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A METHOD FOR EXTRACTING THE SEMANTIC FEATURES OF SPEECH SIGNAL

RECOGNITION BASED ON EMPIRICAL WAVELET TRANSFORM

The subject of this study is methods for improving the efficiency of semantic coding of speech signals. The
purpose of this study is to develop a method for improving the efficiency of semantic coding of speech signals.
Coding efficiency refers to the reduction of the information transmission rate with a given probability of error-
free recognition of semantic features of speech signals, which will significantly reduce the required source
bandwidth, thereby increasing the communication channel bandwidth. To achieve this goal, it is necessary to
solve the following scientific tasks: (1) to investigate a known method for improving the efficiency of semantic
coding of speech signals based on mel-frequency cepstral coefficients; (2) to substantiate the effectiveness of
using the adaptive empirical wavelet transform in the tasks of multiple-scale analysis and semantic coding of
speech signals; (3) to develop a method of semantic coding of speech signals based on adaptive empirical wavelet
transform with further application of Hilbert spectral analysis and optimal thresholding; and (4) to perform an
objective quantitative assessment of the increase in the efficiency of the developed method of semantic coding of
speech signals in contrast to the existing method. The following scientific results were obtained during the study:
a method of semantic coding of speech signals based on empirical wavelet transform is developed for the first
time, which differs from existing methods by constructing a set of adaptive bandpass Meyer wavelet filters with
further application of Hilbert spectral analysis to find the instantaneous amplitudes and frequencies of the
functions of internal empirical modes, which will allow the identification of semantic features of speech signals
and increase the efficiency of their coding; for the first time, it is proposed to use the method of adaptive
empirical wavelet transform in the tasks of multiple-scale analysis and semantic coding of speech signals, which
will increase the efficiency of spectral analysis by decomposing the high-frequency speech oscillation into its
low-frequency components, namely internal empirical modes; the method of semantic coding of speech signals
based on mel-frequency cepstral coefficients was further developed, but using the basic principles of adaptive
spectral analysis with the help of empirical wavelet transform, which increases the efficiency of this method.
Conclusions: We developed a method for semantic coding of speech signals based on empirical wavelet
transform, which reduces the encoding rate from 320 to 192 bps and the required bandwidth from 40 to 24 Hz
with a probability of error-free recognition of approximately 0.96 (96%) and a signal-to-noise ratio of 48 dB,
according to which its efficiency is increased by 1.6 times as compared to the existing method. We developed an
algorithm for semantic coding of speech signals based on empirical wavelet transform and its software
implementation in the MATLAB R2022b programing language.

Keywords: semantic features of speech signals; mel-frequency cepstral coefficients; adaptive spectral analysis;
empirical wavelet transform; adaptive wavelet-filters Meyer; functions of internal empirical modes; Hilbert
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is achieved through efficient coding of the data.
Therefore, the key question is what speed is required for

Introduction

Today, the problem of semantic encoding of speech
signals is gaining relevance because of the active
development of technologies such as speech recognition
and synthesis, voice control of technical objects, low-
speed encoding of speech information, and voice
translation from foreign languages. The functionality of
systems that use such technologies depends on the
efficiency of the encoding. Considering the growing
trend of remote interaction between people and robotic
equipment using these technologies, the main problem in
telecommunication systems is to increase the bandwidth
of the channel for transmitting semantic speech data. This

the semantic characteristics of speech signals to be
encoded with a specific probability of error-free
recognition. In this research, we will try to answer this
question because it is an urgent scientific and technical
task [1].

Linguistic communication begins when an abstract
message appears in the speaker’s brain. The process of
speech production converts the message into an acoustic
speech waveform. The information contained in this
message is represented in the acoustic waveform in a
complex manner. The initial message is first converted
into sequences of nerve impulses that control the
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articulatory apparatus (i.e., the movements of the tongue,
lips, vocal cords, etc.). Under the influence of these nerve
impulses, the articulatory system is set in motion. This
produces an acoustic speech waveform that conveys
information about the original message [2].

The semantics of speech refers to the typed formant
patterns of the spectrum of the speech signal, which
correspond to a certain phoneme of the studied language.
Since the semantic information of a speech signal is in
the frequency domain, the study of spectral
transformations is important for confirming the
effectiveness of semantic speech coding and quantifying
the semantic information contained in speech signals [3].

A message transmitted with a speech signal is
discrete, i.e., it can be represented as a sequence of
characters from a finite number of characters. The
characters that make up a speech signal are called
phonemes. The smallest elementary unit of language is
considered a phoneme, which is defined as a distinct
sound that serves to distinguish semantic units of
language. Each language has its own set of phonemes N,
usually from 30 to 50. For example, there are N=38
phonemes in Ukrainian. Thus, a speech message can be
represented as a discrete sequence of phonemes. To give
an objective quantitative assessment of a speech
message, the concept of the amount of information in a
speech message is introduced. Thus, we obtain a
reasonable statement that if the phonemes of the
corresponding language are chosen under the condition
of equal probability of their occurrence, i.e., P =1/N,
where N is the number of all possible phonemes, then the
average amount of information per phoneme of the
Ukrainian language will be H=log:N =log,38=
=5.2 bit/phoneme. The value calculated in this way is
called entropy, which determines the average amount of
information per character of a discrete message. In this
case, we deal exclusively with phonemes of speech
messages. Physical restrictions on the movement of the
elements of the articulatory apparatus allow a person to
pronounce an average of 80-130 words per min or about
10 phonemes per s. Assuming an average speech rate of
W =n/t =10/1 = 10 phonemes/s, the transmission rate
of phonemic information of a speech message in
Ukrainian will be C = WxH =10x 5.2 = 52 bit/s. In other
words, at a normal rate of speech, the written equivalent
of a speech message in various world languages is
approximately 60 bit/s. This figure roughly characterizes
the information content of a language that appears in its
linguistic structure. The obtained value is in good
agreement with the results of psychoacoustic
experiments, which have established that a person is able
to process information coming through the auditory
channel at a speed of up to 50 bit/s. However, this
assessment does not consider factors such as the

speaker’s personality and emotional state, speed of
speech, and voice volume [4].

However, if we turn directly to the acoustic
characteristics of speech, the information picture will be
different. The instantaneous spectrum of the speech
signal covers a frequency band of approximately 300 to
3400 Hz, and the dynamic range of amplitudes is
approximately 48 dB. Sound vibrations are characterized
not only by amplitude-time and frequency-time
parameters but also by phase relations. If all this is taken
into account, then recording the full set of sound features
contained in one word spoken in one second in the form
used in computational mathematics requires several tens
of thousands of binary characters. Thus, speech signals
have a huge information redundancy [5]. Here is a
reasoned justification for this statement. As you know,
the phonetic and acoustic information of a speech
message is in the frequency band from 300 Hz to 3400
Hz and with a dynamic range D of at least 48 dB. Hence,
using the counting theory for continuous signals with
finite spectra, we obtain the sampling rate
Fy = 2fa =2x3400=6800 Hz. Considering the

condition that F, > 2f ... , in practice, the sampling rate
often takes the value K, =8000 Hz. Then the total

number of samples v for a signal with a duration T will
be v=RKT=8000x1=8000 samples, where T=1 s,

and the transmission rate of samples v of a speech
message with a duration of t s will be
W, =v/1=8000/1=8000 samples/s, where t=1 s,
that is, this value obviously represents the dimensionality
of the space corresponding to the signal base. Since the
dynamic range of speech D should be at least 48 dB, the
number of bits allocated for one sample of the speech
message will be at least k =8 bit/sample corresponding
to the number of possible quantization levels L, =256
and dynamic range D =48.2 dB. In this case, the rate of
speech  information  transmission C_  (acoustic

characteristics of speech) will be
C, =W, xk =8000x8=64000 bit/s [6].

Thus, the rate of transmission of phonemic
information (linguistic semantics) of a speech message is
C=60 bit/s, and the information transmission rate of

the acoustic characteristics of speech is C,, =64000

bit/s, which shows redundancy by more than 1000 times.
This proves that the semantic component of the speech
signal is encoded in the acoustic oscillation in a very
inefficient way, but extracting and recoding it by the
optimal method is a rather non-trivial task, the solution
of which is the focus of this research. The fact is that for
semantic recognition, we do not need the acoustic
characteristics of speech, i.e., we can recognize the
phonemes of the speech message, which in turn will
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significantly reduce the redundancy of speech as well as
the amount of data transmitted through the
communication channel [7].

The problem of scientific research is that having the
ability to determine and measure the amount of phonemic
and acoustic information contained in speech signals
according to the above material, today there is no final
theoretical substantiation of the problem associated with
the semantic coding of speech, namely, proving the
possibility of quantitative measurement of the semantics
hidden in the deep patterns of the speech signal. This is
largely due to the fact that the speech signal is inherently
a non-stationary and nonlinear process. Therefore, the
study of such functions for deep semantic components
(instantaneous ~ frequencies and amplitudes) is
problematic because the existing methods of semantic
speech coding based on spectral analysis, such as the
Fourier transform, wavelet transform, and cosine
transform, use a priori basis functions at all iterations of
the decomposition. This does not allow the optimality of
coding to be proved under this condition because the
error introduced by the basis itself will accumulate in the
amplitude-frequency formant pattern characteristic of
this spectral transform. The optimality of the semantic
coding of speech signals and the determination of the
quantitative measure of semantic information are
possible only if the adaptability of the basis function to
the studied signal is observed at each iteration of the
spectral decomposition into a certain basis series with the
subsequent determination of the instantaneous frequency
and amplitude of the formant pattern of the speech signal
spectrum [8].

The modern methods of semantic coding of speech
signals do not adhere to the formulated statement;
therefore, it was first proposed to use the method of
adaptive empirical wavelet transform with subsequent
Hilbert spectral analysis and optimal threshold
processing to determine the semantic features of speech
signals and their informational  quantitative
measurement. The developed method of semantic coding
of speech signals based on empirical wavelet transform
with further application of Hilbert spectral analysis and
optimal thresholding fully complies with the conditions
of adaptability, due to which the optimality of this
method will be theoretically proved and the gain in terms
of increasing the efficiency of semantic coding in
contrast to existing methods will be obtained [9].

The purpose, tasks, object, subject, and methods of
the research, scientific novelty, and practical significance
of the results are described below.

1. Statement of the purpose of research

Purpose and tasks of the research. The purpose of
this research is to develop a method for improving the
efficiency of semantic coding of speech signals.

To achieve this goal, it is necessary to solve the
following scientific task:

— to investigate a known method for improving
the efficiency of semantic coding of speech signals based
on mel-frequency cepstral coefficients;

— to substantiate the effectiveness of using the
adaptive empirical wavelet transform in multiple-scale
analysis and semantic coding of speech signals;

— develop a method for semantic coding of
speech signals based on adaptive empirical wavelet
transform with further application of Hilbert spectral
analysis and optimal thresholding;

— to conduct an objective quantitative assessment
of the increase in the efficiency of the developed method
of semantic coding of speech signals in contrast to the
existing method.

The object of this research is the processes of
semantic coding of speech signals.

The subject of this research is methods for
improving the efficiency of semantic coding of speech
signals.

Research methods. The research is based on the
following modern methods:

— spectral analysis (empirical wavelet transform,
construction of adaptive Meyer wavelet filters, finding
the function of internal empirical modes, cepstral
analysis, Hilbert transform to find semantic features of
speech signals);

— digital signal processing (Fourier spectrum
segmentation, processing with a bank of triangular mel-
frequency filters, logarithmization of Fourier spectrum
energy, thresholding of wavelet coefficients to find
semantic features of speech signals);

— theory of electrical communication (estimation
of compression ratio, bit rate, signal-to-noise ratio and
peak signal-to-noise ratio of semantic features of speech
signals for quantitative measurement of coding
efficiency);

— information and coding theory (estimation of
the amount of information, source entropy, coding
efficiency, redundancy factor, and coding speed of
semantic features of speech signals for quantitative
measurement of coding efficiency);

— probability theory and mathematical statistics
(estimation of correlation coefficient, mathematical
expectation, variance, root mean square error and the
probability of error-free recognition of semantic features
of speech signals for quantitative measurement of coding
efficiency).

The scientific novelty of the obtained results is as
follows:

— a method of semantic coding of speech signals
based on empirical wavelet transform is developed for
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the first time, which differs from existing methods by
constructing a set of adaptive bandpass Meyer wavelet
filters with the subsequent application of Hilbert spectral
analysis to find instantaneous amplitudes and frequencies
of functions of internal empirical modes, which will
allow the determination of the semantic features of
speech signals and increase the efficiency of their coding;

— for the first time, we propose the use of the
adaptive empirical wavelet transform method in the tasks
of multiple-scale analysis and semantic coding of speech
signals, which will increase the efficiency of spectral
analysis by decomposing the high-frequency speech
oscillation into its low-frequency components, namely,
internal empirical modes;

— the method of semantic coding of speech signals
based on mel-frequency cepstral coefficients was further
developed using the basic principles of adaptive spectral
analysis with the help of empirical wavelet transform,
which increases the efficiency of this method.

The practical significance of the results obtained
is as follows:

— a method of semantic coding of speech signals
based on empirical wavelet transform is developed,
which allows the reduction of the coding rate from 320
to 192 bit/s and the required bandwidth from 40 to 24 Hz
with a probability of error-free recognition of
approximately 0.96 (96%) and a signal-to-noise ratio of
48 dB, according to which its efficiency increases by 1.6
times in contrast to the existing method,;

— an algorithm for semantic coding of speech
signals based on empirical wavelet transform and its
software implementation in the MATLAB R2022b
programming language was developed.

The results obtained in this study can be used to
build systems for remote interaction between people and
robotic equipment using speech technologies, such as
speech recognition and synthesis, voice control of
technical objects, low-speed encoding of speech
information, and voice translation from foreign language.
The results of the research have been implemented in the
scientific and technical activities of the Educational and
Scientific-Production Complex "Information and
Communication Systems" and the educational and
scientific  process of the  Department of
Telecommunication and Radio Electronic Systems of the
Faculty of Aero Navigation, Electronics and
Telecommunications of the National Aviation
University, as confirmed by the relevant implementation
acts.

Below, we mathematically formalize the above
statements of scientific research in a specific comparison
with the existing method of semantic coding of speech
signals based on mel-frequency cepstral coefficients.

2. Problem statement

During writing this scientific article, we
investigated a well-known method for improving the
efficiency of semantic coding of speech signals based on
mel-frequency cepstral coefficients [10-12], which
involves finding the average values of the coefficients of
the discrete cosine transform

N¢-1
c[n]= E[m]cos ,
m=0 Ny
n=o0, .. ,Nf -1

prologarithmized energy of the spectrum

E[m1=|n[N21|X[k1|2Hm[k]],

k=0

m=0, ... ,Nf -1,
discrete Fourier transform

N-1 —2My

X[k]= D x[n]w[n]e N

n=0
processed using a triangular filter

0, k <f[m-1];

(k=f[m-1)
(F ]~ f[m 1))

f[m-1]<k <f[m];

m k|=
o UG ) BTN PO
(f[m+1]-f[m]) :
0, k>f[m+1],
where,
f[m]z(g_;JM_l[M(Fmin)erW]

in mel-scale M =1127.01048In(1+F/700).

The problem is that the presented method of
semantic coding of speech signals based on mel-
frequency cepstral coefficients does not meet the
adaptability
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N
naaAn = [0, Tc],

where A, =[®,_1,,] are the segments of the Fourier

spectrum [0, ] of the speech signal under study, which

is divided into N contiguous segments with boundaries
o (where o =0 and oy =7) [13-15].

Coding efficiency refers to the reduction of the
information transmission rate with a given probability of
error-free recognition of semantic features of speech
signals, which significantly reduces the required source
bandwidth, thereby increasing the communication
channel bandwidth.

Let us devise the main scientific hypothesis of this
research, which is that it is possible to increase the
efficiency of semantic coding of speech signals using an
adaptive empirical wavelet transform with the
subsequent application of Hilbert spectral analysis and
optimal thresholding.

3. Materials and methods
of research

In this study, we propose the application of a
modern method of empirical wavelet transform based on
the construction of a family of adaptive wavelet functions
to improve the efficiency of spectral analysis of speech
signals and further semantic coding.

If we take the features of the Fourier frequency
spectrum as the basis, then the task is equivalent to
building a set of bandpass wavelet filters. One of the
ways to achieve adaptability is to consider that compact
wavelet filter media directly depends on where the
semantic information we need is located in the speech
signal spectrum, i.e., larger amplitudes of the Fourier
spectrum carry more important information for function
recovery, and hence for qualitative assessment of the
semantic component of the speech signal, and small
amplitudes are less important. Indeed, the properties of

the internal empirical mode function stated by
N. Huang [16] are equivalent to the statement that the
spectrum of this function has a compact carrier and is
centered around a certain frequency (depending on the
signal). For the sake of clarity of the theoretical
presentation of the essence of this method, we will
consider only real periodic signals (their spectrum is
symmetrical with respect to frequency o=0), and
therefore easier to build an evidence base. However, the
following considerations can be easily applied to speech
signals, which we will do in the future by building
different wavelet filters on positive and negative
frequencies, respectively. During this study, we will
consider the normalized Fourier spectrum, which has 2n
periodicity, to comply with Shannon’s criteria and limit
the frequency w [0, 7].

Let us start with the assumption that the Fourier
frequency spectrum [0, 7] is divided into N adjacent

segments (later we will discuss how to get such a
division). Let's define , as the boundaries between
each segment (where mg =0 and my =), as shown in

Fig. 1.
Each segment of the spectrum is designated as

Ap =[®n_1,0, ], where o =(Q, +Q,,1)/2,and Q,
are local maxima in the frequency spectrum that
characterize the semantic features of speech signals. Thus
L. . N

it is obvious that Un:lAn =[0, ] . Atthe center of each

o, ,» We define the transition phase (blue rectangular
areas in Fig. 1) T, with a width of 2t,. Empirical

wavelet functions are defined as bandpass filters for each
spectrum segment A, . To do this, we use an idea that is

used in the construction of Littwood-Paley and Meyer

wavelet functions. Then Vn >0, we define the empirical

scaling function and empirical wavelet functions using
equations (1) and (2), respectively.

A - . - 0. 0 - &
2y & 2, & 2 > T,
TTHTHT
(o) “ ¥ (o) | ¥y (@) g
0 o Q 0 Q o n

Fig. 1. Fourier spectrum division using adaptive low-pass ) and bandpass s, () Meyer filters
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1L if|o/<o, -1, L if (1+y)o, <|o|<(1-y)oq,;
b 1 I 1
R cos| —B| —(|o|— o, + , cos| =B o—(1-7)o ﬂ
Pn (‘0) = |:2B[2'Cn (| | nTn )H 1) {2 {Zymnﬂ (| | ( ) n+1)
if o, —.rn <|o| < op +1,; o (0) = if (1-y)on, <|o|<(1+y)on,; @
0, otherwise; L |m 1 1
sin| B m(|®|—( ~)on) ||
and

1 |f0)n +7Th S|(D|S(Dn+1—‘l?n+1;

CO{%B[ > : (|(D| —Opgt 1~'n+l)ﬂ '

Th+l
o () = if o —Thg < |(’3| S Opyp + Ty @)

ofy{ ]

if o, — 1, <o <o +15;

0, otherwise.

Function B(x) is an arbitrarily chosen C* ([0.1])

function is such that

B(x):{f ';’;ii and B(x)+B(1-x)=1.
VXe[O,l].

Different functions follow these properties, the
most commonly used in the literature is the following
function

B(x) =x*(35-84x+70x* - 20x°%)

As for the choice 1, then several options are
possible. The easiest is to choose 1, in proportion to

where O<y<1l. Thus, ¥n>0,

equations (1) and (2) are simplified to equations (3) and
(4), respectively

®p . Ty =YOp

1 if |(o| < (1—y)mn;

005[23(2;0” (le—(l‘”‘”“)ﬂ' ©

if (1-y)o, <|o/<(1+y)o,;
0, otherwise

and

if (1-y)o, <|o|<(1+7)on;
0, otherwise.

An example of an empirical scaling function ¢,, for
vy, =1, y=0.5 and the empirical wavelet function s,
for v, =1, v,;1 =25, y=0.2 in the frequency domain
is shown in Fig. 2 [17].

0.8 1
0.6 f 1
047 1
0.2r g
oL | . ‘ .
-3 2 -1 0 1 2 3

Normalized Fourier spectrum

Normalized amplitude

Fig. 2. Blue line: Fourier transform of the scaling
function for v,, =1, y=0.5. Red line: Fourier

transform of the wavelet function for v, =1,
Vn+1:2.5, '}’202

Qualitative segmentation of the Fourier spectrum of
the speech signal is a primary task in the process of
semantic coding based on the empirical wavelet
transform, since this step ensures the adaptability of the
proposed method to the analyzed signal, which allows for
a better study of the frequency spectrum. In view of the
above, we aim to divide the Fourier spectrum into
different segments that correspond to the functions of
internal empirical modes and are centered around a
certain frequency and a compact medium.

At this stage, we assume that the segment number
N is known and set (below we will propose a method
for estimating the optimal number of segments). This
implies that only N +1 limits are needed, but we already
have 0 and =, at our disposal, i.e. 2 limits, so we must
find N—1 additional limits. To find such limits, you
must first identify local maxima in the frequency
spectrum and sort them in descending order (0 and T
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are not taken into account). Let's assume that the
algorithm has found M maxima.

Two cases may arise:

1) M > N: the algorithm has found enough maxima
to determine the desired number of segments, then we
keep only the first N—1 maxima;

2) M<N: the signal has fewer internal empirical
modes than expected, then we keep the number of all
detected maxima and reset N it to the appropriate value.

Now, having the set of found maxima, as well as 0
and n, we define the limits @, of each segment as the

center between two consecutive maxima.

If it is possible to determine the optimal number of
empirical modes N (frequency spectrum segments) for
simple signals by experimentation, we usually deal with
complex signals, such as speech signals, where a priori
information about the modes of the studied signal is
always unavailable. In such cases, it should be possible
to automatically estimate the required number of mods.
In general, this task is quite complex. Below, we present
a simple method of assessment N. However, to ensure
greater efficiency of the method, it is necessary to
conduct an in-depth analysis of this issue [18].

The following statement shows that with an
appropriate choice of parameter y, a dense frame
structure can be obtained.

®n

. , —
Statement 1. If y <min, (L

), then the set
Wpy1 +Op

{gol(t),{\vn (t)}r:\l:l} is a dense frame structure L% (%)

Proof. We stick to the idea of building a wavelet
Meyer function.

Set {(pl(t),{\yn (t)}r:\l:l} is a dense frame structure if

+00 2 N )
2 |16 (@+ 2k + 3 g (0+ 2km)|” |=1.
k=—0 n—1

According to periodicity 2, it is sufficient to focus
on interval [0,2x].
Following the previous definitions, we can write the

N N
[0.27] = {J An UU Agn):
n=1 n=1
where Ac(n) is a copy of A, but centered on 2n—v,

instead of v, . First, it is easy to see from expressions (5)
and (6), i.e., that for

N N
UlAn Ql/\c(n)
0e ”; U ”KI , (5)
UT | | UTsm)
n+1 n+1

we have

1 () +]py (0—270) +

N (6)
9> ([0 (@)} (- 20)fF ) =L

Then, it remains to look at the transition areas.
Because of the properties of , this result also holds for

T, if consecutive T, do not overlap:

Tn T Thl < Ont1 — D,
S YO +YOh 11 < Opyg —Op,
On+1 —®n

Sy<——x= (7
Op41 + O

Condition (7) must be satisfied for all n, as well as
for the smallest T,, which is equivalent; therefore, we
obtain the desired result if

; ®n41 ~ O
y <min, [— :
Ony1 +Op

Fig. 3 shows an example of a bank of empirical
wavelet filters based on the set

on €{0, 1.21, 2.02, 2.58, nt} of y=0.05 (according to
theory vy <0.057) [19].

Normalized amplitude

T T

I L I 1

following expression
e
0.8
0.6
0.4 r
0.2
°3 2 |

5

0 1

39
W

Normalized Fourier spectrum

Fig. 3. An example of Fourier spectrum division by a bank of empirical wavelet filters
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From the above explanation, we now know how to
construct a set of frames of empirical wavelet functions
of a dense structure. Now we can define the empirical

wavelet transform (EWT), Wf (n,t), in the same way as

for the classical wavelet transform. Then, the detailed
coefficients are given by scalar products with empirical
wavelet functions:

WF (n,t) Jf
:(f(o»>m)v,

and the approximation coefficients (denoted as follows

)y, (t— t)dr—

are W (0,t)) by the scalar product with a scaling
function:

WE (0,t) =(f, 1) =Jf(r)¢1(r—t)dr=
=(f(@)o1()) .

where i, (©) and ¢;(w) are defined by equations 11
and 10, respectively. The reconstruction (inverse EWT)
of the original speech signal f(t) by the wavelet

coefficients of detail and approximation is given by the
following expression

f(t>=vvfs(on)-mo&lwf%n,t)-wn (t)=

N

JrZ:Wf8 (n,®)-¥, (o )J .

n=1

[wf (0,0)-

Speech signal

v

The above statements prove the effectiveness of
using the empirical wavelet transform in the tasks of
spectral analysis of speech signals, which will increase
the efficiency of their semantic coding by maintaining
adaptability to the studied signal. Next, we will proceed
to the development of a method for semantic coding of
speech signals based on an adaptive empirical wavelet
transform with the subsequent application of Hilbert
spectral analysis. According to the developed method
(see Fig. 4), a speech signal is fed to its input, the
frequency range of which is very limited and is located
in the range from 300 to 3400 Hz. It follows from this
fact that by modeling a bandpass filter, it is possible to
discard frequency components that are outside this range
and accordingly do not carry a semantic load.

As you know, speech signals are non-stationary
signals of complex shape, the parameters and
characteristics of which usually change rapidly over time.
The established approach to speech signal processing
uses short-term analysis.

In other words, the signal is divided into time
frames of a fixed size, in which the signal parameters do
not change.

To obtain a set of semantic features of the same
length, the speech signal must be split into equal frames,
and then the transform is performed, assuming that the
signal in such a segment is approximately stationary (see
Fig. 5).

For a speech signal, the frame size is usually
selected within 10-20 ms. For a more accurate
representation of the signal, an overlap equal to half the
frame length is made between the frames.

Filtering

Weight function

v

Dividing the signal into
frames

Fourier transform

Segmentation of the
Fourier spectrum

Empirical wavelet
transform

Construction of Meyer
bandpass filters

v

Hilbert spectral analysis

v

Selecting the optimal
threshold function

Find instantaneous
amplitudes and frequencies

Estimating optimal
threshold values

.

Threshold processing

A

v

Semantic features of
speech signals

Fig. 4. A method for semantic coding of speech signals based on empirical

wavelet transform and Hilbert spectral analysis with subsequent optimal thresholding
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Fig. 5. Dividing the speech signal into frames

Frame overlap is used to prevent the loss of semantic
information about the signal at the frame boundary. The
smaller is the overlap, the smaller will be the
dimensionality of the feature set characteristic of a given
part of the speech signal. Then, a semantic component
extraction algorithm is applied to each frame. Based on
the above, the speech signal that has undergone pre-
processing is divided into K frame of N samples, which
intersect by 1/2 frame lengths. The input of the discrete
Fourier transform unit is a sequence of samples of the
speech signal section (K-st frame) studied at this iteration
Xgs - XNog1- Aweight function is applied to this

sequence, and a discrete Fourier transform is then
applied. The weighting function is used to reduce
distortions in the Fourier analysis caused by the finite
sample size. In practice, the Hamming window is often
used as a weighting function, which has the following

j
N-1 '

where, N is the length of the window expressed in
samples.

The discrete Fourier transform of the weighted
speech signal can then be written in the form of the
following formula:

w([n]=0.53836-0.46164- COS[ZTE

n=0, ..,N-1,

N-1 —2m,
X[K]= éx[n]w[n]e N k=0, ..

Index values k correspond to the frequencies:
FS
f[k]:ﬁk, k=0, .. ,N/2,

where, F is the sampling rate of the speech signal.

We adhere to the idea that the most important
information for assessing the semantics of speech is
stored in the maximum amplitudes (maxima) of the
Fourier spectrum of the original signal (corresponding to

the center of each of the N Fourier segments), which
significantly exceed other existing maxima in the
spectrum. Let us define the set M of the found maxima

of the Fourier spectrum amplitudes by {Mi}kle.

Suppose that this set is sorted in the descending order of
values (M; >M, >...My) and normalized according

to [0;1]. In this case, the above idea is equivalent to

preserving all amplitude maxima of the frequency
spectrum that exceed a certain value of the difference
between the larger and smaller maxima. This can be
formalized as follows: all amplitude maxima of the
Fourier spectrum that are greater than a given threshold

of My +a(M;—My,), where a. corresponds to the

relative ratio of amplitudes, should be preserved. The
task is to choose a value of o, that would lead to a
compromise between the too frequent detection of so-
called "false maxima" that do not carry important
information and a qualitative division of the Fourier
spectrum into segments that correspond to empirical
modes of the speech signal. As a result, the threshold
value directly affects the number of detected maxima and
bands of Fourier spectrum segmentation and the number
of modes into which the studied speech signal is
decomposed. Following this formalism, the empirical
mode f, defined by N. Huang, is the final sum of N+1
internal mode functions fi(t) with amplitude Fy(t) and
frequency ¢x(t) modulations, which can be written as
follows

i (1) = R (t)cos 4k (1)),
where R (t), ¢y (t)>0 Vt, and are such that

(1) kz fe(t)

is determined using the formulas
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As mentioned above, EWT is a tool for the time-
frequency analysis of non-stationary and nonlinear
signals, which are speech signals. One way to express the
non-stationary nature of speech data is to determine the
instantaneous frequency and amplitude of the signal
under study. The Hilbert transform of signal x(t) is given
by the following expression

where P is the principal Cauchy value of the singular
integral.

Using the Hilbert transform of signal x(t) an
analytical signal can be obtained

2(t) =x(t)+iy(t) =a(t)e' ™),

where i = (—1)1/2 )

Then a(t) can be expressed as
a(t)= (x2+y2), (®)

where a(t) is the instantaneous amplitude.
The instantaneous phase function can be expressed
as follows

Yy
O(t)=arctan=
(t) arcanXl

The instantaneous frequency is determined by the
expression

o(t)= 5 (©)

By applying the Hilbert transform to the individual
components of the internal empirical modes, the original
data can be expressed as the following equation

x(t) = Re{iaj (t)exp[ijmj (t)dt}}
=1

(10)

Equation (10) defines the real part of the amplitude
(8) and frequency (9) of each component of the internal
empirical modes as a function of time. The analysis of
signals in the time-frequency domain can be expressed as
a Hilbert energy spectrum or a Hilbert amplitude
spectrum, which are defined as the distribution of energy

density and the distribution of amplitude density in time-
frequency space, respectively [20].
The Hilbert energy density spectrum is defined as

Sij :H(ti,wj):rlAmH{éaﬁ (t)}'

The resolution of the Hilbert spectrum is given by
intervals of equal size At-Aw. Each interval represents

a value of a’ (t) at a given time and frequency. This

transform has the property of energy compactness: more
energy corresponds to less information.

At the next stage, thresholding of the Hilbert
spectrum plays a crucial role in rejecting spectral
coefficients that do not carry semantic information of the
speech signal. Thus, we obtain a very small set of
semantic features that, when encoded, successfully
replaces thousands of samples of the speech signal that
correspond exactly to the semantic form of the speech
signal.

In practice, four threshold functions are widely
used:

1) threshold function T, (a,k) of the type:
A

(11)
A

2) threshold function Tg (a,x) of the type:

[oR]

sign(a)x“a

where A is the threshold value, d is the processed
decomposition coefficient. The graphs of functions (11),
(12) are shown in Fig. 6 for A =0.5 (1 is the graph of the
linear function, 2 is the graph of function (11), 3 is the
function (12)). Let us note the characteristic features of
these functions:

1. By reducing the amplitude of the decomposition

|sk;

Ts(d )= (12)

—x] d> 2

coefficient by the value of A in function Tg(d,2) it is

possible to smooth out the contrast elements of the
processed signal, especially at large values of A .

2. The presence of a gap in function Ty (d,%) in

the environment of A can cause oscillations (Gibbs
effect) in the processed signal.
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Fig. 6. Graphs of threshold functions (11), (12)

To overcome these shortcomings, two-parameter
functions have been proposed, which will now be
considered.

3. Threshold function Tgg (d, 4,2 ) of the type:

0, |a| <A

N LR
ss( 1M 2)— 27M (13)

r <|d <2

a, |a| > }\.2,

which already includes two thresholds A;, A,. The
graph of this function (at A, =0.5, A, =0.75) is shown
in Fig. 7 (curve 2).

4. Threshold function T, (d, 1,4, ), is defined by

the expression:

T2 (d 21,2 = (14)

r <[d] <2

d, |a|>k2;

Fig. 7 shows the graphs of function (13) (curve 2)
and function (14) (curve 3), constructed at A4 =0.5,

Ay =0.75, as well as the graph of the linear function
(curve 1). It can be seen that at interval [Ag,A,] the
function (14) differs from the straight line (which is

present in function (13)). This fact illustrates the
reduction of the negative effect of oscillation (Gibbs
effect) and smoother approximation within the threshold
values, which makes function (14) the best in the
threshold processing of speech signals. This statement is
formalized below.

1
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Fig. 7. Graphs of threshold functions (13), (14)

The optimal threshold function is selected

according to the following algorithm [21].
The input data are formed as

fi =fi +M;j, i=:L2,...,N,

where f; is the value of the speech signal function, n;
are pseudo-random numbers (noise) subject to a normal
distribution with zero mean and variance o>. The
variance value was set in terms of the relative noise level
8y =[n|/[f. where |n| and [f]| are the Euclidean
norms of the corresponding vectors. The accuracy of

wavelet filtering was determined by the relative error as
follows:

o il

Il

where vector f(T) is the result of wavelet filtering with

a threshold function T. Obviously, 8¢ (T) is a random

variable and therefore a sample estimate of the
mathematical expectation of this random variable was
calculated from the sample:

where Ng is the sample size, 8?)(T) is the relative
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filtering error of the | -th data realization f(l) :f+n(|).
Next, we find the minimum filtering error for each
threshold function (11) - (14) by minimizing & (T) and
relating these minimum errors to the minimum error of
the threshold function (14). In practice, as an optimal
two-parameter threshold function, we can accept
function (14), which depends on two parameters A;, A,

and these parameters significantly affect the error of
speech signal filtering. We select the optimal threshold
values by evaluating parameters A;, A, , the threshold
function (14), which allows us to find the optimal
thresholds  Aqopy, Apgpr based on the optimality

criterion, with a minimum standard deviation, which is
determined by the expression:

A(r.22) =M H%M,kz —f“z}

where M[] is the operator of mathematical expectation

on the density of noise distribution; f, fkl,kz are vectors
whose projections are equal to the "exact" and
"smoothed" values of the signals (at the given threshold
values Aq, Ap). We will show that the constructed
algorithm allows us to accurately estimate the optimal
value of threshold %,y , at which the standard deviation
of filtering is minimal. Estimation of optimal threshold
values Aqqpt, Apgpt for the threshold function (14). Let

us assume that: 1) instead of exact values f; of the
discrete speech signal, we have noisy values
f, =f; +m;, i=12,...,N, where noise n; has zero mean

2

M[n;]=0, variance o“ and values m;, m; are

uncorrelated at i j; 2) the basis functions {(pj’k (t)} ,

{\Vj,k(t)} are orthonormalized, which corresponds to

orthogonal wavelets (Meyer, Daubechies, Symlets, and
Coiflets wavelets);

Then we define the

ery = f _fM,kz and introduce the following statistics:

disjoint  vector

pw (A1.h2) = i2<e”1'x2 'f> -
© (15)

(e;wkz )xfi.

Mz

S
(52

IR

As in the linear filtering algorithms, we take as
estimates for Aygp, Aogpt » take the values Aqyy , Aoy,

for which the statistics pyy (A, Aow) satisfy the
inequalities:

Sm 412 <pw (Mw raw ) < Om1yr2, (16)
where 8.2, 9m1y2 are quantiles, xﬁq is a
distribution with m degrees of freedom of levels y/2,

1—vy/2 respectively, y isthe probability of a first-order

error when testing the statistical hypothesis about the
optimality of the smoothing parameter (usually
y=0.05), m=N isthe number of values of the filtered

signal (projection of vector f) [22]. If the number of
degrees of freedom m>30 (in filtering tasks, this is

always done), then xﬁq is a distribution well

approximated by a normal distribution with a
mathematical expectation m and variance 2m. Then,
assuming the probability of a first-order error y=0.05,

we obtain the following formulas for calculating the
quantiles included in inequality (16)

8m10.025 = m—1.96*\l2m,
Sm,0.975 = m+196\]2m

To calculate the scores Aqy, Aoy, threshold

values A, A,, of the function (14) is defined in the
form:

M (B)=B /2|n(|\|j),
25 (B,C)=BxC len(Nj),

where N; is the number of processed coefficients of the
j-th level, and the multiplier C>1 follows from the
inequality A, >2; (see (14)). Note that the multiplier

2In(Nj) makes the thresholds equidependent and

ensures the asymptotic optimality of the thresholds in
order at Nj —oo. Therefore, it is necessary to evaluate

Bopt » Copt, Using the statistic (15), i.e., calculate the
value of By, Cyy . that satisfy inequalities:

Smyr2 <pw (Bw:Cw) < Om1y/2- 17)

Then the estimates Ay, Aoy are defined by the
following expressions:
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Aw =Bw len(Nj),
Aow =Bw % Cw len(Nj).

To calculate By, Cyy instead of solving the nonlinear
equation pyy (B,C)=m, which includes two unknown
quantities B, C, consider the problem of minimizing the

functionality F(B,C) Note that a

=[ow (B.C)-m"-
solution to this problem always exists and well-known
minimization procedures can be used to find it. As Byy,

Cy the following element is accepted {B(n), C(”)}

minimizing sequences for which inequality (17) holds. It
can be shown that when using orthogonal wavelets, the

criterion pyy (B,C) is calculated using the coefficients
of wavelet decomposition:

(18)

k
(AT (@0 (8) 22 (8.C))).

This allows you to find the value of the criterion
(when implementing the minimization procedure) in the
space of wavelet decomposition coefficients, and then

with the foun , an compute d; perrorm
(with the found By, Cyy and d djy ) perf

the inverse wavelet transform only once and obtain
smoothed function values. Let us note some properties

pw (B.C), which are obtained from (18):
1) all components included in formula (18) are non-
negative (can vary from 0 to aik ) and therefore

pw (B.C) 20

2)at p—0 and C<oo fair border

w (B,C)—0

3)at p—>o and C<oo fair border

1 gl 12
pw (1) = 2 3=

O j=jp+

The latter equality holds for orthogonal wavelets
with appropriate normalization of the basis functions.
The last two properties lead to the following statement.

Statement 2. If the inequality

1N
pw (,.C) = ?Zfz > Om 1y/2:
i1

then there are finite values By, Cy for which
inequality (17) holds. Failure to fulfill condition (17)
means that the value of f; =m;, i.e. f; =0. In this case
Bw = and the smoothed values are equal to 0.

The essential feature of the above algorithm for

2

calculating 0,y is the use of noise variance c“. In

practice, as arule, this value is unknown, and in this case,
an estimate for the standard deviation can be used o :

. median(|c~ilyk|)’

0.6745

(19)

where operator median (|Eil’k|) calculates the median of

the absolute values of the detailing coefficients of the
decomposition level jy+1 (the sample size is equal to

N/2). This estimate is widely used in robust regression
analysis algorithms. With respect to wavelet filtering
algorithms, this estimate was studied [23], where
acceptable accuracy was shown, namely, for a given

variance o> =0.91x107* are the values of the estimate
(19) calculated from 30 realizations of length
N/2=1024 were in the range of

[0.88x10_1, 0.97 xlO_l} .

4. Research results

In this work, the developed method of semantic
coding of speech signals based on EWT was investigated
and modeled in the MATLAB software package. In
particular particular, the compression ratio (CR), bit rate
(BR), correlation coefficient (CC), signal-to-noise ratio
(SNR), peak signal-to-noise ratio (PSNR) and root mean
square error (RMSE) were evaluated, as well as the
probability of error-free recognition of semantic features,
which are the main indicators of the effectiveness of the
proposed method. The formalization of performance
indicators for semantic coding of speech signals is
presented below. Let there be two vectors of semantic

features of a speech signal x=(xg XL),

y=(v1 y ) by length L samples, then the
Pearson correlation coefficient (CC)

according to the following expression

is calculated
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i=1 y

cc:%i[xi ;XMXJ[Yi ;My],

l1e le
where My ==>%;, My==>Yy; are the
L3 LT

mathematical expectations of the vectors x and Yy,

Sy = ’%é(xi—Mx)z .Sy = %g(Yi_My)z

standard deviations of vectors x and y. Using the

Pearson correlation coefficient, we can determine the
strength of the linear relationship between two vectors of

values x and y, that is, if [CC|=1 there is a functional
linear relationship, and if CC=0 there is no linear

dependence. In cases where the calculated value of the
correlation coefficient lies in accordance with the

condition 0<|CC| <1, then with an acceptable error, the

correlation coefficient can be qualitatively assessed in
accordance with Table 1.

Table 1
Qualitative relationship of the correlation coefficient
Quantitative Quality
measure of closeness characteristic
connection, |CC| bonding forces
0-01 None
0.1-0.3 Weak
0.3-05 Moderate
0.5-0.7 Noticeable
0.7-0.9 High
0.9-0.99 Very high
0.99-1 Functional

The root mean square error (RMSE) is calculated by
the formula

1& 2
EZ(Xi -Yi)”.

i=1

RMSE =

In this case, we are interested in the smallest error
with the highest geometric similarity between the
compared semantic features of the speech signal, i.e.
RMSE —0.

The signal-to-noise ratio (SNR) and peak-to-peak
signal-to-noise ratio (PSNR) were calculated according
to the following formulas

1L 2

L it

SNR =10log;q Tl ;
L 2ia(Xi=i)

[dB],

max(xiz)

1L 2
EZizl(xi -i)

PSNR =10log;q [dB].

Obviously, the greater the geometric proximity
between the compared semantic features of the speech
signal, the greater the SNR and PSNR, respectively, i.e.
SNR(PSNR) — 0, otherwise SNR(PSNR) —0.

The compression ratio (CR) of speech data
characterizes the efficiency of the semantic coding
algorithm and is calculated according to the expression

cR=2,
SC

where S, is the amount of input speech data, S is the

amount of semantically encoded speech data. Thus, the
higher is the compression ratio, the more efficient the
algorithm is. It should be noted that if CR =1, then the
algorithm does not perform compression, i.e., the output
message is equal in volume to the input message.

Bit rate (BR)

BR =vxlog, L, [bit/s],

where L [samples/s] is the rate of transmission of speech
signal samples L per 1 second; L, is the total number

of quantization levels of the speech signal samples.

The probabilities of error-free recognition of
semantic features are calculated according to the
following statements. Suppose that the recognition
probability P of frequencies and amplitudes of the
harmonic distribution function

x(t) = Axsin(wt+9),

is equal to 1, and the functions of the uniform distribution
law

1
(1) = P x e[a,b];

0, x ¢[a,b];

is equal to 0.5, which is equivalent to the complete
absence of semantic features in the studied speech signal.
According to this statement, the actual probability of
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recognizing the semantic features of speech signals will
be in the range from 0.5 to 1. The theoretical criterion for
finding the maximum possible probability of recognizing
the semantic features of the analyzed frame is written as
follows, which is based on the balance between the
energy of semantic features (probability distribution of
the occurrence of samples of the studied speech signal)
of the speech and their number

N 2
C.
P:—“zkﬂl Bl Ji=1...N

N 2
24alCl

where C is the Hilbert energy spectrum, which
characterizes the probability distribution of the
occurrence of samples of the speech signal of length N .
It is obvious that the greater the geometric proximity
between the compared semantic features of a speech
signal, themore P ,i.e. P —>1, otherwise P —>0.5. The
percentage representation of the probability of
recognizing the semantic features of speech signals can
then be written as follows

Py, = P-100 (%),

which isan absolute indicator of the semantic recognition
of speech signals, which takes into account the internal

1
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probability distribution of the source of the process under
study. The input digital speech signals for semantic
coding are recordings of male and female voices with a
sampling rate of 8 kHz and a quantization bit depth of
8 bits, which corresponds to the main digital channel of
the telephone network is 64 kbit/s (Fig. 8).

Then, the adaptive basis is set by the scaling
function and wavelet functions corresponding to the low-
pass filter and Meyer bandpass filters for each spectrum
segment. Let's build the amplitude spectra of the signal
under study, where the location of the spectral peaks
determines the frequency bands of the filter bank (Fig. 9).

Let us build the internal empirical modes of the
studied signal using the empirical wavelet transform (Fig.
10).

By applying the Hilbert transform to the mode
functions of the empirical wavelet transform obtained
because of the decomposition of the speech signal, we
obtain the Hilbert energy spectrum, which depends on the
instantaneous frequency and time (Fig. 11). The integral
of this value over time gives the Hilbert integral
spectrum, which is an analog of the Fourier spectrum.

The Hilbert transform and the empirical wavelet
transform open up new possibilities for the analysis of
speech signals in the detailed analysis of the frequency
and time structure of their spectrum, namely the use of
thresholding methods, as discussed above.

Amplitude

0 0.2 0.4 0.6
Time (s)
b)

Amplitude

0 0.2 0.4 0.6
Time (s)
d)

Fig. 8. An example of voice commands: "Up" a), "Down" b), "Right" c), "Left" d)
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Fig. 10. Internal empirical modes (IEMs) of the EWT of the studied signal for the voice command "Up":
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Fig. 11. Hilbert spectral analysis of the IEMs of the EWT for voice commands:
"Up" a), "Down" b), "Right" c), "Left" d)

At the next stage, thresholding of the Hilbert
spectrum plays a crucial role in rejecting spectral
coefficients that do not carry semantic information of the
speech signal. Thus, we obtain a very small set of
semantic features that, when encoded, successfully
replaces thousands of samples of the speech signal that
correspond exactly to the semantic form of the speech
signal. Fig. 12 shows the semantic features of voice
commands based on EWT and Hilbert spectral analysis
after thresholding according to the proposed method.

The results of scientific and experimental studies on
improving the efficiency of semantic coding of speech
signals are presented in Table 2. In this experiment, we
evaluated CR, BR, CC, SNR, PSNR, and RMSE for two
implementations of the semantic features of voice
commands found on the basis of EWT and Gilbert
spectral analysis. The following results of the study (see
Table 2) clearly show that the optimal solution for the
given criteria of semantic coding efficiency for voice
commands is: "Up" - CR = 333, BR = 192 bit/s,
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Fig. 12. Semantic features based on EWT of voice commands:
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Table 2

Results of evaluating the effectiveness of the developed method of semantic coding of speech signals
on the example of two implementations of voice commands

Training Testing
Voice commands "Up" "Down" "Right" "Left"
CR =333 CR =333 CR=1333 CR=1333
BR =192 hit/s BR =192 hit/s BR =192 bit/s BR =192 bit/s
“Up" CC=0.96 CC=0.34 CC=0.14 CC=043
SNR =23 dB SNR=7dB SNR=6dB SNR=8dB
PSNR = 39 dB PSNR =13 dB PSNR =10dB PSNR =17 dB
RMSE = 0.03 RMSE = 0.40 RMSE = 0.54 RMSE = 0.49
CR=333 CR =333 CR=1333 CR=1333
BR =192 hit/s BR =192 hit/s BR =192 bit/s BR =192 bit/s
“Down” CC=0.38 CC=0.95 CC=0.24 CC=0.34
SNR=9dB SNR =24 dB SNR=4dB SNR=6dB
PSNR = 15 dB PSNR = 44 dB PSNR =9 dB PSNR =13 dB
RMSE = 0.39 RMSE = 0.07 RMSE = 0.37 RMSE = 0.43
CR=333 CR=333 CR =333 CR=1333
BR =192 hit/s BR =192 hit/s BR =192 bit/s BR =192 bit/s
"Right" CC=0.15 CC=0.28 CC=0.97 CC=0.17
SNR =8dB SNR =6dB SNR =25dB SNR=5dB
PSNR = 14 dB PSNR =12 dB PSNR = 46 dB PSNR =13 dB
RMSE = 0.50 RMSE = 0.40 RMSE = 0.05 RMSE = 0.63
CR=333 CR=333 CR=1333 CR=333
BR =192 hit/s BR =192 hit/s BR =192 bit/s BR =192 bit/s
o eft" CC=043 CC=0.40 CC=0.25 CC=0.93
SNR=5dB SNR =6dB SNR=4dB SNR =27 dB
PSNR =10 dB PSNR = 14 dB PSNR =12 dB PSNR = 44 dB
RMSE = 0.53 RMSE = 0.52 RMSE = 0.47 RMSE = 0.09
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CC =0.96, SNR =23 dB, PSNR = 39 dB, RMSE = 0.03;
"Down" - CR = 333, BR = 192 bit/s, CC = 0.95,
SNR =24 dB, PSNR = 44 dB, RMSE = 0. 07; "Right" -
CR = 333, BR = 192 bhit/s, CC = 0.97, SNR = 25 dB,
PSNR = 46 dB, RMSE = 0.05; "Left" - CR = 333,
BR =192 bit/s, CC=0.93, SNR =27 dB, PSNR = 44 dB,
and RMSE = 0.09.

It shows quite good results, preserving the semantic
features of voice commands found on the basis of EWT
and Gilbert spectral analysis. This enables the semantic
identification of speech signals.

To assess the developed method more reliably, we
need to check it for invariance to the realization of speech
signals. This experiment was conducted by increasing the
number of realizations of speech signals of the same
semantic property. The results of the following scientific
and experimental studies to evaluate the increase in the
efficiency of semantic coding of speech signals using the
developed method are presented in Table 3.

In this experiment, we evaluated the average values

of CR, BR, CC, SNR, PSNR, and RMSE for twenty
implementations of the semantic features of voice
commands based on EWT and Gilbert spectral analysis.

The following results of the study (see Table 3)
clearly show that with the increase in implementations,
the performance indicators of semantic coding remain at
a high level, where the semantic component of speech
signals retains its semantic patterns, which makes this
method resistant to non-stationary and nonlinear
processes.

This fact is also confirmed in Fig. 13, which shows
twenty realizations of the semantic features found on the
basis of EWT and Gilbert spectral analysis of voice
commands: "Up", "Down", "Right", "Left".

An experimental study has shown (Fig. 14, where
line 1 is number of non-semantic features and line 2 is
energy of semantic features) that the developed method
of semantic coding of speech signals based on empirical
wavelet transform reduces the coding rate from 320 to
192 bits/s and the required bandwidth from 40 to 24 Hz

Table 3

Results of evaluating the effectiveness of the developed method of semantic coding of speech signals
on the example of twenty implementations of voice commands

Training Testing
Voice "Up" "Down" "Right" "Left"
commands
CR =333 CR =333 CR =333 CR =333
BR = 192 bit/s BR = 192 hit/s BR = 192 bit/s BR = 192 hit/s
"Up" CC=0.93 CC=031 CC=0.19 CC=0.35
SNR =18dB SNR=7dB SNR=4dB SNR=6dB
PSNR =35 dB PSNR =12 dB PSNR =8 dB PSNR = 13 dB
RMSE = 0.08 RMSE = 0.47 RMSE = 0.62 RMSE = 0.48
CR =333 CR =333 CR =333 CR =333
BR = 192 hit/s BR = 192 bit/s BR = 192 bit/s BR = 192 bit/s
“"Down"” CC=0.33 CC=0.92 CC=0.08 CC=0.25
SNR=9dB SNR =22dB SNR=2dB SNR=6dB
PSNR =16 dB PSNR = 39 dB PSNR =6 dB PSNR=9dB
RMSE = 0.37 RMSE = 0.11 RMSE = 0.65 RMSE = 0.48
CR =333 CR =333 CR =333 CR =333
BR = 192 bit/s BR = 192 bit/s BR = 192 bit/s BR = 192 bit/s
"Right" CC=0.12 CC=0.20 CC=0.93 CC=0.16
SNR=4dB SNR=7dB SNR=21dB SNR=7dB
PSNR =12 dB PSNR =11dB PSNR = 37 dB PSNR=9dB
RMSE = 0.59 RMSE = 0.42 RMSE = 0.09 RMSE = 0.64
CR =333 CR =333 CR =333 CR =333
BR = 192 bit/s BR = 192 bit/s BR = 192 bit/s BR = 192 bit/s
"Left" CC=0.24 CC=0.28 CC=021 CC=0091
SNR=3dB SNR=6dB SNR=4dB SNR =22dB
PSNR =7 dB PSNR =9 dB PSNR =10dB PSNR = 37 dB
RMSE = 0.55 RMSE = 0.57 RMSE = 0.43 RMSE = 0.13
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Fig. 13. Twenty implementations of semantic features based on EWT voice commands:
"Up" a), "Down" b), "Right" c), "Left" d)
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Fig. 14. Dependence of the probability of recognizing semantic features on the reduction in their energy
and coding speed using the proposed method

with a probability of error-free recognition of about 0.96 5. Discussion and future
(96%) and a signal-to-noise ratio of 48 dB, according to research directions
which its efficiency increases by 1.6 times in contrast to

the existing method, without exceeding the boundary
value of the processing and data transmission delay of
300 ms, this will allow the system to operate in real time.

In conclusion, the authors would like to make a few
points and explain the main trends in this area for future
research.
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First, the issue of uneven semantic coding (uneven
bitrate of semantic speech data transmission, i.e.,
recognition features of different dimensions) remains
open, considering the distribution of internal probability
dependencies of the message source. The relevance of
solving this problem lies in the fact that we will be able
to reduce the semantic data transmission rate by at least
20% additionally, i.e., reduce the coding rate from 192 to
about 150 bits/s and the required bandwidth from 40 to
about 30 Hz, which is very attractive from a scientific and
engineering point of view and thus bring the bitrate of
semantic coding even closer to the minimum possible
level from the theoretical point of view, which was
mentioned in the introduction of this article.

Second, solving the problem of uneven semantic
encoding, we can already see a very significant additional
problem that will also need to be solved, namely, what
criterion to use for objective comparison (classification)
of semantic data, since they will not be invariant in
frequency between each implementation of recognition
features, and invariance is the main property that must be
observed according to the theory of pattern recognition
and methods of extracting recognition features. Thus, by
reducing the speed of semantic coding due to uneven
processing of spectral coefficients, we lose frequency
invariance, which makes it virtually impossible to
classify recognition features using existing methods, i.e.,
uneven semantic coding and invariance of semantic
recognition features are mutually opposite properties.
The above problems are of primary importance for
solving to obtain significant improvements in practical
results in this area of research.

Conclusions

The result of this work is the solution to the actual
scientific and practical task of developing and
researching new effective methods of semantic coding of
speech signals.

During this research, the following scientific results
were obtained:

— the well-known method of semantic coding of
speech signals based on mel-frequency cepstral
coefficients, which does not comply with the condition
of adaptability to the studied signal, is investigated,
which is a significant drawback of the existing method.

— it is proposed to use the adaptive empirical
wavelet transform method in the tasks of multiple-scale
analysis and semantic coding of speech signals, which
will increase the efficiency of spectral analysis by
decomposing the high-frequency speech oscillation into
its low-frequency components, namely, internal
empirical modes.

— we developed a method of semantic coding of
speech signals based on empirical wavelet transform,

which builds sets of adaptive bandpass Meyer wavelet
filters with the subsequent application of Hilbert spectral
analysis to find instantaneous amplitudes and frequencies
of functions of internal empirical modes, which will
allow us to determine the semantic features of speech
signals and increase the efficiency of their coding.

— the optimal threshold processing function is
selected and its parameters of threshold values Ay, A,

of wavelet filtering are estimated, which allows finding
the optimal thresholds Ajqpr, Aogpe With a minimum

standard deviation A(21,A;), thereby increasing the

efficiency of determining the semantic features of the
speech signal.

— the adaptive threshold processing of the Hilbert
spectrum of the speech signal with the calculation of the
optimal threshold values of wavelet filtering Ay,

Aoopt Was carried out, to filter out the coefficients

characterizing instantaneous amplitudes and frequencies
of low power.

— the method of semantic coding of speech signals
based on mel-frequency cepstral coefficients, but using
the basic principles of adaptive spectral analysis with the
help of empirical wavelet transform, which increases the
efficiency of this method by at least 1.3 times, is
investigated.

— the developed method of semantic coding of
speech signals based on empirical wavelet transform
allows the coding rate to be reduced from 320 to 192 bit/s
and the required bandwidth from 40 to 24 Hz with a
probability of error-free recognition of approximately
0.96 (96%) and a signal-to-noise ratio of 48 dB,
according to which its efficiency increases by 1.6 times
in contrast to the existing method, without exceeding the
boundary value of the processing and data transmission
delay of 300 ms. This will allow the system to operate in
real time.

— we developed an algorithm for semantic coding
of speech signals based on empirical wavelet transform
and its software implementation in MATLAB R2022b
programing language.

Contributions of authors: conceptualization,
methodology — Oleksandr Lavrynenko; formulation of
tasks, analysis — Oleksandr Lavrynenko, Denis
Bakhtiiarov; development of model, software,
verification — Vitaliy Kurushkin; analysis of results,
visualization — Serhii Zavhorodnii; writing — original
draft preparation — Veniamin Antonov; writing —review
and editing — Petro Stanko.

All the authors have read and agreed to the
published version of this manuscript.
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METOJ BUAIVIEHHA CEMAHTHYHUX O3HAK PO3III3BHABAHHA MOBHUX CUT'HAJIIB
HA OCHOBI EMITIPUYHOI'O BEMBJIET-IIEPETBOPEHHS

Onexcanop Jlaspunenxo, /lenuc baxmiapoe, Bimanin Kypywkin,
Cepeiit 3a620pooniii, Beniamin Anmonoa,
Ilempo Cmanko

IpexMeToM J0CTIPKEHHS € METOIH MTiIBUIICHHS €(PEKTUBHOCTI CEMAHTHYHOTO KOMYBAHHS MOBHHX CHUTHAJIB.
MeTor0 JIOCIiPKEHHSI € pO3pOOJICHHS METOAY IiJIBUIIEHHS e(pEeKTHBHOCTI CEMaHTHYHOIO KOJYBaHHS MOBHHX
CHTHAIB, Jie MiJ] e(eKTUBHICTIO KOIyBaHHS PO3YMIETHCS 3HIKEHHS MIBHIKOCTI mepeaadi iHdopmanii i3 3a1aHor0
HMOBIpHICTIO OE3[TOMUIIKOBOTO PO3ITI3HABAHHS CEMAaHTHYHHMX O3HAK MOBHHX CHIHANIB, HIO JIO3BOJUTH 3HAYHO
3HU3UTH HEOOXIJHY CMYTYy NMpOIYCKaHHsS, THM CaMUM IIiJIBUIYIOYN TPONMYCKHY 3/aTHICTh KaHaiy 3B’s3Ky. s
JIOCSITHEHHST TIOCTABJICHOI METH HEeOOXiMHO BHPIIIMTH HACTYIHI HAyKOBlI 3aaadi: JOCHIJUTH BiJOMHHA METOJ
IiIBUILEHHS e()EeKTUBHOCTI CEMaHTHYHOTO KOJYBaHHS MOBHHMX CHUTHAJIIB Ha OCHOBI MEN-YaCTOTHUX KETICTPAIbHHUX
Koe(ilieHTiB; OOIpyHTYBaTH €(EKTHBHICTh BUKOPHCTAHHS aJaTHBHOTO €MIIIPUYHOTIO BEWBJIET-IIEPETBOPEHHS B
3aJayaXx KpaTHOMAcCIUTAOHOTO aHali3y Ta CEMAaHTHYHOrO KOJAYBaHHS MOBHUX CUTHAJIB; PO3POOHTH METOX
CEeMaHTHYHOI'0 KOJYBAaHHS MOBHHMX CHTHAJiB Ha OCHOBI aJallTUBHOI'O EMIIPUYHOTO BEHBIET-NIEPETBOPEHHS 3
MOAAJBIIMM 3aCTOCYBaHHSM CIEKTPaJIbHOrO aHamizy [iibbepra Ta onTHMallbHOI MOPOroBOI OOPOOKH; MPOBECTH
00’€KTUBHY KiJIbKICHY OLIIHKY ITiABHIIECHHS €)eKTHBHOCTI PO3POOJIEHOr0 METOAY CEMaHTHYHOTO KOJYBaHHSI MOBHHUX
CUTHAJIIB Ha BiAMiHY Bij icHytodoro meroay. ITix yac mocnmigpkeHHst Oyiu ofep>KaHi HACTYITHI HAyKOBI pe3yJIbTaTH:
BIIEpIlIE PO3POOJICHO METOJl CEMAHTHYHOrO KOJYBAaHHS MOBHMX CHIHaJIIB Ha OCHOBI EMIIIPHYHOIO BEHBJIET-
NIEPETBOPEHHSI, SIKUI BIAPI3HIETHCS BiJl ICHYIOUMX METOJIIB MOOYAOBOI0 MHOXHHH a/IaITUBHUX CMYTOBUX BEHBJIET-
¢inpTpiB Meiiepa 3 HONANIBIIAM 3aCTOCYBaHHSM CHEKTpalIbHOrO aHami3zy ['inmbOepra s 3HaXOMKEHHS MHTTEBUX
aMILTITY]] 1 9acTOT (PYHKIIII BHYTPIIIHIX eMITiPUYHUX MO/, 110 JI03BOJUTh BU3HAYUTH CEMAHTUYHI O3HAKH MOBHHUX
CHTHAJIIB Ta [T ABUIIUTH €()EeKTUBHICTD iX KOAYBaHHS; BIIEPIIIE 3alIPOIIOHOBAHO BUKOPHCTOBYBATH METO/ aJalITUBHOT'O
eMITIPUYHOT 0 BEBIIET-TIEPETBOPEHH B 3a/ladyax KPaTHOMACIITAOHOTO aHAJI3y Ta CEMAaHTHYHOTO KOAYBaHHS MOBHHUX
CUTHAJIB, IO JIO3BOJUTH TIiJBUIIUTH €()EKTUBHICTh CIEKTPAILHOTO aHallidy 3a paxyHOK pPO3KJIaIaHHs
BHCOKOYAaCTOTHOT'O MOBHOT'O KOJMBaHHS Ha WOr0 HU3bKOYACTOTHI CKJIAJIOBI, @ caMe BHYTPILIHI eMITIipUYHI MOJIH;
OTPUMAaB MOJNAJBIIMN PO3BUTOK METOA CEMaHTUYHOIO KOJyBaHHS MOBHHX CHTHAJIB Ha OCHOBI MeI-4acCTOTHHX
KEICTpaJbHUX KOe(DIIIEHTIB, ajie 3 BUKOPUCTAHHSIM 0a30BHX NPHUHIUIIB aJalTHBHOIO CIIEKTPAIILHOTO aHAMI3y 3a
JOTIOMOT'OF0  eMITIPUYHOI0  BEHBIIET-TIEPETBOPEHHS, IO MiJBHINYE €(QEeKTHBHICTH ITaHOrO MeTony. BHCHOBKH:
PO3pO0IIEHO METO/I CEMaHTHYHOTO KOAYBaHHS MOBHUX CHTHAJIIB HA OCHOBI €MITipHYHOTO BEHBIIET-TIEPETBOPEHHS, 110
JI03BOJIsIE 3HU3UTH MIBUAKICTH Ko yBaHHs Bix 320 1o 192 6it/c Ta HeoOXiaHy cMyry mpomyckanss Bix 40 1o 24 ' 3
HWMOBIPHICTIO O€3MIOMHIIIKOBOTO po3Mi3HaBaHHs 0113bK0 0,96 (96%) 1 BigHOMmIEHHM curHai/iiym 48 nb, 3rifHo yoro
Horo edexkTHUBHICTh MIJBHINYEThCS B 1,6 pa3su Ha BIAMIHY BiJi ICHYIOYOrO METOAY; pPO3pPOOJICHO aarophT™M
CEMaHTHYHOI'0 KOAYBAaHHS MOBHHX CHUTHAJIB Ha OCHOBI eMIIPpHYHOTO BEHBIET-IIEPETBOPEHHS Ta HOTO MporpaMHa
peauizamis MmoBoro nporpamyBanas MATLAB R2022b.

Kuro4oBi cioBa: ceMaHTHYHI 03HAKH MOBHHUX CHUTHAJIB; MEJI-YaCTOTHI KETICTPabHiI KOSQIIiEHTH; aJalTUBHUI
CIEKTpATbHUN aHAlli3; eMITipHYHEe BEHBIICT-TIEPETBOPCHHS; AaNanTHBHI BeWBleT-GOUIbTpH Meliepa; (yHKmil
BHYTPIIIHIX eMIIpAIHAX MOJ; CHEKTpanbHui aHami3 ['imsbepra; onTrManbHa mOporosa oopooKa.
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