112 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

UDC 004.491.052.42 doi: 10.32620/reks.2023.4.10

Antonina KASHTALIAN?, Sergii LYSENKO?, Bohdan SAVENKO!,
Tomas SOCHOR?, Tetiana KYSIL!

! Khmelnitsky National University, Khmelnitsky, Ukraine
2 Prigo University, Havirov, Czech Republic

PRINCIPLE AND METHOD OF DECEPTION SYSTEMS SYNTHESIZING
FOR MALWARE AND COMPUTER ATTACKS DETECTION

The number of different types and the actual number of malware and computer attacks is constantly increas-
ing. Therefore, detecting and counteracting malware and computer attacks remains a pressing issue. Users of
corporate networks suffer the greatest damage. Many effective tools of various kinds have been developed to
detect and counteract these effects. However, the dynamism in the development of new malware and the diver-
sity of computer attacks encourage detection and countermeasure developers to constantly improve their tools
and create new ones. The object of research in this paper is deception systems. The task of this study is to de-
velop the elements of the theory and practice of creating such systems. Deception systems occupy a special
place among the means of detecting and counteracting malware and computer attacks. These systems confuse
attackers, but they also require constant changes and updates, as the peculiarities of their functioning become
known over time. Therefore, the problem of creating deception systems whose functioning would remain in-
comprehensible to attackers is relevant. To solve this problem, we propose a new principle for the synthesis of
such systems. Because the formation of such systems will be based on computer stations of a corporate net-
work, the system is positioned as a multi-computer system. The system proposes the use of combined baits and
traps to create false attack targets. All components of such a system form a shadow computer network. This
study develops a principle for synthesizing multi-computer systems with combined baits and traps and a deci-
sion-making controller for detecting and countering IEDs and spacecraft. The principle is based on the pres-
ence of a controller for decisions made in the system and the use of specialized functionality for detection and
counteraction. According to the developed principle of synthesizing such systems, this paper identifies a subset
of systems with deception technologies that must have a controller and specialized functionality. The decision-
making controller in the system is separate from the decision-making center. Its task is to choose the options
for the next steps of the system, which are formed in the center of the system, depending on the recurrence of
events. Moreover, prolonged recurrence of external events requires the system center to form a sequence of
next steps. If they are repeated, the attacker has the opportunity to study the functioning of the system. The
controller in the system chooses different answers from different possible answers for the same repeated suspi-
cious events. Thus, an attacker, when investigating a corporate network, receives different answers to the same
queries. Specialized functionality, in accordance with the principle of synthesis of such systems, is implemented
in the system architecture. It affects the change of system architecture in the process of its functioning as a re-
sult of internal and external influences. This paper also considers a possible variant of the architecture of such
deception systems, in particular, the architecture of a system with partial centralization. To synthesize such
systems, a new method for synthesizing partially centralized systems for detecting malware in computer envi-
ronments has been developed based on analytical expressions that determine the security state of such systems
and their components. In addition, the experiments showed that the loss of 10-20% of the components does not
affect the performance of the task. The results of the experiments were processed using ROC analysis and the
algorithm for constructing the ROC curve. The results of the experiments made it possible to determine the de-
gree of degradation of the systems constructed in this manner. Conclusions. This paper presents a new princi-
ple for the synthesis of multi-computer systems with combined decoys and traps and a decision-making con-
troller for detecting and counteracting IEDs and spacecraft, as well as methods for synthesizing partially cen-
tralized systems for detecting malware in computer networks.

Keywords: deception systems; deception systems synthesizing; principle of systems synthesis, controller, dis-
tributed systems; honeynet; trap; baits; malware detection; partial centralization.

1. Introduction properly synthesized systems that can detect malware
and counteract it by creating false attack objects.
1.1. Motivation An area of development of such systems is the de-

velopment of systems whose behavioral logic and archi-
Malware continues to be actively developed and tecture are difficult or impossible for attackers to under-
distributed. An important element of counteracting it is stand.

© Antonina Kashtalian, Sergii Lysenko, Bohdan Savenko, Tomas Sochor, Tetiana Kysil, 2023

Information security and functional safety

113

Having created such systems, they can be filled
with functionality as needed, which can further position
them as deception systems, network baits, and highly
specialized systems for detecting a specific class of
malware. Such systems include deception systems.

Due to the specifics of the tasks they are supposed
to perform, the actual task is to develop new principles
of their synthesis, which will allow the attacker to create
new features in such systems that will be difficult for
him to understand. One class of such systems is partially
centralized distributed systems for detecting malware,
as described in [1].

The functioning of partially centralized distributed
systems in accordance with the principles of self-
organization and adaptability is ensured not only by the
organization of communication between their compo-
nents or the implementation of certain specially oriented
tasks for which they are created, but primarily by inter-
nal mechanisms, methods, and algorithms that enable
such systems to solve tasks without user intervention,
independently make decisions on the next steps of the
system, and adapt to changes in the external environ-
ment.

1.2. Previous works

There are many various studies devoted to the
problem of malware detection. Despite the large number
of different methods for detecting and mitigating
cyberattacks caused by malware, the steady increase in
their number confirms that this problem is not solved
today.

A variant of the architecture of partially central-
ized systems for detecting malicious software in com-
puter networks is presented in [1]. The feature of the
described architecture is that it should enable such sys-
tems to function according to the principles of self-
organization and adaptability. This will give them op-
portunities to determine their next steps in the process
of unionization.

Such systems can be used to counter and detect
malware.

The systems synthesized in this way function as
centralized, but their decisions are made in part of the
components defined by the system in a decentralized
manner. To implement the internal mechanism of their
functioning, it is necessary to develop a method for or-
ganizing their functioning.

The peculiarity of the synthesized system, which is
related to its centralization, decentralization, and hybrid
architecture, concerns the center of the system. This
class of systems can be specified according to the prin-
ciple of their synthesis, which requires appropriate de-
velopment.

1.3. State of the art

To use deception technology, various types of
baits and traps [2] have been developed that mimic the
operation of real systems. The market offers several
solutions based on the use of deception technology and
malware. Let's take a look at the characteristic features
of such systems.

The main features of the Acalvio ShadowPlex sys-
tem [3] are the patented architecture of the deception
farm and autonomous deception. This system automates
and simplifies the configuration and deployment of baits
and traps using predefined deceptive objects and objects
that are generated and placed by the system based on
recommendations and artificial intelligence. It supports
a significant number of deceptive objects, including
baits that mimic hosts running operating systems, in-
cluding loT hosts, endpoint baits, fake registry entries,
credentials, and shared disks.

One of the first systems to use deception technolo-
gy to add response capabilities was the Attivo
ThreatDefend Deception and Response Platform [4].
The system can be deployed locally, in the cloud, in
data centers, or in a hybrid environment. Similar to oth-
er systems, deceptive objects are designed to identify
intruders trying to access the network and data. This
system not only detects access attempts but also ensures
that the deceptive object interacts with the attacker,
simulating the reaction that the attacker can expect from
real objects. In other words, simultaneously with net-
work protection, the study of malicious intentions and
tactics is ensured.

The Proofpoint Identity Threat Defense system [5]
creates a deceptive environment for the attacker. The
agentless architecture prevents attackers from detecting
deceptive objects. The system detects any changes in
the environment and activates deceptive capabilities to
ensure that the attacker is stopped before gaining access
to corporate network resources. Protection against at-
tacks and early response is provided for email services,
mobile communications, social networks, and desktop
workstations.

The CounterCraft Cyber Deception Platform [6]
system uses active baits to detect intruders. These baits
can be deployed as endpoints, servers, or in online plat-
forms and are flexible to customize. The system is de-
signed to facilitate online interaction with attackers. The
system provides the ability to deploy quickly and con-
trol based on data collected in the environment by
agents.

The Fidelis Deception platform [7] allows the user
to quickly and dynamically create a deceptive environ-
ment that contains baits and traps for user applications,
services, network connections, integrated credentials of
the active directory, memory, endpoints, and servers.

114

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

All actions that occur in the deceptive environment are
tracked and available to the administrator to make deci-
sions about studying the actions of intruders, neutraliz-
ing attacks, and protecting against them. The advantages
of the Fidelis Deception platform are as follows: auto-
matic creation of a realistic deception environment that
includes baits and traps of various types; building real
operating system baits along with simulated baits cover-
ing the entire corporate network; fast deployment and
efficiency from the start; high accuracy with no false
positives; constant updating of the intelligent deception
environment; and proactive protection.

The CommVault system [8] provides several data
management solutions for data protection, management,
and optimization. In the area of cybersecurity,
CommVault offers risk analysis and full data protection,
including auto-recovery, threat scanning, active directo-
ry, and database protection. The system’s modules
combine early warning capabilities with rapid response
capabilities to neutralize attacks in time before damage
can occur. “Zero-day” attacks are also detected and neu-
tralized that are difficult or impossible to detect using
traditional technologies. The system also makes it pos-
sible to immediately detect and neutralize hidden at-
tacks that are spreading in the network environment. In
other words, this system enables identification and pre-
vention of attacks even before they start.

The Labyrinth Deception Platform [9, 10] creates a
deceptive environment that simulates the services and
content of the real part of the network. The solution is
based on the so-called Points, which are intelligent hosts
that simulate software, content, routers, and devices.
These deception points detect malicious activity within
the corporate network, providing comprehensive protec-
tion against possible attacks. The deceptive environment
encourages attackers to take actions that allow detection
and tracking of their activity.

Bait, traps, and generally false targets for attacks in
corporate networks can vary. Let's consider some of the
research papers that discuss some types of such false
attack targets and methods of their organization and use.

The article [11] proposes a new type of decoy sys-
tem based on deception security technology. The dy-
namic deception method is adapted to collect unused IP
addresses in the network. The security properties of
deceptive elements are tested in the study [12] with the
help of attackers using reinforcement learning. For test-
ing, deceptive elements are included in the Microsoft
CyberBattleSim research environment. The success of
attackers depends on the number and location of decep-
tive elements. The purpose of cyber deception is to dis-
tort the state of the network to mislead attackers, falsify
their conclusions, and distract them from their goals.
The article [13] proposes a two-phase deception method
based on bait localization. In the first phase, a proactive

decoy localization policy is developed, and in the sec-
ond phase, a reactive deception approach is proposed
that dynamically determines the location of baits ac-
cording to updates of the intrusion detection system.
Thus, the defense system partially tracks the activity of
the attacker.

The strategy [14] for locating baits in the network
should consider not only aspects of the protected net-
work but also the preferences of attackers. To achieve
this goal, we propose a game-theoretic method that gen-
erates an optimal decoy placement strategy in accord-
ance with an attack-defense scenario. The study [15]
proposes a new method for cyber-manipulation using
decoy localization and software diversity to improve
network security. The study [16] proposes a scalable
algorithm for placing baits over an attack graph. The
authors express a two-person zero-sum strategic game
between a defender and an attacker. This formulation
reflects the importance of different nodes within the
network.

When using baits, certain compromises must be
made [17]. On the one hand, decoy systems and services
must be relevant and attractive to the attacker, and on
the other hand, computational and related costs must be
consistent with the functional and budgetary constraints
of the system. Therefore, it is impossible to create a
single, unchanging decoy configuration for different
types of systems and to consider all possible types of
attackers.

Detecting malicious packets among a significant
amount of normal activity is time-consuming [18]. The
range of vulnerabilities is expanding with the develop-
ment of technologies such as 10T, industrial automation,
CPS, and digital twins. Baits are used in malicious
packet identification to eliminate false positives. In ad-
dition to analyzing and reporting intrusion patterns, they
are also used to prevent access to operational devices by
mimicking real systems operating on the network and
capturing and detaining attackers. Baits in computer
networks are effective when they deceive cybercrimi-
nals in such a way that they do not consider themselves
to be real decoys [19]. Therefore, to make decoy decep-
tion more effective, it is necessary to apply it in a more
diverse way. Much of the critical data of organizations
is now stored in databases, which is an attractive target
for attackers [20]. The introduction of digital technolo-
gies and the increase in the number of connections be-
tween organizations, together with the growing com-
plexity of information systems, leads to an increase in
the spread of attacks. At the same time, the improve-
ment of attackers™ skills leads to more "sophisticated"
attacks.

For researchers in the field of cybersecurity [21],
the question remains how to eliminate virtual machine
artifacts to effectively build deceptive "baits" for col-

Information security and functional safety

115

lecting and analyzing malware. The method of using
Linux containers for this purpose is investigated. Today,
the reactions of computer systems are, in most cases,
predictable [22], which provides attackers with infor-
mation on how to access them. It has been shown that
deception technologies are used in many successful
computer hacks, including phishing, social engineering,
and drive-by-downloads attacks.

Paper [23] provides an overview of the problem of
baits and defense strategies based on deception technol-
ogy. The author defines the phenomenon of baits and
summarizes their advantages and disadvantages, and
their legal and ethical aspects. Baits are classified into
different categories, and examples of baits that are ac-
tively being developed and those that have had a signif-
icant impact are presented. Baits are designed to distract
attackers from computer resources [24]. Baits also track
attacker activity and help researchers study attack pat-
terns. However, baits can also be identified by attackers
using various identification methods. A decoy [25] is a
tool with an isolated and separated network that mimics
a real network of value to attackers. It can be seen as a
fake system that looks like the real thing and aims to
attract attackers, interact with them, and monitor the
interaction between the attackers and the infected de-
vice. At the same time, baits are becoming an important
entity for information cybersecurity researchers to rec-
ognize attacks and in deception technology. Today, a
significant number of devices are connected to the In-
ternet [26], which increases the need to protect them
from cyberattacks. The decoy-based deception mecha-
nism is considered to be a method to ensure the security
of modern loT networks.

The tactic of confusing the attacker is presented
in [27]. A self-adaptive system that incorporates resili-
ence mechanisms is presented in [28]. The analysis of
computer attacks and malware in terms of the imple-
mentation of the developed methods in detection sys-
tems is presented in [29, 30]. An important feature in
the development of detection methods is to take into
account the peculiarities of their implementation direct-
ly in systems [31].

In [32], a model and training method for malware
traffic detection based on a decision tree ensemble is
presented. methods and technologies for ensuring cy-
bersecurity of industrial and web-oriented systems and
networks are presented in [33]. Another cyber attack
detection system based on information-extreme machine
learning is presented in [34]. In the study [35] an over-
view of cyber threats and vulnerabilities is presented.
The article [36] presents the consistency issue and relat-
ed trade-offs in distributed replicated systems and data-
bases. The study [37] presents a method for classifying
malware using images that use dual attention and con-
volutional neural networks. In [38], state-of-the-art

malware classification approaches are presented. The
study [39] proposes an unsupervised deep learning ap-
proach that employs an artificial neural network to de-
tect anomalies in an insider cyber security attack scenar-
io.

Thus, the use of false decoy and trap attacks is a
promising and actively developing area of research. The
creation and management of such false objects requires
the development of a distributed system for operation in
a corporate network, which would organize the func-
tioning of the entire system at the levels of interaction of
its components, decision-making, and autonomous op-
eration of individual components. In this regard, the
principle of synthesizing such systems using false attack
objects and, accordingly, sets of baits and traps needs to
be developed.

1.4. The purpose and tasks of research

From the above review of literature sources, it fol-
lows that the following task needs to be solved: the de-
velopment of a new principle for synthesizing deception
systems and a method for synthesizing partially central-
ized distributed systems.

The aim of this paper is to develop a principle of
multi-computer deception systems for malware and
computer attack detection based on baits and traps and
to develop a method of creating partially-centralized
systems as a class of deception system. Such systems
should confuse attackers, which will improve the effec-
tiveness of countering malware and cyberattacks.

The paper structure is as follows.

Section 1 is devoted to previous work. Section 2
presents the Related works section — a brief analysis of
the very modern and the latest ideas and methods ad-
dressed to solve the problem of 1oT malware detection
with its advantages and disadvantages. Sections 3 and 4
discuss the main idea of the research: the development
of the principle of synthesis of multicomputer systems
of combined bait and traps and the method of creating
partially centralized systems for detecting malware in
computer networks. Section 5 describes the experi-
mental results of this research. In addition, conclusions
present the obtained results of the research.

3. Principle of synthesis
of multi-computer systems using combined
anti-virus bait and traps
and the decision-making controller
for detecting malware and computer
attacks in corporate networks

Users of computer networks need systems for de-
tecting malicious software and computer attacks that
will allow, in addition to ensuring security at various

116

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

stages of possible penetration of computer systems or
stations that are connected to the network, for the stage
when at all previous stages such detections were not
made, but penetration of the system could have oc-
curred. Among the systems for detecting malware and
computer attacks, there are systems that, in addition to
detecting threats, create false targets for attacks in com-
puter networks, which allows administrators of such
networks to monitor processes in networks that are ma-
licious or abnormal and need to be stopped. Therefore,
systems focused on the detection of malware and com-
puter attacks that have passed certain stages of protec-
tion, which used traditional means and systems of pre-
vention, detection, and counteraction, the purpose of
which and possible configuration options for use are
known to attackers, are promising for development.
Among such systems, a special place in the classifica-
tion is occupied by prevention, detection, and counter-
action systems with a certain set of baits and traps for
malware and computer attacks. Their use creates false
attack targets for the attacker and allows the information
about such attacks and the spread of malware in com-
puter stations in the network to be saved.

To improve the effectiveness of systems for detect-
ing and counteracting malware and computer attacks
through the use of baits and traps, it is necessary to inte-
grate these tools into complex systems involving all
computer stations in the network and organize their op-
eration in such a way that they can jointly and without
user intervention respond to malicious and anomalous
processes. Thus, it is necessary to build not just one bait
and trap in a particular computer station but a network
of bait and traps to provide comprehensive protection of
a computer network at the stage when computer attacks
have managed to pass through firewalling and malware
has managed to overcome scanning by antivirus tools
and systems. Such a system of baits and traps can be a
combined system, and to achieve an effective result, it
should include shadow baits and traps that will allow
you to establish and track the attacker’s behavior during
the attack, as well as detect malware and computer at-
tacks with a higher probability. The effectiveness of
such tools depends on the organizational component of
the system.

Such a principle should define the general re-
quirements for the construction of elements of the theo-
ry of creating multi-computer systems with combined
baits and traps and a decision-making controller to de-
tect and counteract malware and computer attacks.
When describing these systems, the guiding principle
encompasses the fundamental traits that enable the sys-
tem to operate effectively. Without formalization and a
clear demonstration of its proper functionality, the sys-
tem will fail to achieve its intended purpose. In addition,
the principle of synthesis of such systems will allow the

formation of a class of such systems and will develop
elements of the theory of multicomputer systems in
terms of systems that combine specialized functionality
with a decision-making controller to detect malware
using combined baits and traps.

In the context of the development of elements of
the theory of multicomputer systems, this principle is a
systematic principle because it refers to the definition of
the mechanisms of system functioning. In this case, it is
necessary to specify such features and characteristic
properties of the systems that reflect the smallest num-
ber of factors that will determine how the system will
function.

The principle of the synthesis of multicomputer
systems with combined baits and traps and a decision-
making controller for detecting and counteracting mal-
ware and computer attacks is set by considering the de-
tails of the system's decision-making controller and
specialized functionality for detecting malware using
combined baits and traps.

The architecture of multicomputer systems, taking
into account the principle of synthesis of such systems,
can be centralized, decentralized, or hybrid with differ-
ent degrees of centralization. Accordingly, the decision-
making center of such multicomputer systems may be
located in one or more components of the system, and
this, like the architecture, will not affect the principle of
system synthesis and its non-fulfilment. The centre can
move between components depending on the current
state of the system. In addition, the architecture of such
systems can be flexibly rebuilt, if necessary, when the
external environment changes and the system is affect-
ed, which characterizes the specifics of the tasks it per-
forms. However, such features do not affect the re-
quirement of the principle of synthesis of such systems.
The peculiarity of the proposed principle of system syn-
thesis is that it ensures control over the decisions made
in the decision-making center, i.e., the mandatory pres-
ence of a decision-making controller. At the same time,
the decision controller should be able to influence their
implementation by approving or rejecting the proposed
next steps of the system, as well as approving another
close or alternative solution. Such features of a decision
controller are required because the system is designed to
perform specific tasks associated with the interaction of
system components or elements with malware and com-
puter attacks. Accordingly, attackers can repeat their
actions many times in the same way, which will bring
the system and its respective components to the same
state. Because of such testing of the system, the attacker
will be able to study its behavior and in a certain time
will be able to bypass it. Therefore, the system’s deci-
sion controller should influence the final decision-
making by selecting the next steps of the system as a
reaction to changes in the external environment and the

Information security and functional safety

117

state of the system and its components. Such a change
in the choice of the next steps of the system will lead to
complications for the attacker in terms of studying the
behavior of detection tools for countering malware and
computer attacks in corporate networks.

The requirement to combine in such systems spe-
cialized functionality for processing events in a corpo-
rate network, i.e., spatial distribution, and the presence
of a decision-making subsystem in which decisions will
be developed, and their implementation is possible only
after approval by the controller, establishes factors for
developing the principle of synthesis of multi-computer
systems with combined baits and traps and a decision-
making controller for detecting and counteracting mal-
ware and computer attacks. In particular, we formalize
the systems, their components, and their properties that
are necessary to fulfill the requirements of the principle
of system synthesis.

Let us denote by the symbol B the principle of the
synthesis of multicomputer systems with combined baits
and traps and a decision-making controller to detect and
counteract malware and computer attacks. Then, as a
mapping from the entire set of multicomputer systems
@, it will form a subset of systems & for which the re-
quirement of the principle P will be fulfilled. That is,

the given mapping by the formula € 2 S will form a
class of systems with the requirements set by the princi-
ple B, and it is necessary to detail the components of
such systems for their further synthesis. Let us define
each of the defining components and properties that
need to be implemented in the architecture of such sys-
tems as a subset B; (i = 1,2, ..., ng, ng is the number)
The presence of possible variants among
B, (i = 1,2, ..., ng, ng is the number) is acceptable. For
example, such systems may be centralised, decentralised
or hybrid with a certain degree of centralization, which
may also provide opportunities for their division into
separate types, and at the same time they will meet the
requirements of the B principle.

Let us consider possible variants of components
and defining properties for the class of systems &: B,is
type of system architecture (centralised, decentralised,
hybrid); B, is types and number of centres in the system
architecture (integral in one component, divided into
equivalent parts in different components, hierarchically
divided in different components, integral hierarchical in
different components); B, — adaptability of the system
when external conditions change (change of its func-
tioning algorithms, change of system architecture,
change of functioning algorithms and change of system
architecture); 8, — the nature of changes in the centre of
the system (change in parameter values, change in the
architecture of the centre, change in parameter values
and change in the architecture of the centre); 85 — self-

organization of the system (creation of the organization
of functioning of a complex system, reproduction of the
organization of functioning of a complex system, im-
provement of the organization of functioning of a com-
plex system), B, — flexibility of the system (quick re-
configuration of the system under the influence of ex-
ternal events, latent reconfiguration of the system);
B, — independence in decision-making (decision-
making by the entire system centre, decision-making by
a part of the system centre); B4 — influence on the sys-
tem (internal events, external events, internal and exter-
nal events); B, — multi-agency in the system for deci-
sion-making (multi-agency, single-agency, no agents);
B, , — control of decisions in the system (presence of a
controller, absence of a controller); B,, — availability of
specialised functionality in the system (formation of
internal events in the system by specialised functionality
based on the results of execution of the Each of the
characteristics B; (i = ng, nyg is the number of charac-
teristics) is a set that contains typical elements related to
systems €. When applying the principle B, systems of
type € are synthesised. To synthesize systems according
to the principle 9B, that is, the formation of the set €
according to the definition of the direct product of sets

B; (i =ng, ng is the number of characteristics) is as
follows:

S = {(v1, 05, ., 011)|(0, 0, ..., 014) €
€ By X By X . XBygq X Byq}, 1)

where B; (i = ng, ng is the number of characteristics)
are subsets with elements that characterize the features
of the system architecture; v, is an element that deter-
mines the presence of a controller in the system; set
B4 IS @ one-element set; vy, v,, ..., 14 are the designa-
tions of elements in sets B,, B,, ..., B, respectively.

Thus, the number of systems of type & according
to the B principle is different, but according to formula
(1), they are all united by the presence of a controller in
their architecture. The number of subsets B; (i = ng,
ng is the number of characteristics) can be different,
including less than ng, but the presence of the one-
element set B,,, and the set B, in the direct product
of sets is mandatory.

Such a division of the system architecture by in-
ternal structure makes it possible to determine the nec-
essary elements and components in the system architec-
ture, which will contain a controller and specialized
functionality, and is the basis for developing the concept
and methodological foundations for the synthesis of
such systems. In contrast to the known principles of the
synthesis of multi-computer systems with combined
baits and traps and a decision-making controller for de-
tecting and countering malware and attacks, the pro-

118

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

posed principle of the synthesis of such systems con-
tains two defining requirements for the system architec-
ture. The decision-making controller is separated from
the system center, which makes it possible to form its
architecture separately from the architecture of the sys-
tem center and, as a result, to make decisions on the
decisions developed in the system center independently
of it. This is due to the specifics of the system and gives
the system an advantage over attackers or their tools, as
it generates different final system responses under the
same initial conditions at different times, which confus-
es attackers.

Let us consider a method for synthesizing systems
with partial centralization in their architecture. Simul-
taneously, the synthesis method does not define a con-
troller, but primarily implements partial centralization
and investigates the degree of degradation of such sys-
tems depending on the time of their operation and the
impact of malware and computer attacks.

4. Method for creating partially
centralized systems for detecting malware
in computer networks

A method for creating partially centralized systems
to detect malware in computer networks was developed.
The generalized scheme is presented in Fig. 1.

In partially centralized distributed systems, it is
necessary to synthesize the following principles of op-
eration, functional features and characteristics: 1) for-
mation of the system from components; 2) communica-
tion between system components; 3) maintaining the
integrity of the system; 4) partial centralization;
5) migration of the decision-making center of the sys-
tem; 6) assessment of the state of components and the
system; 7) evaluation of the results of distributed calcu-
lations in components; 8) formation of a decision in
several components; 9) reorganization of the system
architecture; 10) determination of further steps of the
system at the current time; 11) completion of the func-
tioning of the components and the system.

Let’s detail each of the given principles of func-
tioning and characteristics. All of these must be synthe-
sized in such systems completely. Because of such a
synthesis, the system will become self-organized, adap-
tive, and partially centralized.

Formation of system S from components can be
performed at the beginning of its installation and activa-
tion, during operation if necessary, and after turning on
the computer stations in the network. In addition, new
components can be added to the system or existing ones
can be removed. In addition, some of the computer sta-
tions in which the components are installed may be

turned off for a long time; therefore, the system will
contain a smaller number of components.

«Formation of the system from components

«Establishing and maintaining communication
between system components

«Ensuring system integrity

+Organization of partial centralization

J I

»Migration of the decision-making center of
the system)

«Evaluation of the state of components and the
system

«Evaluation of the results of distributed
calculations in components

+Determination of components in which the
task set by the system will be performed

J
N\

7\

*Reconstruction of the system architecture in
the presence of critical events)

«Determination of further steps of the system at|
the current time

J
N\

»Completing the functioning of components
and the system

Fig. 1. Generalized scheme of the method

Computer stations with system components can be
turned on at the same time or at different times. Com-
puter stations may not be turned off, that is, they may be
turned on all the time. These cases will influence the
formation of system S. Let's set them in the system so
that its decision-making center can consider these cases
and their variations in the process of system formation
and functioning, and as an active last event. Variants of
the formation of the system are defined as a set,

where Nyyara is the number of options. For example,

the following elements: mg3"" — characterizes the for-

mation of the system at its beginning and activation;

mg5"" - characterizes the formation of the system in the
var,1

process of functioning as needed; mg5"" — characterizes
the formation of the system after turning on computer
stations in the network. The options that are set by the
plural M*"", there can be only one at the current mo-
ment of time. That is, system S will analyze the last
version of its formation. To determine the last variant of
system formation, we introduce a predicate on the ele-

ments of the set as follows: My*"*. The options that are

Information security and functional safety

119

set by the plural, there can be only one at the current
moment of time. That is, the system analyzes the last
version of its formation. To determine the last variant of
system formation, we introduce a predicate on the ele-
ments of the set as follows: The options that are set by
the plural, there can be only one at the current moment
of time. That is, the system analyzes the last version of
its formation. To determine the last variant of system
formation, we introduce a predicate on the elements of
the set as follows:

var,1 .
Pvar 1 (var, 1 0, mg q not current version,
=) .
q m‘s’aq’r — current version,
q= 1,2, ey nM\S/ar,l . (2)

Similarly, we introduce the set of variations by the

var,2

, ms_nMgar,2 } here

Nyyarz is the number of variations. For example, the

var,2 __ var,2 var,2 ..
set Mg = {m51 Mg, ",

Var 2

following elements: mg"“— supplementing the system

with new components; m"alrz removal of components
from the system. For varlatlons given by a set of cases
M¢*"%, we introduce a predicate, the value of which will

reflect their presence or absence, so

var,2 :
Pvar 2 (var, 2 _ 0, mg q not current version,
q m‘s’zrz — current version,
= 1,2, ey HM\SIar,Z. (3)

Similarly, we introduce the set of variations by the

}, where

var,3

var,3 __ var,3 var3 |
set Mg = {m51 g5, 'mS.nMvar,3
S

Nyyars is the number of variations. For example, the

following elements: m"a”— computer stations, in which

there are system components, turned on at the same
time; mg5 "> — computer stations in which there are sys-
tem components that are turned on at different times;
m‘S’E;r3 — computer stations, in which system compo-
nents are present, are not turned off for the entire time
of system operation. For variations given by a set of
cases My*"®, we introduce a predicate, the value of

which will reflect their presence or absence:

var,3 . .
pars (gt 3 0, mgy not current version,
= 3 .
a, m‘gilr — current version,
q= 1,2, . I’IM\S/ar,3. (4)

Similarly, we introduce the set of variations by the
set

var,4 __ var,4 var,4 var,4
MS - {mS,l ’ mS,Z [mS,HMvarA}’
S

where nyvar.+ is the number of variations. For example,

var,4

the following elements: mg;" — part of the computer
stations in which the components are installed may be
turned off for a long time, the system will contain a
smaller part of the components, and at this time its cur-
rent formation may occur caused by certain events

var,4

without these components; mg," — the new formation
of the system did not occur without the components that
were located in the switched off computer stations. For
variations given by a set of cases Mg™*, we introduce a
predicate, the value of which will reflect their presence
or absence:

var,4 .
pyan 4 (var, 4 0, mgy™" — not current version,
= . _
q, m‘s";r — current version,
q-= 1,2, ey nM;’ar,z&. (5)

Formulas (2) — (5) describe the stage at which sys-
tem S is formed and specify its variants. The results of
the predicate calculation form part of the input data for
the system’s decision-making center. After installing all
the components of the system in the computer stations
in the network, considering the components with and
without the decision center, when the system is first
started, the components with the decision center check
the predicate values for the various elements of the set
M and establish that all values are equal to zero.
Then, the system will independently, without a user or
administrator, begin the initial formation of its compo-
nents from the existing subset functions, and after the
completion of such formation, it will proceed to the di-
vision of components with a decision-making center
into active and inactive ones.

To ensure communication between components in
system S, we will organize communication between
components not only using the standard sending of mes-
sages with the appropriate number of confirmation mes-
sages, but also with the sequential addition of certain
tasks to them, the result of which is known in the com-
ponents that plan to send the main message or task, as
well as conducting an analysis of the time spent be-
tween sending the first connection request and receiving
the results of the test task. In general, the entire system
S will act as one big sensor that will respond to changes
in the operation of its parts, including communication
between components. If all the components are turned
off at the same time, then they could fix a certain task in
themselves, the execution of which they should perform
after the next turn on. Shutting down computer stations
may be correct, and then such an action of fixing the

120

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

same control task for its use as confirmation of the legit-
imacy of the connection with the corresponding compo-
nent could be implemented and fixed statically. Howev-
er, it may happen that the computer station will turn off
in an emergency, and such fixation of a certain control
task will not happen. Thus, the introduction of redun-
dancy in the organization of communication between
components requires consideration of options with ena-
bled and disabled computer stations and synchronization
of the time during which the components are active and
establish communication with each other. Therefore,
let’s introduce a set of options

var,5 __ var,5 var,5 var,5
Mg™” = {ms 1 Mgy Mgy vars }'
S

where Nyyars is the number of options that arise when

redundancy is introduced to organize communication
between components. The elements of the set are as
follows: mg;">~ computer stations in which system
components are available, turned on at the same time;
m‘s"";rs — computer stations, in which system compo-
nents are present, are turned on at different times, and a
part may be turned off after a certain time of operation,
and a certain part may be turned on after this time, or
not turn on at all for a long time. Accordingly, the sys-
tem S components should also be active only when the
computer stations are turned on and functioning. Let’s

also introduce a set of options

var,6 __ var,6 var,6 . var,6
MS - {mS 1 mS,Z 4 4 mS,nMvar,é}'
S

where Nyyars is the number of options that arise when
the computer stations, in which the system components
are installed, are terminated. The elements of the set are
as follows: m¢y"® — computer stations, in which the
system components are present, turned off correctly at
the same time; mg5*® — computer stations, in which
there are system components, turned off by emergency
at the same time; mvaré — computer stations that have
system components, turned off at different times cor-
rectly; mg; °~ computer stations, in which there are
system components, turned off at different times, partly
correctly and partly in an emergency. According to the
given sets, it is possible to form two-element sets that
characterize the events related to communication in the

system depending on the computer stations as follows:

{mvar)5, m\S/alr 6} {mvar ,5., m\S/a;r 6} {mvar 5’ var6 ;

{mvar ,5., var 6} {mvar ,5 l,nvar 6} {mvar)5, var 6
S1))

{mvar 5, m\slz;,r 6} {mvar 5, Var 6

For individual computer stations, it is necessary to
develop similar tasks in sets because, according to them,
communication between individual components in the
system will be ensured. In general, in the system, com-
munication between components and sending messages
will be established according to the following relations:

"one to all" (mg;”’); "all to one" (mg3”"); "to each

other" (mg3"’); “one to a certain number, but not to all"

7
(mg™);

7
(mvar :

"a certain number, but not all, to one"

"a certain number, but not all, to a certain
var,7

number, but not to all" (mg,
tions as a set

). Let's define these rela-

var,7
, M y
S.nMvar,7
S

where ny,var is the number of and nyvar7 = 6.
S S

var,7 __ var,7 var,7 ..
Mg™" = {m51 Mg, ",

To specify the connection between individual
computer stations, we introduce a set of options

var,8 __ var,8 var,8 | var,8
Mg™" = {ms 1 Mgy, e, Mg nMvarvg}v
S

where Nyyars is the number of options that arise in the

process of establishing a connection between the com-
puter stations in which the system components are in-
stalled. The elements of the set are as follows: mg;"® —
a computer station in which the system component is
present, turned on; m;azr's — the computer station, in
which the system component is present, is turned off
correctly; mfs’a;s — a computer station, in which a sys-
tem component is present, is turned off by emergency.
According to the given set, we will form two-element
subsets that characterize the state of the computer sta-
tions regarding their start and end of work as follows:
(Mm% m¢5) {me3"®; mey®}. Therefore, if the state
of the computer station, in which the system S compo-
nent is present, is characterized by the subset
{mg3"%; m¢5"*}, then the messages it receives and sends
will be considered by the decision-making center to be
executed correctly. Otherwise, that is, for a subset
{mg"%;m¢y®}, the decision-making center records
such an event and, when the computer station is turned
on next, processes an additional special procedure for
establishing communication with this component to
update this component in the system. In addition, when
performing a standard communication action between
any two components of the system, regardless of the

type of element of the set My*", the performance of an

Information security and functional safety

121

additional check is mandatory and consists of the per-
formance of a certain task of the component that plans
to establish a connection and an equally certain task
from the component with which communication is
planned.

Thus, the establishment of communication be-
tween system components in different nodes in the net-
work will be carried out considering the types of rela-
tions that allow the synthesis of partial centralization
and additional verification of the legitimacy of the com-
ponent.

An enterprise’s corporate network can have several
segments. Components of system S can be installed in
different parts of the network and remotely in home
computer stations. Within the corporate network,
switches may fail or there may be other reasons that will
cause the system to be divided into two or more unrelat-
ed subsystems. That is, the system in the process of
functioning can disintegrate into unrelated parts. Then,
each of the parts transforms itself into a reduced system
S and continues to work if at least two active compo-
nents with a decision-making center remain in each of
the parts. If one of the parts does not have active com-
ponents with a decision center and is inactive, then the
components of this part block the operation of the com-
puter stations and issue a corresponding message to the
administrator. If components with a decision center are
inactive at the moment of a certain emergency or inten-
tional separation of the second part, which will contain
all active components with a decision center of the sys-
tem, then their transfer to the active state will occur af-
ter another communication session and establish the
absence of active components with the center decision-
making. Maintaining the integrity of system S during its
operation will be ensured by the periodic exchange of
messages between the system components according to
relations from the set Mg*"”, which will be chosen ran-
domly. In addition to these two cases, which character-
ize ensuring the integrity of the system, there is also a
case related to the partial centralization synthesis in sys-
tem S. If part of the active components, which contain
the decision-making center of the system, is removed
from the system for certain reasons, then the remaining
part will begin the procedure of forming the system
from the existing components. However, if there are less
than two such components, then all active components,
including those without the functionality with a deci-
sion-making center, will block the operation of comput-
er stations and will issue a corresponding message to the
system administrator. Thus, the given organization of
system integrity support considers the possibility of
synthesis in system S of partial centralization and adapt-
ability.

The partial centralization of the system is specified
in its designed architecture, in particular by the follow-

ing formula (4, [1]). The system is partially centralized
because all its components are divided into two subsets:
a subset of components that can be the center of the
system and a subset of components that lack functions
to ensure the functioning of the decision-making center
of the system. The management of the entire system
occurs from the components in which the decision-
making center of the system is located. Therefore, it is
centralized. Partial centralization is ensured by the fact
that the components of system S, in which the decision-
making center of system S for decision-making is locat-
ed, develop proposals separately in each of these com-
ponents, that is, decentralized, and agree to it jointly by
all. Thus, the system is not fully centralized.

We will consider partial centralization in relation
to the components that may contain the decision-making
center of the system. Most of the installed components
of system S in computer stations must contain function-
ality that ensures the functioning of the decision-making
center of the system. After the installation of the system
is completed, the system is started for the first time with
all the computer stations in which the system compo-
nents are installed turned on. At this stage of the sys-
tem’s functioning, all components that may have a deci-
sion-making center of the system will participate in the
preparation of the first final decision to determine the
first step of the system. This solution will reduce the
number of active components of the decision-making
center by switching some of them to an inactive state.
Let's set the set of states into which system S can go

st _ st st st
Mg = ymg;, mgy, -, mg, 1
Mg

where nyst is the number of states. Then, mg; — the

state of the system in which the active components of
the decision-making center are updated. The decision to
transition to this state is determined by the active com-
ponents of the system’s decision-making center. Imple-
mentation of system management is determined by the
decision-making center of the system. Decisions will be
formed and instructions will be sent to the components
for their implementation. The formation of the decision
in the system will be carried out in the active compo-
nents of the decision-making center. If we consider
them collectively with the number of more than one, at
the architectural level, they can be positioned as a de-
centralized subsystem. Therefore, the formation of the
final solution will be performed according to the solu-
tions that will be obtained from the active components
and their processing. The completion of the process of
working out the final solution will be the transition of
the system to a state. The transfer of the decision from
the active components of the decision-making center of
the system to the specified components will be per-

122

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

formed according to the relation set by one of the ele-

ments mgy " or mgs”’, and will transfer the system to
the next state. Thus, the main steps in the synthesis of
partial centralization in the system are to ensure the im-
plementation of the formation of components in which
the decision-making center will function, the formation
of decisions in the components and the final decision,
and the processing of the final decision in terms of send-
ing it to the components in which it should be done. To
form decisions, the corresponding components receive
certain messages or results in the process of system op-
eration.

The elements of the set of states Mg" will specify
the current states of the system as a whole and its com-
ponents. Transitions from state to state are set in ordered
pairs (mg,, mg',), where p is the number of the current
state of the system and q is the number of the next state
of the system. Both states of the system will necessarily
apply to its component. In particular, the transition from
the current state to the next state may not cover all com-
ponents of the system in terms of performing certain
actions to achieve a complete transition of the entire
system to the next state. Thus, the set states M3" will
characterize the system as a whole, and for the system
components M§', they will be the same according to the
list of elements of the set, but the state of individual
components will be specified separately, because the
components may not be in the same state at the same
time. Individual components of the system can change
their state according to the elements of the set M$* more
often than the system. When the system transitions from
state to state, a certain part of the components may be
involved in the process, and their states may also change
as a result. It is assumed that the functioning of the sys-
tem is possible in the presence of at least two compo-
nents, which can be the center of the functioning of the
system. Thus, scaling the system through its states for a
minimal number of components is admissible. The tran-
sition from state to state is provided by a certain set of
functions. In one cycle, the system can change several
states if it decides to do so. The system can form new
states by combining the states known to it. In a certain
state, the system receives current and input data, for the
processing of which appropriate functions will be in-
volved. As a result, a field of events for processing is
formed, which is defined by the set of events

pd _ pd _ pd pd
Mg _{mS,l’mS,Z""’mS,nMSt ,
S

where Mgd is the number of events.

When the number of enabled computer stations
changes, the number of components in the system
changes, particularly those that may have a decision-

making center in the system. Moreover, during a certain
time of the system's operation, events may occur that
will require a change in the state of the system in rela-
tion to some components that may contain the system’s
decision-making center. Therefore, the migration of the
decision-making center of the system between certain
components must be specified by certain appropriate
functions for its implementation by the system itself.
Considering the target orientation of system S for
the detection of malicious software, it is necessary to
determine, in addition to the current state of the compo-
nents and the system, the security state of the computer
stations in which the components are installed and their
own security state. Thus, to ensure the proper function-
ing of the system and to make decisions regarding its
further functioning, the following states need to be tak-
en into account: the state of the system, the states of
components, and the states of computer stations. The
values of these states will be determined not only with
respect to their safety in relation to the effects of mali-
cious software but also with respect to the general load-
ing of computer station resources and the load of exe-
cuted tasks in the component. We integrate the general
states of the components and computer stations into one
system component state indicator according to formula
(53, [1]), according to which we calculate the value for
each component a5, . We determine the state of the

system as a whole according to the states of its compo-
nents, considering the values a3 for all components

that are currently active in the system, as follows:
st1 _ 1 ¢p '
aS,t - p Zq=1 a3isi,n'Q’ (6)

where p is the number of active system components in
enabled computer stations; p = 1,2, ...,n, n — the num-
ber of components in system S; asg o — the value
agg, , in the g ith component.

In the components of system S, calculations will
be carried out and transferred to the active components,
in which the decision-making center of the system will
function. In the active components of the decision-
making center, certain tasks can also be performed and
their results obtained. Under certain circumstances, not
all components can receive the result of the assigned
task and transmit it within the given time intervals. In
addition, in certain components, the results of the per-
formance of the assigned task may be different from the
results obtained from most components that were in-
volved in its performance. Not all the results of the as-
signed task will have clear expected numerical values.
For the formation of the final result for its use in deter-
mining the further steps of the system in the compo-
nents of the decision-making center, it is necessary to
divide the components from which the results of the

Information security and functional safety

123

task were obtained into two classes. All tasks that can
be performed by the system are divided into subset
functions that can perform them and types of compo-
nents in which they can be performed. The states of the
components will constantly change. They do not have
static numerical values. The values of the characteristic
indicators of the system components, depending on the
types of tasks performed are determined by formulas
(12, [1]), (44, [1]) and (53, [1]). Calculate each value
a1s; A28, 35, OF individual components of the

system, functions with five arguments fa’ls , favZs ,
i K+1,n

fa'3 , are used, respectively. For task types, only one of
»21,n

the three values will be calculated. But its value will be
obtained according to the five arguments of the corre-
sponding function. Let's consider options for defining

the functions f; , f - f)
1,5 aZ,Sk+1,n a3,51,n

The first option can be used to determine the val-

ues of the functions fa;S : fa'zs : faés is given by
1 »2K+1,n »=1,n

the arithmetic mean value of all five arguments as fol-
lows:

Al,SI = fal,sl (31,51,1'31,51,2:a1,sl,3:a1.sl,4:a1,sl,5) =
1 ,
_1 ¥s
5 Zq:l al,SI,q' (7)
a2rSk+1,n =
"ﬁllz,skJr1 N (a2v5k+1.nv1’ A2, Ske1,02’ 32,5k41,0.3, 325k 1,04 32,541,
_1 ¥vs ’
5 Zq:1 2,5kt 1,00 (8)
A3,S]'n =

fa'3 5 (as,sl_n,pas,sl_n,z:as,sl_n,s:as,sl_n,zpas,s]_n,s) =
Sin
1

-5 ' Za=1 a3,S]_n,q' (9)

After obtaining values according to formulas (7) —
(9) for each of the components to which the task was
sent for execution, it is necessary to divide these values
into two classes. The first class will include those values
that are equal to or are closest to one on the numerical
axis, and the rest will be included in the second class.
Then, the results of the task, which are obtained from
components with values from the first class, will be ac-
cepted with the appropriate degree of confidence. If
they are numerical, the arithmetic mean value will be
calculated as the final result. If the values of the per-
formed task are non-numeric, then the result of the exe-
cution will be accepted as completed if the first class is
not empty. If the first class is empty, the task is per-
formed again. To form two classes, we form an interval
for the values (ay s, azg,,, ,» 335s,,) from the compo-

nents so, so that the minimum of them is the lower limit

n:5)=

of the interval, and the upper limit of the interval is the
number one. The interval formed in this way will con-
stantly change for each new task, since the lower limit
will be changed. Let's set the lower limit for the first
class as 20% of the deviation from unity to the lower
limit, and for the second class, respectively, as 80% of
the deviation from the lower limit of the interval. The
common value of the two classes will be assigned to the
first class, then the values of the second class will be in
the interval with an open upper border. Let's define an
interval with classes as follows: and for the second
class, respectively, as 80% deviation from the lower
limit of the interval. The common value of the two clas-
ses will be assigned to the first class, then the values of
the second class will be in the interval with an open
upper border. Let's define an interval with classes as
follows: and for the second class, respectively, as 80%
deviation from the lower limit of the interval. The
common value of the two classes will be assigned to the
first class, then the values of the second class will be in
the interval with an open upper border. Let's define an
interval with classes as follows:

’

A; s = min (31,51'31,52» ---»31,sp) ip<1[;
al,s = min (aZ,Sk+1!aZ,Sk+2) ey aZ,Sp) H p S n;

a; g = min (33151,33’52, ---,33,51,); 1<p<n (10)

where [ajg; 1] — the range of all values; ahg=1-
0,2 (1—ajys;1)— the limit value of both classes;
[ays;1] — range for values from the first class;
[a}g; a5 5] — range for values from the second class

Thus, the clustering of values performed according
to formula (10) allows the decision-making center of the
system to accept the results of the task in the given
components.

However, when evaluating the results of distribut-
ed calculations in components according to the first op-
tion, the weight of the value of a certain characteristic
indicator is leveled and can affect the assignment to a
certain class. This is because, according to formulas (7)
—(9), all terms are considered equivalent, regardless of
their weight. Considering their weights in the overall
resulting value is complicated, because these weights do
not have established values and require the involvement
of experts to determine them, which will affect the re-
duction of the self- organization of the system and their
possible accuracy, in connection with the constant
changes of states in computer stations. Therefore, con-
sider the second option for determining the values of the
functions far g o £

i 32Sk41n
To perform clustering into two classes according

to the second option, we consider a five-dimensional

azs

124

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

space in which the five arguments of the functions fai.si’
fal’2'5k+1,n’ fa’3'51.n

ing the values of the arguments of the functions from
the system components in which the task was per-
formed, the coordinates of points in the five-
dimensional space will be formed from them, with the
subsequent division of the points into two classes. The
choice of the classification algorithm and the metric will
be made based on the fact that the valuable values for
the system will be those that will be closest to the value
equal to one. Accordingly, it is necessary to choose a
classification algorithm and metric in such a way that
the first class is formed, in which the element
(1;1;1;1;1) would be, or the cluster would be formed in
its absence, but with coverage of the area of the points
closest to it.

Let’s consider the known metrics and select a met-
ric for use in classification. The Euclidean distance met-
ric specifies the geometric distance between objects in
space. The squared Euclidean distance metric is charac-
terized by giving more weight to the most distant ob-
jects. The Manhattan distance metric reduces the impact
of individual long distances. The power-law distance
metric is used when it is necessary to increase or de-
crease the weight for the dimensions of objects that dif-
fer significantly. Its disadvantage is the need to set two
parameters. The Chebyshev metric is used if two objects
differ by at least one coordinate. From the analyzed
metrics, we will choose the Chebyshev metric, since
according to it, it is possible to distinguish between two
objects that differ by one coordinate, because the rest of
the metrics with several different numerical coordinates
can lead to certain identical distance calculations, which
is inadmissible for the construction of the second variant
of clustering. The Chebyshev metric defines the dis-
tance as follows:

will set the points. Thus, when obtain-

pCox) = max (Jxq —xgl) (1)

where xg is the coordinate of the center of the cluster;
q=12,..,5; x4 is the coordinate of a point in space.
For clustering, we will use the k-means method
because, according to its application results, all objects
will be divided into relatively homogeneous classes.
Achieving division into classes is ensured by minimiz-
ing the sum of squared distances between each of the
five values of the characteristic indicators, i.e., the ar-

guments of the functions f _, f~ , £ and
1Si 2Skiqn 3351n
the center of the cluster, which is set as follows:
P i i 2
d =32, (max (dus,iaxal)) . (12

where x'q is the coordinate of the center of the cluster;

q=1,2,..,5; for the value function fa'l,sl’ p1=1, p;

is the number of active components with the decision-
making center of the system; for the function f

2Sk4+1,n
value p; =k+1, p, isthe number of active compo-
nents without functionality for the decision-making cen-
ter of the system and p, < n; for the function fa;s ,

»O1,n

value p; =1, p, is the number of active components
and p, <n.

At a certain step of the iteration, the value of the
element specified by five coordinates will be chosen as
the center of the cluster. We quantitatively establish two
clusters for separating values. We record the values ob-
tained from the components in which the task was per-
formed in all active components that form the decision-
making center of the system. Let us take as the center of
the first cluster the value given by the coordinates
(1;1;1;1;1), and as the center of the second cluster, the
value of the characteristic indicator, which is the most
distant from the point with coordinates (1;1;1;1;1). If
there are several such values, we take the last consid-
ered value that is suitable as the center of the cluster.
The rest of the values are distributed between two clas-
ses according to formula (12), depending on the dis-
tance to the two centers of the two clusters in such a
way that the class includes the value with the smallest
distance according to the Chebyshev metric (formula
(11)). To achieve the stability of clusters, that is, to as-
sign the same values to the clusters, the centers of the
clusters need to be clarified through repeated iterative
calculations. To select the next center of the cluster, we
find the arithmetic mean value of all the values of the
characteristic indicators that are part of a certain cluster.
The search for such centers is carried out until the same
values that were in the previous step of the iteration at
another cluster center remain in the clusters. As a result,
it is achieved that the variance between classes will be
maximized and that between elements will be mini-
mized. To clarify the center of the cluster in the active
components of the decision-making center, it is neces-
sary to organize iterative steps. In the future, at the next
steps of the tasks, these clusters will be needed at the
next stages of the same task to evaluate the discrepancy.
In addition, in the presence of previous stories from the
performance of the same assigned task, the decision-
making center of the system will average the values of
the class limits based on the results of previous calcula-
tions to avoid system degradation, correct the assess-
ment of task performance in the system, and fix the re-
sult of the completed task. Thus, the classification ac-
cording to the k-means method is divided into two clas-
ses according to the second variant of the values of the
characteristic indicators of the active components and

Information security and functional safety

125

, as implementing

a

the functions f,; , f_ ,
15 2Sk+1n 23S1n

the calculation of these values according to the Cheby-
shev metric.

To determine the components in which the task set
by the system will be performed, the decision-making
center of the system determines their security level
through a survey of all components, which is calculated
according to formula (6). Then, the center of decision-
making according to the first variant of division into
classes (formulas (7) — (9)) determines half of the com-
ponents, i.e., a factor of 0.5 is put into formula (9) in-
stead of 0.2, in which the given task will be performed.
If the assigned task requires immediate execution or has
a status related to security research in components, it is
performed by all components. A smaller number of
components may be involved in the performance of the
task, if there are many of them, but this number cannot
be less than ten components. This is because of the need
to have a sufficient sample of values to correctly deter-
mine the final result. At the same time, a certain part
may not have enough time to complete it in the set time.
If the number of components in the system is small, e.g.,
less than ten, all components are involved in the per-
formance of the assigned task. Each of the function sets
and functions subsets in the components and the system
as a whole have priorities that affect the number of
components involved in performing the assigned tasks.
These functions in components have clear connections
with the tasks for which they are intended, which affect
the number of components involved in performing the
assigned tasks. These functions in components have
clear connections with the tasks for which they are in-
tended, which affect the number of components in-
volved in performing the assigned tasks. These func-
tions in the components have clear connections with the
tasks for which they are intended.

The formation of a decision-making center can be
carried out quantitatively from two to all components in
which the corresponding functionality is installed. Deci-
sions about the number of active components of the
decision-making center are made from the moment the
system is started by all components in which the sys-
tem's decision-making center is present. If active com-
ponents with a decision center stop working during sys-
tem operation and the system continues, then the deci-
sion center adds new components to maintain the num-
ber of such components. To do this, he transfers them to
the active state. The decision on the number of active
components is made randomly by each active compo-
nent, and then their arithmetic mean value is found and
its fractional part is discarded.

In the process of functioning of the system, infor-
mation is accumulated in its components, which can be
the decision-making center of the system. This infor-

mation is necessary to consider when making subse-
quent decisions about the next steps. However, not all
components will have the same information about the
passed system states, so mechanisms and functions must
be introduced into them, which will allow it to be up-
dated to a certain level. Such information, which needs
to be saved for use in determining the next steps of the
system and which applies exclusively to ensuring the
functioning of the system, includes: information about
the number of components in the system over time since
the start of its operation and the state of their activity or
non-activity; information about all the tasks performed
in the system and the components involved for this, as
well as the decisions that were made and the primary
results for their adoption. To update the current infor-
mation in all components of the decision center, you
need to perform a task, because of which the database of
information on the latest events in the system will be
updated and sent to all components of the decision cen-
ter that are located in enabled computer stations. For
components of the decision center that are located in
non-enabled computer stations, such information will be
updated the next time they are enabled. Saving such
information will enable the system administrator to ana-
lyze and find the reason for stopping the system or
computer stations by its components, to make decisions
about further steps by the system, and to optimize the
performance of assigned tasks. To update the current
information in all components of the decision center,
you need to perform a task, because of which the data-
base of information on the latest events in the system
will be updated and sent to all components of the deci-
sion center that are located in enabled computer sta-
tions. For components of the decision center that are
located in non-enabled computer stations, such infor-
mation will be updated the next time they are enabled.
Saving such information will enable the system admin-
istrator to analyze and find the reason for stopping the
system or computer stations by its components, to make
decisions about further steps by the system, and to op-
timize the performance of assigned tasks. To update the
current information in all components of the decision
center, you need to perform a task, because of which the
database of information on the latest events in the sys-
tem will be updated and sent to all components of the
decision center that are located in enabled computer
stations. For components of the decision center that are
located in non-enabled computer stations, such infor-
mation will be updated the next time they are enabled.
Saving such information will enable the system admin-
istrator to analyze and find the reason for stopping the
system or computer stations by its components, to make
decisions about further steps by the system, and to per-
form optimization in the performance of assigned tasks.
as a result, the database of information on the latest

126

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

events in the system will be updated and sent to all
components of the decision-making center located in the
enabled computer stations. For components of the deci-
sion center that are located in non-enabled computer
stations, such information will be updated the next time
they are enabled. Saving such information will enable
the system administrator to analyze and find the reason
for stopping the system or computer stations by its
components, to make decisions about further steps by
the system, and to perform optimization in the perfor-
mance of assigned tasks. as a result the database of in-
formation on the latest events in the system will be up-
dated and sent to all components of the decision-making
center located in the enabled computer stations. For
components of the decision center that are located in
non-enabled computer stations, such information will be
updated the next time they are enabled. Saving such
information will enable the system administrator to ana-
lyze and find the reason for stopping the system or
computer stations by its components, to make decisions
about further steps by the system, and to optimize the
performance of assigned tasks. such information will be
updated the next time they are turned on. Saving such
information will enable the system administrator to ana-
lyze and find the reason for stopping the system or
computer stations by its components, to make decisions
about further steps by the system, and to optimize the
performance of assigned tasks. such information will be
updated the next time they are turned on. Saving such
information will enable the system administrator to ana-
lyze and find the reason for stopping the system or
computer stations by its components, to make decisions
about further steps by the system, and to optimize the
performance of assigned tasks.

Reconstruction of the system architecture may also
be necessary in the case of the detection of anomalous
events or malicious manifestations in the computer net-
work or stations. In this case, some of the system com-
ponents can turn off the computer stations and inform
the decision-making center of the system about with-
drawal from the system. Such events can be partially
detected by components with existing functionality be-
cause of the establishment of communication between
components at the beginning of work after turning on
computer stations or when problems with the function-
ing of components are established in a certain computer
station. Events of this type are processed by appropriate
functions-subsets and the decision-making center per-
forms management actions to rebuild the system archi-
tecture according to the element from the set of

events M2¢.
The determination of further system steps and the
transition to them at the current time depends on the

events in the system, which are set by the set MPY, the

results of event processing by the functions of the sys-
tem components, the set of options for steps, which are
set by the set of states M$', the results of the decision-
making center of the system; and the possibility of per-
forming the specified transition to the next state at the
current time, since changes may have occurred in the
system during preparatory measures; and the immediate
execution of the transition with verification of its com-
plete completion.

Events in system S will be processed by certain
functions. If events occur at computer stations and in the
network, the system may process them if they are visi-
ble to its sensors. System S must control all objects and
processes that can be assessed as anomalies or malicious
influences in the future. To achieve this, it must have
sufficient sensors and functions to process the results. If
there are not enough, the system may not be able to de-
tect, for example, malware in computer networks. In
addition, events can occur within the system itself. They
can be caused by both external and internal influences.
However, we will consider all events to occur in com-
puter stations and networks and should be processed
without division into types. The division into types of
such influences and manifestations will be used in the
development of methods for targeted analysis by type to
identify anomalous manifestations and malicious mani-
festations caused by the types of relevant means. Events

defined by the elements of a set MP? are systematised
precisely through the characteristics of the elements. An

increase in the number of elements of the set M'sJcl will
require an increase in the number of functions in the
system components. Events can also be specified by
combinations of elements. In addition, events can simul-
taneously occur in different nodes in the network and be
visible to system components.

The results of event processing by the functions of
the system components will be used to determine further
steps of the system by its decision-making center and, as
a result, will lead to the appearance of new events. In
general, the system will constantly monitor and process
events. However, not all events will lead to a change of
state or transition to the next state.

The set of options for steps, which are given by the

set of states MY, determines the ability of system S to
perform the tasks that relate to the organization of its
functioning in accordance with the principles of self-
organization and adaptability. If the system S states are

few, i.e., the elements of the set Mg, then the pairs of
elements that will be used to set the options for steps
will also be few. This provides an opportunity to ensure
proper stability for system S. However, filling the com-
ponents with function sets for solving specialized tasks,
as well as the environment in computer stations, will be
rapidly changing, so the number of elements of the set

Information security and functional safety

127

Mg" cannot be a small number. In this regard, the num-
ber of states can be a large number; therefore, the num-
ber of variants of steps and their combinations will also
be quite large; as a result, it is impossible to describe
them all unambiguously. To solve this problem, it is
necessary to set the rules by which the system will form
and determine the steps for further transition to the next
state, i.e. the rules for selecting options from several
formed steps. At the same time, a set of states Mg
should be initially formed, the number of elements of
which should be further increased by forming new states
in the system as combinations of basic states. Such
combinations are formed according to the combination
of different states of all components of the system into a
single state of the entire system. During its operation,
each component changes its state. Thus, some possible
combinations of basic states will add new elements to
the set of states M§". This will be done by the decision-
making centre of the system. Let's define the following
basic states of the system S, i.e. elements of the state
set: MJ" m§; - the state of the system, in which the
active components of the decision-making center have
been updated; mg, — the state of the system, in which
the evaluation of the state of the components and the
system was carried out; mg; — the state of the system, in
which the communication between the system compo-
nents is carried out; mg, — the state of the system, in
which further steps of the system are determined at the
current time; mg's — the state of the system, in which the
migration of the decision-making center of the system
was carried out; mg — the state of the system, in which
the restructuring of the system architecture was carried
out; mg; — the state of the system, in which the deci-
sion-making center is formed in several components;
mg — the state of the system, in which the evaluation of
the results of distributed calculations in components is
carried out; mg,— the state of the system, in which the
functioning of components and others has been com-
pleted. For components, the same states will also exist,
but if, for example, the system updates the active com-
ponents of the decision center, then in the components,
the states can be as follows: the functionality for activat-
ing the decision-making center of the system in the
component is disabled; the functionality for activating
the decision-making center of the system in the compo-
nent is activated; and the state of the component has not
changed, i.e., a transition to the same state has occurred.

Transitions from state to state of system S are
shown in Fig. 1. For example, the selected segment in
the figure shows the transition from state mg', to state or
mgY vice versa, depending on the coordinate of the

transition vector in the ordered pair (mg’,; mgs) or
(mg5; mg).

Thus, system S will be in a state shown in Fig. 2.
The details of the effects and means of changing the
state are shown in Fig. 3 with an indication of the con-
nections that can be influenced.

Fig. 2. System states and possible transitions
between them

Actions Functions Stages

S
XK S

< o
~ERRIRIR -
. v ‘ N \

A

NV \‘\

74

Fig. 3. Relationship between events, functions,
and states

Two types of functions are highlighted in the de-
picted connection of events, functions, and states. The
first type includes multiple functions in the components
that do not belong to the functions of the decision-
making center of the system, and the second type in-
cludes functions that form the decision-making center of
the system. The highlighted segments between the two
types of functions indicate that they refer to components
that may be the center of the system’s decision-making.

Depicted in Fig. 2 and 3 States refer exclusively to
the system as a whole. The details of states in specific
components are similar to the images in Fig. 1 and 2.
System components can be in different states at the
same time, and the state of the system is uniquely de-
termined by the states of its components and the deci-
sion center components. A specific component of the

128

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

system can be in several states at the same time, which
will be considered as a certain state formed by a combi-
nation of basic states. For example, system S adds com-
ponents that became active as a result of turning on the
computer stations, and the system component at this
time evaluates the security level in the computer station.
Then, these two states in the component will be com-
bined into one at the current time, and the system will
record the state of this component.

For the transition from state to state of system S,
we will consider the activity of subset functions (matrix
analysis from formula (6, [1])), the values of character-
istic indicators (formulas (12, [1]), (44, [1]), (53, [1]),
options for forming a system according to a set Mg™"™'
(formula (2)), and variations in forming a system ac-
cording to sets Mg, M, M (formulas
(3) — (5)), introduction of redundancy in the organiza-
tion of communication according to sets Mg*“® and
Mg*"°, type of relationship for establishing communi-
cation between components and sending messages ac-
cording to the set My*"’, specifying the connection of
individual computer stations among themselves accord-
ing to the set of options Mg"®, the set of events Mspd,
the state of the system as a whole (formula (6)), the
choice of options for calculating trust in the results of
distributed calculations (formula (7) — (9) or according
to clustering (formula (12))) and the set of states Mg
Let's set the next state of the system S through its cur-
rent state and indicators of components and the system
as follows:

st
mS’q
Mgt
pd
MS
MS,k,I
!
al,Si
!
a2r5k+1,n

!
A3,8: 1
var,1

wv

var,2

wv

st S var,3
mg, = Fgop

wv

, (13)

var,4

var,5

wv

var,6

wv

var,7

=TT T2 XX

wv

var,8

Ly
N

_,,
87

R
N
%]
~
T
N
=}

!
3,51 n

st1
Ugt

where ngp is a function that determines the next state
of the system and sets the transition between the states.
When determining the next state of the system,
there will be as many options as there are elements in
the set M§". The result of the selection can be the same
state in which the system is already. In addition, the
system can detect a state that is not in the set of states.
This can happen when a combination of several states is
established in a certain component or several compo-
nents, which are set in the plural M§* by the basic con-
stituent elements. Then, the system supplements this set
of states with a new element formed by a combination
of certain elements in certain components. However, the
set of states is not formed in full from all the combina-
tions at the beginning, but only from those that will ap-

pear during the functioning of the system.

Because the arguments of the function Fzﬁp are da-
ta of different types and the function must set rules ac-
cording to which a discrete value will be determined, we
set this function Fgﬁp as a general rule, which will con-
tain a combination of the logical operators "AND" and
"OR" and the negation "NOT" in the logical expression
of local functions, which are assigned to each argument.
Let be the Fj,,, b-th local function, where
b =1,2,...,19, whose argument is the b-th argument of
the function chl_,p . The values of the local functions are
discrete values {0} and {1}, where the value {0} will
mean the fulfillment of the conditions for transition to
the next state, and the value {0} will mean the fulfill-
ment of such conditions. In a logical expression that

forms a rule for defining a function, the values of local

functions Fgﬁp can be combined with each other in full
or in part, and can also form composite conditions, from
which it is sufficient to move to a new state of fulfill-

ment of one of the conditions.

For example, to change to a state mg; in which the
active decision center components are updated, you
need to change the components that the system decision
center will be in. The reasons for this change will be the
updated data of such indicators and the results of the
current state of the system indicators. If the previous
state mg', of the system , in which the assessment of the
state of the components and the system is carried out,
and it is established that the value aggl = 0.23 is signif-
icantly less than the threshold value, then regardless of
the remaining indicators, the system performs the func-
tions necessary to update the active components of the
decision-making center.

The given transitions from state to state will also
maintain the integrity of the system and ensure its sta-
bility. Formula (13) defines the system S at the level of
the states it can be in and the transitions between them,

Information security and functional safety

129

which actually determines the processes that will func-
tion in it.

The decision-making center of the system accord-
ing to formula (13) receives the result and establishes
the possibility of carrying out the specified transition to
the next state at the current time, since changes may
have occurred in the system during preparatory
measures.

The execution of the transition between the system
states is provided by a subset function that checks its
complete completion according to the communication
specially specified in this case. If part of the system
components did not have time to complete this transi-
tion, then in the future, when they are active, they re-
produce the missed states in their history of states, re-
new the current indicators, and return to the current state
of the system.

Completion of the functioning of the components
and the system can be followed by their return to the
performance of tasks when the computer stations are
turned on, or when a given command is given to block
part of the components or the system, or the removal of
the components or the system as a whole from nodes in
the network.

As a result, we set the main general steps of the
method of organizing the functioning of partially cen-
tralized distributed systems according to the principles
of self-organization and adaptability.

Step 1. Formation of the system S from compo-
nents.

1.1. If system S is formed after the initial installa-
tion of all components (element mVarl of the character-
istic set Mg*"*, element mg3"* of the set M¢*"%), then
each of its components receives information about the
location of the remaining components in the computer
network, records such information in its internal data-
base and waits for the initial launch of one of the com-
ponents by the administrator for subsequent initial
launches of the remaining components after the indica-
tion from it about its start of operation.

1.2. If the computer stations are switched on con-
stantly (element mg3" of the characteristic set Mg,
element m¢3* of the set Mg*™*), then the formation of
system S from components will be performed once and
further changes (element mg5"" of the characteristic set

Mg) will be performed by the system itself when
certam events occur.

1.3. If system S is formed after turning on comput-
er stations in the network at the same time (element
mg3"" of the characteristic set mg3 ™", element mg;™ of
the set M¢2"?), then for its further functioning, all com-
ponents perform a special procedure for exchanging
messages to start functioning.

1.4. 1f the computer stations (element mg3"" of the
¢ element mgy® of the set

characteristic set Mg ",

M%), in which the system components are installed,
are turned on at different times, then the components
that were in the first turned on computer stations form
the system, and the rest are added to it after performing
a special addition procedure of components in dynamic
mode.

1.5. If new components are added to system S or

existing components are removed (an element mVarl of

the characteristic set M¢*""), then a special procedure
for adding or removing components is used, followed
by the formation of system S from existing active com-
ponents that function in enabled computer stations.
Supplementing system S with new components or re-
moving existing components can be performed after
substeps 1.1-1.4. The special procedure for adding and
removing components involves the participation of the
system administrator, the transition to the detail of sub-
step 1.5 and the subsequent execution of substep 1.1.
1.5.1. Supplementing the system with new compo-

nents (element m¢3"* of the set Mg*"?, element mg3">

Var 4

of the set Mg*" 3 element mg5 " of the characteristic set

M) is performed when aII computer stations in

which the system S components are installed. Each
component of system S is supplemented with infor-
mation about new components, and new components are
supplemented with information about all system com-
ponents.

1.5.2. The removal of components from the system
S(element mg5? of the set Mg*™?, element mg5 ™ of the

set My*™®) is performed using one computer station, in
which the component containing the decision-making
center of the system is installed. Through the compo-
nent interface with administrator access rights, we pro-
vide an instruction to remove a specific component.
Next, this system component sends a message about the
withdrawal of the specified component to the rest of the
system components that are active, i.e., they function in
enabled computer stations. Components that will not be
on computer stations that are turned on, i.e., will not
receive this message about the removal of a specific
component, but will receive this message when the
computer stations in which they are installed are turned
on, from the active components of the system's deci-
sion-making center.

1.5.3. When removing a single component at the
current time (element mg5"> set M{*™) in which the
decision center of the system is located, it is necessary
to enable the computer station in which the component
with the functionality of the decision center is present,
or to use the passive component with the decision center
at this current time. In this case, the passive component

130

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

or the attached component receives first an instruction
about their sole control of the system, and then about
the withdrawal of the given component.

1.5.4. The completion of sub-steps 1.5.1-1.5.3 is
carried out by determining the last variant of system
formation according to formula (2), according to which
we calculate the predicate P{*"*(mgy?) (q=

1,2,...,nyyarz2) on the elements of the set M2,

1.5.5. After performing substep 1.5.4, we return to
substep 1.5.

1.6. If the computer stations in which the system S
components are installed (element mg5 " of the charac-

var,1 var 4

teristic set Mg™ ", element Mg of the characteristic

set Mg*™*) are not turned on for a long time, then the
system is formed from the components that are in the
switched on computer stations.

1.7. Step 1 is completed by determining the last
variant of system formation according to formula (2) of
substeps 1.2-1.4 and 1.6, according to which we calcu-
late the predicate P{*"" (mg3"") (q = 1,2,. Myyyara) ON

the elements of the set M¢2", according to formula (4)
of substeps 1.2-1.4 and 1.6, according to which we cal-
culate the predicate Py*"*(mga™) (@ = 1,2, .., Nygyars)

on the elements of the set My*™* and according to for-

mula (5) of substeps 1.5.1 and 1.6, according to which
we calculate the predicate Py*"*(mj Va”

(q=12,.., IleS/arA) on the elements of the set

1.8. Depending on the events that will exclusively
affect the formation of the system S architecture, and
the results from substep 1.7, we return to one of sub-
steps 1.2 - 1.4 or 1.6.

The results of substeps 1.5, 1.7, 1.8 are transmitted
to the decision center of system S and processed by one
of the defined substeps of the following steps.

The determination of the last variant of system
formation according to formula (2) for the elements of
the characteristic set My™* and sub-steps 1.2-1.4 and
1.6 does not completely complete step 1, but only fixes
the state of the system S after the complete execution of
one of the sub-steps in certain time intervals, when no
changes will occur in the system in its architecture. The
execution of step 1 will be constant and independent of
the rest of the steps because the architecture of the sys-
tem may change constantly and will require the system
S itself to react to such events through the execution of
substeps of step 1.

We present the results of the substeps of step 1 in
the table of their conjugation with the corresponding
elements of the sets and the values of the predicates. As
a result, we will receive information about the result of
a certain substep and use it to make decisions about fur-
ther steps of system S.

var, 4-
Mg,

Step 2. Establish and maintain communication be-
tween system components.

2.1. If from the computer stations that have system
components, at the current time when system S starts,
there is only one computer station that is turned on (an
element mg5® of the set M{*"™®), then the system S
component will use the "one to all" relationship after its
loading (an element m¢y"” of the set Mg*"”) , accord-
ing to which a message will be sent to all system S
components to establish communication with them.

2.2. If from the computer stations in which the sys-
tem components are present, at the current moment of
time at the current start of system S, all (element mVars

of the set My*"®) are turned on and the decision-making
center determines that the given component addresses
all the remaining components, then the given system
component will use the relation "one to all" (element
mg3" of the set Mg*™”), according to which a message
will be sent to all components of the system S to main-
tain communication with the rest.

2.3. If one component is missing in system S be-
cause of the non-activation of the corresponding com-
puter station, then all the remaining components period-
ically contact it to check its presence in order to form a
complete system, that is, we perform the "all to one"
relationship (element mg5"” of the set Mg*"7).

2.4. If a decision is made in system S to send a
message to maintain and check the connection with a
given component for certain reasons, then all the re-
maining components refer to it, i.e., we perform the "all-
to-one" relation (element mg5"” of the set Mg*"7).

2.5. If a decision is made in the system S to send a
message from a specific component to maintain and
check communication with a given component for cer-
tain reasons, then we perform a "one-to-one" relation-
ship (element mg5” of the set Mg*"™).

2.6. If a decision is made in the system S to send a
message from a specific component to maintain and
check communication with a certain number of compo-
nents, but not all, for certain reasons, then we perform
the relation "one to a certain number, but not to all" (an
element m¢3"” of the set Mg"”).

2.7. If a decision has been made in the system to
send a message from a certain number of specified, but
not all, components to one to support and verify com-
munication with a given component for certain reasons,
then we perform the relation "a certain number, but not
all, to one" (element mgy"’ of the set Mg™"7).

2.8. If a decision is made in the system to send a
message from a certain number of specified, but not all,
components to a certain number to support and check
communication with them for certain reasons, then we
perform the relation "a certain number, but not all, to a

Information security and functional safety

131

certain number, but not to all" (element mg3"” of the

set Mg*"").

2.9. If a component is sent a message or an instruc-
tion, and it is currently turned off together with the
computer station, then it sends a message to all compo-
nents that are active, that is, those that are in the com-
puter stations that are turned on, and we perform a one-
to-one relationship to a certain number, but not to all"
(an element mg7"” of the set Mg*") and commands or
messages sent to her are nullified.

2.10. If a component is sent a message or instruc-
tion and it is currently shutting down along with the
computer station, then it does not send a shutdown mes-
sage to all components that are active, that is, those that
are in the computer stations that are turned on. When
the next time the computer station is turned on, the
component notifies all other active components about
the previous emergency event and communicates with
them, performing a one-to-some, but not all, relation-
ship (an element mgy"" of the set Mg™™’), but the
commands or messages that were sent to it from certain
components are canceled.

2.11. If when establishing a connection between
system components, the standard part (according to the
"flowering" scheme only to confirm the establishment
of the connection and the activity of the components)
and the additional part (according to the use of redun-
dancy to additionally confirm the legitimacy of the
components) were successfully completed for all system
components in the computer stations that are turned on
at the same time (an element mg3"® of the set M{*"®),
then system S will continue to function in regular mode.

2.12. If when establishing a connection between
system components, the standard part (according to the
"flowering" scheme only to confirm the establishment
of the connection and the activity of the components)
and the additional part (according to the use of redun-
dancy to additionally confirm the legitimacy of the
components) were successfully completed for all system
components in the computer stations that are turned on
at different times, and a part may be turned off after a
certain time of operation, and a certain part may be
turned on after this time or not turn on at all for a long
certain time (an element mg5 "> of the set Mg*™®), then
the system S will continue to function in regular mode
as part of active component in enabled computer sta-
tions.

2.13. If, for the cases of substeps 2.11, 2.12, when
establishing a connection between system components,
the standard part (according to the "flowering" scheme
only to confirm the establishment of a connection and
the activity of the components) is not completed suc-
cessfully, then the system components that established

such a fact about a certain component report about such
a result to the decision-making center of the system.

2.13.1. If such a message is received from two
components that have attempted to communicate with
each other, then the decision center instructs them to
retry the connection in the standard part of the proce-
dure. In addition, it instructs another component to es-
tablish communication with these two components, and
these three components must inform the decision-
making center about the performance results.

2.13.2. If such a message is received from one of
the two components that were attempting to communi-
cate with each other, then the decision center instructs
that component and the other two active components to
attempt to establish communication according to the
standard part of the procedure and inform these three
components of the results and must inform the decision-
making center.

2.14. If it is confirmed in substeps 2.13.1 and
2.13.2 that there are problems with establishing com-
munication with a certain component according to the
standard part of the communication establishment pro-
cedure, then such a component will be added to the list
of components that need to be investigated by the deci-
sion-making center and will be periodically tested for
connection with a certain number of components (an
element my5"® of the set Mg*"®).

2.15. If, for the cases of substeps 2.11, 2.12, when
establishing communication between the system
components, the standard part (according to the "flower-
ing" scheme only to confirm the establishment of com-
munication and the activity of the components) is com-
pleted successfully, and the additional part is not com-
pleted successfully. Then, the system components that
have established such a fact about a certain component,
such a result is reported to the decision-making center
of the system (an element mg5"° of the set Mg*™®).

2.15.1. If such a message is received from two
components that were trying to establish a connection
with each other, then the decision center instructs them
to retry the establishment of the connection in an addi-
tional part of the procedure, additionally instructing
another component to establish a connection with these
two components and these three components must in-
form the decision-making center about the performance
results.

2.15.2. If such a message was received from one of
the two components that attempted to establish commu-
nication with each other, then the decision center in-
structs this component and two other active components
to attempt to establish communication according to an
additional part of the procedure and the results of the
execution of these three components must be provided
to the decision-making center.

132

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

2.16. If it is confirmed in substeps 2.13.1 and
2.13.2 that there are problems with establishing com-
munication with a certain component by an additional
part of the communication establishment procedure,
then such a component is investigated by the decision-

making center (an element mg,”° of the set My
through immediate testing of communication with it by
a certain number of components. When problems are
detected, it is removed from the system and a corre-
sponding message about such an event is sent to the
system administrator.

2.17. If the computer stations in which the system

components are present are turned off correctly at the

var,6

same time (an element mg; " of the set Mg), then the
system components in them store information about the
correct completion of their operation and start work
with standard specified actions the next time.

2.18. If the computer stations, in which the system
components are present, are disabled at the same time
(an element m¢5"® of the set Mg*"®), then the compo-
nents did not complete the correct exit and when the
computer systems are turned on, the components in-
stalled in them will perform the correct restart procedure
execution of unfinished previous tasks along with the
initial boot procedure.

2.19. If the computer stations, in which the system
components are present, are turned off correctly at dif-

ferent times (an element my3 " of the set My""), then

the system components in them store information about
the correct completion of their operation and the next
time start work with standard specified actions, consid-
ering the time of turning off the rest of the components
in relation to a certain component.

2.20. If the computer stations, which have system
components, are turned off at different times partially

correctly (element mg5"® of the set Mg*"®) and partially
accidentally (element mg3"° of the set M{*"°, element

m¢5"® of the set Mg*"®), then for the components that
were in the computer stations that were turned off cor-
rectly, we perform substep 2.19 and substep 2.18.

Step 3. Ensuring system integrity.

3.1. If system S is divided into two or more unre-
lated subsystems within the corporate network because
of equipment failure for a certain time, then each of the
parts will reform itself into a reduced system S and will
continue to work, provided that in each of the parts
there are no less than two active components with a de-
cision center.

3.1.1. If one of the parts does not have active com-
ponents with a decision center and is inactive, then the
components of this part block the operation of the com-
puter stations and issue a corresponding message to the
administrator.

3.1.2. If components with a decision center are in-
active at the moment of a certain emergency or inten-
tional separation of the second part, which will contain
all active components with a decision center of the sys-
tem, then their transfer to the active state will occur af-
ter another communication session and establish the
absence of active components with the center decision-
making.

3.2. If part of the active components, which con-
tain the decision-making center of the system, is re-
moved from the system for certain reasons, then the
remaining part will start the procedure of forming the
system from the existing components.

3.3. If there are no available active components
with a decision center, the available components block
the computer stations and issue a corresponding mes-
sage to the administrator.

Step 4. Organization of partial centralization.

4.1. The formation of a decision regarding the
number of components (element mg'; of the set Mg'),) in
which the decision-making center of the system will
function is determined by all components of the system,
in which the functionality of the decision-making center
is available, at the first start of the system. The number
of active components of the decision-making center will
be less than two-thirds and more than one. Each compo-
nent at the beginning of the start of the system randomly
generates a number from the interval from two to two-
thirds of the number of components of the center, and
all these components exchange such numbers among
themselves and find the average arithmetic number
among these numbers and discard the fractional part
in it.

4.2. If at the next start of the system not all com-
ponents with the decision-making center of the system
will be active in the enabled computer stations, then the
available components will decide on the number of ac-
tive components (element mg'; of the set M§") in which
the decision-making center will be located. When turn-
ing on computer stations with components in which the
decision-making center was active at the previous stage
of operation, such components receive a message from
the decision-making center about the transition to the
passive state of their decision-making center function-
ality.

4.3. To select certain components of the decision
center to be active, after performing substep 4.1, each
component randomly generates numbers from a range
of one to a number equal to the number of components
with the decision center. After the formation of such
sequences of numbers, results are exchanged between
all components with a decision-making center. In all
sequences, the numbers are sorted in non-descending
order, and after sorting, the whole part is calculated

Information security and functional safety

133

from the arithmetic mean value of the numbers with the
same index.

4.4. To select certain components of the decision
center to be active, after performing substep 4.2, each
component randomly generates a number from one to a
number equal to the number of active components with
the decision center at the current time. After the for-
mation of such sequences of numbers, the results are
exchanged between all active components with the deci-
sion-making center. In all sequences, the numbers are
sorted by non-decreasing order, and after sorting, a
whole part of the arithmetic mean value of the numbers
with the same index is calculated.

4.5. If there are two such active components at
substep 4.4, then they will perform the functionality of
the decision-making center, and when components with
the functionality of the decision-making center appear
in the system, they will perform substep 4.4.

4.6. If there are less than two such active compo-
nents at substep 4.4, then the functionality of the deci-
sion-making center will be in one component. Substep
4.5 will be performed when components with the func-
tionality of the decision-making center appear in the
system.

4.7. If the enabled computer stations have compo-
nents that do not have decision center components, then
each of the components records events, and the system
does not function normally.

4.8. Tasks for the system regarding its further steps
or for certain components are formed separately in each
of the active components of the decision-making center,
and after a decision has been agreed between them, such
a task is notified for execution.

For the substeps of step 4, there may be other algo-
rithms for determining the number of components with
a decision-making center and directly components of a
decision-making center. For example, there may be
weighted averages, harmonic averages, etc. In addition,
the functionality can contain several algorithms, and at
the current time, all components can use one of them.

Step 5. Migration of the decision-making center of
the system.

5.1. If all the components of the decision-making
center are active at the current moment of time, some of
them form the decision-making center, and the rest are
in a passive state, then periodically some of the active
components will become passive and vice versa passive
components will become active. The decision on the
next review of the components involved in the for-
mation of the decision-making center will be made by
the currently active components.

5.2. If the security status in the computer station
has decreased according to the system assessment and
the component in it is an active component of the deci-
sion-making center, then the rest of the system compo-

nents decide to transfer this component to a passive
state and make the other component active.

5.3. If not all components of the decision-making
center are active at the current moment due to their
computer stations not being turned on, some of the ac-
tive ones form the decision-making center, and the re-
maining components with the decision-making center
are in a passive state, then the decision-making center
will supplement the number of active components at the
expense of passives.

Step 6. Evaluation of the state of the components
and the system.

6.1. We calculate the general states of the compo-
nents and computer stations ag,sm according to equa-
tion (53, [1]).

6.2. We calculate the state of the system as a
whole according to equation (6).

Step 7. Evaluation of the results of the distributed
calculations in components.

7.1. The values of the characteristic indicators of
the system components, depending on the types of per-
formed tasks, are determined by formulas (12, [1]), (44,
[1]) and (53, [1]) and sent to all active components of
the decision-making center.

7.2. If the results of calculations carried out in dif-
ferent components of the system are the same and each
of the components participating in their processing re-
ceived the same values during the specified time inter-
val, then one of the obtained results is accepted as the
final value of the distributed calculations.

7.3. If the results of the calculations performed in
different components of the system are not the same and
each of the components participating in their processing
received the same set of values during the specified time
interval, then the percentage of the largest number of
identical values of the calculation results to all the re-
ceived values is determined.

7.3.1. If the percentage of values of calculation re-

sults is equal to % 100% (N — number of values),

then the component in which the result is different from
the rest will be sent additional verification values for
calculations to check its legitimacy, and one of the N —
1 obtained results is accepted as the final value of dis-
tributed calculations. If the component that will be
checked because of a different value of the result from
the rest belongs to the active components of the decision
center, then it will be sent for processing the received
set of values, and the rest of the active components of
the decision center will examine its response and make
decisions about its further functioning in the system.
7.3.2. If the percentage of the values of the calcu-

lation results is less than % +100% (N — the number of

values) and more than 50%, then the components in
which the result is different from the rest will be sent

134

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

additional verification values for calculations to check
its legitimacy, and one of the results obtained, which
was more than 50, is accepted as the final value of dis-
tributed computing. If the component that will be
checked because of a different value of the result from
the rest belongs to the active components of the decision
center, then it will be sent for processing the received
set of values, and the rest of the active components of
the decision center will examine its response and make
decisions about its further functioning in the system.

7.3.3. If the percentage of values of the calculation
results is less than 50% from the number of all among
the largest number of one value, then the calculation
results are not accepted and the system begins to per-
form self-testing. After completion, if successful, it will
retry this task or reject its execution.

The value of the characteristic indicators of the
system components, depending on the types of tasks
performed can be determined by formulas (7) — (12)
depending on the features of processing. Clusters of
such values can be formed by taking into account time
delays when transmitting the results of distributed cal-
culations. Niche formulas for determining the values of
the characteristic indicators of the system components
may also be applicable.

Step 8. Determination of components in which the
task set by the system will be performed.

8.1. To determine the components in which the
task set by the system will be performed, we determine
the security level of all components according to formu-
la (5), according to the first variant of division into clas-
ses (formulas (7) — (10)) and, thus, determine half of the
components, putting in the formula (10) factor 0.5 in-
stead of 0.2.

8.2. If the assigned task requires immediate execu-
tion or has a status related to security research in com-
ponents, it is performed by all components.

8.3. We involve a smaller number of components,
if there are many of them, to perform the assigned task
as required (by a decision made or by an instruction to
perform), but this number cannot be less than ten com-
ponents.

8.4. If the number of components in the system is
small, e.g., less than ten, all components are involved in
the performance of the assigned task.

8.5. Processing of accumulated information in the
components of the decision-making center of the sys-
tem, formation of the base of decisions made in these
components and provision of such a base to all compo-
nents of the decision-making center.

8.6. Decision to perform a specific function in
components depending on the current data in the sys-
tem.

Step 9. Reconstruction of the system architecture
in the presence of critical events.

9.1. If anomalous events or malicious manifesta-
tions are detected in the computer network or stations
and the components report them, the system architecture
rebuilding procedure is launched.

9.2. If in certain components of the system, long-
term functioning of subsystems for detecting anomalous
events or malicious manifestations is detected, and at
the same time, such components inform the decision-
making center about the need to continue the execution
of the task, and the time limits for the execution of such
tasks have already been passed, then the system is de-
termined with the need to rebuild its architecture with-
out considering these components, and in their presence,
the functionality of the decision-making center is trans-
ferred from an active state to a passive one.

9.3. If the system is in a critical state according to
the calculated value of the security level, then it re-
moves a part of the components with the largest values
of the critical state from its architecture and recalculates
the current state.

9.3.1. If after such a reconstruction, the security
status is not critical, it continues to function.

9.3.2. If the security status remains critical after
such a rebuild, it stops functioning and issues a message
to the administrator.

Step 10. Determination of further steps of the sys-
tem at the current time.

10.1. We determine the next state of system S
through its current state and indicators of components
and the system according to equation (53, [1]).

10.2 If an event from a set M'S’d has occurred in the
system, it is processed by the functions of the system
components, and the decision-making center selects a
state variant from a set of states M§", evaluates the pos-
sibility of performing a specified transition to the next
state at the current moment of time, and directly per-
forms the transition with verification of its complete
completion.

10.3. If an event occurred in the system that is not
from the set M$" it is processed by the functions of the

decision-making center.

10.3.1. If a state variant is selected from a set of
states, an evaluation of the possibility of performing a
specified transition to the next state at the current mo-
ment of time is performed. The transition is then per-
formed directly with a check of its complete comple-
tion, and the set of events is supplemented by this event.

10.3.2. If a state option is selected from a set of
states Mg', an evaluation of the possibility of performing
a specified transition to the next state at the current
moment of time is carried out, then the transition is then
carried out directly with a check of its complete comple-
tion. If the event remains active after the system state

Information security and functional safety

135

changes, the system blocks the components and reports
a problem administrator.
10.4. If among the elements of the set of events

M‘S’d there is no event that occurred specifically in the
system and needs to be processed, then the decision-
making center of the system returns the system to its
previous state and analyzes the presence of this event.

10.4.1. If the event is present after a change in the
system state, then the system components block the pro-
cesses in the computer stations, and the entire system
transitions to a critical security state and add the event
to the set of events.

10.4.2. If the event is absent after changing the
state of the system to the previous one, then the system
adds this event to the set of events and fixes the state of
the system in which it disappears.

10.5. If the event, which is among the elements of

the set of events M‘S’d, does not require transition to the
next state, then it is processed and the system remains in
the current state.

10.5.1 If part of the system components did not
have time to complete the transition to the specified
state for certain reasons, then in the future, when they
are active, they reproduce the missed states in their his-
tory of states, renew the current indicators, and return to
the current state of the system.

Step 11. Completing the functioning of the com-
ponents and the system.

11.1. Completion of the functioning of the compo-
nents and the system at the current moment in time with
their subsequent return to the performance of tasks
when the computer stations are turned on.

11.2. Blocking of part of the components or sys-
tem by the decision-making center of the system.

11.3. Completion of the functioning of a part of the
components at the current moment of time with their
subsequent return to the performance of tasks when the
computer stations are turned on.

11.4. Removal of components or the entire system
from nodes in the network.

Thus, the developed method for organizing the
functioning of partially centralized distributed systems
makes it possible to create them according to the princi-
ples of self-organization and adaptability. Partial cen-
tralization of such distributed systems is achieved by
separating the components of the decision-making cen-
ter of the system, in each of which a decision is made
separately, which is later coordinated with the rest of the
decisions.

At the same time, the components of the decision-
making center function according to the principle of
decentralization, and the entire system functions accord-
ing to the principle of centralization. In the developed
method of functioning of this type of system, the distri-

bution of components was carried out in relation to the
decision-making center, which made it possible to im-
plement partial centralization compatible with the prin-
ciples of self-organization and adaptability.

5. Experiments
5.1. Experimental settings

The degree of degradation of system S in the process
of its functioning and the degradation of its components
will be considered in the context of the loss of some com-
ponents by the system and, as a result, either the removal
of some components irrevocably from the system or a de-
crease in the system's performance due to the loss of some
components or their incorrect functioning.

The degree of system degradation correlates with
the degree of sustainability [1, 40, 41]. However, the
system’s stability reflects the ability to continue func-
tionality and fulfill its tasks despite changes in the oper-
ating environment with minimal change or loss of func-
tionality, and degradation reflects the ability to fulfill its
tasks after a complete or partial loss of component func-
tionality and approaching or transitioning to both a state
of failure and a state of complete shutdown. Thus, the
common feature of both system characteristics is the
ability to continue performing the assigned tasks. The
difference is that stability is the probability of continu-
ing operation, and degradation is the probability of ap-
proaching a state of failure.

The degree of degradation of the system as a
whole will depend on the number of components in the
system, the time of operation of the system and its com-
ponents, the events that the system will process, and the
impact on the environment in which the system and its
components will operate. When determining the system
degradation factor, we will consider the number of
components in the system, the operating time of the
system and components, and the values of the security
levels of the components and the system at the current
time. Then, we define the system degradation factor as
follows:

i ’ n_ o
Zr=1‘11,si*zr=1+1 2SKk41n

_ ky ko t

st,1
_ (2) agt ,
k

where ag;" is the value of the system security level calcu-
lated by formula (12, [1]); k is the number of active com-
ponents in the system; k, is the number of active compo-
nents with a decision-making center in the system; k, is
the number of active components without a decision-
making center in the system; oy 5, ay g, — are the val-

ues of the security levels of the system components calcu-

kg, = (14)

136

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

lated by formulas [1]); k = k; + k,; n is the number of
components in the system; t is the system operation time.

If there are many components in the system, the loss
of some of them will not significantly affect the degree of
system degradation because the system architecture at the
component level is centralized and, therefore, the tasks
can be assigned to the remaining active components.

If the degradation indicator relates directly to a par-
ticular component, if it is at the stage of removal by the
system itself, this does not significantly affect the degree
of degradation of the entire system.

If all components of the system function normally,
then k = n and the degradation factor kg, = 0. If k <
n, then the value of the degradation coefficient will be
different from zero and will indicate the degree of sys-
tem degradation.

Let's set up an experiment to determine the degree
of system degradation.

The values of the significance levels of the charac-
teristic indicators are the same as those in the previous
experiment.

Consider system S at the level of its components.
Two indicators can be received from each component to
the system’s decision-making center:

1) the value of the component's safety level,

2) the fulfillment of the task.

Then, four cases are possible:

1) the value of the component’s safety level corre-
sponds to the permissible value and the task is obtained
correctly;

2) the safety level of the component corresponds to
the permissible value, but the task is performed incor-
rectly;

3) the safety level of the component does not cor-
respond to the permissible value and the task is per-
formed incorrectly or not completed within the specified
time;

4) the security level of the component does not
correspond to the permissible value, but the task is per-
formed correctly.

We will create a file of the results of work over a
long period of time in the system, recording the results
of the values of the components’ security levels and the
results of the tasks performed. After a certain period of

system operation, we will process the results stored in
the specified file.

5.2. Case study

The experiment was conducted in five series over
five days.

In the first series of the experiment, out of 100
components of the system, 9 components produced a
negative result, and the rest produced a positive result.

Thus, the task set during the experiment was cor-
rectly performed using 91 components.

In the second series of the experiment, out of 100
system components, 10 components produced a nega-
tive result and the rest produced a positive result.

In the third series of the experiment, out of 100
components of the system, 10 components gave a nega-
tive result and the rest gave a positive result.

In the fourth series of the experiment, out of 100
components of the system, 10 components gave a nega-
tive result and the rest gave a positive result.

In the fifth series of the experiment, out of 100
components of the system, 9 components produced a
negative result, and the rest produced a positive result.

In addition, the security status of each of the 10
components was obtained from the given file for each
series of experiments.

As a result, it was found that the negative result in
the series of the experiment was obtained from compo-
nents with a high and low level of security. This affect-
ed the system degradation rate. The fewer components
with a high level of security and a negative result of the
task, the lower the level of system degradation at the
current time.

To assess the approach performance, ROC analysis
was used [42, 43]. It provides a more comprehensive
view of a method’s performance than a single accuracy
score, helping us to make informed decisions about
method selection and parameter tuning [44, 45].

The results of the experiment are presented in the
form of ROC curve graphs and tables of the values of
security levels and task performance. The values of the
degree of system degradation for the series of experi-
ments are given in Tables 1-21 and Figs. 4-13.

Table 1

The value of the degree of system degradation

Series of the experiment

Average value
3 4 5

Degradation

factor 0.15

0.25

0.21

0.21 0.27 0.21

Information security and functional safety 137
4 Figure 1 - O X
File Edit View Insert Tools Desktop Window Help ¥
Dode @/ 0E »(E
] . ‘ ' IROC-‘cur:e‘ . .
ool [B ¢)
08+ g ///
0.7t é ///
06+ E ////
E 05+ ///
0.4 ///
0.3 //
0.2 //
0.1 S AUC = 0.84249
e
0 - : - * : * - - * -
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
FPR
Fig.4. Experiment 1.1 (9 zeros)
Table 2
Results of experiment 1.1: 1— detected, 0 — not detected
Network host Detection result
1-10 1 1 1 1 1 1 0 1 1 1
11-20 1 1 1 1 1 1 1 1 1 1
21-30 1 1 1 1 1 0 1 0 1 1
31-40 0 1 1 1 1 1 1 1 0 1
41-50 0 1 1 1 1 1 1 1 1 1
51-60 1 1 1 0 1 1 1 1 1 0
61-70 1 1 1 1 1 1 1 1 1 1
71-80 1 1 1 1 1 1 1 1 1 1
81-90 1 1 1 1 1 1 1 1 1 1
91-100 1 1 1 1 1 0 1 1 1 1
Table 3
Results of experiment 1.1
Network host Statistical probability of malware detection
1-10 0.9860 | 0.9860 | 0.9930 | 0.9740 | 0.9888 | 0.9804 | 0.9800 | 0.8748 | 0.9959 | 0.9760
11-20 0.9900 | 0.9970 | 0.976 | 0.9790 | 0.9849 | 0.9967 | 0.9850 | 0.9783 | 0.9860 | 0.9872
21-30 0.9820 | 0.9700 | 0.919 | 0.9850 | 0.9814 | 0.5994 | 0.9808 | 0.9770 | 0.9761 | 0.9944
31-40 0.6730 | 0.9720 | 0.9810 | 0.2700 | 0.9051 | 0.9974 | 0.9796 | 0.9799 | 0.9084 | 0.9930
41-50 0.1340 | 0.9990 | 0.9750 | 0.9790 | 0.9906 | 0.9742 | 0.9854 | 0.9916 | 0.9979 | 0.9920
51-60 0.7880 | 0.9820 | 0.9770 | 0.9860 | 0.8780 | 0.9953 | 0.9899 | 0.9945 | 0.9938 | 0.1889
61-70 0.9793 | 0.4386 | 0.9996 | 0.9931 | 0.9029 | 0.9912 | 0.9879 | 0.9926 | 0.9849 | 0.8906
71-80 0.9720 | 0.9991 | 0.9730 | 0.9864 | 0.9821 | 0.9732 | 0.9917 | 0.9884 | 0.7225 | 0.9870
81-90 0.9943 | 0.9873 | 0.9983 | 0.0671 | 0.9533 | 0.9937 | 0.9842 | 0.9949 | 0.9797 | 0.9993
91-100 0.9783 | 0.9722 | 0.9554 | 0.9949 | 0.9977 | 0.2542 | 0.9941 | 0.9861 | 0.9839 | 0.9293

138 ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)
4 Figure 1 - m] X
File Edit View Insert Tools Desktop Window Help ~

Ddde @ OE K [E

. ROC-curve

T - T : % T
y=x
0.9 | | —*%—ROC-curve § ¥ s i

08r

%

0.7

06

TPR

05
04
03r

021

o1l AUC =0.75

o . S A s . e
0 01 02 03 04 05 06 07 08 09 1
FPR

Fig.5. Experiment 1.2 (10 zeros)

Table 4
Results of experiment 1.2: 1— detected, 0 — not detected
Network host Detection result

1-10 1 1 1 1 1 1 1 1 1 1

11-20 1 1 1 1 1 1 1 1 0 1

21-30 0 1 0 1 1 0 1 1 1 1

31-40 1 1 1 1 1 1 1 1 1 1

41-50 1 1 1 1 1 1 1 0 1 1

51-60 1 1 1 0 1 1 1 1 1 1

61-70 1 1 1 1 1 1 1 1 1 1

71-80 1 1 0 1 0 1 1 1 1 1

81-90 1 1 1 1 1 1 1 1 1 1

91-100 1 1 1 1 0 1 0 1 1 1
Table 5

Results of experiment 1.2
Network host Statistical probability of malware detection

1-10 0.9844 | 0.9905 | 0.9762 | 0.9882 | 0.9641 | 0.9964 | 0.9740 | 0.9233 | 0.9988 | 0.9746
11-20 0.9746 | 0.9747 | 0.9727 | 0.9836 | 0.9901 | 0.9949 | 0.7714 | 0.2393 | 0.9228 | 0.9913
21-30 0.9987 | 0.9852 | 0.9108 | 0.9937 | 0.7070 | 0.7605 | 0.8793 | 0.9886 | 0.9885 | 0.9737
31-40 0.9737 | 0.9785 | 0.9921 | 0.9823 | 0.9949 | 0.9981 | 0.9820 | 0.9716 | 0.9871 | 0.9924
41-50 0.9796 | 0.9848 | 0.9766 | 0.9982 | 0.9845 | 0.9862 | 0.9766 | 0.0012 | 0.9718 | 0.9946
51-60 0.9931 | 0.9759 | 0.9969 | 0.9345 | 0.9897 | 0.9358 | 0.9710 | 0.9827 | 0.9847 | 0.9875
61-70 0.9725 | 0.9898 | 0.9401 | 0.9867 | 0.9914 | 0.9846 | 0.9885 | 0.9456 | 0.9894 | 0.9814
71-80 0.9731 | 0.2410 | 0.5323 | 0.9772 | 0.4249 | 0.9857 | 0.9824 | 0.9765 | 0.9958 | 0.9958
81-90 0.9785 | 0.9885 | 0.9934 | 0.9105 | 0.5369 | 0.9815 | 0.9749 | 0.9939 | 0.9734 | 0.9748
91-100 0.3235 | 0.9954 | 0.9875 | 0.9876 | 0.9978 | 0.9873 | 0.9703 | 0.9943 | 0.9883 | 0.9844

Information security and functional safety 139
4 Figure 1 o X
File Edit View Insert Tools Desktop Window Help k]
Dede @ 0 K E
ROC-curve s
i — ‘ ‘ ‘ % P
0.8 §
o7}
0.6 [
(1
& 0.5
04
03[
0.2
01 AUC =0.78556
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FPR
Fig.6. Experiment 1.3 (10 zeros)
Table 6
Results of experiment 1.3: 1- detected, 0 — not detected
Network host Detection result
1-10 1 1 1 1 1 1 1 1 1 1
11-20 1 1 1 1 1 1 1 1 1 1
21-30 1 1 1 0 1 1 1 1 1 1
31-40 1 1 1 1 1 0 1 1 1 1
41-50 1 0 1 1 1 1 1 1 0 1
51-60 1 1 1 1 1 1 1 1 0 1
61-70 0 1 1 1 1 1 1 1 1 1
71-80 1 1 1 1 1 1 1 1 1 1
81-90 1 1 1 0 1 1 0 1 1 1
91-100 1 1 0 1 1 1 1 1 0 1
Table 7
Results of experiment 1.3
Network host Statistical probability of malware detection
1-10 0.9885 | 0.9976 | 0.9881 | 0.9911 | 0.9923 | 0.9816 | 0.9775 | 0.9711 | 0.9842 | 0.9894
11-20 0.9784 | 0.9855 | 0.9774 | 0.9789 | 0.9248 | 0.9967 | 0.9958 | 0.9763 | 0.9820 | 0.7904
21-30 0.9777 | 0.9990 | 0.9886 | 0.3202 | 0.9948 | 0.9897 | 0.9864 | 0.9775 | 0.9712 | 0.9770
31-40 0.9808 | 0.9890 | 0.9996 | 0.9762 | 0.9927 | 0.9530 | 0.3404 | 0.9748 | 0.9943 | 0.9843
41-50 0.9735 | 0.9963 | 0.9891 | 0.1759 | 0.9973 | 0.9711 | 0.9712 | 0.9997 | 0.0510 | 0.3235
51-60 0.9851 | 0.9929 | 0.9175 | 0.9918 | 0.9910 | 0.9838 | 0.3394 | 0.9802 | 0.9751 | 0.9820
61-70 0.2833 | 0.9768 | 0.9808 | 0.0895 | 0.9725 | 0.9854 | 0.9950 | 0.9971 | 0.9917 | 0.9815
71-80 0.9789 | 0.9908 | 0.9964 | 0.8739 | 0.9724 | 0.9845 | 0.9738 | 0.9776 | 0.9965 | 0.9142
81-90 0.9352 | 0.9863 | 0.8711 | 0.4908 | 0.9937 | 0.9952 | 0.9116 | 0.9825 | 0.9893 | 0.9764
91-100 0.9885 | 0.9903 | 0.9880 | 0.9804 | 0.9809 | 0.9751 | 0.9939 | 0.9654 | 0.8532 | 0.9933

140

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

4] Figure 1

1

File Edit View Insert Tools Desktop Window Help

Dede @ 0E RE

o

0.8

0.7

06

TPR

0.5

041

03

0.2

(k1o

0

ROC-curve . .
0.9 L ¥ * § §
8 —%— ROC-curve % ¥ /
AUC =0.78778
0 0.1 02 03 04 05 06 07 08 09 1

FPR

Fig.7. Experiment 1.4 (10 zeros)

Table 8
Results of experiment 1.4: 1— detected, 0 — not detected
Network host Detection result

1-10 1 1 1 1 1 1 1 1 1 1

11-20 1 1 0 1 0 1 1 1 0 1

21-30 1 1 1 1 1 0 1 1 1 1

31-40 1 1 0 1 1 1 1 1 1 1

41-50 1 1 1 1 1 1 1 1 1 1

51-60 1 1 1 1 1 1 1 0 1 1

61-70 0 1 1 1 1 1 1 1 1 1

71-80 1 1 1 1 1 1 1 1 1 1

81-90 1 0 1 1 1 1 1 0 1 0

91-100 1 1 1 1 1 1 1 1 1 1
Table 9

Results of experiment 1.4
Network host Statistical probability of malware detection

1-10 0.9716 | 0.9850 | 0.9830 | 0.9971 | 0.9889 | 0.9995 | 0.9876 | 0.9952 | 0.9841 | 0.9864
11-20 0.9754 | 0.9890 | 0.8815 | 0.9860 | 0.9844 | 0.9494 | 0.9728 | 0.9964 | 0.9701 | 0.4440
21-30 0.9904 | 0.9870 | 0.9844 | 0.9796 | 0.9880 | 0.0566 | 0.9905 | 0.9984 | 0.9730 | 0.9853
31-40 0.9733 | 0.9864 | 0.5237 | 0.3030 | 0.9933 | 0.9820 | 0.9969 | 0.9569 | 0.9718 | 0.2197
41-50 0.9725 | 0.9985 | 0.9705 | 0.9734 | 0.9704 | 0.9765 | 0.8759 | 0.9893 | 0.9855 | 0.9774
51-60 0.9758 | 0.9727 | 0.9811 | 0.6721 | 0.9881 | 0.9844 | 0.3351 | 0.9024 | 0.9952 | 0.9779
61-70 0.1017 | 0.9834 | 0.9802 | 0.9952 | 0.9995 | 0.9089 | 0.9754 | 0.9737 | 0.9874 | 0.9799
71-80 0.9780 | 0.9865 | 0.9754 | 0.9904 | 0.9717 | 0.9710 | 0.6912 | 0.9624 | 0.9970 | 0.9954
81-90 0.9819 | 0.9421 | 0.9829 | 0.9825 | 0.9919 | 0.9822 | 0.9986 | 0.9974 | 0.9985 | 0.9576
91-100 0.9787 | 0.9966 | 0.9763 | 0.9739 | 0.6408 | 0.9972 | 0.9821 | 0.9160 | 0.9724 | 0.9980

Information security and functional safety 141
4 Figure 1 - ul X
File Edit View Insert Tools Desktop Window Help ~
Dade @ 0E K E
: ' l 1 ‘ ROC-Icurvel ‘ %
o e, b
08 E g
07+]
0.6 g
g 05
04
03
02
0.1 AUC =0.76435
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FPR
Fig.8. Experiment 1.5 (9 zeros)
Table 10
Results of experiment 1.5: 1— detected, 0 — not detected
Network host Detection result
1-10 1 1 0 1 1 1 1 1 1 1
11-20 1 1 0 1 1 1 0 1 1 0
21-30 1 1 1 1 1 1 1 1 1 1
31-40 1 1 1 1 1 1 1 1 1 0
41-50 1 1 1 0 1 1 1 1 1 0
51-60 1 1 1 1 1 1 1 1 1 1
61-70 1 1 1 1 1 1 0 1 1 1
71-80 1 1 1 1 1 1 1 1 1 1
81-90 1 1 1 1 1 1 1 1 0 1
91-100 1 1 1 1 1 1 1 1 1 1
Table 11
Results of experiment 1.5
Network host Statistical probability of malware detection
1-10 0.0061 | 0.9888 | 0.8821 | 0.9968 | 0.9764 | 0.9701 | 0.9964 | 0.9771 | 0.9773 | 0.9892
11-20 0.9791 | 0.8605 | 0.9965 | 0.4362 | 0.9817 | 0.9940 | 0.9494 | 0.9888 | 0.9910 | 0.4073
21-30 0.9859 | 0.9967 | 0.9779 | 0.9770 | 0.9952 | 0.9849 | 0.9746 | 0.9769 | 0.9095 | 0.9869
31-40 0.9788 | 0.9887 | 0.9915 | 0.9784 | 0.9824 | 0.9809 | 0.9934 | 0.9741 | 0.9971 | 0.9787
41-50 0.9850 | 0.9935 | 0.9903 | 0.9745 | 0.5002 | 0.9739 | 0.9984 | 0.9966 | 0.9855 | 0.0363
51-60 0.9993 | 0.2872 | 0.9395 | 0.9948 | 0.9934 | 0.9757 | 0.9829 | 0.9704 | 0.9798 | 0.9740
61-70 0.9835 | 0.9872 | 0.9938 | 0.9826 | 0.9860 | 0.8861 | 0.9379 | 0.9863 | 0.8905 | 0.9716
71-80 0.9943 | 0.9800 | 0.9769 | 0.9947 | 0.9063 | 0.9750 | 0.9708 | 0.9987 | 0.9904 | 0.9958
81-90 0.9201 | 0.1974 | 0.8860 | 0.9777 | 0.9966 | 0.9976 | 0.9790 | 0.9722 | 0.8993 | 0.9725
91-100 0.9919 | 0.9834 | 0.3147 | 0.9751 | 0.9859 | 0.9890 | 0.9704 | 0.9841 | 0.9966 | 0.9734

142

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

4 Figure 1

1

-]

File Edit View Insert Tools Desktop Window Help

Dade @ 0E KE

ROC-curve 2, AEMA AR

0.9

08

0.7

0.6

TPR

05

04r

03

02r

0.1r

0

T T T T T %
RS
y=x ¥ /
[| —*— ROC-curve 1

AUC =0.78687

0

0.1 0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FPR

Fig.9. Experiment 2.1 (19 zeros)

Table 12
Results of experiment 2.1: 1— detected, 0 — not detected
Network host Detection result

1-10 1 1 1 1 1 1 0 1 1 1

11-20 1 1 1 1 1 1 1 1 1 1

21-30 1 0 1 1 1 0 0 0 0 0

31-40 1 0 1 1 1 1 1 1 1 1

41-50 1 0 1 1 1 1 1 1 1 1

51-60 1 1 1 1 1 1 1 1 1 1

61-70 1 1 0 1 0 1 1 1 0 1

71-80 1 1 1 1 1 1 1 1 1 0

81-90 1 1 0 1 0 1 1 0 1 1

91-100 1 1 1 1 1 1 1 0 0 0
Table 13

Results of experiment 2.1
Network host Statistical probability of malware detection

1-10 0.9832 | 0.9864 | 0.5353 | 0.9819 | 0.9925 | 0.9857 | 0.6537 | 0.9727 | 0.9775 | 0.9834
11-20 0.9891 | 0.9913 | 0.9998 | 0.9980 | 0.9728 | 0.8728 | 0.9749 | 0.9991 | 0.9879 | 0.9772
21-30 0.9721 | 0.9790 | 0.9944 | 0.9723 | 0.9806 | 0.4872 | 0.9202 | 0.1254 | 0.9911 | 0.8648
31-40 0.6905 | 0.9752 | 0.9895 | 0.9850 | 0.9785 | 0.9949 | 0.9946 | 0.9981 | 0.9700 | 0.9892
41-50 0.9702 | 0.8504 | 0.9732 | 0.9810 | 0.9772 | 0.9804 | 0.9775 | 0.9816 | 0.9826 | 0.9892
51-60 0.9936 | 0.9781 | 0.9953 | 0.9922 | 0.9948 | 0.9755 | 0.8839 | 0.9883 | 0.9910 | 0.9733
61-70 0.9729 | 0.9879 | 0.9281 | 0.9944 | 0.3046 | 0.9276 | 0.9971 | 0.9836 | 0.9721 | 0.9772
71-80 0.9920 | 0.9712 | 0.9827 | 0.9862 | 0.9986 | 0.0465 | 0.9735 | 0.9894 | 0.9733 | 0.9995
81-90 0.9775 | 0.9882 | 0.9266 | 0.9949 | 0.9492 | 0.9928 | 0.9975 | 0.9970 | 0.9764 | 0.9864
91-100 0.9935 | 0.9758 | 0.9924 | 0.9843 | 0.9875 | 0.4382 | 0.9725 | 0.5992 | 0.2718 | 0.9210

Information security and functional safety 143

[# Figure 1 - u] X

File Edit View Insert Tools Desktop Window Help L]

Dcdde @08 E

; ROC-curve
‘ ' ?*x‘*x‘%**/

yex — 7
0.9 | | —%— ROC-curve g e 1

0.8

07t yd
/////
06 o

E //’
05 }f e

/’/
////
0.4} //
03Ff yd
///
0z} e

o1l %// AUC = 0.74399

0

TPR

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
FPR

Fig.10. Experiment 2.2. (19 zeros)

Table 14
Results of experiment 2.2: 1- detected, 0 — not detected
Network host Detection result

1-10 1 0 1 1 1 1 1 1 1 1

11-20 1 0 1 0 1 1 1 1 1 1

21-30 1 1 1 1 1 1 1 1 1 1

31-40 0 1 1 1 0 1 0 1 0 1

41-50 1 1 1 1 1 0 1 1 1 1

51-60 0 1 1 0 0 1 1 1 1 1

61-70 1 0 1 1 1 1 1 1 1 1

71-80 0 0 1 1 1 1 1 1 1 1

81-90 0 1 1 0 1 1 1 1 1 1

91-100 1 1 1 0 1 1 1 0 0 1
Table 15

Results of experiment 2.2
Network host Statistical probability of malware detection

1-10 0.9751 | 0.9899 | 0.9861 | 0.9949 | 0.9780 | 0.9753 | 0.8889 | 0.9843 | 0.9936 | 0.9739
11-20 0.9715 | 0.0874 | 0.9709 | 0.9741 | 0.9908 | 0.9855 | 0.9863 | 0.9943 | 0.8618 | 0.9851
21-30 0.9783 | 0.9736 | 0.9966 | 0.9991 | 0.9983 | 0.9891 | 0.9727 | 0.9722 | 0.9032 | 0.9710
31-40 0.4778 | 0.9743 | 0.9891 | 0.9937 | 0.9166 | 0.9813 | 0.9946 | 0.9791 | 0.9796 | 0.4640
41-50 0.9851 | 0.9778 | 0.9920 | 0.9749 | 0.9976 | 0.2077 | 0.9725 | 0.9722 | 0.9931 | 0.9945
51-60 0.5608 | 0.9927 | 0.9988 | 0.9840 | 0.9936 | 0.9827 | 0.9983 | 0.9700 | 0.9994 | 0.9871
61-70 0.9804 | 0.8812 | 0.9790 | 0.9748 | 0.9900 | 0.9905 | 0.9938 | 0.9805 | 0.9775 | 0.9804
71-80 0.4204 | 0.9978 | 0.9927 | 0.9786 | 0.9882 | 0.9930 | 0.9954 | 0.9971 | 0.9879 | 0.0053
81-90 0.7280 | 0.9961 | 0.9824 | 0.9102 | 0.9935 | 0.9774 | 0.9866 | 0.9769 | 0.9452 | 0.9003
91-100 0.8660 | 0.9818 | 0.9776 | 0.9108 | 0.9899 | 0.9974 | 0.9702 | 0.5273 | 0.5088 | 0.9972

144 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)
[4] Figure 2 - o %
File Edit View Insert Tools Desktop Window Help ~
Dade @ 0E8E KE
/ ‘ ‘ K ‘ ROC-‘curve' A Eg @;1‘ (’:« {}
o m e !
08
07|
0.6
% 05
04
0.3
02
ol AUC =0.70902
o0 011 0.‘2 0i3 Oj4 015 0.‘6 0j7 0;8 0,‘9 1
FPR
Fig.11. Experiment 2.3 (15 zeros)
Table 16
Results of experiment 2.3: 1— detected, 0 — not detected
Network host Detection result
1-10 1 1 1 1 1 1 0 1 1 1
11-20 0 1 1 0 1 1 0 1 1 1
21-30 1 1 1 1 0 1 1 1 0 0
31-40 0 1 0 1 1 1 1 1 1 1
41-50 1 1 1 1 1 1 1 1 1 1
51-60 1 1 0 1 1 1 1 1 1 1
61-70 1 1 1 1 1 1 1 1 1 1
71-80 1 1 1 1 1 1 0 1 0 1
81-90 1 1 1 1 1 0 0 1 1 1
91-100 0 1 1 1 1 1 1 1 1 1
Table 17
Results of experiment 2.3
Network host Statistical probability of malware detection
1-10 0.9970 | 0.9741 | 0.9938 | 0.9757 | 0.9709 | 0.9738 | 0.3687 | 0.9738 | 0.9981 | 0.9782
11-20 0.9983 | 0.9891 | 0.9962 | 0.9810 | 0.5633 | 0.9756 | 0.8612 | 0.9777 | 0.9792 | 0.9705
21-30 0.9876 | 0.9989 | 0.9955 | 0.9702 | 0.5038 | 0.9808 | 0.9734 | 0.9862 | 0.9825 | 0.9419
31-40 0.9966 | 0.9745 | 0.8740 | 0.9718 | 0.9814 | 0.9917 | 0.9729 | 0.9900 | 0.9789 | 0.9880
41-50 0.9746 | 0.9831 | 0.9704 | 0.8985 | 0.9779 | 0.9853 | 0.9765 | 0.9804 | 0.9924 | 0.9824
51-60 0.9717 | 0.9817 | 0.9400 | 0.9948 | 0.9791 | 0.9947 | 0.1103 | 0.9716 | 0.8662 | 0.9877
61-70 0.9844 | 0.9760 | 0.9772 | 0.9934 | 0.9885 | 0.5457 | 0.9915 | 0.9820 | 0.9839 | 0.9912
71-80 0.9820 | 0.9704 | 0.3890 | 0.9877 | 0.9834 | 0.9978 | 0.2787 | 0.5436 | 0.9864 | 0.9734
81-90 0.9971 | 0.9253 | 0.9972 | 0.9889 | 0.9704 | 0.6856 | 0.9599 | 0.9889 | 0.9718 | 0.9902
91-100 0.9085 | 0.8730 | 0.9855 | 0.9912 | 0.9944 | 0.7198 | 0.9793 | 0.9803 | 0.9900 | 0.9958

Information security and functional safety 145
4 Figure 1 - [u] X
File Edit View Insert Tools Desktop Window Help ¥
Negde @ 0E kE
. ‘ ‘ ' IROC-‘curve' ‘ ‘ % »
ool R
08
0.7 %
06
E 0.5
04}
0:38-
02}
0.1 % AUC =0.84146
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FPR
Fig.12. Experiment 2.4 (18 zeros)
Table 18
Results of experiment 2.4: 1— detected, 0 — not detected
Network host Detection result
1-10 1 1 1 1 1 1 1 1 1 0
11-20 1 1 1 1 0 1 1 1 1 0
21-30 1 1 0 0 1 0 1 1 1 1
31-40 1 1 1 1 1 1 1 0 1 1
41-50 1 1 1 1 1 1 1 0 1 1
51-60 1 1 1 1 1 1 1 0 1 0
61-70 1 1 1 1 1 1 1 0 0 1
71-80 1 1 1 1 1 0 1 1 1 1
81-90 1 0 1 1 1 0 1 1 1 1
91-100 1 1 1 0 0 1 1 0 1 1
Table 19
Results of experiment 2.4
Network host Statistical probability of malware detection
1-10 0.9765 | 0.9912 | 0.9712 | 0.9885 | 0.9901 | 0.9711 | 0.9701 | 0.8980 | 0.9959 | 0.9783
11-20 0.9860 | 0.9857 | 0.9870 | 0.9800 | 0.7357 | 0.9368 | 0.9995 | 0.9717 | 0.9819 | 0.9937
21-30 0.9878 | 0.9793 | 0.7196 | 0.9211 | 0.9796 | 0.9966 | 0.9897 | 0.2062 | 0.9842 | 0.3416
31-40 0.9985 | 0.9965 | 0.9831 | 0.7355 | 0.9798 | 0.9810 | 0.9938 | 0.9022 | 0.9986 | 0.9700
41-50 0.9789 | 0.9715 | 0.9833 | 0.9937 | 0.9974 | 0.9860 | 0.9941 | 0.8740 | 0.9925 | 0.9703
51-60 0.9843 | 0.9775 | 0.9792 | 0.9990 | 0.9763 | 0.9512 | 0.9768 | 0.4622 | 0.9999 | 0.9740
61-70 0.9986 | 0.9737 | 0.9756 | 0.9894 | 0.9738 | 0.9724 | 0.9898 | 0.9708 | 0.4407 | 0.9862
71-80 0.9812 | 0.9912 | 0.9984 | 0.9815 | 0.9908 | 0.1746 | 0.9933 | 0.9878 | 0.9813 | 0.9955
81-90 0.9768 | 0.8746 | 0.9999 | 0.9784 | 0.9913 | 0.9169 | 0.9824 | 0.9849 | 0.2310 | 0.9986
91-100 0.9920 | 0.9815 | 0.9712 | 0.0720 | 0.8537 | 0.9807 | 0.9964 | 0.8598 | 0.9887 | 0.9789

146 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)
4 Figure 3 - m]
File Edit View Insert Tools Desktop Window Help »
Dede @ 0B K(E
: ! ' _ROC-curve 2. AEI O Q G
ey
s Bz
0.8 é
07t F -
¥k :
06 g g 4
o
& o5t §
= e
04+ g
03 g
02r §
0.1 g AUC = 0.64295
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
FPR
Fig.13. Experiment 2.5 (18 zeros)
Table 20
Results of experiment 2.5: 1— detected, 0 — not detected
Network host Detection result
1-10 1 1 1 1 1 1 1 1 1 1
11-20 1 1 1 1 1 1 1 1 0 1
21-30 0 1 1 1 1 1 1 1 1 1
31-40 0 1 1 1 1 1 0 1 0 1
41-50 1 1 1 0 0 1 1 1 1 1
51-60 1 0 1 1 0 1 1 0 1 1
61-70 1 1 1 1 1 1 1 1 1 1
71-80 1 0 1 1 0 0 1 1 1 0
81-90 0 1 1 1 1 1 1 1 1 1
91-100 1 1 0 0 0 1 1 1 1 1
Table 21
Results of experiment 2.5
Network host Statistical probability of malware detection
1-10 0.9939 | 0.8900 | 0.9704 | 0.9728 | 0.9126 | 0.9792 | 0.2426 | 0.9749 | 0.9833 | 0.9930
11-20 0.9501 | 0.9914 | 0.9838 | 0.9976 | 0.8607 | 0.9980 | 0.9838 | 0.9971 | 0.9816 | 0.9881
21-30 0.3499 | 0.9954 | 0.9785 | 0.6896 | 0.9881 | 0.9897 | 0.4901 | 0.9799 | 0.1005 | 0.9730
31-40 0.9786 | 0.9806 | 0.9861 | 0.9997 | 0.9708 | 0.9913 | 0.1580 | 0.9960 | 0.9736 | 0.9987
41-50 0.9832 | 0.9963 | 0.9959 | 0.9807 | 0.9160 | 0.9959 | 0.9706 | 0.9723 | 0.9813 | 0.9745
51-60 0.9710 | 0.5165 | 0.8680 | 0.9945 | 0.8908 | 0.9903 | 0.9963 | 0.9927 | 0.9769 | 0.9808
61-70 0.9809 | 0.1474 | 0.9801 | 0.9726 | 0.9835 | 0.9836 | 0.9709 | 0.9891 | 0.9718 | 0.9751
71-80 0.5900 | 0.9637 | 0.9702 | 0.9786 | 0.9813 | 0.9744 | 0.9722 | 0.8968 | 0.9811 | 0.9947
81-90 0.9861 | 0.9945 | 0.9838 | 0.9704 | 0.9701 | 0.9750 | 0.9810 | 0.9915 | 0.9748 | 0.9784
91-100 0.9893 | 0.9786 | 0.9797 | 0.9747 | 0.4821 | 0.9969 | 0.9966 | 0.9818 | 0.9490 | 0.9776

Information security and functional safety

147

5.3. Discussion

For the second task, a similar series of experiments
were conducted. The number of negative results was 19,
19, 15, 18, 18, respectively, for five series of the exper-
iments. The degree of system degradation did not in-
crease. This indicates that the system architecture pro-
vides a low level of degradation.

The results of the experiment confirm that the sys-
tem can perform the task regardless of the components
with a high degree of security, which gave a negative
result, and the components with a low level of security,
which also gave a negative result.

Most of the system components performed the task
correctly and evaluated the results of all components to
provide a consistent solution.

Conclusion and Future Work

The developed principle of the synthesis of multi-
computer systems with combined baits and traps and a
decision-making controller for detecting and counteract-
ing malware and computer attacks is the basis of the
concept of creating such systems. To detail the architec-
ture of multicomputer systems with combined baits and
traps and a decision-making controller for detecting and
counteracting malware and computer attacks, which
corresponds to the proposed principle of synthesis of
such systems, it is necessary to develop a conceptual
model of its architecture. The implementation of a deci-
sion-making controller through the development of a
method for synthesizing systems with a controller will
be the direction of further research.

Ensuring the organization of the functioning of
partially centralized distributed systems, as one of the
types of systems defined according to the developed
principle, in computer networks is implemented by two
developed methods.

The developed method of synthesis of mathemati-
cal models of security levels of system components
makes it possible to obtain new mathematical mod-
els [1] of security levels of system components for a
comprehensive description of processes that will take
place in partially distributed systems and will be related
to the evaluation of security of system components. It
can be applied to discrete and continuous characteristic
indicators. According to them, the values of the charac-
teristic indicators of the security levels in the system
components will be used to evaluate the results of dis-
tributed calculations obtained from various system
components to determine the degree of trust in them.

The method for organizing the functioning of par-
tially centralized distributed systems makes it possible
to create such systems. For the operation of this type of

system, the distribution of components was carried out
according to the relationship to the decision-making
center, which made it possible to implement partial cen-
tralization compatible with the principles of self-
organization and adaptability, which set mechanisms for
independent decision-making regarding further steps in
the system and restructuring of its architecture as need-
ed.

Thus, partially centralized distributed systems can
be created using the two developed methods and filled
with specialized functionality.

The direction of further research will be the devel-
opment of specialized methods and their implementa-
tion in partially centralized systems, which can be de-
ception systems, network baits, and narrowly special-
ized systems for detecting malicious software.

Contribution of the authors

Antonina Kashtalian is the developer of the prin-
ciple of synthesis of multicomputer systems with com-
bined baits and traps and a decision-making controller
for detecting and counteracting malware and computer
attacks. She also analyzed known methods of develop-
ing systems with deception technologies and their ele-
ments. and performed experimental studies with the
system. The concept of deception systems and the prin-
ciples of their operation, particularly distributed systems
with varying degrees of centralization and conducted
experimental studies with the system. Systems that are
developed according to the method for organizing the
functioning of partially centralized distributed systems
are partial implementations of full-featured deception
systems.

Sergii Lysenko described the research problem,
determined the limitations of the subject area, and con-
ducted an analysis of the relevance of the development
of the scientific problem of the synthesis of such sys-
tems.

Bohdan Savenko is the developer of the method
of organizing the functioning of partially centralized
distributed systems for detecting malware. He has writ-
ten the introduction section and conclusions of the pa-
per, developed analytical expressions, and processed the
results of experiments.

Tomas Sochor and Tetiana Kysil checked the an-
alytical dependencies and set up the experiment.

All the authors have read and agreed to the pub-
lished version of this manuscript.

References
1. Lysenko, S., & Savenko, B. Distributed Dis-

crete Malware Detection Systems Based on Partial Cen-
tralization and Self-Organization. International Journal

148

Radioelectronic and Computer Systems, 2023, no. 4(108)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

of Computing, 2023, vol. 22, no, 2. pp. 117-39. DOI:
10.47839/ijc.22.2.3082.

2. Breeden, J. 5 top deception tools and how they
ensnare attackers. Available at: https://mww.csoonline.
com/article/570063/5-top-deception-tools-and-how-
they-ensnare-attackers.html (accessed 06.08.2023).

3. Acalvio ShadowPlex. Autonomous Deception.
Available at: https://www.acalvio.com/product/
04.09.2023 (accessed 06.08.2023).

4. SentinelOne. Available at:
https://www.sentinelone.com/surfaces/identity/ (ac-
cessed 06.08.2023).

5. Proofpoint Identity Threat Defense. Available

at: https://www.proofpoint.com/us/illusive-is-now-
proofpoint (accessed 06.08.2023).

6. Counter Craft Security. Available at:
https://www.countercraftsec.com/ (accessed
06.08.2023).

7. Fidelis Security. Available at:
https://fidelissecurity.com/fidelis-elevate/ (accessed
06.08.2023).

8. The Commvault Data Protection Platform.
Available at: https://www.commvault.com/ (accessed
06.08.2023).

9. Labyrinth Deception Platform. Available at:
https://labyrinth.tech/platform (accessed 06.08.2023).

10.Labyrinth Deception Platform. Datasheet.
Available at: https://labyrinth.tech/assets/media/
pdf/labyrinth-data-sheet.pdf (accessed 06.08.2023).

11.Feng, M., Xiao, B., Yu, B., Qian, J., Zhang, X.,
Chen, P., & Li, B. A Novel Deception Defense-Based
Honeypot System for Power Grid Network. Interna-
tional Conference on Smart Computing and Communi-
cation, 2021, Vol. 13202, pp. 297-307. Cham: Springer
International Publishing. DOI: 10.1007/978-3-030-
97774-0_27.

12. Walter, E., Ferguson-Walter, K., & Ridley, A.
Incorporating deception into cyberbattlesim for auton-
omous defense. 2021. arXiv preprint arXiv:2108.13980.
DOI: 10.48550/arXiv.2108.13980.

13. Anwar, A. H., Kamhoua, C. A., Leslie, N. O,
& Kiekintveld, C. Honeypot Allocation for Cyber De-
ception Under Uncertainty. IEEE Transactions on Net-
work and Service Management, 2022, vol. 19. no. 3, pp.
3438-3452. DOI: 10.1109/TNSM.2022.3179965.

14.Sayed, M. A., Anwar, A. H., Kiekintveld, C.,
& Kamhoua, C. Honeypot Allocation for Cyber Decep-
tion in Dynamic Tactical Networks: A Game Theoretic
Approach. 14th International Conference on Decision
and Game Theory for Security. GameSec 2023. 2023.
arXiv preprint. arXiv:2308.11817. DOl:
10.48550/arXiv.2308.11817.

15. Anwar, A. H., & Kamhoua, C. A. Cyber De-
ception using Honeypot Allocation and Diversity: A
Game Theoretic Approach. 2022 IEEE 19th Annual

Consumer Communications & Networking Conference
(CCNC), Las Vegas, NV, USA, 2022, pp. 543-549.
DOI: 10.1109/CCNC49033.2022.9700616.

16. Anwar, A. H., Kamhoua, C., & Leslie, N.
Honeypot allocation over attack graphs in cyber decep-
tion games. International Conference on Computing,
Networking and Communications (ICNC), 2020, pp.
502-506, IEEE. DOI: 10.1109/ICNC47757.2020.
9049764.

17.Acosta, J. C., Basak, A., Kiekintveld, C., &
Kamhoua, C. Lightweight On-Demand Honeypot De-
ployment for Cyber Deception. In Gladyshev, P., Goel,
S., James, J., Markowsky, G., Johnson, D. (eds) Digital
Forensics and Cyber Crime. ICDF2C 2021. Lecture
Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering,
2022, vol. 441, pp. 294-312. Springer, Cham. DOI:
10.1007/978-3-031-06365-7_18.

18.Priya, D., & Chakkaravarthy, S. Containerized
cloud-based honeypot deception for tracking attackers.
Scientific Reports, 2023, vol. 13. DOI: 10.1038/s41598-
023-28613-0.

19. Al-Shaer, E., Wei, J., Hamlen, K. W., & Wang,
C. Autonomous Cyber Deception. Reasoning. Adaptive
Planning. and Evaluation of HoneyThings. Springer
Nature Switzerland AG, 2019. DOI: 10.1007/978-3-
030-02110-8.

20.Wegerer, M., & Tjoa, S. Defeating the Data-
base Adversary Using Deception — A MySQL Database
Honeypot. International Conference on Software Secu-
rity and Assurance (ICSSA), Saint Polten. Austria, 2016.
pp. 6-10. DOI: 10.1109/ICSSA.2016.8.

21.Kedrowitsch, A., Danfeng, Y., Gang. W., &
Cameron, K. A First Look: Using Linux Containers for
Deceptive Honeypots. Proceedings of the 2017 Work-
shop on Automated Decision Making for Active Cyber
Defense (SafeConfig ‘17). Association for Computing
Machinery, New York, NY, USA, 2017, pp. 15-22.
DOI: 10.1145/3140368.3140371.

22. Almeshekah, M. H., & Spafford, E. H. Cyber
Security Deception. In: Jajodia. S., Subrahmanian. V.,
Swarup. V., Wang. C. (eds). Cyber Deception, 2016, p.
318, Cham. Springer. DOI: 10.1007/978-3-319-32699-
3.2

23.Zobal, L., Kolaf, D., & Fujdiak, R. Current
State of Honeypots and Deception Strategies in Cyber-
security. 11th International Congress on Ultra-Modern
Telecommunications and Control Systems and Work-
shops (ICUMT). Dublin. Ireland. 2019. pp. 1-9. DOI:
10.1109/ICUMT48472.2019.8970921.

24.Dahbul, R. N., Lim C., & Purnama. J. Enhanc-
ing honeypot deception capability through network ser-
vice fingerprint. Journal of Physics: Conference Series,
2017, vol. 801, article no. 012057. DOI: 10.1088/1742-
6596/801/1/012057.

https://doi.org/10.47839/ijc.22.2.3082
https://doi.org/10.47839/ijc.22.2.3082
https://www.csoonline.com/profile/john-breeden/
https://www.csoonline.com/article/570063/5-top-deception-tools-and-how-they-ensnare-attackers.html
https://www.csoonline.com/article/570063/5-top-deception-tools-and-how-they-ensnare-attackers.html
https://www.csoonline.com/article/570063/5-top-deception-tools-and-how-they-ensnare-attackers.html
https://www.acalvio.com/product/
https://www.proofpoint.com/us/illusive-is-now-proofpoint
https://www.proofpoint.com/us/illusive-is-now-proofpoint
https://www.countercraftsec.com/
https://www.commvault.com/
https://labyrinth.tech/platform
https://doi.org/10.1007/978-3-030-97774-0_27
https://doi.org/10.1007/978-3-030-97774-0_27
file:///D:/ZHURNAL%20Nauchportal/0REKS/2023/REKS%202023%204(108)/ЛисенкоС/%20DOI:
file:///D:/ZHURNAL%20Nauchportal/0REKS/2023/REKS%202023%204(108)/ЛисенкоС/%20DOI:
https://doi.org/10.48550/arXiv.2108.13980
https://doi.org/10.1109/TNSM.2022.3179965
https://doi.org/10.48550/arXiv.2308.11817
https://doi.org/10.48550/arXiv.2308.11817
https://doi.org/10.1109/CCNC49033.2022.9700616
https://doi.org/10.1109/ICNC47757.2020.9049764
https://doi.org/10.1109/ICNC47757.2020.9049764
https://doi.org/10.1007/978-3-031-06365-7_18
https://doi.org/10.1007/978-3-031-06365-7_18
https://doi.org/10.1038/s41598-023-28613-0
https://doi.org/10.1038/s41598-023-28613-0
https://doi.org/10.1007/978-3-030-02110-8
https://doi.org/10.1007/978-3-030-02110-8
https://doi.org/10.1109/ICSSA.2016.8
https://doi.org/10.1145/3140368.3140371
https://doi.org/10.1145/3140368.3140371
https://doi.org/10.1007/978-3-319-32699-3_2
https://doi.org/10.1007/978-3-319-32699-3_2
https://doi.org/10.1109/ICUMT48472.2019.8970921
https://doi.org/10.1088/1742-6596/801/1/012057
https://doi.org/10.1088/1742-6596/801/1/012057

Information security and functional safety

149

25.Razali, M. F., Razali, M. N., Mansor, F. Z.,
Muruti, G., & Jamil, N. loT Honeypot: A Review from
Researcher's Perspective. IEEE Conference on Applica-
tion. Information and Network Security (AINS).
Langkawi. Malaysia, 2018. pp. 93-98. DOIL:
10.1109/AINS.2018.8631494.

26.La, Q. D., Quek, T. Q. S,, Lee, J., & Zhu, H.
Deceptive Attack and Defense Game. Honeypot-
Enabled Networks for the Internet of Things. IEEE In-
ternet of Things Journal, 2016, vol. 3, no. 6. pp. 1025-
1035. DOI: 10.1109/J10T.2016.2547994.

27.Rowe, N. C. Honeypot Deception Tactics. In:
Al-Shaer, E., Wei, J., Hamlen, K., Wang, C. (eds) Au-
tonomous Cyber Deception. Springer. Cham, 2019.
DOI: 10.1007/978-3-030-02110-8_3.

28.Lysenko, S., Savenko, O., Bobrovnikova, K.,
& Kryshchuk, A. Self-adaptive system for the corporate
area network resilience in the presence of botnet
cyberattacks. Communications in Computer and Infor-
mation Science, 2018, vol. 860, pp. 385-401. DOI:
10.1007/978-3-319-92459-5_31.

29.Pomorova, O., Savenko, O., Lysenko, S.,
Kryshchuk, A., & Bobrovnikova, K. A Technique for
the Botnet Detection Based on DNS-Traffic Analysis.
Computer Networks. CN 2015. Communications in
Computer and Information Science, 2015, vol. 522, pp.
127-138. DOI: 10.1007/978-3-319-19419-6_12.

30. Bobrovnikova, K., Lysenko, S., Savenko, B.,
Gaj, P., & Savenko, O. Technique for loT malware de-
tection based on control flow graph analysis. Radioelec-
tronic and Computer Systems, 2022, vol. 1, pp. 141-
153. DOI: 10.32620/reks.2022.1.11.

31.Lysenko, S., Savenko, O., Bobrovnikova, K.,
Kryshchuk, A., & Savenko, B. Information technology
for botnets detection based on their behaviour in the
corporate area network. Communications in Computer
and Information Science, 2017, vol. 718, pp. 166-181.
DOI: 10.1007/978-3-319-59767-6_14.

32.Moskalenko, V., Zaretskyy, M., Moskalenko,
A., Kudryavtsev, A., & Semashko, V. Multi-layer mod-
el and training method for malware traffic detection
based on decision tree ensemble. Radioelectronic and
Computer Systems, 2020, vol. 2, pp. 92-101. DOI:
10.32620/reks.2020.2.08.

33.Morozova, O., Nicheporuk, A, Tetskyi, A., &
Tkachov, V. Methods and technologies for ensuring
cybersecurity of industrial and web-oriented systems
and networks. Radioelectronic and Computer Systems,
2021, wvol. 4, pp. 145-156. DOI: 10.32620/reks.
2021.4.12.

34.Dovbysh A., Liubchak, V., Shelehov, 1., Si-
monovskiy, J., & Tenytska, A. Information-extreme
machine learning of a cyber attack detection system.
Radioelectronic and Computer Systems. 2022, vol. 3,
pp. 121-131. DOI: 10.32620/reks.2022.3.09.

35.Fursov, I, Yamkowyi, K., & Shmatko, O.
Smart Grid and wind generators: an overview of cyber
threats and vulnerabilities of power supply networks.
Radioelectronic and Computer Systems, 2022, vol. 4.
pp. 50-63. DOI: 10.32620/reks.2022.4.04.

36.Ahmed, J., Karpenko, A., Tarasyuk, O., Gor-
benko, A., & Sheikh-Akbari, A. Consistency issue and
related trade-offs in distributed replicated systems and
databases: a review. Radioelectronic and Computer
Systems, 2023, vol. 2. pp. 171-179. DOI: 10.32620/
reks.2023.2.14.

37.Alnagjim, A. M., Habib, S., Islam, M., Al-
belaihi, R, & Alabdulatif, A. Mitigating the Risks of
Malware Attacks with Deep Learning Techniques. Elec-
tronics, 2023, vol. 12, iss. 14. pp. 3166. DOI: 10.3390/
electronics12143166.

38.da Silva, A. A., & Pamplona Segundo, M. On
Deceiving Malware Classification with Section Injec-
tion. Machine Learning and Knowledge Extraction,
2023, wvol. 5, iss. 1. pp. 144-168. DOI:
10.3390/make5010009.

39.Saminathan, K., Mulka, S. T. R., Damodharan,
S., Maheswar, R., & Lorincz, J. An Artificial Neural
Network Autoencoder for Insider Cyber Security Threat
Detection. Future Internet. 2023, vol. 15, iss. 12, article
no. 373. DOI: 10.3390/fi15120373.

40. Markoulidakis, 1., Rallis, I., Georgoulas, I.,
Kopsiaftis, G., Doulamis, A., & Doulamis, N. Mul-
ticlass Confusion Matrix Reduction Method and Its Ap-
plication on Net Promoter Score Classification Problem.
Technologies, 2021, wvol. 9. DOIl: 10.3390/
technologies9040081.

41. Tharwat, A. Classification assessment meth-
ods. Applied Computing and Informatics, 2021, vol. 17,
no. 1, pp. 168-192. DOI: 10.1016/j.aci.2018.08.003.

42.Powers, D. Evaluation: From Precision. Recall
and F-Measure to ROC. Informedness. Markedness &
Correlation. arXiv 2020. DOI: 10.48550/arXiv.
2010.16061.

43. Markoulidakis, 1., Rallis, I., Georgoulas, 1.,
Kopsiaftis, G., Doulamis, A., & Doulamis, N. A Ma-
chine Learning Based Classification Method for Cus-
tomer Experience Survey Analysis. Technologies, 2020,
vol. 8, article no. 76. DOl 10.3390/
technologies8040076.

44. Lysenko, S., Savenko, O., & Bobrovnikova, K.
DDoS Botnet Detection Technique Based on the Use of
the Semi-Supervised Fuzzy c-Means Clustering. CEUR-
WS, 2018, vol. 2104, pp. 688-695.

45. Lysenko, S., Bobrovnikova, K., Shchuka, R., &
Savenko, O. A Cyberattacks Detection Technique Based
on Evolutionary Algorithms. 11th International Confer-
ence on Dependable Systems. Services and Technolo-
gies (DESSERT), 2020, vol. 1, pp. 127-132. DOI:
10.1109/DESSERT50317.2020.9125016.

https://doi.org/10.1109/AINS.2018.8631494
https://doi.org/10.1109/JIOT.2016.2547994
https://doi.org/10.1007/978-3-030-02110-8_3
https://doi.org/10.1007/978-3-319-92459-5_31
https://doi.org/10.1007/978-3-319-92459-5_31
https://doi.org/10.1007/978-3-319-19419-6_12
https://doi.org/10.32620/reks.2022.1.11
https://doi.org/10.1007/978-3-319-59767-6_14
https://doi.org/10.32620/reks.2020.2.08
https://doi.org/10.32620/reks.2021.4.12
https://doi.org/10.32620/reks.2021.4.12
https://doi.org/10.32620/reks.2022.3.09
https://doi.org/10.32620/reks.2022.4.04
https://doi.org/10.32620/reks.2023.2.14
https://doi.org/10.32620/reks.2023.2.14
https://doi.org/10.3390/electronics12143166
https://doi.org/10.3390/electronics12143166
https://doi.org/10.3390/fi15120373
https://doi.org/10.3390/technologies9040081
https://doi.org/10.3390/technologies9040081
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.48550/arXiv.2010.16061
https://doi.org/10.48550/arXiv.2010.16061
https://doi.org/10.3390/technologies8040076
https://doi.org/10.3390/technologies8040076
https://doi.org/10.1109/DESSERT50317.2020.9125016

150 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

Received 17.07.2023. Accepted 20.11.2023

INPUHIMUII I METOJ CHUHTE3Y CUCTEM OBMARY JJIA BUSABJIEHHSA 3JIOBMUCHOTI'O
INPOI'PAMHOTI'O 3ABE3IIEYEHHSA I KOMIT'IOTEPHUX ATAK

Anmounina Kawmanvan, Cepeiii /Iucenko, bozoan Casenko,
Tomaw Couop, Temana Kucino

KinmpkicTe pi3HHX THIIB Ta O€3MOCEPEIHBO CaMa KUIBKICTh 3JIOBMHCHOTO IPOTPaMHOro 3a0e3neueHHs i
KOMIT'FOTEPHHX aTaK MOCTIHHO 30iMbIIyr0ThCs. TOMY, BUSBICHHS Ta MPOTHIIs 3JI0BMUCHOMY IPOrpaMHOMY 3abe3-
MICYCHHIO T4 KOMIT FOTEPHUM aTaKaM 3aJIMIIAIOTHECS aKTyaJIBHOK MPOoOIeMOr0 chorojaeHHS. OcoONMBO HAMOLIBIION
HIKOJIM 33a3HAIOTh KOPUCTYBadi KOPIOPATUBHUX Mepex. J[iis BUABIICHHS Ta MPOTHJIT iM po3pobiieHo Oarato ehexTu-
BHHUX 3aC00IB pPi3HOMAHITHOT'O CIPSIMYBaHHS. AJle TUHAMIYHICTH B PO3POOI[l HOBOTO 3JIOBMHCHOTO IPOrPaMHOI0O
3a0e3MeueHHs Ta ypi3HOMaHITHEHHS TPOBEJCHH KOMII IOTEPHHUX aTaK CIIOHYKAIOTh PO3POOHUKIB 3aCO0IB BHUSIBIICH-
HS Ta MPOTHUJIi MOCTIHHO BJOCKOHATIOBATH CBOI 3aCOOM Ta CTBOPIOBATH HOBi. O0’€KTOM JOCIIKEHHS B POOOTI €
cucremu obMmaHy. PesynbTati 1i€i poGOTH PO3BHBAIOTH CNEMEHTH TEOPil Ta MPAKTHKHA CTBOPEHHS TAKHUX CHCTEM.
OcoOnuBe Micue cepen 3aco0iB BUSBICHHS Ta TNPOTHIIS 3IOBMHCHOMY TPOrpaMHOMY 3a0€3IeYeHHIO Ta
KOMIT'IOTEpHHUM aTakaM 3aiiMaroTh cucTeMu oOMaHny. Lli cHcTeMu 3amTyTy0Th 37I0BMUCHHKIB, aJie T&K MOTPEOyIOTh
NOCTIHHHUX 3MiH Ta OHOBJIEHb. OCKIJIBKH 3 4aCOM OCOOJIMBOCTI 1X (DYHKIIIOHYBaHHS CTalOTh BiloMUMHU. ToMy, akTya-
JIBHOIO € TIpo0JieMa CTBOPEHHS CUCTEM 00MaHy, (DYHKI[IOHYBaHHS SKMX 3QJIMIIAIOCH OU HE3PO3YMIIMM JJIs 3JI0BMU-
cHUKIB. J171sl BUpilIeHHs i€l mpo0ieMu B poOOTi IPOMOHYETHCSI HO-BUIM MPHHIIUIT CHHTE3Y TaKuX cucteM. OCKUIbKU
(opMyBaHHs TakMX cucTeM Oyne Ha 0a3l KOMIT IOTEPHHX CTaHIiii KOPHOpaTHBHOI MEPEXi, TOAl CUCTEMY MO3HUIIO-
HOBAHO SIK MYJBTUKOMIT IOTEpHY. B crcTeMi 3ampornoHoBaHO BUKOPUCTOBYBATH KOMOIHOBaHI NPUMAHKH Ta ITACTKU
JUIsl CTBOPEHHSI XMOHMX 00’ €KTIiB aTak. Bci KOMIOHEHTH Takoi cucteMH (pOPMYIOTh TIHBOBY KOMIT FOTEPHY MEPEKY.
B po6oTi po3po0eHO MPUHIUIT CHHTE3Y MYJIBTUKOMIT FOTEPHUX CUCTEM 3 KOMOIHOBAaHMMU ITPUMaHKaMH 1 MaCTKaMH
Ta KOHTPOJIEPOM NPUIHATTS DillleHb AJIs BHABJICHHS Ta MPOTHII] 37TOBMHCHOMY IIPOTpPaMHOMY 3a0€3IEUEHHIO Ta
KOMII'IOTEpHHX aTakaM. B OCHOBY NpHHIMITY 3aK/IaJeHO HasABHICTH KOHTpOJEpa 3a MPUHHATUMHU B CUCTEMI pillleH-
HSIMH Ta BUKOPHCTAHHSI CIIEeliali30BaHOro (PYHKI[IOHAY 3 BUSIBIICHHS Ta MPOTHUIII. 3TiJHO pO3POOICHOr0 NPHHIHITY
CHHTE3y TAKUX CUCTEM B POOOTI BUAIJICHO MiJMHOXHHY CHCTEM 3 TEXHOJIOTISIMA OOMaHy, B SIKUX OOOB’SI3KOBO MO-
BUHEH OyTH KOHTpoJiep Ta crenianizoBanuii gyHkiionan. Konrponep 3a NpuiHATAMH PIlLICHHSIMH B CHCTEMI € Bi-
JOKPEMIICHHM BiJl LIGHTPY IPHAHATTS pirieHb. 0ro 3aBIaHHsIM € BUOIp BapiaHTIB HACTYITHHX KPOKIB CHCTEMH, SIKi
chopMOBaHi B LIEHTPI CUCTEMH, B 3aJIGKHOCTI BiJi MOBTOPIOBAHOCTI Noii. [Ipuuomy TprBasie MOBTOPEHHS 30BHIII-
HIX TOMI{ BUMarae BiJl HEHTPY cUCTeMH (OPMYBAHHS IMOCIIIOBHOCTI HACTYMHUX KPOKIB. 32 YMOBH IX IMOBTOPEHH:I
3JI0BMUCHUK OTPUMYE MOMJIMBICTh BUBYATH (YHKIIOHYBaHHsS cucTeMu. KoHTposep B cucTeMi BHOHpae 3 pizHUX
MOXIIUBHMX BapiaHTIB BiJIOBiJIel MPHU OJHAKOBHX MOBTOPIOBAHHMX MiNO3PLINX MOMISX Pi3HI BigmoBimi. Takum 4u-
HOM, 3JIOBMHCHUK IIPU JOCII/KEHHI KOPIIOPATUBHOT MEPEXi HAa OZIHI M Ti 3K 3alIUTH OTPUMYE Pi3HI BapiaHTH BiANO-
Biged. CrerianizoBanuii (yHKI[IOHAN 3TiTHO MPHUHIMIY CHHTE3Y TaKMX CHUCTEM IMIUIEMEHTOBAHO B apXiTEKTypy
cucreM. BiH BiunBae Ha ii 3MiHYy apXiTEKTYpH CHUCTeMHU B Tipolieci 11 (yHKIIOHYBaHHs B pe3y/bTaTi BHYTPIIIHIX Ta
30BHIIIHIX BIUIMBIB. B po0OTI TaKOXK PO3MIISIHYTO MOXIIMBHI BapiaHT apXiTEKTYpH TaKUX CUCTEM OOMaHy, 30Kpema,
apxXiTeKTypa CHCTEMH 3 YAaCTKOBOIO IIeHTpasti3atieto. s CHHTEe3y TaKHX CHCTEM PO3pOOICHO HOBHI METOJ CHHTE3Y
YaCTKOBO LEHTPATI30BAHUX CHCTEM [UIS BUSBIICHHS 3JIOBMHCHOI'O IPOIPAMHOTO 3a0e3Ne4eHHS B KOMIT IOTEPHUX
Mepexax, KA 0a3yeTbca Ha po3pOOICHUX aHATITHYHHX BHpPa3ax, M0 BU3HAYAIOTH CTAaH OE3MEKH TaKUX CHCTEM Ta
iXx xKoMmoHeHTiB. [IpoBeneHo eKcrepuMeHTaIbHI JOCTIKEHHS PO3pOOIEHOI CHCTEMH Ha MPEIMET MOXIIMBOCTI ii
(GYHKLIOHYBaHHS TPUBAIMI Yac Ta BUKOHAHHS IIOCTABJIEHHX 3aBJaHb B YMOBaX BTPATH HEIO YaCTUHU KOMIIOHEHTIB.
Pe3ysibpraTit BOX €KCHEPUMEHTIB 3 11’ IThMa CEePisIMU M ATBEPAUIN ePEKTHUBHICTD 3aPONOHOBAHOrO pimeHHs. Kpim
TOTO, 3a pe3y/lbTaTaMy eKCIIEpUMEHTIB Oys10 BCTaHOBIICHO, 10 BTpaTa 10-20% KOMITOHEHTIB HE BIUIMBA€ HA BHKO-
HAHHS TIOCTABJICHOTO 3aBAaHH:A. Pe3ynpTaTi eKCIepuMeHTiB Oyiu ompanboBaHi 3 BUKopucTanHsaM ROC-aHamizy Ta
anroputmy no0ynoBu ROC-kpuBoi. Pe3ynmbTatd eKCIIEpUMEHTIB Jaiy 3MOTYy BH3HAYHTH CTYIIHB JETpajalii Tak
MOOYIOBaHUX CHCTEM.

KurouoBi cjioBa: cucremun oOMaHy; CHHTE3 CHCTEM OOMaHY; MPHUHIUII CHHTE3y CHCTEM. KOHTPOJIEP. PO3IIOIi-
JIeHI CHUCTeMM; MaBYTWHA; IACTKA; NPHMAaHKH; BUSBJICHHS IIKIIJIHBOTO IMPOrPaMHOro 3a0e3ledeHHs; YacTKOBa
LIEHTpAaTi3alisL.

Information security and functional safety 151

Kamranesan Autonina CepriiBHa — KaHA. TeXH. HayK, JOI. Kad. (i3UKH Ta eNEKTPOTEXHIKH, JTOKTOPAHTKA,
XMenbHUIBKII HaIllOHAJILHUH YHIBEpCUTET, XMENbHUIBKUH, YKpaiHa.

JIncenxo Cepriii MukoJaiioBu4 — 1-p TexH. HayK, pod., pod. kad. KOMIT IOTepHO]I iHKeHepii Ta iHdopma-
LiiiHM crcrteM, XMeIbHUIBKUI HalliOHAIEHUN YHIBEPCUTET, XMENbHUIBKUH, YKpaiHa.

Cagenko borman OneroBmy— acr. xad. koM’ toTepHoi imkeHepil Ta iHpopmaniliHuii cucreM, XMeIbHHIb-
KWl HaIliOHAJTBHUN YHIBEPCUTET, XMEIbHUIIbKHN, YKpaiHa.

Couop Tomam — fo11. kKad. EKOHOMIKU Ta eKOHOMIYHOI OMiTUKH, YHiBepcuteT [Ipiro, Yechka PecmyOiika.

Kucine Terasna MukonaiBaa — kaHa. (i3.-MaT. HayK, JIOI., JOI. Kad. KOMIT FOTepHOI iHkeHepii Ta iHdopMa-
ifHuA crcteM, XMEIbHUIIPKUH HAI[IOHAIEHUN YHIBEpCUTET, XMEIbHUIBKUH, YKpaiHa.

Antonina Kashtalian — PhD, Associate Professor at the Department of Physics and Electrical Engineering,
Doctoral Staff, Khmelnytskyi National University, Khmelnytskyi, Ukraine,
e-mail: yantonina@ukr.net, ORCID: 0000-0002-4925-9713.

Sergii Lysenko — Dr. S, Full Professor, Professor at Computer Engineering & Information Systems
Department, Khmelnytskyi National University, Khmelnytskyi, Ukraine,
e-mail: sirogyk@ukr.net, ORCID: 0000-0001-7243-8747.

Bohdan Savenko — PhD Student at Computer Engineering & Information Systems Department, Khmelnytskyi
National University, Khmelnytskyi, Ukraine,
e-mail: savenko_bohdan@ukr.net, ORCID: 0000-0001-5647-9979.

Tomas Sochor — Associated Professor for Cybersecurity and Quantitative Methods, Department of Economics
and Economic Policies, Prigo University, Czech Republic,
e-mail: tomas.sochor@prigo.cz, ORCID: 0000-0002-1704-1883.

Tetiana Kysil — PhD, Associate Professor at the Department of Computer Engineering & Information Systems
Department, Khmelnytskyi National University, Khmelnytskyi, Ukraine,
e-mail: kysil_tanya@ukr.net, ORCID: 0000-0002-4094-3500.

