMPs or laser beams, called ex-

ternal negative impacts, which can change the values of

bits in the input vector or in the state register of FSMs.

Thus, this study aims to develop description styles

for fault-tolerant FSMs in HDLs that prevent failures in

the state register and the input vector of the FSM.

To achieve the aim of the research, the following

tasks have been developed.

1. To develop ways of describing transitions of the

FSM from illegal states in case of failure in the state reg-

ister.

2. To develop ways of describing the transitions of

the FSM from each state in case of failure in the input

vector;

3. In the case of the above failures, to develop ways

of describing the outputs of the FSM.

4. Develop description styles for building fault-tol-

erant FSMs.

5. To investigate the effectiveness of the proposed

styles of FSM description on the FSM benchmark exam-

ples.

4. Design of fault-tolerant FSMs

using the description in HDL

The Verilog language has been chosen as the HDL-

language, but all the approaches discussed in this paper

can also be used in the SystemVerilog and VHDL lan-

guages.

4.1. The demonstration example

As an example of an FSM, consider the Mealy

FSM, whose state transition graph (STG) is shown in Fig.

1. Note that the methods discussed in this paper can also

be used to design fault-tolerant Moore FSMs.

Fig. 1. State transition graph of Mealy FSM

Our FSM has 3 inputs, 3 outputs and 4 states. The

vertices of the STG correspond to the states s0,...,s3, and

the edges of the STG correspond to the transitions of the

FSM. The input vector that initiates this transition is writ-

ten near each edge of the STG, and the output vector that

produced during this transition is written with a slash

(“/”). Here, the hyphen (“-”) can take any bit value: 0

or 1.

s0 s1

s2s3

---/001

100/001

---/010

001/010
01-/100---/100

Information security and functional safety

199

Transitions from state s0 are defined for vectors 100,

001, and 01-, where the vector 01- corresponds to the two

vectors 010 and 011. Note that transitions from state s0

are not defined for vectors 000, 101, 110, and 111. The

transitions from states s1, s2 and s3 to state s0 are uncon-

ditional, i.e., they are performed for all possible input

vectors.

The traditional description of our FSM in the Veri-

log HDL is as follows:

module FSM_Mealy (

input clk, reset, // sync and reset signals
 input [2:0] x, // inputs

 output reg [2:0] y); // outputs

 reg[2:0] state, next; // state variables

 localparam [2:0] // state declaration

s0 = 0, s1 = 1, s2 = 2, s3 = 3;

// state register description

 always @(posedge clk, negedge reset)

 if (~reset) state <= s0;

 else state <= next;

 always @(*) // transition description

 case(state)

 s0: casex(x)
 3'b100: next = s1;

 3'b001: next = s2;

 3'b01?: next = s3;

 endcase

 s1: next = s0;

 s2: next = s0;

 s3: next = s0;

 endcase

 always @(*) // output description

 case(state)

 s0: casex(x)
 3'b100: y = 3'b001;

 3'b001: y = 3'b010;

 3'b01?: y = 3'b100;

 endcase

 s1: y = 3'b001;

 s2: y = 3'b010;

 s3: y = 3'b100;

 endcase

endmodule

Here we use the style of FSM describing three pro-

cesses [30], where the first process describes the state

register, the second process describes the transitions, and

the third process describes the outputs of the FSM. Note

that the logic of transitions and outputs of the FSM is de-

scribed using two levels of case statements, where the

first level defines the behavior of the FSM depending on

the present state (state), and the second level defines the

behavior of the FSM in each state depending on the input

vector (x).

When realizing the traditional description of the

FSM, the synthesis tools (in our case Quartus system)

output warning messages and implement the FSM state

register not by flip-flops but by latches. In addition, the

latches will be installed on the FSM outputs. Therefore,

the number of FPGA logic elements used (an area or an

implementation cost) will be quite large. FPGAs do not

have latches. The latches in FPGA are implemented us-

ing flip-flops and additional logic.

Although the behavior of the FSM will follow the

defined specification, the FSM will not operate in illegal

states because the traditional description of the FSM does

not specify the behavior of the FSM in illegal states.

4.2. FSM transition from illegal states

When a failure occurs in the state register, the FSM

can transits to an illegal state and (if the behavior of the

FSM in the illegal state is not defined) the FSM fails, i.e.

the FSM stops working. Several solutions are possible

when the FSM transits to one of the illegal states (Fig. 2):

Fig. 2. Variants of FSM transitions from illegal states: a

– return to the start state; b – transition to the state idle

with return to the start state; c – transition to the state

idle with return to the state si, from which the transition

to the illegal state occurred

a) the FSM transits to the start state s0;

b) the FSM transits to the additional state idle, in

which an error flag can be generated or certain actions

s0

s0 si

s0

legal

states

legal
states

legal
states

illegal

states

illegal
states

illegal
states

idle

idle

a)

b)

c)

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
200

can be performed to resume the FSM operation, after

which the FSM transits to the start state s0;

c) same as b), but the FSM returns to the state si

from which the transition to the illegal state occurred.

The state in which the transition begins is called the

initial transition state, and the state in which the transi-

tion ends is called the final transition state. In Verilog, it

is easier to describe variant a). For this purpose, it is suf-

ficient to add the construction default to the first level

case statements with the FSM transition to the start state

s0, for example:

always @(*) // transition description

case (state)

 s0: …

 …

 s3: …

 default: next = s0; // transitions from

 // illegal states

endcase

To realize the variant b), the idle state is added to

the FSM description. Using the default construction in

the first-level case statement, transitions to the idle state

are defined; this corresponds to the FSM transition from

the illegal states. In addition, the transition from the idle

state to the start state is added, for example:

localparam [2:0] // state declaration

s0 = 0, s1 = 1, s2 = 2, s3 = 3, idle = 4;

…

always @(*) // transition description

case (state)

 s0: …

 …

 s3: …

 idle: next = s0; // from idle to start state

 default: next = idle; // from illegal states

endcase

When implementing variant c), the intermediate

variable sr is declared, which stores the code of the state

si from which the FSM transitioned to the illegal state.

For variant c), the description of transitions in our exam-

ple has the following view:

reg [2:0] sr; // intermediate variable

…
always @(*) // transition description

case(state)

 s0: begin sr = s0; next =… end

 s1: begin sr = s1; next =… end

 s2: begin sr = s2; next =… end

 s3: begin sr = s3; next =… end

 idle: next = sr; // to the initial transition state

 default: next = idle; // from illegal states

endcase

Here, the following statement is added to the de-

scription of transitions from each state: “sr = si; …”,

where si is the initial transition state. In case of an erro-

neous change in the present state code, the sr variable

stores the code of the last legal state from which the tran-

sition to the illegal state occurred.

When describing outputs, in the state idle and in the

construct default, can optionally be set to the flag ille-

gal_state that indicates the illegal state, for example:

output reg illegal_state, // flag declaration

…

always @(*) // output description

begin

illegal_state = 1’b0;

case (state)

 s0: …

 …

 s3: …

 idle: illegal_state = 1’b1; // for idle state

 default: illegal_state = 1’b1; // for all illegal
 // states

endcase

end

Instead of the flag illegal_state in the state idle as

well as in the illegal states, it is possible to form a certain

value of the output vector (e.g. zero value), which indi-

cates that the FSM is in the illegal state. For example:

always @(*) // output description

case (state)

s0: …

 …

 s3: …
 idle: y = 3’b000; // for idle state

 default: y = 3’b000; // for all illegal states

endcase

4.3. Definition of transitions from each state

In the proposed styles of describing fault-tolerant

FSMs, transitions from each state are described using

second-level case statements. Note that if-else-if chains

can be used for the same purpose because case and if

statements are interchangeable in this case.

The input vectors of the FSM may contain do not

care values, which are denoted in the Verilog description

by a question mark ("?"). Because constant elements of

case statements may contain don't care values, here the

casex statement is used instead of the case statement.

Constant elements of the case statement define the

transition conditions of the FSM to the legal states. The

default construct defines the transition of the FSM in the

case of mismatch of any constant element with the input

vector x, i.e., it defines the final transition state for tran-

sition conditions that are not defined in the specification

Information security and functional safety

201

of the FSM. When describing fault-tolerant FSMs, the in-

itial transition state is taken as the final transition state in

the default construction. For example, in our example,

the description of transitions from state s0 has the follow-

ing view:

s0: casex(x)

3'b100: next = s1;

3'b001: next = s2;

3'b01?: next = s3;
default: next = s0;

endcase

The described behavior of the FSM is shown in Fig. 3.

Fig. 3. Transitions of an FSM from state si:

a – in the case of traditional description; b – in the case

of the description of a fault-tolerant FSM

The transitions from each state si of the fault-toler-

ant FSM are shown in Fig. 3,b, where X(si,sj) is the tran-

sition condition (input vector) that initiates the transition

from state si to state sj, sj, si S, S is the set of the FSM

states. The transition condition defined in the default

construction corresponds to expression (2):

X(si, si) = X(s)\{X(si, sj),… , X(si, sk)}, (2)

where X(s) is the set of all input vectors of the FSM.

4.4. Formation of the output vectors

of fault-tolerant FSMs

Let X(si) be the set of input vectors that initiate tran-

sitions from state si, X(si)  X(s). Question: what output

vector (set of values of output variables) should be

formed at the FSM output when any of the vectors of the

set X(si) do not arrive at the FSM input? These variants

are possible:

1) zero output vectors;

2) output vector of values do not care (x…x);

3) output remains the value of the previous output

vector;

4) for each state, the value of the output vector is

determined by the developer.

In the case of variant 1, there are no active control

signals acting on the controlled object, which is not al-

ways permissible. The zero output vectors indicates that

an invalid input vector arrives at the FSM input. How-

ever, if the zero output vector is valid for the FSM, i.e., it

is formed in some state (or at some transition) of the

FSM, it may indicate a false failure.

The difficulties of using variant 2 lie in the fact that

often synthesis tools automatically redefine the values of

outputs to optimize the FSM circuit. As a result, do not

care values at the output of the FSM will not be formed.

The use of variant 2 is allowed only for modeling the be-

havior of the FSM.

Variant 3 can be used when the sequence of clock

cycles of the FSM allows repetition of output vectors; if

not, variant 4 should be used.

In the case of variant 4, for transitions from each

state, the value of the output vector is determined by the

designer and does not result in the negative consequences

specified for variants 1 through 3.

The same reasoning holds for the generated values

of output vectors in illegal states. For example, in our ex-

ample, when using variant 1, the description of outputs

has the following view:

always @(*) // output description

case(state)

 s0: casex(x)

 3'b100: y = 3'b001;

 3'b001: y = 3'b010;

 3'b01?: y = 3'b100;

 default: y = 3'b000; // zero output vector

 // from the state s0

endcase

s1: y = 3'b001;
s2: y = 3'b010;

s3: y = 3'b100;

default: y = 3'b000; // zero output vector

 // from the illegal states

endcase

4.5. Description styles of fault-tolerant FSMs

Two styles are proposed for describing fault-toler-

ant FSMs in Verilog: safe0 and safe1. In both styles,

when describing transitions from each state, the initial

transition state is defined in the default construct

(Fig. 3,b). When the FSM transits to the illegal state, us-

ing the variant when the FSM returns to the start state

(Fig. 2,a), for example:

always @(*) // transition description

case(state)

si

si

sj

sj

sk

sk

…
…

…
…

X(s ,
s)
i j

X(s
,s)i j

X(s ,s)i i

X(s ,s)i k

X(s ,s)i k

a)

b)

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
202

 si: casex(x)

 …

 default: next = si; // return to the initial

 // transition state

 endcase

 …

 default: next = s0; // return to the start state

endcase

The styles safe0 and safe1 differ in the way they

form the values of output signals. In the safe0 style, the

zero output vector is formed in the default constructs,

which corresponds to variant 1. In the safe1 style, the de-

scription of FSM outputs coincides with the traditional

description. In this case, when not all possible values of

input variables are specified in the case statements, the

synthesis tool will set latches on the FSM outputs. As a

result, the FSM will maintain the value of the previous

output vector at the output, which corresponds to vari-

ant 3.

Figure 4 shows the functional modeling results of

the FSM from our example for the safe0 and safe1 de-

scription styles.

From Fig. 4 shows that for the safe0 style, in case

of invalid input vectors arriving at the input of the FSM,

zero vectors are formed at the FSM outputs, while for the

safe1 style, the FSM outputs retain the same values of the

outputs.

Note that based on the considered methods for de-

scribing fault-tolerant FSMs, other styles of describing

fault-tolerant FSMs can be constructed that are better

suited for the design of a specific FSM.

5. Experimental Results

The effectiveness of the proposed safe0 and safe1

styles for describing fault-tolerant FSMs has been tested

on the FSM benchmarks of the MCNC center [1]. The

synthesis was performed using Quartus version 23.1 for

the Cyclone 10 LP FPGA family.

Because the FSM parameters (area and perfor-

mance) depend heavily on state encoding, all state encod-

ing methods provided by the Quartus system (One-Hot,

Gray, Johnson, Minimal Bits and Sequential) were ap-

plied for each example. Then, the best results were se-

lected from the obtained results: the minimum area and

the maximum performance.

The use of safe0 and safe1 description styles

changed the parameters of the FSM for the 20 bench-

marks. The experimental results for these examples are

shown in Table 1, where i, o, p, and s are the number of

inputs, outputs, transitions, and states of the FSM, respec-

tively; LO, LS0, and LS1 are the number of FPGA logic

elements used to implement the FSM (i.e. area or cost of

implementation) in the case of the traditional description,

using the style safe0 and using the style safe1; FO, FS0 and

FS1 – the same, but with respect to the FSM performance,

which is measured in megahertz; LO/LS0, LO/LS1, FS0/FO,

and FS1/FO – relations of the corresponding parameters;

Av and Max – arithmetic mean and maximum value of

the parameters.

Table 1 shows that using the safe0 style reduces the

area for 17 examples. On average, the area is reduced by

a factor of 2.148, and the maximum area reduction by a

factor of 4.8 is observed for example lion9. Similarly, us-

ing safe1 style reduces the area for 19 examples. On av-

erage, the area is reduced by a factor of 1.774, and the

maximum area reduction by a factor of 4.8 is also ob-

served for the lion9 example.

Using the safe0 style increases the performance for

six examples. On average, the performance increases by

a factor of 1.192, and the maximum performance increase

by a factor of 2.355 is observed for the pma example.

Similarly, using safe1 style increases the performance for

9 examples, on average the performance increases by a

factor of 1.193, the maximum performance increase by a

factor of 2.355 is also observed for the pma example.

a)

b)

Fig. 4. Results of functional modeling of the Mealy FSM:

a – with description in safe0 style; b – with description in safe1 style

Information security and functional safety

203

Table 1

Experimental results of description styles of fault-tolerant FSMs (Safe0 and Safe1)

compared with the traditional description (Original)

FSM i o p s
Original Safe0 Safe1

LO/LS0 LO/LS1 FS0/FO FS1/FO
LO FO LS0 FS0 LS1 FS1

bbsse 7 7 56 16 42 253 42 253 39 284 1 1.077 1 1.123

beecount 3 4 28 7 32 0 14 364 15 383 2.286 2.133 1 1

cse 7 7 91 16 100 0 70 268 82 288 1.429 1.220 1 1

ex1 9 19 233 18 119 0 78 247 111 211 1.526 1.072 1 1

ex2 2 2 72 18 60 166 35 254 35 273 1.714 1.714 1.530 1.645

ex3 2 2 36 10 34 0 20 349 23 300 1.7 1.478 1 1

ex4 6 9 21 14 44 0 26 312 33 374 1.692 1.333 1 1

ex5 2 2 32 9 32 298 14 332 16 314 2.286 2 1.114 1.054

ex6 5 8 34 8 57 0 46 256 49 272 1.239 1.163 1 1

ex7 2 2 36 10 32 0 8 346 9 397 4 3.555 1 1

keyb 7 2 170 19 65 217 65 217 65 218 1 1 1 1.005

lion 2 1 11 4 13 0 3 1287 7 364 4.333 1.857 1 1

lion9 2 1 25 9 48 0 10 608 10 608 4.8 4.8 1 1

pma 8 8 73 24 118 141 93 332 93 332 1.269 1.269 2.355 2.355

sand 11 9 184 32 208 121 153 241 175 205 1.359 1.189 1.992 1.694

sse 7 7 56 16 42 253 42 253 39 284 1 1.077 1 1.123

styr 9 10 166 30 183 200 130 233 147 237 1.408 1.245 1.165 1.185

tma 7 6 44 20 128 160 59 269 59 269 2.169 2.169 1.681 1.681

train11 2 1 25 11 41 0 17 656 18 380 2.412 2.278 1 1

train4 2 1 14 4 13 0 3 1285 7 414 4.333 1.857 1 1

Av 5.9 6.5 139.6 22.4 69.7 301.3 60.2 438.3 62.5 394.9 2.148 1.774 1.192 1.193

Max 19 19 1569 218 387 1269 387 1287 387 1269 4.8 4.8 2.355 2.355

6. Discussions

In this paper, the following tasks have been solved

to design fault-tolerant FSMs.

1. In case of a failure in the state register, three ways

for the FSM transit from the illegal state are proposed: (a)

return to the start state; (b) transition to the idle state with

return to the start state; (c) transition to the idle state with

return to the state si, from which the transition to the ille-

gal state occurred (see Fig. 2). For each way, the tem-

plates for description in HDL are presented.

2. In case of a failure in the input vector, a method

is proposed for describing the FSM transitions from each

state (see Fig. 3), while the FSM remains in the initial

transition state, the conditions of transitions to which are

determined by expression (2).

3. In case of failure in the state register or in the in-

put vector of the FSM, four variants are proposed to

determine the values of the output vector: (1) zero vector,

(2) vector of don’t care values, (3) value of the previous

output vector, (4) the output vector specified by the de-

veloper. This paper analyzes the advantages and disad-

vantages of each variant (subsection 4.4).

4. On the basis of the considered descriptions of

transitions and outputs of FSMs, two styles of description

of fault-tolerant FSMs have been proposed: safe0 and

safe1 (subsection 4.5). In both styles, when describing

transitions from each state, the construction default of

the second-level case statement defines the initial transi-

tion state (see Fig. 3,b). If the FSM transits to an illegal

state for both styles, the variant is selected when the FSM

returns to the start state (see Fig. 2,a). The styles safe0

and safe1 differ in the way they form the values of output

signals. In the safe0 style, the zero output vector is

formed in the default constructs, which corresponds to

variant 1. In the safe1 style, the FSM will save the value

of the previous output vector at the output, which corre-

sponds to variant 3.

5. The effectiveness of the proposed styles for de-

scribing fault-tolerant FSMs has been studied using FSM

benchmarks of the MCNC center in two parameters: area

and performance when implementing FSMs in FPGAs

(see Table 1).

The experimental results have shown that using the

style safe0, compared to the traditional HDL description

of FSMs, reduces the area on average by a factor of 2.148

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
204

(for some examples by a factor of 4.8) and increases the

performance on average by a factor of 1.192 (for some

examples by a factor of 2.355).

Similarly, using the style safe1, compared to the tra-

ditional HDL description of FSMs, reduces the area on

average by a factor of 1.774 (for some examples by a fac-

tor of 4.8) and increases the performance on average by

a factor of 1.193 (for some examples by a factor of

2.355).

Following features provide the advantages of the

proposed safe0 and safe1 styles for describing fault-tol-

erant FSMs:

 in the case of a failure in the input vector or

when the transition from some state is not defined in the

FSM specification, the next state (the initial transition

state) is defined explicitly using the construction default

of the second-level case statement;

 in the case of a failure in the state register, the

FSM transition to the start state is defined explicitly using

the construction default of the first-level case operator;

 in case of all the above failures, the FSM outputs

are defined using the construction default of the case

statement in safe0 style as a zero vector, and in safe1 style

as the value of the previous output vector.

The advantage of this study over the known ones is

that the problem of designing fault-tolerant FSMs is

solved at the level of FSM description in HDL. This

made it possible not only to implement fault-tolerant

FSMs but also to reduce the area and increase the perfor-

mance of FSMs.

Note that known methods for designing fault-toler-

ant FSMs usually require significant area overhead,

which decreases the performance of the original FSM.

EPMs and laser beams that impact the UAV cause

failures in the input vector and state register of FSMs that

act as control devices for the UAV. Therefore, the pro-

posed description styles for fault-tolerant FSMs are pri-

marily designed for UAV control systems.

Thus, the considered safe0 and safe1 styles of de-

scribing fault-tolerant FSMs not only allow improving

the fault tolerance but also contribute to the reduction of

the area and increase the performance of FSMs, so they

can be recommended for practical use.

7. Conclusions

In this paper, the problem of designing fault-toler-

ant FSMs when the values of bits in the state register or

in the input vector of the FSM change because of the

negative external impact is described. Different ways of

solving the problem at the level of FSM description in

HDL are considered. Two styles of describing fault-tol-

erant FSMs have been proposed, which allow the detec-

tion of faults in the state register and in the input vector

of the FSM. This prevents transitions of the FSM to ille-

gal states and invalid transitions to legal states.

The fault tolerance of FSM functioning described

using the safe0 and safe1 styles is provided as follows.

When the input vector is not defined in the FSM specifi-

cation for a specific state, the FSM will remain in the in-

itial transition state, i.e. the FSM will not transit to an-

other state. If an illegal state code is set in the state regis-

ter, the FSM will transition to the start state. For all these

faults, the safe0 style provides a zero output vector at the

FSM output, whereas the safe1 style preserves the value

of the previous output vector.

The proposed styles of description of fault-tolerant

FSMs do not degrade the parameters of FSMs, which are

described by the traditional style, but in some cases allow

the reduction of the area (for some examples by a factor

of 4.8) and increase of the performance (for some exam-

ples by a factor of 2.355). In addition, the description

styles of fault-tolerant FSMs allow us to neutralize design

errors when transitions in each state are not described for

all possible values of input variables.

In addition, the proposed description styles for

fault-tolerant FSMs allow neutralizing design errors

when transitions in each state are not described for all

possible values of input variables.

Thus, the main contributions are as follows:

 - in case of a failure in the FSM state register, three

methods have been proposed for the FSM transit from the

illegal state, which can be implemented using the HDL;

- the method proposed to describe in HDL the FSM

behavior in each state in the case of an invalid input vec-

tor or an input vector that is not defined in the FSM spec-

ification;

- four variants have been proposed for describing in

HDL the FSM output vectors in the case of an invalid

input vector or an input vector that is not defined in the

FSM specification;

- based on these methods of FSM description, two

styles for describing fault-tolerant FSMs are proposed.

The effectiveness of the proposed description styles

of fault-tolerant FSMs in terms of area and performance

has been investigated on the FSM benchmarks of MCNC

center.

Future research development. A promising direc-

tion for future research seems to be the development of

new styles and methods of FSM description, aimed at im-

proving the FSM parameters (an area, a performance and

a power consumption), as well as improving the reliabil-

ity and fault tolerance of FSMs.

Acknowledgment. The present study was sup-

ported by a grant WZ/WI-III/5/2023 from Bialystok Uni-

versity of Technology and was founded from the re-

sources for research by the Ministry of Science and

Higher Education.

Information security and functional safety

205

References

1. Yang, S. Logic Synthesis and optimization

benchmarks user guide. Version 3.0. Microelectronics

Center of North Caro-lina (MCNC), 1991. 45 p. DOI:

4a86519e41bb8dbaa8d2c9ba434030f48de85ce7.

2. Kratky, M., & Minarik, V. The non-destructive

methods of fight against UAVs. International conference

on military technologies (ICMT), Brno, Czech Republic,
2017, pp. 690-694. DOI:

10.1109/MILTECHS.2017.7988845.

3. Curpen, R., Bălan, T., Micloş, I. A., & Comănici,

I. Assessment of signal jamming efficiency against LTE

UAVs. International Conference on Communications

(COMM), Bucharest, Romania, 2018, pp. 367-370. DOI:

10.1109/ICComm.2018.8484746.

4. Arnold, C., & Brown, J. Performance evaluation

for tracking a malicious UAV using an autonomous UAV

swarm. 11th IEEE Annual Ubiquitous Computing, Elec-

tronics & Mobile Communication Conference
(UEMCON), New York, USA, 2020, pp. 0707-0712.

DOI: 10.1109/UEMCON51285.2020.9298062.

5. Kong, P. Y. A survey of cyberattack counter-

measures for unmanned aerial vehicles. IEEE Ac-

cess. 2021, no. 9, pp. 148244-148263.

DOI: 10.1109/ACCESS.2021.3124996.

6. Jin, W. C., Kim, K., & Choi, J. W. Adaptive jam-

ming considering location information inaccuracy for

anti-UAV system. International Conference on Infor-

mation Networking (ICOIN), Jeju Island, Korea (South),

2021, pp. 480-482. DOI: 10.1109/ICOIN50884.

2021.9334027.
7. Lei, Z., Ding, P., Zheng, W., Fei, X., & Fan, H.

UAV countermeasure technology based on partial-band

noise jamming. 33rd Chinese Control and Decision Con-

ference (CCDC), Kunming, China, 2021, pp. 1456-1461.

DOI: 10.1109/CCDC52312.2021.9602343

8. Min, S. H., Jung, H., Kwon, O., Sattorov, M.,

Kim, S., Park, S. H., ... & Park, G. S. Analysis of electro-

magnetic pulse effects under high-power microwave

sources. IEEE Access, 2021, no. 9, pp. 136775-136791.

DOI: 10.1109/ACCESS.2021.3117395.

9. Šimon, O., Götthans, T., & Popela, M. Commer-
cial UAV jamming possibilities. 32nd International

Conference Radioelektronika (RADIOELEKTRONIKA),

Kosice, Slovakia, 2022, pp. 1-6. DOI:

10.1109/RADIOELEKTRONIKA54537.2022.9764904.

10. Kaushik, K., Negi, R., & Dev, P. An electronic

warfare approach for deploying a software-based Wi-Fi

jammer. 5th International Conference on Contemporary

Computing and Informatics (IC3I), Uttar Pradesh, India,

2022, pp. 43-47. DOI: 10.1109/IC3I56241.2022.

10073447.

11. Pohasii, S., Korolov, R., Vorobiov, B., Bril, M.,

Serhiienko, O., & Milevskyi, S. UAVs intercepting pos-
sibility substantiation: economic and technical aspects.

IEEE 4th International Conference on Modern Electrical

and Energy System (MEES), Kremenchuk, Ukraine,

2022, pp. 1-6. DOI: 10.1109/MEES58014.

2022.10005710.

12. Watanabe, K., Sakai, R., Tanaka, S., Nagata,

M., Osaka, H., Nakamura, A., ... & Gotoh, K. Electro-

magnetic Interference With the Mobile Communication

Devices in Unmanned Aerial Vehicles and Its Counter-

measures. IEEE Access, 2024, no. 12, pp. 11642-11652.

DOI: 10.1109/ACCESS.2024.3351216.

13. Wang, Z., Cui, A., & Qu, G. A low-cost fault

injection attack resilient FSM design. IEEE 33rd Inter-

national System-on-Chip Conference (SOCC), Las Ve-
gas, USA, 2020, pp. 19-24. DOI: 10.1109/SOCC49529.

2020.9524779.

14. Cassel, M., & Lima, F. Evaluating one-hot en-

coding finite state machines for SEU reliability in

SRAM-based FPGAs. IEEE International On-Line Test-

ing Symposium (IOLTS'06), Lake Como, Italy, 2006, pp.

6-pp. DOI: 10.1109/IOLTS.2006.32.

15. El-Maleh, A. H. A sequential circuit fault toler-

ance technique with enhanced area and power. IEEE In-

ternational Symposium on Signal Processing and Infor-

mation Technology (ISSPIT), Abu Dhabi, United Arab
Emirates, 2015, pp. 301-304.

DOI: 10.1109/ISSPIT.2015.7394348.

16. Juretus, K., & Savidis, I. Synthesis of hidden

state transitions for sequential logic locking. IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2020, vol. 40, no. 1, pp. 11-23.

DOI: 10.1109/TCAD.2020.2994259.

17. Li, M., Xu, S., Wan, F., Gu, J., Peng, M., &

Jiang, J. Non-intrusive design of self-checking FSM

based on convolutional codes. Tsinghua Science & Tech-

nology, 2007, vol. 12, no. S1, pp. 73-77. DOI:

10.1016/S1007-0214(07)70087-1.
18. Wang, Z., & Karpovsky, M. Robust FSMs for

cryptographic devices resilient to strong fault injection

attacks. IEEE 16th International On-Line Testing Sym-

posium. Corfu, Greece, 2010. DOI:

10.1109/IOLTS.2010.5560195.

19. Sooraj, S., Manasy, M., & Bhakthavatchalu, R.

Fault tolerant FSM on FPGA using SEC-DED code algo-

rithm. International Conference on Technological Ad-

vancements in Power and Energy (TAP Energy), Kollam,

India, 2017, pp. 1-6. DOI: 10.1109/TAPENERGY.

2017.8397309.
20. Sooraj, S., & Bhakthavatchalu, R. Hamming 3

algorithm for improving the reliability of SRAM based

FPGAs. International Conference on Communication

and Signal Processing (ICCSP), Chennai, India, 2017,

pp. 0938-0942. DOI: 10.1109/ICCSP.2017.8286508.

21. Nidhin, T. S., Bhattacharyya, A., Behera, R. P.,

Jayanthi, T., & Velusamy, K. Verification of fault toler-

ant techniques in finite state machines using simulation

based fault injection targeted at FPGAs for SEU mitiga-

tion. 4th International Conference on Electronics and

Communication Systems (ICECS), Coimbatore, India,

2017, pp. 153-157. DOI: 10.1109/ECS.2017.8067859.
22. Nahiyan, A., Farahmandi, F., Mishra, P., Forte,

D., & Tehranipoor, M. Security-aware FSM design flow

https://doi-org.bazy.pb.edu.pl/10.1109/MILTECHS.2017.7988845
https://doi-org.bazy.pb.edu.pl/10.1109/ICComm.2018.8484746
https://doi-org.bazy.pb.edu.pl/10.1109/UEMCON51285.2020.9298062
https://doi-org.bazy.pb.edu.pl/10.1109/ACCESS.2021.3124996
https://doi-org.bazy.pb.edu.pl/10.1109/ICOIN50884.2021.9334027
https://doi-org.bazy.pb.edu.pl/10.1109/ICOIN50884.2021.9334027
https://doi-org.bazy.pb.edu.pl/10.1109/CCDC52312.2021.9602343
https://doi-org.bazy.pb.edu.pl/10.1109/ACCESS.2021.3117395
https://doi-org.bazy.pb.edu.pl/10.1109/RADIOELEKTRONIKA54537.2022.9764904
https://doi-org.bazy.pb.edu.pl/10.1109/IC3I56241.2022.10073447
https://doi-org.bazy.pb.edu.pl/10.1109/IC3I56241.2022.10073447
https://doi-org.bazy.pb.edu.pl/10.1109/MEES58014.2022.10005710
https://doi-org.bazy.pb.edu.pl/10.1109/MEES58014.2022.10005710
https://doi-org.bazy.pb.edu.pl/10.1109/ACCESS.2024.3351216
https://doi-org.bazy.pb.edu.pl/10.1109/SOCC49529.2020.9524779
https://doi-org.bazy.pb.edu.pl/10.1109/SOCC49529.2020.9524779
https://doi-org.bazy.pb.edu.pl/10.1109/IOLTS.2006.32
https://doi-org.bazy.pb.edu.pl/10.1109/ISSPIT.2015.7394348
https://doi-org.bazy.pb.edu.pl/10.1109/TCAD.2020.2994259
https://doi-org.bazy.pb.edu.pl/10.1016/S1007-0214(07)70087-1
https://doi-org.bazy.pb.edu.pl/10.1109/IOLTS.2010.5560195
https://doi-org.bazy.pb.edu.pl/10.1109/TAPENERGY.2017.8397309
https://doi-org.bazy.pb.edu.pl/10.1109/TAPENERGY.2017.8397309
https://doi-org.bazy.pb.edu.pl/10.1109/ICCSP.2017.8286508
https://doi-org.bazy.pb.edu.pl/10.1109/ECS.2017.8067859

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
206

for identifying and mitigating vulnerabilities to fault at-

tacks. IEEE Transactions on Computer-aided design of

integrated circuits and systems, 2018, vol. 38, no. 6, pp.

1003-1016. DOI: 10.1109/TCAD.2018.2834396.

23. Choudhury, M., Gao, M., Tajik, S., & Forte, D.

TAMED: transitional approaches for LFI resilient state

machine encoding. IEEE International Test Conference

(ITC), Anaheim, USA, 2022, pp. 46-55.

DOI: 10.1109/ITC50671.2022.00011.

24. Tiwari, A., & Tomko, K. A. Enhanced reliabil-

ity of finite-state machines in FPGA through efficient
fault detection and correction. IEEE Transactions on Re-

liability, 2005, vol. 54, no. 3, pp. 459-467.

DOI: 10.1109/TR.2005.853438.

25. Frigerio, L., & Salice, F. RAM-based fault tol-

erant state machines for FPGAs. 22nd IEEE Interna-

tional Symposium on Defect and Fault-Tolerance in VLSI

Systems (DFT 2007), Rome, Italy, 2007, pp. 312-320.

DOI: 10.1109/DFT.2007.33.

26. Solov’ev V. V. Structural models for failure de-

tection of Moore finite-state machines. Journal of

Computer and Systems Sciences International, 2023, vol.

62, no. 6, pp. 977–990. DOI:

10.1134/S1064230723060102.

27. Salauyou V. Structural models of Mealy finite

state machines detecting faults in control systems. Radi-

oelectronic and Computer Systems, 2023, no. 3, pp. 173-

186. DOI: 10.32620/reks.2023.3.14.

28. Choi, S., Park, J., & Yoo, H. Area-efficient fault

tolerant design for finite state machines. International

Conference on Electronics, Information, and Communi-

cation (ICEIC), Barcelona, Spain, 2020, pp. 1-2. DOI:
10.1109/ICEIC49074.2020.9051122.

29. Farahmandi, F., & Mishra, P. FSM anomaly de-

tection using formal analysis. IEEE International Con-

ference on Computer Design (ICCD), Boston, USA,

2017, pp. 313-320. DOI: 10.1109/ICCD.2017.55.

30. Salauyou, V., & Zabrocki, Ł. Coding techniques

in Verilog for finite state machine designs in FPGA. IFIP

International Conference on Computer In-formation Sys-

tems and Industrial Management (CISIM), Belgrade,

Serbia, 2019, pp. 493-505. DOI: 10.1007/978-3-030-

28957-7_41.

Received 08.01.2024, Accepted 20.02.2024

СТИЛІ ОПИСУ НАДІЙНИХ СКІНЧЕННИХ АВТОМАТІВ

ДЛЯ БЕЗПІЛОТНИХ ЛІТАЛЬНИХ АПАРАТІВ

Валерій Соловйов

Об'єктом дослідження є скінченні автомати (ССА), які використовуються як пристрої керування в безпі-

лотних літальних апаратах (БПЛА). Метою роботи є розробка стилів опису робастних (відмовостійких) авто-

матів на мовах опису апаратури (HDL), які запобігають виникненню збоїв у регістрі станів та вхідному векторі

автомата. Задачі, що вирішуються: розробка методів опису переходу автомата з недопустимих станів у випа-

дку збою в регістрі стану, а також переходу автомата з кожного стану у випадку збою у вхідному векторі;

визначення вихідних векторів автомата у випадку зазначених вище збоїв; розробка стилів опису надійних

(відмовостійких) автоматів; дослідження ефективності запропонованих стилів опису надійних автоматів. Ви-
користані методи: теорія скінченних автоматів, методи кодування станів автоматів, методи представлення

автоматів, мова опису апаратури Verilog. Отримані наступні результати: розроблено два стилі опису надійних

автоматів safe0 та safe1, які не збільшують площу та не зменшують швидкодію автоматів, а в деяких випадках

дозволяють зменшити площу (для деяких прикладів у 4.8 рази) та збільшити швидкодію (для деяких прикладів

у 2.36 рази). Крім того, стилі опису надійних автоматів нейтралізують помилки проектування, коли переходи

описуються в кожному стані не для всіх можливих значень вхідних змінних. Висновки. У статті сформульо-

вано проблему проектування надійних автоматів, коли значення бітів у регістрі стану або у вхідному векторі

автомата змінюються внаслідок негативного зовнішнього впливу. Розглянуто різні способи розв'язання про-

блеми на рівні опису ШПМ мовою HDL. Запропоновано два стилі опису надійних автоматів: safe0 та safe1.

Надійність функціонування ШНМ, описаних за допомогою стилів safe0 та safe1, забезпечується наступним

чином. Якщо вхідний вектор не визначений у специфікації FSM для певного стану, то FSM залишиться у
початковому перехідному стані, тобто FSM не перейде в інший стан. Якщо у регістрі станів задано недопус-

тимий код стану, то FSM перейде у початковий стан. Для всіх цих помилок стиль safe0 забезпечує нульовий

вихідний вектор на виході FSM, тоді як стиль safe1 зберігає значення попереднього вихідного вектора. Перс-

пективним напрямком подальших досліджень видається розробка нових стилів та способів опису FSM, спря-

мованих на покращення параметрів FSM (площі, продуктивності та енергоспоживання), а також на підви-

щення надійності та відмовостійкості FSM.

Ключові слова: скінченний автомат; надійність; відмовостійкість; мова опису апаратного забезпечення;

Verilog; польова програмована логічна матриця; безпілотний літальний апарат (БПЛА).

Соловйов Валерій Васильович – професор, доктор технічних наук, Факультет комп'ютерних наук

Білостоцького політехнічного університету, Білосток, Польща

Prof. Valery Salauyou, DSc, PhD, Eng, Faculty of Computer Science, Bialystok University of Technology,

Bialystok, Poland,

e-mail: v.salauyou@pb.edu.pl, ORCID: 0000-0002-9174-8588, Scopus Author ID: 55699021000

https://doi-org.bazy.pb.edu.pl/10.1109/TCAD.2018.2834396
https://doi-org.bazy.pb.edu.pl/10.1109/ITC50671.2022.00011
https://doi-org.bazy.pb.edu.pl/10.1109/TR.2005.853438
https://doi-org.bazy.pb.edu.pl/10.1109/DFT.2007.33
https://doi-org.bazy.pb.edu.pl/10.1109/ICEIC49074.2020.9051122
https://doi-org.bazy.pb.edu.pl/10.1109/ICCD.2017.55

