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BPG-BASED COMPRESSION ANALYSIS OF POISSON-NOISY MEDICAL IMAGES

The subject matter is lossy compression using the BPG encoder for medical images with varying levels of visual
complexity, which are corrupted by Poisson noise. The goal of this study is to determine the optimal parameters
for image compression and select the most suitable metric for identifying the optimal operational point. The
tasks addressed include: selecting test images sized 512x512 in grayscale with varying degrees of visual com-
plexity, encompassing visually intricate images rich in edges and textures, moderately complex images with
edges and textures adjacent to homogeneous regions, and visually simple images primarily composed of homo-
geneous regions; establishing image quality evaluation metrics and assessing their performance across different
encoder compression parameters; choosing one or multiple metrics that distinctly identify the position of the
optimal operational point; and providing recommendations based on the attained results regarding the com-
pression of medical images corrupted by Poisson noise using a BPG encoder, with the aim of maximizing the
restored image’s quality resemblance to the original. The employed methods encompass image quality assess-
ment techniques employing MSE, PSNR, MSSIM, and PSNR-HVS-M metrics, as well as software modeling in
Python without using the built-in Poisson noise generator. The ensuing results indicate that optimal operational
points (OOP) can be discerned for all these metrics when the compressed image quality surpasses that of the
corresponding original image, accompanied by a sufficiently high compression ratio. Moreover, striking a suit-
able balance between the compression ratio and image quality leads to partial noise reduction without intro-
ducing notable distortions in the compressed image. This study underscores the significance of employing ap-
propriate metrics for evaluating the quality of compressed medical images and provides insights into determin-
ing the compression parameter Q to attain the BPG encoder’s optimal operational point for specific images.
Conclusions. The scientific novelty of the findings encompasses the following: 1) the capability of all metrics to
determine the OOP for images of moderate visual complexity or those dominated by homogeneous areas; MSE
and PSNR metrics demonstrating superior results for images rich in textures and edges; 2) the research high-
lights the dependency of Q in the OOP on the average image intensity, which can be reasonably established for
a given image earmarked for compression based on our outcomes. The compression ratios for images com-
pressed at the OOP are sufficiently high, further substantiating the rationale for compressing images in close
proximity to the OOP.
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There are two types of compression commonly used
in digital image processing: lossless and lossy compres-

Introduction

Medical image compression is highly relevant in the
field of healthcare because it can significantly improve
the efficiency and cost-effectiveness of medical imaging.
With the increasing use of digital imaging technologies
in medical diagnosis and treatment, the size of medical
image datasets has also increased, leading to challenges
in storing, transmitting, and processing these images [1].
Medical image compression techniques can help address
these challenges by reducing the storage and transmis-
sion requirements of medical images without compro-
mising their diagnostic quality [2, 3]. This can lead to
faster and more reliable diagnoses, reduced storage and
transmission costs, and improved patient care. In addi-
tion, medical image compression is crucial for telemedi-
cine and remote medical services, where efficient trans-
mission of medical images is critical for timely diagnosis
and treatment.

sion [4]. Lossless compression, as the name suggests, al-
lows a compressed image file to be restored to its original
state without any loss of data. This technique is com-
monly used in medical imaging applications where even
the slightest loss of image data could have significant
consequences on diagnosis and treatment deci-
sions [5, 6]. Lossy compression [7-10], on the other
hand, involves the removal of certain image data to
achieve higher compression rates. Although this tech-
nique results in smaller file sizes, it also leads to some
loss of image quality, which may not be acceptable in
medical imaging applications [11-14].

Regarding medical image compression, there are
special requirements that must be considered. First, the
compressed images must be able to preserve the diagnos-
tic quality of the corresponding original images. In addi-
tion, medical images must be compressed in a manner
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that allows for fast and efficient transmission and storage,
while also meeting the security and privacy requirements
of the healthcare industry. Finally, the compressed im-
ages must be compatible with various medical imaging
software and hardware systems to ensure seamless inte-
gration into clinical workflows. Meeting these require-
ments is crucial to ensure that compressed medical im-
ages can be used effectively in clinical settings [15, 16].

However, these are not the only problems that can
be faced. In addition, the noise in acquired images can
significantly affect image quality. Such noise masks the
details of the images.

Medical imaging systems, such as X-ray and com-
puted tomography (CT) use X-rays or CT scans to gener-
ate images of the patient’s region of interest, which are
recorded by measuring the resulting attenuation [17]. The
noise probability density function in images acquired by
these systems is often modeled by the Poisson distribu-
tion and is commonly known as Poisson noise, shot
noise, photon noise, Schott noise, or quantum noise. Pois-
son noise is unique in that it is not influenced by temper-
ature or frequency but rather by photon counting. The
strength of Poisson noise is directly proportional to the
pixel intensity: higher-intensity pixels exhibit greater
noise variance than lower-intensity pixels [18].

Special approaches are required when compressing
images in the presence of noise. Lossless compression is
particularly affected by noise, which can greatly reduce
the achieved compression ratio (CR) [19]. Therefore, itis
recommended to use lossy compression, which offers
higher CR values and several other advantages.

One of these advantages is the noise-filtering effect
achieved by setting certain parameters specifically. This
effect was first observed in [20-22], and it occurs for
compression methods that use various orthogonal trans-
forms [17-20]. One important task is to choose encoder
parameters such that compression is performed near the
optimal operating point (OOP) [20, 23-26], which en-
sures that the decoded image is as close as possible to the
original image based on the chosen criterion. The exist-
ence of the optimal operating point (OOP) has been
demonstrated for various types of noise [20], compres-
sion methods based on discrete cosine transform (DCT)
[27, 28], and wavelets [22]. Different criteria such as
mean-square error (MSE) and peak signal-to-noise ratio
(PSNR) [21, 24], as well as metrics that consider visual
quality such as PSNR-HVS-M and MSSIM [29], can be
used to determine the OOP. However, the automatic pro-
vision of compression near the OOP for complex types
of signal-dependent interference remains a challenge.

The issue of automatic provision of compression in
the vicinity of the OOP has been successfully addressed
for additive and mixed noise, as shown in [25, 30]. How-
ever, the situation is more challenging for simple types of

signal-dependent noise, such as multiplicative and Pois-
son noise. It is worth noting that the practical relevance
of studying the impact of complex signal-dependent
noise characteristics on lossy image compression has in-
creased in recent times. Such models have been acknowl-
edged as more suitable, particularly for medical images
produced by devices such as X-rays and computed to-
mography. Therefore, the objectives of this article are to
investigate the properties of BPG lossy compression for
images corrupted by Poisson noise depending on image
content and characteristics and to provide guidelines
(recommendations) for selecting the compression param-
eters.

The paper structure is as follows. First, we consider
image/noise models. Then, the criteria of compression ef-
ficiency are discussed with special attention to visual
quality. The advantages of the BPG coder are briefly re-
freshed. Simulation results in a set of test images are pre-
sented and discussed. Several illustrations demonstrating
the specific features of lossy compression of noisy im-
ages are presented. Finally, the conclusions follow.

1. Image and noise models

When evaluating image compression techniques for
noisy images, it is crucial to consider both the image
model and the noise model. Understanding the impact of
noise on the compression process requires defining the
statistics of the noise. Signal-dependent noise, for in-
stance, can have a very different effect on compression
than signal-independent noise. To properly address the
influence of noise, the noise model should accurately de-
scribe the noise properties. In addition, restoring images
that have been degraded by noise depends on both the
image and noise models. The validity and effectiveness
of restoration techniques are highly influenced by the
models used.

1.1. Noise model

This study used the Gaussian Approximation of the
Poisson Distribution from [31].

For large mean values, the Poisson distribution is
well approximated by a Gaussian distribution with the
mean and variance equal to the mean of the Poisson ran-
dom variable:

P(un) = N(u, n),

where N — is the normal distribution with expected
value 1.

In the study [31], the authors present an intuitive
proof that leverages the Central Limit Theorem (CLT)
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and the closure property of Poisson distributions with re-
spect to the summation of variables. When modeling
Poisson noise, you can use both special options available
in many tools and model it as Gaussian noise with a var-
iance equal to the true value in a pixel, which is true for
image true values of at least 12.

Using the aforementioned approximation, it be-
comes feasible to substitute the Poisson distribution fam-
ily with a Gaussian distribution family that has a non-
constant (spatially varying) variance that is dependent on
the true value of the signal (image pixel). This approxi-
mation is attractive in modeling because it can often sim-
plify the analysis and processing procedures, including
noise estimation and denoising. We simulated Poisson
noise by scaling a normally distributed noise signal with
zero mean and unity variance by the square root of the
expected signal value (u), and then adding it to the image.

1.2. Image model

Medical imaging involves various techniques to
create visual representations of the human body through
the processing of biomedical signals. The resulting still
images differ depending on the imaging method and the
anatomical part being examined, resulting in a range of
image features.

The performance of image compression techniques
heavily relies on the characteristics of the image being
compressed, whether it contains noise or not. Hence, se-
lecting appropriate test images is crucial, considering
varying complexity and noise-free qualities. Visually
simple structure images are generally compressed with
less loss, producing higher quality at a given compression
ratio for a selected method and better noise reduction. In
contrast, complex structure images exhibit opposite prop-
erties. Our research involved testing six images, includ-
ing ankle.png, head tumour.png, leg veins.png, pel-
vis.png, spine.png, and wrist.png. The test images used
were obtained from the website https://radiopaedia.org/,
and they represent medical images of atypical diagnostic
cases.

To simulate a real-world scenario, these images
were artificially distorted with noise generated according
to the previously mentioned model. Figure 1 displays the
original wrist.png image (a) and the corresponding noisy
version (b). and Figure 2 displays the original head tu-
mour.png image (a) and the corresponding noisy version
(b). Noise is clearly visible in image regions with high
mean intensity (light gray ones) and practically invisible
in dark regions.

2. Lossy Compression Efficiency

One characteristic of lossy compression applied to
noisy images is its capability to suppress noise when

specific control parameters are configured, allowing the
compression of images near the OOP. To evaluate the ef-
fectiveness of compression and noise suppression, tradi-
tional quality criteria such as MSE are employed along-
side metrics related to visual quality, including PSNR-
HVS-M and MSSIM. These criteria necessitate a com-
parison between the decompressed noisy image Idec and
the original, noise-free image lorig for a group of test im-
ages that were distorted by artificially generated noise.

The primary objective of lossy image compression
is to achieve an acceptable level of quality while maxim-
izing CR.

Therefore, we must strike a balance between the
compression ratio and image quality, as increasing the
CR will inevitably introduce larger distortions into the
compressed image. If lossy compression is applied to a
noisy image, the introduced distortions can relate to both
suppressed noise and edge/detail/texture smearing. Thus,
a specific analysis must be performed.

Fig. 1. Example of the original (a)
and noisy (b) images
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2.1. Used quality metrics

A conventional approach to rate-distortion curve
(RDC) obtaining and analysis is to compress an image
with a set of values of a parameter that controls compres-
sion (PCC) and to estimate a metric used in the analysis
for the considered set of PCC values.

For the BPG encoder, the parameter Q is employed
as PCC where PCC increase leads to a larger CR and
larger distortions. In this sense, RDCs obtained for
(noisy) images subject to compression and the corre-
sponding compressed images depending on Q behave in
a traditional manner —metric values become worse (MSE
reduces, PSNR, MS-SSIM, and PSNR-HVS-M increase)
if Q increases.

Fig. 2. Example of the original (a)
and noisy (b) images

Meanwhile, we are more interested in other types of
dependencies that can be obtained only in simulations. In
fact, to determine the optimal CR, we have to establish
an RDC by comparing the true image (without noise) Iit]-r,
i =1,..1, j =1,..J to the compressed (originally noisy)
image at different compression parameter values using a
criterion or metric. Having a compressed image I

ij»
i=1,...,1,j=1,...J itis easy to calculate
1
MSE,, = EZLlZLl(If{ ~1§)?, (1)

where I,

I;; — pixel brightness value of true and com-
pressed images, respectively; I x J —image size.

2
PSNR, = 10log; (o). @)

MSE¢c

The coordinates of the global minimum of the
MSE . metric and the maximum of the PSNR;c metric are
OORP in the conventional sense. Compression in OOP is
also worth characterizing by the compression ratio be-
cause this parameter is also important in practice.

The PSNR-HVS-M metric takes into account the
features of the human visual system and is based on the
discrete cosine transform (DCT). PSNR-HVS-M metric
values are measured in decibels, larger values correspond
to better visual quality.

The MSSIM metric is based on the wavelet trans-
form and ranges from 0 (very poor quality) to 1 (excellent
quality).

Since the visual quality of compressed images is ex-
tremely important for the considered application, it is
worth analyzing the dependencies of visual quality met-
rics on Q as well.

2.2. The considered compression method

The founder of QEMU and FFmpeg, Fabrice Bel-
lard, created a new lossy image format called BPG. It
uses the HEVC compression algorithm, offers a higher
compression ratio with a similar quality to JPEG, sup-
ports different color formats, and offers both lossless and
lossy compression. BPG encoder performs DCT in 64 x
64 blocks with minimum recursive block partitions of 4
x 4 pixels, uses DCT transformation to the frequency do-
main, and entropy coding to eliminate redundancy. A
source code package with a command line encoder, de-
coder, and library is also provided.

To determine the optimal quantization step (Q),
which serves as PCC for the BPG encoder, at which the
noise suppression effect manifests itself in the best man-
ner and OOP is observed, we consider the compression
of the test images in the Q range from 1 to 50 with a step
of 1 (Fig. 3).
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3. Results and Discussion
3.1. Results for conventional metrics

We start our analysis from the conventional MSE
metric (1). Fig. 3, a shows data obtained for original test
images. Since it difference in behavior depending on
MSE(Qs=1) has been immediately noticed, we have
also created an additional set of test images for which
lmew = 172, i =1,...,1 j =1,...J, i.e. new images are
“darker”. The obtained results are presented in Fig. 3, b.

As can be seen from the dependencies shown in
Fig. 3, the MSE. varies over a wide range. For a small
Q (<23), MSE for a given image remains practically the
same. A further increase in Q leads to smaller values in
the vicinity of the OOP for all six images in Fig. 3, a and
all six images in Fig. 3, b. Here partial noise suppression
is observed, which is characterized by a decrease in the
MSE. Then, for a larger Q, MSE steadily increases if
Q becomes larger.
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Fig. 3. Dependencies of MSE. on Q
for the test images compressed by BPG encoder

Another observation is that for images with a
smaller number of texture areas (leg_veins.png,
spine.png), the MSE. values are significantly lower than

those for high-texture images (pelvis.png). Accordingly,
the filtering effect is greater for them.

An interesting observation is that Q for optimal op-
eration point (Qoop) is related to MSE(QS=1): for a
larger MSE(Q=1), Qoor is also larger. Note that
MSE(Q=1) corresponds to the case in which practically
no compression is applied.

Thus, MSE(Q=1) approximately corresponds to
the “equivalent” noise variance of Poisson noise. It is
easy to show that this equivalent variance is approxi-
mately equal to the image mean where the image mean
values can be determined for both the true and noisy im-
ages (they are practically the same). Thus, Qoor depends
on the image mean, at least, for the metrics MSE and,
respectively, PSNRy (see Fig. 4).

According to the PSNR metric (Fig. 4), the coor-
dinates of the maxima coincide with the corresponding
coordinates of the minima of the MSE;. metric. OOP is
less prominent in images with more texture objects and
edges (pelvis.png). Simple images such as leg_viens.png
and spine.png have a more pronounced OOP. Qoop iS
larger for images having a smaller PSNR(Q=1). This oc-
curs for all images, the plots for which are presented in
Figures 4, a and 4, b. Note that, for some images com-
pressed in OOP, the distortions and residual noise are
practically invisible — this happens if PSNR exceeds 36
dB.
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Fig. 4. Dependences of PSNR; metric values on Q
for the test images compressed by the BPG
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3.2. Results for the visual quality metrics

According to the MS-SSIM;. metric (Fig. 5), OOPs
are also observed, and this occurs for all six test images
in both Figures. It is also worth noting that the coordi-
nates of the maxima almost coincide with the correspond-
ing coordinates of the minima of the MSE. metric.

It might seem that OOP is more pronounced for im-
ages with many texture objects and borders (pelvis.png,
head_tumour.png, ankle.png). For simple images, OOP
is less pronounced (leg_veins.png, spine.png). However,
it is necessary to keep in mind that MS-SSIM is a very
nonlinear metric.

MS-SSIM
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Fig. 5. Dependences of MS-SSIM¢ on Q
for the test images compressed by the BPG encoder

Finally, let us analyze the data for the metric PSNR-
HVS-M or, equivalently, MSE-HVS-M (PSNR-HVS-
M=10logio (255° / MSE-HVS-M); see the plots in
Fig. 6). Analysis shows that the minima coordinate
(Qoor) nearly matches the minima coordinates of the
MSEn; metric. The OOP is not very clear for images with
more texture objects and edges (pelvis.png). For images
such as leg_viens.png and spine.png, the OOPs are not

observed. Thus, OOPs occur more rarely for visual qual-
ity metrics than for conventional metrics such as MSE or
PSNR.

For practice, we are interested in two more things.
First, can we predict (without having Ii" , i =1,...,1,
j =1,...,J at disposal as this happens in practice) what is
Qoor for a given image corrupted by Poisson noise? Sec-
ond, what are CR values that can be reached if a noisy
image is compressed in OOP?

To answer both questions, we conducted a special
study. Table 1 shows the Q values corresponding to the
OOP according to the MSE and MS-SSIM metrics. It is
easy to see that the discrepancy between the OOP values
determined by different metrics ranges from 0 to 4. It is
also seen that for images with the -DIV2 suffix, which
are the transformations of the image of the same name by
dividing each pixel value by 2, the position of the OOP is
shifted by 2 or 3 to the smaller side. The general tendency
is that Qoo is larger for images with a larger mean. The
presented data already allow for initial recommendations
on the determination of Qoop, but, in our opinion, more
test images are needed to obtain a proper regression.
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Fig. 6. Dependencies of MSE-HVS-M. on Q
for the test images compressed by the BPG encoder
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Table 1 also displays the compression ratio for the
corresponding OOPs for each test image. The results in-
dicate that relying on the OOP determined by the
MS-SSIM metric results in a compression ratio that is ei-
ther equal to the CR determined by the MSE metric or
less than 10-22. Thus, it can be concluded that determin-
ing of the OOP according to the MSE metric or setting

the Q parameter as Qoor (MS-SSIM) + 3 is reasonable
for achieving a higher compression ratio.

Examples of compression for two test images at the
optimal operating point and at a random point with a
smaller Q are shown in Fig. 7 and 8.

Table 1
The position of the optimal operating point according to the MSE and MS-SSIM metrics
Qoor CRoop Qoor CRoor
Image name Image mean (MSEy) (MSEy) (MS-SSIM) | (MS-SSIM)

head_tumour.png 60.5 36 37.95 34 23.11
head_tumour-DIV2.png 30.05 33 29.29 31 16.4
pelvis.png 118.53 37 41.36 37 41.36
pelvis-DIV2.png 59.01 34 32.64 34 32.64
leg_veins.png 19.83 34 35.56 30 14.66
leg_veins-DIV2.png 9.80 31 27.81 27 10.47
ankle.png 71.54 37 63.20 37 63.20
ankle-DIV2.png 35.53 34 48.61 34 48.61
wrist.png 49.76 36 52.67 35 38.83
wrist-DIV2.png 24.63 33 39.35 32 28.21
spine.png 32.50 36 44.01 32 18.83
spine-DIV2.png 16.00 32 31.54 30 17.58

Fig. 7. An example of decompressed test images com-

pressed near the OOP (Q = 35) (a), (c)
and at a random point (Q = 27) (b), (d)

Fig. 8. An example of decompressed test images com-
pressed near the OOP (Q = 35) (a), (c)
and at a random point (Q = 27) (b), (d)
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3.3. Brief discussion

It can be observed (Fig. 8, b) that when compressing
images with Qoop, the decompressed images are almost
noise-free (denoised well), whereas compressing with a
smaller Q does not produce this effect. This means that
denoising might be applied after compression with
Q<Qoop.

Analysis of the data in Table 1 also shows that de-
pendence of Qoop ON image mean might exist since a gen-
eral tendency seems to be Qoop increasing if the image
mean becomes larger. In addition, if the visual quality of
compressed images is of prime importance, Q can be set
slightly smaller than Qoop according to conventional
metrics.

CR values for image compression in OOP and its
neighborhood are quite large. At least, they are by the or-
der of magnitude larger than if noisy images are subject
to lossless compression (then, CR is usually less than
1.5). Thus, compression in OOP has obvious advantages.
Meanwhile, as it follows from the analysis of dependen-
cies in Fig. 6, there exist images for which OOP is absent
or “is not obvious” (see the curves for the image
leg_veins).

Conclusions

We analyzed the peculiarities of lossy compression
of noisy medical images using a BPG encoder. It is
shown that OOP almost always exists according to MSE
and PSNR metrics and is often observed for the consid-
ered visual quality metrics. It is demonstrated that Qoop
depends on image mean intensity, and it is quite easy to
determine Qoop for a given image to be compressed using
the data in Table 1.

The main contribution of this paper is that we have
demonstrated the existence of OOP for most images con-
taminated by Poisson noise and compressed by the BPG
coder. This happens due to the noise filtering effect that
occurs due to lossy compression. The results presented in
Table 1 allow Q to be chosen depending on the image
mean.

Note that CR values for images compressed in OOP
are quite large, which makes it reasonable to compress
images in the vicinity of OOP.

In the future, we plan to consider opportunities for
post-filtering compressed images and applying lossy
compression to already pre-filtered images.
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AHAJII3 CTUCHEHHS HA OCHOBI BPG MEJUYHUX 305PA’KEHDb
3 IIYMOM TYACCOHA

Bixmopia Haymenxo, bozoan Kosanenko,
Bonooumup Jlykin

IIpeameT mocaixkeHHs] — CTHCHEHHS 3 BTpaTaMH 3 BUKOPUCTaHHM Kojepa BPG mist Meanuanx 300pakeHsb 3
PI3HUMH PiBHSMU Bi3yaJIbHOI CKJIJIHOCTI, 3ircoBanux 1mymoM [lyaccona. MeTa nossirae y BU3Ha4€HHI ONTUMAaIbHAX
mapaMeTpiB I CTUCHEHHSI 300pakKeHb Ta Mi00pi HAHOUIBII IMiIXOMAIOl METPUKH JJII BU3HAUYCHHS ONTUMATBHOL
pobouoi Touku. BupinryBaHi 3aBaaHHsI BKIIIOUAIOTh: BUOIp TECTOBUX 300paxkeHb po3MipoM 512x512 B rpapamisx
CIpOro 3 pi3HUMU PiBHSIMH Bi3yaJIbHOI CKJIAJJHOCTI, 1[0 BKJIFOYAIOTh y ce0€ Bi3yaabHO CKIIaTHI 300paskeHHS 3 OarathmMa
KOp/IOHAaMH Ta TEKCTypaMu, MOMIpHO CKJIaHi 300pa)KeHHs 3 KOPJIOHAMH Ta TEKCTYpaMH IOpY4 3 OJHOPITHUMH 00-
JIACTSIMH Ta Bi3yaJbHO IPOCTI 300pakeHHsI, 10 CKJIAAI0ThCs IEPEBAYKHO 3 OAHOPITHUX obJacTeit; BUOIp METPUK OIli-
HKH SIKOCTi 300pa’keHb Ta OI[iHKA TX MOBEIIHKH JUIs pI3HUX MapaMeTpiB CTUCHEHHS KoJiepa; BUOIp OfiHIET UM AEKIITBKOX
METPHK, SIKi 4iTKO BU3HAYAIOTh TO3HIIIF0 ONITHMAIBHOI pOO0Y0i TOYKH; HaJaHHS PeKOMEH Iallili Ha OCHOBI OTpUMaHUX
pe3yNbTaTiB MIOJI0 CTUCHEHHSI MEIMYHHUX 300pakeHs, 3incoBaHux mymom [lyaccona, BukoprcroByrouu kozaep BPG,
3 METOI0 MaKCHMi3allii SIKOCTi BiTHOBJIEHOT0 300pa)KeHHsI B MOPIBHSIHHI 3 OpUTiHAJIIOM. BHKOpHUCTaHi METOAM BKIIO-
YaroTh TEXHIKH OIIHKH SKOCTi 300paxeHs 3a ponomoror merpuk MSE, PSNR, MSSIM ta PSNR-HVS-M, a takox
IporpamMHe MoJIeNltoBaHHs Ha MoBi Python Ge3 BukopucTanHst BOyjoBaHOro reHepaTtopa mymy Ilyaccona. Otpumani
Pe3yJabTaTH CBi4aTh PO Te, 10 onTUMaibHi podoui Toukn (OPT) MoxyTh OyTH BU3HAueHI Uil BCIX X METPUK,
KOJIM SIKICTh CTHCHEHOTO 300pa)K€HHsI MepEeBEPIIYE SKICTh BIAMOBIJHOTO OPHUIIHANY, IO TAKOX CYIPOBOPKYETHCS
JIOCTaTHHO BHCOKUM CTYIIEHEM CTHUCHEeHHs. KpiM Toro, TOCSTHEHHS BiIMOBITHOCTI MK CTYIIEHEM CTUCHEHHS Ta sIKi-
CTIO 300paKeHHS1 CIIPHSIE YACTKOBOMY 3MEHIIICHHIO IIIyMY 0€3 3HaUHHX CIIOTBOPEHb HA CTHCHEHOMY 300paskenHi. [o-
CITI/DKEHHSI MAKPECIIOE BaXKIMBICTh BUKOPUCTAHHS BIAMOBIAHUX METPHK YIS OI[IHKH SKOCTI CTUCHEHUX MEIUYHHUX
300pa)keHb Ta HaJla€ BUCHOBKH I110/10 BU3HAYECHHSI MapameTrpa Komnpecii Q Juist TOCSTHEHHs ONTHMAIBHOI Orepartiii-
HOT ToukH Kozepa BPG st koHkpeTHHX 300pakeHb. BucHoBKH. HaykoBa HOBM3HA OTPUMaHHUX PE3yNbTATiB HOJSTAE
B HacTynHoMmy: 1) 31aTHICTh Beix MeTpuk Bu3HaunuTu OPT muist 300paskeHb OMipHOI Bi3yaslbHOI CKIJIQJHOCTI 200 THX,
1110 MaIOTh IEPEBAXHO OqHOpPiAHI o0nacti; Merpukr MSE ta PSNR neMoHCTpYrOTH Kpallli pe3ynbTaTy 1 300pakeHb
3 OaraTUMHU TEKCTypaMHM Ta KOpJOHaMU; 2) AOCHIPKEHHs mifgKpecitoe 3anexHictb Q Big OPT Bij cepenHboi iHTeHCH-
BHOCTI 300pa)<eHHs, sika MOXK€ OYTH pPO3yMHO BCTaHOBJICHA ISl JAHOIO 300pPaXKEHHS, 110 CTHCKAETHCS, HA OCHOBI
HAIlIUX Pe3yJbTaTiB. 3HA4YEHHs KOe(il[ieHTa CTHCHEHHs Ui 300pakeHb, cTucHyTHx B OPT, mocuth Benuki, 1o €
JONaTKOBUM apIyMEHTOM ISl CTUCHEHHS 300paskeHs nooimzy OPT.

Koarwuosi ciioBa: crucHenHst 300paxenns 3 Brpatamu; BPG; mym [Iyaccona; ontumalisHa poboda Touka.
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