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RECOGNITION BASED ON EMPIRICAL WAVELET TRANSFORM 
 

The subject of this study is methods for improving the efficiency of semantic coding of speech signals. The 

purpose of this study is to develop a method for improving the efficiency of semantic coding of speech signals. 

Coding efficiency refers to the reduction of the information transmission rate with a given probability of error-

free recognition of semantic features of speech signals, which will significantly reduce the required source 

bandwidth, thereby increasing the communication channel bandwidth. To achieve this goal, it is necessary to 

solve the following scientific tasks: (1) to investigate a known method for improving the efficiency of semantic 

coding of speech signals based on mel-frequency cepstral coefficients; (2) to substantiate the effectiveness of 
using the adaptive empirical wavelet transform in the tasks of multiple-scale analysis and semantic coding of 

speech signals; (3) to develop a method of semantic coding of speech signals based on adaptive empirical wavelet 

transform with further application of Hilbert spectral analysis and optimal thresholding; and (4) to perform an 

objective quantitative assessment of the increase in the efficiency of the developed method of semantic coding of 

speech signals in contrast to the existing method. The following scientific results were obtained during the study: 

a method of semantic coding of speech signals based on empirical wavelet transform is developed for the first 

time, which differs from existing methods by constructing a set of adaptive bandpass Meyer wavelet filters with 

further application of Hilbert spectral analysis to find the instantaneous amplitudes and frequencies of the 

functions of internal empirical modes, which will allow the identification of semantic features of speech signals 

and increase the efficiency of their coding; for the first time, it is proposed to use the method of adaptive 

empirical wavelet transform in the tasks of multiple-scale analysis and semantic coding of speech signals, which 
will increase the efficiency of spectral analysis by decomposing the high-frequency speech oscillation into its 

low-frequency components, namely internal empirical modes; the method of semantic coding of speech signals 

based on mel-frequency cepstral coefficients was further developed, but using the basic principles of adaptive 

spectral analysis with the help of empirical wavelet transform, which increases the efficiency of this method. 

Conclusions: We developed a method for semantic coding of speech signals based on empirical wavelet 

transform, which reduces the encoding rate from 320 to 192 bps and the required bandwidth from 40 to 24 Hz 

with a probability of error-free recognition of approximately 0.96 (96%) and a signal-to-noise ratio of 48 dB, 

according to which its efficiency is increased by 1.6 times as compared to the existing method. We developed an 

algorithm for semantic coding of speech signals based on empirical wavelet transform and its software 

implementation in the MATLAB R2022b programing language.  

 

Keywords: semantic features of speech signals; mel-frequency cepstral coefficients; adaptive spectral analysis; 
empirical wavelet transform; adaptive wavelet-filters Meyer; functions of internal empirical modes; Hilbert 

spectral analysis; optimal threshold processing. 

 

Introduction 

 

Today, the problem of semantic encoding of speech 

signals is gaining relevance because of the active 

development of technologies such as speech recognition 

and synthesis, voice control of technical objects, low-

speed encoding of speech information, and voice 

translation from foreign languages. The functionality of 

systems that use such technologies depends on the 

efficiency of the encoding. Considering the growing 

trend of remote interaction between people and robotic 

equipment using these technologies, the main problem in 

telecommunication systems is to increase the bandwidth 

of the channel for transmitting semantic speech data. This 

is achieved through efficient coding of the data. 

Therefore, the key question is what speed is required for 

the semantic characteristics of speech signals to be 

encoded with a specific probability of error-free 

recognition. In this research, we will try to answer this 

question because it is an urgent scientific and technical 

task [1]. 

Linguistic communication begins when an abstract 

message appears in the speaker’s brain. The process of 

speech production converts the message into an acoustic 

speech waveform. The information contained in this 

message is represented in the acoustic waveform in a 

complex manner. The initial message is first converted 

into sequences of nerve impulses that control the 
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articulatory apparatus (i.e., the movements of the tongue, 

lips, vocal cords, etc.). Under the influence of these nerve 

impulses, the articulatory system is set in motion. This 

produces an acoustic speech waveform that conveys 

information about the original message [2]. 

The semantics of speech refers to the typed formant 

patterns of the spectrum of the speech signal, which 

correspond to a certain phoneme of the studied language. 

Since the semantic information of a speech signal is in 

the frequency domain, the study of spectral 

transformations is important for confirming the 

effectiveness of semantic speech coding and quantifying 

the semantic information contained in speech signals [3]. 

A message transmitted with a speech signal is 

discrete, i.e., it can be represented as a sequence of 

characters from a finite number of characters. The 

characters that make up a speech signal are called 

phonemes. The smallest elementary unit of language is 

considered a phoneme, which is defined as a distinct 

sound that serves to distinguish semantic units of 

language. Each language has its own set of phonemes N, 

usually from 30 to 50. For example, there are N=38 

phonemes in Ukrainian. Thus, a speech message can be 

represented as a discrete sequence of phonemes. To give 

an objective quantitative assessment of a speech 

message, the concept of the amount of information in a 

speech message is introduced. Thus, we obtain a 

reasonable statement that if the phonemes of the 

corresponding language are chosen under the condition 

of equal probability of their occurrence, i.e., P = 1/N, 

where N is the number of all possible phonemes, then the 

average amount of information per phoneme of the 

Ukrainian language will be H = log2N = log238= 

=5.2 bit/phoneme. The value calculated in this way is 

called entropy, which determines the average amount of 

information per character of a discrete message. In this 

case, we deal exclusively with phonemes of speech 

messages. Physical restrictions on the movement of the 

elements of the articulatory apparatus allow a person to 

pronounce an average of 80-130 words per min or about 

10 phonemes per s. Assuming an average speech rate of 

W = n/ = 10/1 = 10 phonemes/s, the transmission rate 

of phonemic information of a speech message in 

Ukrainian will be C = WH =10 5.2 = 52 bit/s. In other 

words, at a normal rate of speech, the written equivalent 

of a speech message in various world languages is 

approximately 60 bit/s. This figure roughly characterizes 

the information content of a language that appears in its 

linguistic structure. The obtained value is in good 

agreement with the results of psychoacoustic 

experiments, which have established that a person is able 

to process information coming through the auditory 

channel at a speed of up to 50 bit/s. However, this 

assessment does not consider factors such as the 

speaker’s personality and emotional state, speed of 

speech, and voice volume [4]. 

However, if we turn directly to the acoustic 

characteristics of speech, the information picture will be 

different. The instantaneous spectrum of the speech 

signal covers a frequency band of approximately 300 to 

3400 Hz, and the dynamic range of amplitudes is 

approximately 48 dB. Sound vibrations are characterized 

not only by amplitude-time and frequency-time 

parameters but also by phase relations. If all this is taken 

into account, then recording the full set of sound features 

contained in one word spoken in one second in the form 

used in computational mathematics requires several tens 

of thousands of binary characters. Thus, speech signals 

have a huge information redundancy [5]. Here is a 

reasoned justification for this statement. As you know, 

the phonetic and acoustic information of a speech 

message is in the frequency band from 300 Hz to 3400 

Hz and with a dynamic range  D  of at least 48 dB. Hence, 

using the counting theory for continuous signals with 

finite spectra, we obtain the sampling rate 

s maxF 2f 2 3400 6800      Hz. Considering the 

condition that 
s maxF 2f , in practice, the sampling rate 

often takes the value sF 8000   Hz. Then the total 

number of samples  for a signal with a duration  T  will 

be sF T 8000 1 8000       samples, where T = 1 s, 

and the transmission rate of samples  of a speech 

message with a duration of  s will be 

W / 8000 /1 8000        samples/s, where =1 s, 

that is, this value obviously represents the dimensionality 

of the space corresponding to the signal base. Since the 

dynamic range of speech  D  should be at least 48 dB, the 

number of bits allocated for one sample of the speech 

message will be at least k 8   bit/sample corresponding 

to the number of possible quantization levels L 256   

and dynamic range D 48.2   dB. In this case, the rate of 

speech information transmission C  (acoustic 

characteristics of speech) will be 

C W k 8000 8 64000        bit/s [6]. 

Thus, the rate of transmission of phonemic 

information (linguistic semantics) of a speech message is 

C 60   bit/s, and the information transmission rate of 

the acoustic characteristics of speech is C 64000    

bit/s, which shows redundancy by more than 1000 times. 

This proves that the semantic component of the speech 

signal is encoded in the acoustic oscillation in a very 

inefficient way, but extracting and recoding it by the 

optimal method is a rather non-trivial task, the solution 

of which is the focus of this research. The fact is that for 

semantic recognition, we do not need the acoustic 

characteristics of speech, i.e., we can recognize the 

phonemes of the speech message, which in turn will 
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significantly reduce the redundancy of speech as well as 

the amount of data transmitted through the 

communication channel [7]. 

The problem of scientific research is that having the 

ability to determine and measure the amount of phonemic 

and acoustic information contained in speech signals 

according to the above material, today there is no final 

theoretical substantiation of the problem associated with 

the semantic coding of speech, namely, proving the 

possibility of quantitative measurement of the semantics 

hidden in the deep patterns of the speech signal. This is 

largely due to the fact that the speech signal is inherently 

a non-stationary and nonlinear process. Therefore, the 

study of such functions for deep semantic components 

(instantaneous frequencies and amplitudes) is 

problematic because the existing methods of semantic 

speech coding based on spectral analysis, such as the 

Fourier transform, wavelet transform, and cosine 

transform, use a priori basis functions at all iterations of 

the decomposition. This does not allow the optimality of 

coding to be proved under this condition because the 

error introduced by the basis itself will accumulate in the 

amplitude-frequency formant pattern characteristic of 

this spectral transform. The optimality of the semantic 

coding of speech signals and the determination of the 

quantitative measure of semantic information are 

possible only if the adaptability of the basis function to 

the studied signal is observed at each iteration of the 

spectral decomposition into a certain basis series with the 

subsequent determination of the instantaneous frequency 

and amplitude of the formant pattern of the speech signal 

spectrum [8]. 

The modern methods of semantic coding of speech 

signals do not adhere to the formulated statement; 

therefore, it was first proposed to use the method of 

adaptive empirical wavelet transform with subsequent 

Hilbert spectral analysis and optimal threshold 

processing to determine the semantic features of speech 

signals and their informational quantitative 

measurement. The developed method of semantic coding 

of speech signals based on empirical wavelet transform 

with further application of Hilbert spectral analysis and 

optimal thresholding fully complies with the conditions 

of adaptability, due to which the optimality of this 

method will be theoretically proved and the gain in terms 

of increasing the efficiency of semantic coding in 

contrast to existing methods will be obtained [9]. 

The purpose, tasks, object, subject, and methods of 

the research, scientific novelty, and practical significance 

of the results are described below. 
 

1. Statement of the purpose of research 
 

Purpose and tasks of the research. The purpose of 

this research is to develop a method for improving the 

efficiency of semantic coding of speech signals. 

To achieve this goal, it is necessary to solve the 

following scientific task: 

– to investigate a known method for improving 

the efficiency of semantic coding of speech signals based 

on mel-frequency cepstral coefficients; 

– to substantiate the effectiveness of using the 

adaptive empirical wavelet transform in multiple-scale 

analysis and semantic coding of speech signals; 

–  develop a method for semantic coding of 

speech signals based on adaptive empirical wavelet 

transform with further application of Hilbert spectral 

analysis and optimal thresholding; 

– to conduct an objective quantitative assessment 

of the increase in the efficiency of the developed method 

of semantic coding of speech signals in contrast to the 

existing method. 

The object of this research is the processes of 

semantic coding of speech signals. 

The subject of this research is methods for 

improving the efficiency of semantic coding of speech 

signals. 

Research methods. The research is based on the 

following modern methods: 

– spectral analysis (empirical wavelet transform, 

construction of adaptive Meyer wavelet filters, finding 

the function of internal empirical modes, cepstral 

analysis, Hilbert transform to find semantic features of 

speech signals); 

– digital signal processing (Fourier spectrum 

segmentation, processing with a bank of triangular mel-

frequency filters, logarithmization of Fourier spectrum 

energy, thresholding of wavelet coefficients to find 

semantic features of speech signals); 

– theory of electrical communication (estimation 

of compression ratio, bit rate, signal-to-noise ratio and 

peak signal-to-noise ratio of semantic features of speech 

signals for quantitative measurement of coding 

efficiency); 

– information and coding theory (estimation of 

the amount of information, source entropy, coding 

efficiency, redundancy factor, and coding speed of 

semantic features of speech signals for quantitative 

measurement of coding efficiency); 

– probability theory and mathematical statistics 

(estimation of correlation coefficient, mathematical 

expectation, variance, root mean square error and the 

probability of error-free recognition of semantic features 

of speech signals for quantitative measurement of coding 

efficiency). 

The scientific novelty of the obtained results is as 

follows: 

– a method of semantic coding of speech signals 

based on empirical wavelet transform is developed for 
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the first time, which differs from existing methods by 

constructing a set of adaptive bandpass Meyer wavelet 

filters with the subsequent application of Hilbert spectral 

analysis to find instantaneous amplitudes and frequencies 

of functions of internal empirical modes, which will 

allow the determination of the semantic features of 

speech signals and increase the efficiency of their coding; 

– for the first time, we propose the use of the 

adaptive empirical wavelet transform method in the tasks 

of multiple-scale analysis and semantic coding of speech 

signals, which will increase the efficiency of spectral 

analysis by decomposing the high-frequency speech 

oscillation into its low-frequency components, namely, 

internal empirical modes; 

– the method of semantic coding of speech signals 

based on mel-frequency cepstral coefficients was further 

developed using the basic principles of adaptive spectral 

analysis with the help of empirical wavelet transform, 

which increases the efficiency of this method. 

The practical significance of the results obtained 

is as follows: 

– a method of semantic coding of speech signals 

based on empirical wavelet transform is developed, 

which allows the reduction of the coding rate from 320 

to 192 bit/s and the required bandwidth from 40 to 24 Hz 

with a probability of error-free recognition of 

approximately 0.96 (96%) and a signal-to-noise ratio of 

48 dB, according to which its efficiency increases by 1.6 

times in contrast to the existing method; 

– an algorithm for semantic coding of speech 

signals based on empirical wavelet transform and its 

software implementation in the MATLAB R2022b 

programming language was developed. 

The results obtained in this study can be used to 

build systems for remote interaction between people and 

robotic equipment using speech technologies, such as 

speech recognition and synthesis, voice control of 

technical objects, low-speed encoding of speech 

information, and voice translation from foreign language. 

The results of the research have been implemented in the 

scientific and technical activities of the Educational and 

Scientific-Production Complex "Information and 

Communication Systems" and the educational and 

scientific process of the Department of 

Telecommunication and Radio Electronic Systems of the 

Faculty of Aero Navigation, Electronics and 

Telecommunications of the National Aviation 

University, as confirmed by the relevant implementation 

acts. 

Below, we mathematically formalize the above 

statements of scientific research in a specific comparison 

with the existing method of semantic coding of speech 

signals based on mel-frequency cepstral coefficients. 

 

2. Problem statement 
 

During writing this scientific article, we 

investigated a well-known method for improving the 

efficiency of semantic coding of speech signals based on 

mel-frequency cepstral coefficients [10-12], which 

involves finding the average values of the coefficients of 

the discrete cosine transform 
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The problem is that the presented method of 

semantic coding of speech signals based on mel-

frequency cepstral coefficients does not meet the 

adaptability 

 



Methods and means of image processing 
 

105 

 
N
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
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where  n n 1 n,     are the segments of the Fourier 

spectrum  0,  of the speech signal under study, which 

is divided into N  contiguous segments with boundaries 

n  (where 0 0   and N   ) [13-15]. 

Coding efficiency refers to the reduction of the 

information transmission rate with a given probability of 

error-free recognition of semantic features of speech 

signals, which significantly reduces the required source 

bandwidth, thereby increasing the communication 

channel bandwidth. 

Let us devise the main scientific hypothesis of this 

research, which is that it is possible to increase the 

efficiency of semantic coding of speech signals using an 

adaptive empirical wavelet transform with the 

subsequent application of Hilbert spectral analysis and 

optimal thresholding. 

 

3. Materials and methods  

of research 
 

In this study, we propose the application of a 

modern method of empirical wavelet transform based on 

the construction of a family of adaptive wavelet functions 

to improve the efficiency of spectral analysis of speech 

signals and further semantic coding. 

If we take the features of the Fourier frequency 

spectrum as the basis, then the task is equivalent to 

building a set of bandpass wavelet filters. One of the 

ways to achieve adaptability is to consider that compact 

wavelet filter media directly depends on where the 

semantic information we need is located in the speech 

signal spectrum, i.e., larger amplitudes of the Fourier 

spectrum carry more important information for function 

recovery, and hence for qualitative assessment of the 

semantic component of the speech signal, and small 

amplitudes are less important. Indeed, the properties of 

the internal empirical mode function stated by 

N. Huang [16] are equivalent to the statement that the 

spectrum of this function has a compact carrier and is 

centered around a certain frequency (depending on the 

signal). For the sake of clarity of the theoretical 

presentation of the essence of this method, we will 

consider only real periodic signals (their spectrum is 

symmetrical with respect to frequency 0 ), and 

therefore easier to build an evidence base. However, the 

following considerations can be easily applied to speech 

signals, which we will do in the future by building 

different wavelet filters on positive and negative 

frequencies, respectively. During this study, we will 

consider the normalized Fourier spectrum, which has 2  

periodicity, to comply with Shannon’s criteria and limit 

the frequency  0,  . 

Let us start with the assumption that the Fourier 

frequency spectrum  0,  is divided into N adjacent 

segments (later we will discuss how to get such a 

division). Let's define n  as the boundaries between 

each segment (where 0 0   and N   ), as shown in 

Fig. 1. 

Each segment of the spectrum is designated as 

 n n 1 n,    , where  n n n 1Ω Ω / 2   , and 
nΩ  

are local maxima in the frequency spectrum that 

characterize the semantic features of speech signals. Thus 

it is obvious that  
N

nn 1
0,


   . At the center of each 

n , we define the transition phase (blue rectangular 

areas in Fig. 1) nT  with a width of n2 . Empirical 

wavelet functions are defined as bandpass filters for each 

spectrum segment n . To do this, we use an idea that is 

used in the construction of Littwood-Paley and Meyer 

wavelet functions. Then n 0  , we define the empirical 

scaling function and empirical wavelet functions using 

equations (1) and (2), respectively. 

 

 
 

Fig. 1. Fourier spectrum division using adaptive low-pass  1̂   and bandpass  n̂   Meyer filters 
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Different functions follow these properties, the 

most commonly used in the literature is the following 

function 
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As for the choice n , then several options are 
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         


   
       

   
         

   
   

       
   

         



 (4) 

 

An example of an empirical scaling function n̂  for 

n 1  , 0.5   and the empirical wavelet function n̂  

for n 1  , n 1 2.5  , 0.2   in the frequency domain 

is shown in Fig. 2 [17]. 

 

 
 

Fig. 2. Blue line: Fourier transform of the scaling 

function for n 1  , 0.5  . Red line: Fourier 

transform of the wavelet function for n 1  , 

n 1 2.5  , 0.2   

 

Qualitative segmentation of the Fourier spectrum of 

the speech signal is a primary task in the process of 

semantic coding based on the empirical wavelet 

transform, since this step ensures the adaptability of the 

proposed method to the analyzed signal, which allows for 

a better study of the frequency spectrum. In view of the 

above, we aim to divide the Fourier spectrum into 

different segments that correspond to the functions of 

internal empirical modes and are centered around a 

certain frequency and a compact medium. 

At this stage, we assume that the segment number 

N  is known and set (below we will propose a method 

for estimating the optimal number of segments). This 

implies that only N 1  limits are needed, but we already 

have 0  and  , at our disposal, i.e. 2 limits, so we must 

find N 1  additional limits. To find such limits, you 

must first identify local maxima in the frequency 

spectrum and sort them in descending order ( 0  and   
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are not taken into account). Let's assume that the 

algorithm has found M  maxima. 

Two cases may arise: 

1) M N : the algorithm has found enough maxima 

to determine the desired number of segments, then we 

keep only the first N 1  maxima; 

2) M<N: the signal has fewer internal empirical 

modes than expected, then we keep the number of all 

detected maxima and reset N it to the appropriate value. 

Now, having the set of found maxima, as well as 0 

and , we define the limits n  of each segment as the 

center between two consecutive maxima. 

If it is possible to determine the optimal number of 

empirical modes N (frequency spectrum segments) for 

simple signals by experimentation, we usually deal with 

complex signals, such as speech signals, where a priori 

information about the modes of the studied signal is 

always unavailable. In such cases, it should be possible 

to automatically estimate the required number of mods. 

In general, this task is quite complex. Below, we present 

a simple method of assessment N. However, to ensure 

greater efficiency of the method, it is necessary to 

conduct an in-depth analysis of this issue [18]. 

The following statement shows that with an 

appropriate choice of parameter , a dense frame 

structure can be obtained. 

Statement 1. If 
n 1 n

n
n 1 n

min 



  
   

  
, then the set 

     N
1 n n 1

t , t


   is a dense frame structure  2L  . 

Proof. We stick to the idea of building a wavelet 

Meyer function. 

Set      N
1 n n 1

t , t


   is a dense frame structure if 

 

   
N

2 2
1 n

k n 1

ˆ ˆ2k 2k 1.


 

 
        

 
 

   

 

According to periodicity 2, it is sufficient to focus 

on interval [0,2]. 

Following the previous definitions, we can write the 

following expression 

   

N N

n n
n 1 n 1

0,2 ,
 

     

 

where  n  is a copy of n  but centered on n2  

instead of n . First, it is easy to see from expressions (5) 

and (6), i.e., that for 

 

 

 

N N

n n
n 1 n 1

N N

n n
n 1 n 1

,

T T


 


 

   
    

   
   

   
   
   

 (5) 

 

we have 

 

   

    

2 2
1 1

N
2 2

n n

n 1

ˆ ˆ 2

ˆ ˆ  2 1.



      

       
 (6) 

 

Then, it remains to look at the transition areas. 

Because of the properties of  , this result also holds for 

Tn, if consecutive Tn  do not overlap: 

 

n n 1 n 1 n ,         

n n 1 n 1 n ,         

n 1 n

n 1 n

.



 
  

 
 (7) 

 

Condition (7) must be satisfied for all  n, as well as 

for the smallest Tn, which is equivalent; therefore, we 

obtain the desired result if 
 

n 1 n
n

n 1 n

min .



  
   

  
  

 

Fig. 3 shows an example of a bank of empirical 

wavelet filters based on the set 

 n 0,  1.21,  2.02,  2.58,      of 0.05   (according to 

theory 0.057  ) [19].
 

 
 

Fig. 3. An example of Fourier spectrum division by a bank of empirical wavelet filters 
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From the above explanation, we now know how to 

construct a set of frames of empirical wavelet functions 

of a dense structure. Now we can define the empirical 

wavelet transform (EWT),  fW n, t
, in the same way as 

for the classical wavelet transform. Then, the detailed 

coefficients are given by scalar products with empirical 

wavelet functions: 
 

     

    

f n n

n

W n, t f , f t d

ˆ ˆ         f ,





       

   


 

 

and the approximation coefficients (denoted as follows 

are  fW 0, t
) by the scalar product with a scaling 

function: 
 

     

    

f 1 1

1

W 0, t f , f t d

ˆ ˆ          f ,





       

   


 

 

where  n̂   and  1̂   are defined by equations 11 

and 10, respectively. The reconstruction (inverse EWT) 

of the original speech signal  f t  by the wavelet 

coefficients of detail and approximation is given by the 

following expression 
 

         

       

N

f 1 f n
n 1

N

f 1 f n

n 1

f t W 0, t t W n, t t

ˆ ˆˆ ˆW 0, W n, .

 





 



    

 
        
 
 





  

 

The above statements prove the effectiveness of 

using the empirical wavelet transform in the tasks of 

spectral analysis of speech signals, which will increase 

the efficiency of their semantic coding by maintaining 

adaptability to the studied signal. Next, we will proceed 

to the development of a method for semantic coding of 

speech signals based on an adaptive empirical wavelet 

transform with the subsequent application of Hilbert 

spectral analysis. According to the developed method 

(see Fig. 4), a speech signal is fed to its input, the 

frequency range of which is very limited and is located 

in the range from 300 to 3400 Hz. It follows from this 

fact that by modeling a bandpass filter, it is possible to 

discard frequency components that are outside this range 

and accordingly do not carry a semantic load. 

As you know, speech signals are non-stationary 

signals of complex shape, the parameters and 

characteristics of which usually change rapidly over time. 

The established approach to speech signal processing 

uses short-term analysis. 

In other words, the signal is divided into time 

frames of a fixed size, in which the signal parameters do 

not change. 

To obtain a set of semantic features of the same 

length, the speech signal must be split into equal frames, 

and then the transform is performed, assuming that the 

signal in such a segment is approximately stationary (see 

Fig. 5). 

For a speech signal, the frame size is usually 

selected within 10-20 ms. For a more accurate 

representation of the signal, an overlap equal to half the 

frame length is made between the frames. 

 

Speech signal

Filtering Weight function

Fourier transform
Segmentation of the 

Fourier spectrum

Construction of Meyer 

bandpass filters

Empirical wavelet 

transform

Hilbert spectral analysis

Dividing the signal into 

frames

Find instantaneous 

amplitudes and frequencies

Threshold processing

Semantic features of 

speech signals

Selecting the optimal 

threshold function

Estimating optimal 

threshold values

 
 

Fig. 4. A method for semantic coding of speech signals based on empirical  

wavelet transform and Hilbert spectral analysis with subsequent optimal thresholding 
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Fig. 5. Dividing the speech signal into frames 

 

Frame overlap is used to prevent the loss of semantic 

information about the signal at the frame boundary. The 

smaller is the overlap, the smaller will be the 

dimensionality of the feature set characteristic of a given 

part of the speech signal. Then, a semantic component 

extraction algorithm is applied to each frame. Based on 

the above, the speech signal that has undergone pre-

processing is divided into K frame of N samples, which 

intersect by 1/2 frame lengths. The input of the discrete 

Fourier transform unit is a sequence of samples of the 

speech signal section (K-st frame) studied at this iteration 

0 N 1x ,  ... ,x  . A weight function is applied to this 

sequence, and a discrete Fourier transform is then 

applied. The weighting function is used to reduce 

distortions in the Fourier analysis caused by the finite 

sample size. In practice, the Hamming window is often 

used as a weighting function, which has the following 

form: 

 

 
n

w n 0.53836 0.46164 cos 2 ,
N 1

 
    

 
 

n 0,  ... , N 1,   

 

 

where, N is the length of the window expressed in 

samples. 

The discrete Fourier transform of the weighted 

speech signal can then be written in the form of the 

following formula: 

 

     
2 jN 1 kn
N

n 0

X k x n w n e ,

 



   k 0,  ... , N 1.    

 

Index values k correspond to the frequencies: 

 

  sF
f k k,

N
  k 0,  ... , N / 2,   

 

where, sF  is the sampling rate of the speech signal. 

We adhere to the idea that the most important 

information for assessing the semantics of speech is 

stored in the maximum amplitudes (maxima) of the 

Fourier spectrum of the original signal (corresponding to 

the center of each of the N Fourier segments), which 

significantly exceed other existing maxima in the 

spectrum. Let us define the set  M  of the found maxima 

of the Fourier spectrum amplitudes by  
M

i k 1
M


. 

Suppose that this set is sorted in the descending order of 

values  1 2 MM M M   and normalized according 

to  0;1 . In this case, the above idea is equivalent to 

preserving all amplitude maxima of the frequency 

spectrum that exceed a certain value of the difference 

between the larger and smaller maxima. This can be 

formalized as follows: all amplitude maxima of the 

Fourier spectrum that are greater than a given threshold 

of  M 1 MM M M  , where   corresponds to the 

relative ratio of amplitudes, should be preserved. The 

task is to choose a value of  , that would lead to a 

compromise between the too frequent detection of so-

called "false maxima" that do not carry important 

information and a qualitative division of the Fourier 

spectrum into segments that correspond to empirical 

modes of the speech signal. As a result, the threshold 

value directly affects the number of detected maxima and 

bands of Fourier spectrum segmentation and the number 

of modes into which the studied speech signal is 

decomposed. Following this formalism, the empirical 

mode fk, defined by N. Huang, is the final sum of N+1 

internal mode functions fk(t) with amplitude Fk(t) and 

frequency k(t) modulations, which can be written as 

follows 
 

      k k kf t F t cos t ,    

 

where    k kF t , t 0 t,    and are such that 

 

   
N

k
k 0

f t f t ,



    

 

is determined using the formulas 
 

     0 f 1f t W 0, t t ,    

     k f kf t W k, t t .   
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As mentioned above, EWT is a tool for the time-

frequency analysis of non-stationary and nonlinear 

signals, which are speech signals. One way to express the 

non-stationary nature of speech data is to determine the 

instantaneous frequency and amplitude of the signal 

under study. The Hilbert transform of signal  x(t)  is given 

by the following expression 

 

 
 x1

y t P d ,
t






 
     

 

where P is the principal Cauchy value of the singular 

integral. 

Using the Hilbert transform of signal x(t) an 

analytical signal can be obtained 

 

         i t
z t x t iy t a t e ,


     

 

where  
1 2

i 1 .   

 

Then a(t) can be expressed as 

 

   2 2a t x y ,   (8) 

 

where a(t) is the instantaneous amplitude. 

The instantaneous phase function can be expressed 

as follows 

 

 
y

t arctan
x

 
. 

 

 

The instantaneous frequency is determined by the 

expression 

 

 
d

t .
dt


   (9) 

 

By applying the Hilbert transform to the individual 

components of the internal empirical modes, the original 

data can be expressed as the following equation 

     
n

j j

j 1

x t Re a t exp i t dt .



      
  
   (10) 

 

Equation (10) defines the real part of the amplitude 

(8) and frequency (9) of each component of the internal 

empirical modes as a function of time. The analysis of 

signals in the time-frequency domain can be expressed as 

a Hilbert energy spectrum or a Hilbert amplitude 

spectrum, which are defined as the distribution of energy 

density and the distribution of amplitude density in time-

frequency space, respectively [20]. 

The Hilbert energy density spectrum is defined as 

 

   
n

2
i, j i j k

k 1

1
S H t , H a t .

t


 
    

    
   

 

The resolution of the Hilbert spectrum is given by 

intervals of equal size t  . Each interval represents 

a value of  2a t  at a given time and frequency. This 

transform has the property of energy compactness: more 

energy corresponds to less information. 

At the next stage, thresholding of the Hilbert 

spectrum plays a crucial role in rejecting spectral 

coefficients that do not carry semantic information of the 

speech signal. Thus, we obtain a very small set of 

semantic features that, when encoded, successfully 

replaces thousands of samples of the speech signal that 

correspond exactly to the semantic form of the speech 

signal. 

In practice, four threshold functions are widely 

used: 

1) threshold function  HT d,  of the type: 

 

 H

0,  d ;
T d,

d,  d ;

  
  

 

 (11) 

 

2) threshold function  ST d,  of the type: 

 

 
 

S

0,  d ;
T d,

sign d d ,  d ;

  


  
      

 (12) 

 

where   is the threshold value, d  is the processed 

decomposition coefficient. The graphs of functions (11), 

(12) are shown in Fig. 6 for 0.5   (1 is the graph of the 

linear function, 2 is the graph of function (11), 3 is the 

function (12)). Let us note the characteristic features of 

these functions:  

1. By reducing the amplitude of the decomposition 

coefficient by the value of   in function  ST d,  it is 

possible to smooth out the contrast elements of the 

processed signal, especially at large values of  . 

2. The presence of a gap in function  HT d,  in 

the environment of   can cause oscillations (Gibbs 

effect) in the processed signal. 
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Fig. 6. Graphs of threshold functions (11), (12) 

 

To overcome these shortcomings, two-parameter 

functions have been proposed, which will now be 

considered. 

3. Threshold function  SS 1 2T d, ,   of the type: 

 

 
 

 

1

2 1

2 1SS 1 2

1 2

2

0,  d

d
sign d , 

T d, ,

                d

d

;

,  d

;

;

  

   
           

    

  


 (13) 

 

which already includes two thresholds 1 , 2 . The 

graph of this function (at 1 0.5  , 2 0.75  ) is shown 

in Fig. 7 (curve 2). 

4. Threshold function  Z 1 2T d, ,  , is defined by 

the expression: 

 

 

1

2 1

1

d

Z 1 2

1 2

2

0,  d

d
e 1 , 

e 1T d, ,

            d

d,  d

;

;

;



 

  

  
  
        

  


   


 

 (14) 

 

Fig. 7 shows the graphs of function (13) (curve 2) 

and function (14) (curve 3), constructed at 1 0.5  , 

2 0.75  , as well as the graph of the linear function 

(curve 1). It can be seen that at interval  1 2,   the 

function (14) differs from the straight line (which is 

present in function (13)). This fact illustrates the 

reduction of the negative effect of oscillation (Gibbs 

effect) and smoother approximation within the threshold 

values, which makes function (14) the best in the 

threshold processing of speech signals. This statement is 

formalized below. 
 

 
 

Fig. 7. Graphs of threshold functions (13), (14) 

 

The optimal threshold function is selected 

according to the following algorithm [21]. 

The input data are formed as 
 

i i if f ,  i 1, 2, , N,      

 

where if  is the value of the speech signal function, i  

are pseudo-random numbers (noise) subject to a normal 

distribution with zero mean and variance 
2 . The 

variance value was set in terms of the relative noise level 

/ f   , where   and f  are the Euclidean 

norms of the corresponding vectors. The accuracy of 

wavelet filtering was determined by the relative error as 

follows: 

 

 
 

f

f T
,

ˆ f
T

f


    

 

where vector  f̂ T  is the result of wavelet filtering with 

a threshold function T. Obviously,  f T  is a random 

variable and therefore a sample estimate of the 

mathematical expectation of this random variable was 

calculated from the sample: 
 

     
sN

l
f f

s l 1

1
T T ,

N


      

 

where sN  is the sample size, 
   
l

f
T  is the relative 
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filtering error of the l -th data realization 
   l l

f f  . 

Next, we find the minimum filtering error for each 

threshold function (11) – (14) by minimizing  f T  and 

relating these minimum errors to the minimum error of 

the threshold function (14). In practice, as an optimal 

two-parameter threshold function, we can accept 

function (14), which depends on two parameters 1 , 2  

and these parameters significantly affect the error of 

speech signal filtering. We select the optimal threshold 

values by evaluating parameters 1 , 2 , the threshold 

function (14), which allows us to find the optimal 

thresholds 1opt , 2opt  based on the optimality 

criterion, with a minimum standard deviation, which is 

determined by the expression: 

 

 
1 2

2

1 2 ,, M ˆΔ f f , 
 

    
 

  

 

where  M    is the operator of mathematical expectation 

on the density of noise distribution; f, 
1 2,f̂   are vectors 

whose projections are equal to the "exact" and 

"smoothed" values of the signals (at the given threshold 

values 1 , 2 ). We will show that the constructed 

algorithm allows us to accurately estimate the optimal 

value of threshold opt , at which the standard deviation 

of filtering is minimal. Estimation of optimal threshold 

values 1opt , 2opt  for the threshold function (14). Let 

us assume that: 1) instead of exact values if  of the 

discrete speech signal, we have noisy values 

i i if f ,  i 1, 2, , N,     where noise i  has zero mean 

 iM 0  , variance 
2  and values i , j  are 

uncorrelated at i j ; 2) the basis functions   j, k t , 

  j, k t  are orthonormalized, which corresponds to 

orthogonal wavelets (Meyer, Daubechies, Symlets, and 

Coiflets wavelets); 

Then we define the disjoint vector 

1 2 1 2,  , e f f̂      and introduce the following statistics: 

 

 

 

1 2

1 2

W 1 2 , 2

N

,  i2
i 1

1
,  e , f

1
e f .

 

 



    


 



 

(15) 

 

As in the linear filtering algorithms, we take as 

estimates for 1opt , 2opt , take the values 1W , 2W , 

for which the statistics  W 1W 2W,     satisfy the 

inequalities: 

 

 m,  /2 W 1W 2W m,1  /2,  ,       
 

(16) 

 

where m,  /2 , m,1  /2  are quantiles, 
2
m  is a 

distribution with m  degrees of freedom of levels / 2 , 

1 / 2   respectively,   is the probability of a first-order 

error when testing the statistical hypothesis about the 

optimality of the smoothing parameter (usually  

0.05  ), m N  is the number of values of the filtered 

signal (projection of vector f ) [22]. If the number of 

degrees of freedom m 30  (in filtering tasks, this is 

always done), then 
2
m  is a distribution well 

approximated by a normal distribution with a 

mathematical expectation m  and variance 2m . Then, 

assuming the probability of a first-order error 0.05  , 

we obtain the following formulas for calculating the 

quantiles included in inequality (16) 

 

m, 0.025 m 1.96 2m,  
           

m, 0.975 m 1.96 2m.  
 

 

 

To calculate the scores 1W , 2W , threshold 

values 1 , 2 , of the function (14) is defined in the 

form: 

 

   1 j2ln N ,   
          

   2 j,C C 2ln N ,   
 

 

 

where jN  is the number of processed coefficients of the 

j-th level, and the multiplier C > 1 follows from the 

inequality 2 1    (see (14)). Note that the multiplier 

 j2ln N  makes the thresholds equidependent and 

ensures the asymptotic optimality of the thresholds in 

order at jN  . Therefore, it is necessary to evaluate 

opt , optC , using the statistic (15), i.e., calculate the 

value of W , WC , that satisfy inequalities: 

 

 m,  /2 W W W m,1  /2, C .      
 

(17) 

 

Then the estimates 1W , 2W  are defined by the 

following expressions: 
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 1W W j2ln N ,  
           

 2W W W jC 2ln N .   
 

 

 

To calculate W , WC  instead of solving the nonlinear 

equation  W , C m,    which includes two unknown 

quantities  , C , consider the problem of minimizing the 

functionality    
2

WF , C , C m     . Note that a 

solution to this problem always exists and well-known 

minimization procedures can be used to find it. As W , 

WC  the following element is accepted 
    n n

,  C  

minimizing sequences for which inequality (17) holds. It 

can be shown that when using orthogonal wavelets, the 

criterion  W , C   is calculated using the coefficients 

of wavelet decomposition: 

 

 

     

0

0

j J

W j,k2
j j 1 k

j,k j,k 1 2

1
, C d

    d T d , , ,C .



 

   


     

 
 (18) 

 

This allows you to find the value of the criterion 

(when implementing the minimization procedure) in the 

space of wavelet decomposition coefficients, and then 

(with the found W , WC  and computed j,kd̂ ) perform 

the inverse wavelet transform only once and obtain 

smoothed function values. Let us note some properties 

 W , C  , which are obtained from (18): 

1) all components included in formula (18) are non-

negative (can vary from 0 to 
2
j,kd ) and therefore 

 

 W , C 0;    

 

2) at 0  and C    fair border 

 

 W , C 0   ; 

 

3) at   and C    fair border 

 

 
0

0

j J
22

W j,k2 2
j j 1 k

1 1
, C d f .



 

   
 

    

 

The latter equality holds for orthogonal wavelets 

with appropriate normalization of the basis functions. 

The last two properties lead to the following statement. 

Statement 2. If the inequality 

 

 
N

2
W m,1  /22

i 1

1
, C f ,



    

   

then there are finite values W , WC  for which 

inequality (17) holds. Failure to fulfill condition (17) 

means that the value of i if   , i.e.  if 0 . In this case 

W    and the smoothed values are equal to 0. 

The essential feature of the above algorithm for 

calculating W  is the use of noise variance 
2 . In 

practice, as a rule, this value is unknown, and in this case, 

an estimate for the standard deviation can be used  : 

 

 1,kmedian d
,

0. 45
ˆ

67
   (19) 

 

where operator  1,kmedian d  calculates the median of 

the absolute values of the detailing coefficients of the 

decomposition level 0j 1  (the sample size is equal to 

N / 2 ). This estimate is widely used in robust regression 

analysis algorithms. With respect to wavelet filtering 

algorithms, this estimate was studied [23], where 

acceptable accuracy was shown, namely, for a given 

variance 
2 10.91 10    are the values of the estimate 

(19) calculated from 30 realizations of length 

N / 2 1024  were in the range of 

1 10.88 10 ,0.97 10   
 

.  

 

4. Research results 
 

In this work, the developed method of semantic 

coding of speech signals based on EWT was investigated 

and modeled in the MATLAB software package. In 

particular particular, the compression ratio (CR), bit rate 

(BR), correlation coefficient (CC), signal-to-noise ratio 

(SNR), peak signal-to-noise ratio (PSNR) and root mean 

square error (RMSE) were evaluated, as well as the 

probability of error-free recognition of semantic features, 

which are the main indicators of the effectiveness of the 

proposed method. The formalization of performance 

indicators for semantic coding of speech signals is 

presented below. Let there be two vectors of semantic 

features of a speech signal  1 Lx x x  , 

 1 Ly y y   by length L  samples, then the 

Pearson correlation coefficient (CC) is calculated 

according to the following expression 
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L
i yi x

x yi 1

y Mx M1
CC ,

L S S


  
      

   

 

where 
L

x i

i 1

1
M x

L


  , 
L

y i

i 1

1
M y

L


   are the 

mathematical expectations of the vectors x  and y , 

 
L

2
x i x

i 1

1
S x M

L


  ,  
L

2

y i y

i 1

1
S y M

L


   are 

standard deviations of vectors x  and y . Using the 

Pearson correlation coefficient, we can determine the 

strength of the linear relationship between two vectors of 

values x  and y , that is, if CC 1  there is a functional 

linear relationship, and if CC 0  there is no linear 

dependence. In cases where the calculated value of the 

correlation coefficient lies in accordance with the 

condition 0 CC 1  , then with an acceptable error, the 

correlation coefficient can be qualitatively assessed in 

accordance with Table 1. 

 

Table 1 

Qualitative relationship of the correlation coefficient 

Quantitative 

measure of closeness 

connection, CC  

Quality 

characteristic 

bonding forces 

0 – 0.1 None 

0.1 – 0.3 Weak 

0.3 – 0.5 Moderate 

0.5 – 0.7 Noticeable 

0.7 – 0.9 High 

0.9 – 0.99 Very high 

0.99 – 1 Functional 

 

The root mean square error (RMSE) is calculated by 

the formula 

 

 
L

2
i i

i 1

1
RMSE x y .

L


   

 

In this case, we are interested in the smallest error 

with the highest geometric similarity between the 

compared semantic features of the speech signal, i.e. 

RMSE 0 . 

The signal-to-noise ratio (SNR) and peak-to-peak 

signal-to-noise ratio (PSNR) were calculated according 

to the following formulas 

 

 

L 2
ii 1

10
L 2

i ii 1

1
x

LSNR 10log  
1

x y
L





 
 

  
  
 




 [dB],  

 
 

2
i

10
L 2

i ii 1

max x
PSNR 10log  

1
x y

L 

 
 

  
  
 


 [dB].  

 

Obviously, the greater the geometric proximity 

between the compared semantic features of the speech 

signal, the greater the SNR and PSNR, respectively, i.e. 

 SNR PSNR  , otherwise  SNR PSNR 0 . 

The compression ratio (CR) of speech data 

characterizes the efficiency of the semantic coding 

algorithm and is calculated according to the expression 

 

o

c

S
CR ,

S
   

 

where oS  is the amount of input speech data, cS  is the 

amount of semantically encoded speech data. Thus, the 

higher is the compression ratio, the more efficient the 

algorithm is. It should be noted that if CR 1 , then the 

algorithm does not perform compression, i.e., the output 

message is equal in volume to the input message. 

Bit rate (BR) 

 

2BR log L     [bit/s],  

 

where    [samples/s] is the rate of transmission of speech 

signal samples    per 1 second; L  is the total number 

of quantization levels of the speech signal samples. 

The probabilities of error-free recognition of 

semantic features are calculated according to the 

following statements. Suppose that the recognition 

probability P  of frequencies and amplitudes of the 

harmonic distribution function 

 

   x t A sin t ,     

 

is equal to 1, and the functions of the uniform distribution 

law 

 

 
 

 

1
,  x a,b ;

x t  b a

0,         x a,b ;




 
 

 

 

is equal to 0.5, which is equivalent to the complete 

absence of semantic features in the studied speech signal. 

According to this statement, the actual probability of 
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recognizing the semantic features of speech signals will 

be in the range from 0.5 to 1. The theoretical criterion for 

finding the maximum possible probability of recognizing 

the semantic features of the analyzed frame is written as 

follows, which is based on the balance between the 

energy of semantic features (probability distribution of 

the occurrence of samples of the studied speech signal) 

of the speech and their number 

 

N 2
i Nk 1

N 2

k 1

C
P  ,  i 1 N, 

C





  



 

 

where C  is the Hilbert energy spectrum, which 

characterizes the probability distribution of the 

occurrence of samples of the speech signal of length N . 

It is obvious that the greater the geometric proximity 

between the compared semantic features of a speech 

signal, the more P , i.e. P 1 , otherwise P 0.5 . The 

percentage representation of the probability of 

recognizing the semantic features of speech signals can 

then be written as follows 

 

%P P 100 (%),    

 

which is an absolute indicator of the semantic recognition 

of speech signals, which takes into account the internal 

probability distribution of the source of the process under 

study. The input digital speech signals for semantic 

coding are recordings of male and female voices with a 

sampling rate of 8 kHz and a quantization bit depth of 

8 bits, which corresponds to the main digital channel of 

the telephone network is 64 kbit/s (Fig. 8). 

Then, the adaptive basis is set by the scaling 

function and wavelet functions corresponding to the low-

pass filter and Meyer bandpass filters for each spectrum 

segment. Let's build the amplitude spectra of the signal 

under study, where the location of the spectral peaks 

determines the frequency bands of the filter bank (Fig. 9). 

Let us build the internal empirical modes of the 

studied signal using the empirical wavelet transform (Fig. 

10). 

By applying the Hilbert transform to the mode 

functions of the empirical wavelet transform obtained 

because of the decomposition of the speech signal, we 

obtain the Hilbert energy spectrum, which depends on the 

instantaneous frequency and time (Fig. 11). The integral 

of this value over time gives the Hilbert integral 

spectrum, which is an analog of the Fourier spectrum. 

The Hilbert transform and the empirical wavelet 

transform open up new possibilities for the analysis of 

speech signals in the detailed analysis of the frequency 

and time structure of their spectrum, namely the use of 

thresholding methods, as discussed above. 

 

  

 
a) 

 
b) 

 
c) 

 
d) 

 

Fig. 8. An example of voice commands: "Up" a), "Down" b), "Right" c), "Left" d) 
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a) 

 
b) 

 
c) 

 
d) 

 

Fig. 9. Adaptive EWT bandpass filters for voice commands:  

"Up" a), "Down" b), "Right" c), "Left" d) 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 

Fig. 10. Internal empirical modes (IEMs) of the EWT of the studied signal for the voice command "Up":  

IEM 3 a), IEM 4 b), IEM 5 c), IEM 6 d), IEM 7 e), IEM 8 f) 
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g) 

 
h) 

 
i) 

 
j) 

 

Fig. 10. Internal empirical modes (IEMs) of the EWT of the studied signal for the voice command "Up":  

IEM 9 g), IEM 10 h), IEM 11 i), IEM 12 j) 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

Fig. 11. Hilbert spectral analysis of the IEMs of the EWT for voice commands:  

"Up" a), "Down" b), "Right" c), "Left" d) 
 

At the next stage, thresholding of the Hilbert 

spectrum plays a crucial role in rejecting spectral 

coefficients that do not carry semantic information of the 

speech signal. Thus, we obtain a very small set of 

semantic features that, when encoded, successfully 

replaces thousands of samples of the speech signal that 

correspond exactly to the semantic form of the speech 

signal. Fig. 12 shows the semantic features of voice 

commands based on EWT and Hilbert spectral analysis 

after thresholding according to the proposed method. 

The results of scientific and experimental studies on 

improving the efficiency of semantic coding of speech 

signals are presented in Table 2. In this experiment, we 

evaluated CR, BR, CC, SNR, PSNR, and RMSE for two 

implementations of the semantic features of voice 

commands found on the basis of EWT and Gilbert 

spectral analysis. The following results of the study (see 

Table 2) clearly show that the optimal solution for the 

given criteria of semantic coding efficiency for voice 

commands is: "Up" - CR = 333, BR = 192 bit/s,  
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a) 

 
b) 

 
c) 

 
d) 

 

Fig. 12. Semantic features based on EWT of voice commands:  

"Up" a), "Down" b), "Right" c), "Left" d) 
 

Table 2 

Results of evaluating the effectiveness of the developed method of semantic coding of speech signals  

on the example of two implementations of voice commands 

Training Testing 

Voice commands "Up" "Down" "Right" "Left" 

"Up" 

CR = 333 

BR = 192 bit/s 

CC = 0.96 

SNR = 23 dB 

PSNR = 39 dB 

RMSE = 0.03 

CR = 333 

BR = 192 bit/s 

CC = 0.34 

SNR = 7 dB 

PSNR = 13 dB 

RMSE = 0.40 

CR = 333 

BR = 192 bit/s 

CC = 0.14 

SNR = 6 dB 

PSNR = 10 dB 

RMSE = 0.54 

CR = 333 

BR = 192 bit/s 

CC = 0.43 

SNR = 8 dB 

PSNR = 17 dB 

RMSE = 0.49 

"Down" 

CR = 333 

BR = 192 bit/s 

CC = 0.38 

SNR = 9 dB 

PSNR = 15 dB 

RMSE = 0.39 

CR = 333 

BR = 192 bit/s 

CC = 0.95 

SNR = 24 dB 

PSNR = 44 dB 

RMSE = 0.07 

CR = 333 

BR = 192 bit/s 

CC = 0.24 

SNR = 4 dB 

PSNR = 9 dB 

RMSE = 0.37 

CR = 333 

BR = 192 bit/s 

CC = 0.34 

SNR = 6 dB 

PSNR = 13 dB 

RMSE = 0.43 

"Right" 

CR = 333 

BR = 192 bit/s 

CC = 0.15 

SNR = 8 dB 

PSNR = 14 dB 

RMSE = 0.50 

CR = 333 

BR = 192 bit/s 

CC = 0.28 

SNR = 6 dB 

PSNR = 12 dB 

RMSE = 0.40 

CR = 333 

BR = 192 bit/s 

CC = 0.97 

SNR = 25 dB 

PSNR = 46 dB 

RMSE = 0.05 

CR = 333 

BR = 192 bit/s 

CC = 0.17 

SNR = 5 dB 

PSNR = 13 dB 

RMSE = 0.63 

"Left" 

CR = 333 

BR = 192 bit/s 

CC = 0.43 

SNR = 5 dB 

PSNR = 10 dB 

RMSE = 0.53 

CR = 333 

BR = 192 bit/s 

CC = 0.40 

SNR = 6 dB 

PSNR = 14 dB 

RMSE = 0.52 

CR = 333 

BR = 192 bit/s 

CC = 0.25 

SNR = 4 dB 

PSNR = 12 dB 

RMSE = 0.47 

CR = 333 

BR = 192 bit/s 

CC = 0.93 

SNR = 27 dB 

PSNR = 44 dB 

RMSE = 0.09 
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CC = 0.96, SNR = 23 dB, PSNR = 39 dB, RMSE = 0.03; 

"Down" - CR = 333, BR = 192 bit/s, CC = 0.95,  

SNR = 24 dB, PSNR = 44 dB, RMSE = 0. 07; "Right" - 

CR = 333, BR = 192 bit/s, CC = 0.97, SNR = 25 dB, 

PSNR = 46 dB, RMSE = 0.05; "Left" - CR = 333,  

BR = 192 bit/s, CC = 0.93, SNR = 27 dB, PSNR = 44 dB, 

and RMSE = 0.09. 

It shows quite good results, preserving the semantic 

features of voice commands found on the basis of EWT 

and Gilbert spectral analysis. This enables the semantic 

identification of speech signals. 

To assess the developed method more reliably, we 

need to check it for invariance to the realization of speech 

signals. This experiment was conducted by increasing the 

number of realizations of speech signals of the same 

semantic property. The results of the following scientific 

and experimental studies to evaluate the increase in the 

efficiency of semantic coding of speech signals using the 

developed method are presented in Table 3. 

In this experiment, we evaluated the average values 

of CR, BR, CC, SNR, PSNR, and RMSE for twenty 

implementations of the semantic features of voice 

commands based on EWT and Gilbert spectral analysis. 

The following results of the study (see Table 3) 

clearly show that with the increase in implementations, 

the performance indicators of semantic coding remain at 

a high level, where the semantic component of speech 

signals retains its semantic patterns, which makes this 

method resistant to non-stationary and nonlinear 

processes. 

This fact is also confirmed in Fig. 13, which shows 

twenty realizations of the semantic features found on the 

basis of EWT and Gilbert spectral analysis of voice 

commands: "Up", "Down", "Right", "Left". 

An experimental study has shown (Fig. 14, where 

line 1 is number of non-semantic features and line 2 is 

energy of semantic features) that the developed method 

of semantic coding of speech signals based on empirical 

wavelet transform reduces the coding rate from 320 to 

192 bits/s and the required bandwidth from 40 to 24 Hz  

 

Table 3 

Results of evaluating the effectiveness of the developed method of semantic coding of speech signals  

on the example of twenty implementations of voice commands 

Training Testing 

Voice  

commands 
"Up" "Down" "Right" "Left" 

"Up" 

CR = 333 

BR = 192 bit/s 

CC = 0.93 

SNR = 18 dB 

PSNR = 35 dB 

RMSE = 0.08 

CR = 333 

BR = 192 bit/s 

CC = 0.31 

SNR = 7 dB 

PSNR = 12 dB 

RMSE = 0.47 

CR = 333 

BR = 192 bit/s 

CC = 0.19 

SNR = 4 dB 

PSNR = 8 dB 

RMSE = 0.62 

CR = 333 

BR = 192 bit/s 

CC = 0.35 

SNR = 6 dB 

PSNR = 13 dB 

RMSE = 0.48 

"Down" 

CR = 333 

BR = 192 bit/s 

CC = 0.33 

SNR = 9 dB 

PSNR = 16 dB 

RMSE = 0.37 

CR = 333 

BR = 192 bit/s 

CC = 0.92 

SNR = 22 dB 

PSNR = 39 dB 

RMSE = 0.11 

CR = 333 

BR = 192 bit/s 

CC = 0.08 

SNR = 2 dB 

PSNR = 6 dB 

RMSE = 0.65 

CR = 333 

BR = 192 bit/s 

CC = 0.25 

SNR = 6 dB 

PSNR = 9 dB 

RMSE = 0.48 

"Right" 

CR = 333 

BR = 192 bit/s 

CC = 0.12 

SNR = 4 dB 

PSNR = 12 dB 

RMSE = 0.59 

CR = 333 

BR = 192 bit/s 

CC = 0.20 

SNR = 7 dB 

PSNR = 11 dB 

RMSE = 0.42 

CR = 333 

BR = 192 bit/s 

CC = 0.93 

SNR = 21 dB 

PSNR = 37 dB 

RMSE = 0.09 

CR = 333 

BR = 192 bit/s 

CC = 0.16 

SNR = 7 dB 

PSNR = 9 dB 

RMSE = 0.64 

"Left" 

CR = 333 

BR = 192 bit/s 

CC = 0.24 

SNR = 3 dB 

PSNR = 7 dB 

RMSE = 0.55 

CR = 333 

BR = 192 bit/s 

CC = 0.28 

SNR = 6 dB 

PSNR = 9 dB 

RMSE = 0.57 

CR = 333 

BR = 192 bit/s 

CC = 0.21 

SNR = 4 dB 

PSNR = 10 dB 

RMSE = 0.43 

CR = 333 

BR = 192 bit/s 

CC = 0.91 

SNR = 22 dB 

PSNR = 37 dB 

RMSE = 0.13 

 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2023, no. 3(107)               ISSN 2663-2012 (online) 

120 

 
a) 

 
b) 

 
c) 

 
d) 

 
Fig. 13. Twenty implementations of semantic features based on EWT voice commands:  

"Up" a), "Down" b), "Right" c), "Left" d) 

 

 

 
 

Fig. 14. Dependence of the probability of recognizing semantic features on the reduction in their energy  

and coding speed using the proposed method 

 

with a probability of error-free recognition of about 0.96 

(96%) and a signal-to-noise ratio of 48 dB, according to 

which its efficiency increases by 1.6 times in contrast to 

the existing method, without exceeding the boundary 

value of the processing and data transmission delay of 

300 ms, this will allow the system to operate in real time. 

5. Discussion and future  

research directions 
 

In conclusion, the authors would like to make a few 

points and explain the main trends in this area for future 

research. 
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First, the issue of uneven semantic coding (uneven 

bitrate of semantic speech data transmission, i.e., 

recognition features of different dimensions) remains 

open, considering the distribution of internal probability 

dependencies of the message source. The relevance of 

solving this problem lies in the fact that we will be able 

to reduce the semantic data transmission rate by at least 

20% additionally, i.e., reduce the coding rate from 192 to 

about 150 bits/s and the required bandwidth from 40 to 

about 30 Hz, which is very attractive from a scientific and 

engineering point of view and thus bring the bitrate of 

semantic coding even closer to the minimum possible 

level from the theoretical point of view, which was 

mentioned in the introduction of this article. 

Second, solving the problem of uneven semantic 

encoding, we can already see a very significant additional 

problem that will also need to be solved, namely, what 

criterion to use for objective comparison (classification) 

of semantic data, since they will not be invariant in 

frequency between each implementation of recognition 

features, and invariance is the main property that must be 

observed according to the theory of pattern recognition 

and methods of extracting recognition features. Thus, by 

reducing the speed of semantic coding due to uneven 

processing of spectral coefficients, we lose frequency 

invariance, which makes it virtually impossible to 

classify recognition features using existing methods, i.e., 

uneven semantic coding and invariance of semantic 

recognition features are mutually opposite properties. 

The above problems are of primary importance for 

solving to obtain significant improvements in practical 

results in this area of research. 

 

Conclusions 
 

The result of this work is the solution to the actual 

scientific and practical task of developing and 

researching new effective methods of semantic coding of 

speech signals. 

During this research, the following scientific results 

were obtained: 

– the well-known method of semantic coding of 

speech signals based on mel-frequency cepstral 

coefficients, which does not comply with the condition 

of adaptability to the studied signal, is investigated, 

which is a significant drawback of the existing method. 

– it is proposed to use the adaptive empirical 

wavelet transform method in the tasks of multiple-scale 

analysis and semantic coding of speech signals, which 

will increase the efficiency of spectral analysis by 

decomposing the high-frequency speech oscillation into 

its low-frequency components, namely, internal 

empirical modes. 

– we developed a method of semantic coding of 

speech signals based on empirical wavelet transform, 

which builds sets of adaptive bandpass Meyer wavelet 

filters with the subsequent application of Hilbert spectral 

analysis to find instantaneous amplitudes and frequencies 

of functions of internal empirical modes, which will 

allow us to determine the semantic features of speech 

signals and increase the efficiency of their coding. 

– the optimal threshold processing function is 

selected and its parameters of threshold values 1 , 2  

of wavelet filtering are estimated, which allows finding 

the optimal thresholds 1opt , 2opt  with a minimum 

standard deviation  1 2Δ ,  , thereby increasing the 

efficiency of determining the semantic features of the 

speech signal. 

– the adaptive threshold processing of the Hilbert 

spectrum of the speech signal with the calculation of the 

optimal threshold values of wavelet filtering 1opt , 

2opt  was carried out, to filter out the coefficients 

characterizing instantaneous amplitudes and frequencies 

of low power. 

– the method of semantic coding of speech signals 

based on mel-frequency cepstral coefficients, but using 

the basic principles of adaptive spectral analysis with the 

help of empirical wavelet transform, which increases the 

efficiency of this method by at least 1.3 times, is 

investigated. 

– the developed method of semantic coding of 

speech signals based on empirical wavelet transform 

allows the coding rate to be reduced from 320 to 192 bit/s 

and the required bandwidth from 40 to 24 Hz with a 

probability of error-free recognition of approximately 

0.96 (96%) and a signal-to-noise ratio of 48 dB, 

according to which its efficiency increases by 1.6 times 

in contrast to the existing method, without exceeding the 

boundary value of the processing and data transmission 

delay of 300 ms. This will allow the system to operate in 

real time. 

– we developed an algorithm for semantic coding 

of speech signals based on empirical wavelet transform 

and its software implementation in MATLAB R2022b 

programing language.  
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МЕТОД ВИДІЛЕННЯ СЕМАНТИЧНИХ ОЗНАК РОЗПІЗНАВАННЯ МОВНИХ СИГНАЛІВ  

НА ОСНОВІ ЕМПІРИЧНОГО ВЕЙВЛЕТ-ПЕРЕТВОРЕННЯ 

Олександр Лавриненко, Денис Бахтiяров, Віталій Курушкін,  

Сергій Завгородній, Веніамін Антонов,  

Петро Станко 

Предметом дослідження є методи підвищення ефективності семантичного кодування мовних сигналів. 

Метою дослідження є розроблення методу підвищення ефективності семантичного кодування мовних 

сигналів, де під ефективністю кодування розуміється зниження швидкості передачі інформації із заданою 

ймовірністю безпомилкового розпізнавання семантичних ознак мовних сигналів, що дозволить значно 

знизити необхідну смугу пропускання, тим самим підвищуючи пропускну здатність каналу зв’язку. Для 

досягнення поставленої мети необхідно вирішити наступні наукові задачі: дослідити відомий метод 

підвищення ефективності семантичного кодування мовних сигналів на основі мел-частотних кепстральних 

коефіцієнтів; обґрунтувати ефективність використання адаптивного емпіричного вейвлет-перетворення в 

задачах кратномасштабного аналізу та семантичного кодування мовних сигналів; розробити метод 

семантичного кодування мовних сигналів на основі адаптивного емпіричного вейвлет-перетворення з 

подальшим застосуванням спектрального аналізу Гільберта та оптимальної порогової обробки; провести 

об’єктивну кількісну оцінку підвищення ефективності розробленого методу семантичного кодування мовних 

сигналів на відміну від існуючого методу. Під час дослідження були одержані наступні наукові результати: 

вперше розроблено метод семантичного кодування мовних сигналів на основі емпіричного вейвлет-

перетворення, який відрізняється від існуючих методів побудовою множини адаптивних смугових вейвлет-

фільтрів Мейера з подальшим застосуванням спектрального аналізу Гільберта для знаходження миттєвих 

амплітуд і частот функцій внутрішніх емпіричних мод, що дозволить визначити семантичні ознаки мовних 

сигналів та підвищити ефективність їх кодування; вперше запропоновано використовувати метод адаптивного 

емпіричного вейвлет-перетворення в задачах кратномасштабного аналізу та семантичного кодування мовних 

сигналів, що дозволить підвищити ефективність спектрального аналізу за рахунок розкладання 

високочастотного мовного коливання на його низькочастотні складові, а саме внутрішні емпіричні моди; 

отримав подальший розвиток метод семантичного кодування мовних сигналів на основі мел-частотних 

кепстральних коефіцієнтів, але з використанням базових принципів адаптивного спектрального аналізу за 

допомогою емпіричного вейвлет-перетворення, що підвищує ефективність даного методу. Висновки: 

розроблено метод семантичного кодування мовних сигналів на основі емпіричного вейвлет-перетворення, що 

дозволяє знизити швидкість кодування від 320 до 192 біт/с та необхідну смугу пропускання від 40 до 24 Гц з 

ймовірністю безпомилкового розпізнавання близько 0,96 (96%) і відношенням сигнал/шум 48 дБ, згідно чого 

його ефективність підвищується в 1,6 рази на відміну від існуючого методу; розроблено алгоритм 

семантичного кодування мовних сигналів на основі емпіричного вейвлет-перетворення та його програмна 

реалізація мовою програмування MATLAB R2022b. 

Ключові слова: семантичні ознаки мовних сигналів; мел-частотні кепстральні коефіцієнти; адаптивний 

спектральний аналіз; емпіричне вейвлет-перетворення; адаптивні вейвлет-фільтри Мейєра; функції 

внутрішніх емпіричних мод; спектральний аналіз Гільберта; оптимальна порогова обробка. 
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