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APPLICATION OF CONTINUOUS WAVELET TRANSFORM AND SUPPORT 

VECTOR MACHINE FOR AUTISM SPECTRUM DISORDER 

ELECTROENCEPHALOGRAPHY SIGNAL CLASSIFICATION 
 

The article’s subject matter is to classify Electroencephalography (EEG) signals in Autism Spectrum Disorder 

(ASD) sufferers. The goal is to develop a classification model using Machine Learning (ML) algorithms that are 

often implemented in Brain-Computer Interfaces (BCI) technology. The tasks to be solved are as follows: pre-

processing the EEG dataset signal to separate the source signal from the noise/artifact signal to produce an 

observation signal that is free of noise/artifact; obtaining an effective feature comparison to be used as an at-

tribute at the classification stage; and developing a more optimal classification method for detecting people with 
ASD through EEG signals. The methods used are: one of the wavelet techniques, namely the Continuous Wavelet 

Transform (CWT), which is a technique for decomposing time-frequency signals. CWT began to be used in EEG 

signals because it can describe signals in great detail in the time-frequency domain. EEG signals are classified 

into two scenarios: classification of CWT coefficients and classification of statistical features (mean, standard 

deviation, skewness, and kurtosis) of CWT. The method used for classifying this research uses ML, which is 

currently very developed in signal processing. One of the best ML methods is Support Vector Machine (SVM). 

SVM is an effective super-vised learning method to separate data into different classes by finding the hyper-

plane with the largest margin among the observed data. The following results were obtained: the application of 

CWT and SVM resulted in the best classification based on CWT coefficients and obtained an accuracy of 95% 

higher than the statistical feature-based classification of CWT, which obtained an accuracy of 65%. Conclu-

sions. The scientific contributions of the results obtained are as follows: 1) EEG signal processing is performed 

in ASD children using feature extraction with CWT and classification with SVM; 2) the combination of these 
signal classification methods can improve system performance in ASD EEG signal classification; 3) the imple-

mentation of this research can later assist in detecting ASD EEG signals based on brain wave characteristics. 

 

Keywords: Autism Spectrum Disorder (ASD); Continuous Wavelet Transform (CWT); Electroencephalography 

(EEG); Support Vector Machine (SVM). 

 

1. Introduction 

 

1.1. Motivation for research 

 

Autism Spectrum Disorder (ASD) is a neurological 

disorder that affects the development of children who are 

different in general, with disorders in the development of 

complex and varied brain functions [1]. Therefore, 

people with autism will find it difficult to do various 

things that result in the development of poor neurological 

functions. To determine the neurological condition of 

ASD, it can be done by recording signals in the brain 

using Electroencephalography (EEG) [2, 3]. EEG signals 

strongly correlate with ASD to detect abnormalities in 

nerve cells in the brain [4]. The development of an 

effective and efficient method for classifying EEG 

signals in people with ASD is needed to help patients or 

healthcare providers perform specialized treatment. 

In November 2021, J. Zeidan et al. conducted a 

study of studies published in Medline that estimated the 

prevalence of ASD since 2012. Ninety-nine estimates 

from 71 studies were published, revealing variations in 

the global prevalence of ASD across regions. The median 

prevalence was 100 per 10,000 individuals, ranging from 

1.09/10,000 to 436/10,000 [5]. 

EEG is a device that records all types of electrical 

activity from the brain and other physiological activities 

such as heart, ocular, muscle, or noise from the 

environment (electrical equipment/cables) [6]. A non-

invasive or bioelectric method obtains the EEG recording 
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system, making it safer because it does not require 

surgery on the brain [3]. The output of the EEG sensor 

electrodes obtained electrical activity from brain wave 

patterns in the form of signals that can interpret 

abnormalities or diseases experienced by people with 

autism through their brain activity. Currently, clinical 

EEG equipment can be found in health institutions that 

monitor brain electrical activity and assist doctors in 

making decisions [4]. 

 

1.2. State of the Art 

 

Research related to EEG signal processing for ASD 

has been conducted before using EEG to detect ASD 

disorders with feature extraction using wavelets [7, 8]. 

Many EEG studies involve Brain Computer Interference 

(BCI) to detect ASD brain functionality [9]. Previous 

studies have developed BCIs using face recognition to 

find more effective computations [10]. Research also 

uses BCI to control wheelchairs and automate software 

for household appliances, which uses the wavelet 

function, namely Continuous Wavelet Transform 

(CWT), as feature extraction [11, 12].  

The performance of this classification system is 

highly dependent on the model used; therefore, selecting 

appropriate feature extraction techniques is very 

important to provide optimal classification 

results [13, 14]. This study utilizes the wavelet technique 

CWT, which is used to decompose time-frequency 

signals. Research has been conducted on decomposing 

EEG signals of ASD [15] and analyzing the uniqueness 

of EEG features in wheelchairs with BCI [11]. CWT is 

starting to be used in EEG signals because it can describe 

the signal in great detail in the time-frequency 

domain [15]. 

Various techniques have been used to develop EEG 

signal classification models in ASD. M. I. Al-Hiyali et al. 

used functional connectivity patterns from resting-state 

functional Magnetic Resonance Imaging (rs-MRI) 

signals with Convolutional Neural Networks (CNN), 

which achieved an accuracy of 89.8% [16]. S. Alhassan 

et al. showed an energy-efficient approach that reduces 

energy consumption by transmitting processed EEG data. 

This study applies the SVM, Logistic Regression (LR), 

and Decision tree (DT) methods with accuracy reaching 

96% [17]. N. Kumar et al. proposed a wavelet-based 

feature extraction technique that obtained 96% accuracy 

with ANN and 85.46% accuracy with Support Vector 

Machine (SVM) in classifying EEG signals in patients 

with epilepsy [18]. F. A. Alturki et al. proposed the latest 

technique for feature extraction using Common Spatial 

Pattern (CSP), which succeeded in obtaining the best 

accuracy of 98.62% from the combination of the 

CSP+LBP+KNN method [19]. 

EEG signal research using BCI is widely performed 

with classification using Machine Learning (ML) 

algorithms [20]. ML and Deep Learning (DL) can be 

implemented using complex Artificial Neural Network 

(ANN) architectures. As its development has increased 

significantly, it has been implemented in various fields of 

technology to overcome various challenges [21].  

The application of ML and DL to mental workload and 

Motor Imagery (MI) has received great attention in recent 

years, where as much as 75% of DL research uses CNNs 

with various learning algorithms, and 36% of ML 

research achieves competitive accuracy using SVM 

algorithms [22]. To date, Artificial Intelligence  

(AI)-based algorithms can improve EEG analysis and 

diagnosis [14].  

Signal processing techniques, such as filtering and 

normalization, have been used to process the input data 

before fed to ML algorithm [23]. Some studies have used 

SVM to classify EEG signals in patients with 

ASD [17, 18, 24]. The research on the application of 

SVM in ASD with a small dataset that shows the best 

accuracy of 95% [1] and the difference in EEG signals 

that diagnose epilepsy with ASD [25]. Research on SVM 

classification has been used for statistical feature 

classification (mean, mean power, standard deviation, 

absolute mean ratio, skewness, kurtosis), which obtained 

the best overall performance with an overall accuracy of 

96% [26]. F. Salehi et al. demonstrated the efficiency of 

the SVM algorithm by classifying the EEG signal dataset 

of ASD, which resulted in a significant performance 

improvement of 96% [27]. 

T. Heunis et al. researched EEG signals to detect 

ASD by comparing classifiers from ML, namely Linear 

Discriminant Analysis (LDA), Multilayer Perceptron 

(MLP), and SVM based on the Principal Component 

Analysis (PCA) feature extraction method, which 

resulted in the highest accuracy of 95% from SVM 

classifier [28]. This study uses the feature extraction 

method with CWT and classification with SVM with the 

object of EEG signals in children with ASD and normal 

children. 
 

1.3. Objective and Approach 
 

Figure 1 shows the EEG classification system used 

in this study, where the EEG signal is first pre-processed 

to reduce noise and artifacts from the original signal 

using Independent Component Analysis (ICA) and then 

input to the feature extraction process using CWT to 

decompose the time-frequency signal. The obtained 

CWT coefficients are then used to calculate the statistical 

feature values of mean, standard deviation, skewness, 

and kurtosis. The feature extraction results obtained will 

be used as attributes for the SVM classification process. 
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Fig. 1. EEG classification system 

 

This study’s major contributions can be 

summarized as follows: 

1. CWT and SVM feature extraction methods are 

applied to datasets with ASD and normal contexts to 

improve accuracy.  

2. CWT coefficients with four statistical features 

(mean, standard deviation, skewness, and kurtosis) are 

implemented. 

3. CWT and SVM for EEG signal classification in 

patients with ASD are integrated for the first time. 

4. The effectiveness of the method proposed in this 

study to classify EEG signals in people with ASD is 

proved by comparing the value of statistical features and 

CWT coefficients using the SVM classifier. 

 

2. Materials and Methods 
 

This study describes an approach for classifying 

people with ASD using EEG signals. The main  

methods used include the use of SVM as a classifier and 

CWT as a feature extraction technique. The evaluation of 

the model performance is done through confusion matrix 

analysis. A significant aspect of this research is the com-

parison of two feature approaches: feature extraction 

from CWT coefficients and statistical features. This com-

parative analysis identifies a more effective approach for 

classifying individuals into appropriate groups. Thus, 

this research focuses on applying CWT and SVM meth-

ods in EEG analysis to support the development of more 

accurate diagnostic methods for identifying people with 

ASD.  

Initial processing of EEG recorded data uses Brain-

Computer intelligence (BCI) to display EEG signals. 

Next, noise or artifacts outside the EEG signal are mini-

mized using ICA. Then, the preprocessing results with 

ICA are used as input in the feature extraction process to 

obtain two feature values, namely, the CWT coefficients 

and statistical features (mean, standard deviation, skew-

ness, and kurtosis) of CWT. In particular, the values of 

the CWT coefficients are used to calculate four statistical 

feature values: mean, standard deviation, skewness, and 

kurtosis. The two feature extraction results will be clas-

sified using SVM separately to measure the performance 

of the two features, namely between the CWT coeffi-

cients and the combination of CWT coefficients on sta-

tistical features, using a confusion matrix.  

 

2.1. Dataset 

 

This study uses secondary collected EEG signal 

data from research conducted by King Abdulaziz Univer-

sity (KAU), Jeddah, Saudi Arabia [29]. The data con-

sisted of 16 class subjects, with 8 subjects for the normal 

class and 8 subjects for the ASD class. The tapes were 

recorded using 16 channels, including the Frontal (frontal 

part of the brain) channels Fp1, Fp2, F7, F3, Fz, F4, and 

F8. Then Temporal (middle part of the side) channels T3 

and T5. Next is Central (top center), namely channels C3, 

C4, and Cz.  Pz, O1, and ozs are the brain's Parental (up-

per back) and Occipital (lower back) parts. 

 

2.2. Independent Component Analysis (ICA) 
 

ICA is one of the best algorithms for removing 

noise/artifacts outside the brain signal from EEG record-

ing [30]. The working principle is to divide a set of sig-

nals that have been mixed into a set of new compo-

nents [31]. Noise/artifacts are unwanted potentials that 

alter brain impulses and usually come from physiological 

and non-physiological sources. Non-physiological 

sources are generated outside the human body, such as 

electronic EEG recording devices and cables. Physiolog-

ical sources, such as heartbeat, eyes, and muscles, are 

generated from inside the body [32]. 
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N. Tulyakova et al. developed a local adaptive fil-

tration method for non-stationary signals to find an effec-

tive algorithm to reduce non-stationary noise [33]. This 

research uses the ICA method, which has proven to be an 

effective data-based method for analyzing EEG signals, 

separating signals from brain activity from other sources 

(noise/artifacts) [34]. B. Kaliraman et al. showed that us-

ing ICA on EEG signals is very influential in producing 

more optimal performance [32]. The mixed signal is rep-

resented as x = (x1, ..., xm)T, and the hidden component is 

a random vector s = (s1 ,..., sn)T. Where m is the m-th sig-

nal, the hidden component is the m-th signal. Then, m is 

the mth signal and n is the n-th hidden component. The 

following equation model of ICA can be seen in Eq 1: 
 

𝑥𝑖 = 𝑎𝑖 ,1 𝑠1 + ⋯+ 𝑎𝑖 ,𝑘 𝑠𝑘 + ⋯+ 𝑎𝑖 ,𝑛 𝑠𝑛  , (1) 
 

where xi is the component of the random data  

vector x = (x1, ..., xm)T plus the independent component 

sk with k = 1,..., n and ai, 1 is the mixture matrix. Eq. 1 

can be rewritten in the vectorial form shown in Eq. 2, 

where x is the signal of interest. 
 

x = ∑aisi

n

i=1

. (2) 

  

The ICA method can remove artifacts from EEG re-

cordings, but its implementation still depends on the bulk 

of the data used. ICA will be more accurate as the number 

of electrodes used in EEG signal recording in-

creases [31]. 

 

2.3. Continuous Wavelet Transform 
 

CWT is one of the decomposition methods. CWT 

obtains the correlation coefficient between the original 

signal and the mother wavelet. The signal is decomposed 

into a time-frequency domain by adjusting the shape of 

the mother wavelet [35]. CWT can organize waves on 

various time scales. Fourier transformation decomposes 

the signal into sine and cosine functions of infinite 

length [36]. The basic idea of the method is performed by 

Fast Fourier Transform (FFT) of each time window con-

tinuously to obtain an overview of the frequency range in 

the target zone (reservoir) [37].  

This study uses the CWT method for feature extrac-

tion, which is the process of converting raw data into nu-

merical features without destroying the information con-

tained in the original raw data set. This feature extraction 

plays an important role in ML in obtaining optimal re-

sults [36]. 

The working principle of CWT is to select a suitable 

wavelet basis function and obtain a series of basis func-

tions at various intervals through translation and scale 

transformation. Then, the EEG signal generated and inte-

grated through the appropriate intervals will be used to 

obtain the time and frequency characteristics of the EEG 

signal [38]. 

The image is analyzed using the Fourier Transform 

function, which has a signal that is different from the 

original signal because it has undergone a signal transfor-

mation process. The advantage of CWT is its ability to 

describe the signal in detail in the time-frequency do-

main. CWT is the convolution between the signal and the 

wavelet function. The CWT equation is written in the fol-

lowing equation 
 

γ(τ, s) = ∫ f(t)Ψ∗(t)dt
s,τ

. (3) 

  

The * sign in Ψ* in Eq. 3. symbolizes complex conjuga-

tion [39]. There are several choices of wavelet functions, 

namely market, Mexican hat, Daubechies, market, sam-

let, and Shannon. Xiao et al. compared wavelet basis 

functions, where the market wavelet was selected as the 

most suitable basis function for EEG signal wave-

lets [38]. The basic wavelet function can be mathemati-

cally defined as follows: 
 

 Ψτ,s(t) =
1

√|s|
Ψ (

t − τ

s
). (4) 

 

In Eq. 4, a mathematical representation of the wave-

let function Ψ is given by considering the time (transla-

tional) shift τ and the scale s. The wavelet function Ψ is 

defined as 1 divided by the square root of the absolute 

value of the scale s, multiplied by Ψ, whose argument is 

the difference between t and τ divided by the scale s. 

Figure 2 shows the steps of feature extraction using 

CWT. The ICA result data are decomposed to present the 

signal in the time and frequency domains. The output is 

a signal with a time window of 4 s, whose values are then 

determined using the wavelet function in Eq. 4. The 

wavelet calculates the convolution of the original signal 

(Eq. 3), which results in the CWT coefficients. The CWT 

coefficients are used to calculate the four statistical fea-

ture values. 

 

2.4. Statistical features 

 

The steps of obtaining statistical features are fol-

lows: 

1. Mean is the average value x̅ of the total amount 

of data xi divided by the total amount of data n  

 

x̅ =
x1 + x2 + x3 + x4 + ⋯+ xn

n
= ∑

xi

n

n

i=1

. (5) 
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Fig. 2. Feature extraction using CWT 

 

2. Standard Deviation σx is a value used to deter-

mine the distribution of data in a sample and determine 

how close the data is to the mean value x̅. A large spread 

of data against the mean value results in a large x value, 

and vice versa [39]  

 

σx =
√∑ (xi − x̅)n

i=1

(n − 1)
 . (6) 

 

3. Skewness Sw is also called a measure of the 

slope of a data distribution. Skewness values indicate 

normal data when the values are between -2 and 2 [40]. 

The curve resulting from the skewness calculation can 

point positively or negatively if the data are not normally 

distributed 

 

Sw = 
∑  N

i=1 (xiEEG− x̅iEEG )
3

N(
√∑ (xiEEG− x̅iEEG

N
i=1 )2

N−1
)

3 . 
(7) 

  

4. Kurtosis Kr is a parameter of the relative sharp-

ness of a signal with respect to a normal distribution. In 

a normal distribution, kurtosis has the same range of val-

ues as skewness which ranges from -3 to 3 [40]. A curve 

is called symmetrical if the degree of skewness is zero 

 

Kr =  
∑  

ne
i=ns

(xiEEG− x̅iEEG )
4

N(
√∑ (xiEEG− x̅iEEG

N
i=1 )2

N−1
)

2 . (8) 

 

2.5. Support Vector Machine (SVM) 

 

SVM is one of the most powerful classification 

techniques based on statistical theory and ML, capable of 

modeling complex data by finding linear combinations of 

features [41], where the features consist of 16 channels 

of brain wave frequency measurements so that the sam-

ples are separated into appropriate classes. This SVM-

based ML model is most widely used in mental health 

disorders [36]. SVM uses a supervised learning algorithm 

where the applied kernel trick performs a transformation 

on the dataset, and this transformation provides a plate 

form to find the optimal boundary that determines the 

classification result. SVM can work with large amounts 

of data, detect data patterns, and form appropriate parti-

tions to classify data into different classes [42]. 

The goal is to find the best hyperplane that separates 

two or more classes. The hyperplane separates classes by 

forming a linear straight line [43]. SVM uses kernels to 

find SVM classifiers in higher dimensions [32]. The hy-

perplane equation is as follows 

 

�⃗⃗� 𝑥 + 𝑏 = 0.            (9) 

 

Equation 9 shows the relationship between the nor-

mal vector w, data point x, and intersection b. When the 

equation is satisfied, the data point is on the line defined 

by the normal vector and the intersection. This equation 

is the foundation for modeling and analyzing data using 

normal lines and vectors. 

The path of the x position is determined to separate 

two classes, i.e., a negative class or a positive class. Be-

fore determining the hyperplane between the two classes, 

determine the margin distance or separator between the 

hyperplane and the two classes. The margin m equation 

can be seen in the following equation 

 

m =
1

2
‖w‖ . (10) 

 

Each class member’s role in determining the margin 

is a support vector. In determining a good hyperplane in 

separating two classes, the margin must be maximized by 

minimizing the value of w, as shown in the following 

equation: 

 

Max =
2

‖w‖
  

min

w⃗⃗⃗ 
   τ(w) =

1

2
‖w⃗⃗⃗ ‖2 . (11) 

   

In other words, maximizing the margin on the deci-

sion boundary is equivalent to minimizing the length of 

the normal vector w of the hyperplane. To eliminate the 

square root, the normal vector must be squared because 

it has two classes to be separated.  
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Next, the support vector will be combined with ker-

nel tricks, hence the name SVM. The function of the 

SVM kernel itself is to make classification decisions 

where the SVM kernel works in the same way as higher-

dimensional data points, converting low-dimensional 

data into high-dimensional data so that it can turn into 

data points that can be separated linearly. 

 

𝑓(𝑥) = 𝑤𝑥 + 𝑏,  

f(x) = ∑αiyiK(x, xi) + b

m

i=1

. 
(12) 

 

            

Eq. 13 represents the function f(x) in the context of 

SVM. This function results from the sum of m support 

vectors multiplied by the weights αi, the data class yi, and 

the kernel function K(x, xi). This equation is used in SVM 

to classify a new data point x based on a linear combina-

tion of support vectors with appropriate weights and ker-

nel functions. 

By using the support vector in determining the mar-

gin, the class member whose position is closest to the hy-

perplane. A support vector is a very difficult object to 

classify because its position almost overlaps with that of 

other classes. To maximize the hyperplane with good ac-

curacy regeneration, even though it uses soft margins, 

kernel functions can be used to transform data into a 

higher dimensional space (kernel space), which is useful 

for linearly separating data. 

The kernel function serves the classification system 

by providing convenience in the SVM defense process to 

determine the support vector by knowing the kernel func-

tion used. The types of kernels are Linear kernel which is 

the simplest kernel used in the case of text classification; 

Polynomial kernel, used for image classification; and Ra-

dial Basic Function (RBF), used for valid data [14, 17].  

SVM research has been conducted by comparing 

linear, polynomial, and Gaussian RBF kernel types, 

where the best classification result is the Gaussian RBF 

kernel with an accuracy of 80.55% in predicting student 

graduation cases [44]. Therefore, this research combines 

SVM with Gaussian RBF for EEG data classification in 

ASD, which can solve the problem of data classification 

that cannot be linearly separated [44]. RBF is also known 

to have good performance, and the training results have 

a small error value compared to other kernels. The RBF 

kernel is mathematically represented as follows 

 

𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝(−𝛾 ‖𝑥 − 𝑥′‖2 ).           (13) 

 

Note that calculating the Euclidean distance between two 

data points to measure how close the data is to each other. 

Data is divided into training and testing data before per-

forming the classification process using the SVM algo-

rithm. In the training data stage, namely by generating a 

model, while in the testing data, the model validation pro-

cess. The output of both parts will result in a classifica-

tion between ASD and Normal. 

Figure 3 is the classification process of SVM, where 

the dataset is divided into training data (70%) and testing 

data (30%). The training data will go through the learning 

process first by determining the margin between the hy-

perplane and the two classes (Eq. 12). Then to find the 

best hyperplane by minimizing the value of w to maxim-

ize the margin (Eq. 13). By finding the maximum value 

of the margin, then determine the hyperplane equation of 

the data variable (Eq. 11). To improve the performance 

of the hyperplane, SVM is combined with kernel tricks 

that allow data transformation to a higher kernel space 

using RBF. 

 

2.6. Confusion matrix 

 

A confusion Matrix is a matrix that shows the actual 

and predicted classification data. The Confusion Matrix 

is n x n, where n is the number of different classes [45]. 

Classification performance is evaluated using Receiver 

Operating Characteristic (ROC) parameters [1], such as 

true positive TP, true negative TN, false positive FP, and 

false negative FN to calculate accuracy, recall (sensitiv-

ity), specificity and overall F1-score using the following 

equations: 
 

Accuracy =
TP + TN

TP + FP + TN + FN
100% , (14) 

Recall =  
TP

TP + FN 
100% , (15) 

Specificity =
TN

TN + FP
100% , (16) 

F1score = 2
TP

2 TP + FP + FN
 . (17) 

 

The explanation of each character used in the con-

fusion matrix is as follows: 

- TP is data with the number in the True actual 

class, namely positive data, and correctly classified as a 

positive prediction class;  

- TN is data with the number in the True actual 

class, which is negative data and is correctly classified as 

a negative prediction class;  

- FP is data with the sum of the False class, which 

is negative data but classified as a positive prediction 

class;  

- FN is data with the sum of the False class, which 

is positive data but classified as a negative prediction 

class. 
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Fig. 3.  Classification process using SVM 
 

3. Results and Analysis 
 

This section explains the results obtained in this 

study through several processes of the method applied. 

 

3.1. Independent Component  

Analysis result 
 

At this stage, pre-processing is performed using the 

ICA method to minimize noise/artifacts outside the brain 

signal during EEG recording. The data used is with 8 

ASD data subjects and 8 normal data subjects. Sixteen 

data subjects will first go through the initial data pre-pro-

cessing stage with ICA. The results of pre-processing 

produce data from EEG signals in both classes that min-

imize most of the noise and artifacts outside the EEG sig-

nal, as shown in Fig. 4.  

Figure 4 (a) shows brain activity from the original 

EEG recording data signal in the normal class. Then, the 

EEG signal goes through the pre-processing stage using 

ICA in the MATLAB program so that a signal without 

noise and artifacts is obtained in Fig. 4, (b) for the normal 

class. Figure 4(d) shows the signal obtained from Fig. 

4(c) after passing the pre-processing stage. The signal be-

fore pre-processing still has spectra outside the brain sig-

nal called noise and artifacts. The spectrum can be af-

fected by eyeball movement, hand movement, and other 

factors. ICA will minimize the signal by filtering outside 

the 0.5-60 Hz range, and both signals coming from EOG 

and ECG. Then, the signal is sampled at as much as 256 

Hz to clean the noise in the original signal. Furthermore, 

the signal is converted into numerical data containing the 

frequency and time values of each channel in the normal 

and ASD classes. 

 

3.2. Feature extraction result of Continuous 

Wavelet Transform 
  

The feature extraction results from the signal pro-

duce a new feature that distinguishes between the shape 

of one object and another through input parameters/val-

ues with the provision of wavelet function values to be 

identified or classified. Feature extraction is used to char-

acterize the signal by studying neurological activity and 

reducing the dimensions of the signal so that it can be 

used as input in the next process. This study uses feature 

extraction with CWT, obtained after the pre-processing 

technique stage using ICA, which produces 16 channels 

of EEG data features for each normal and ASD subject.  

The feature extraction results are obtained as CWT 

coefficient values by decomposing the time-frequency 

signal. Then, the signal is cut (window) with time for the 

first 4 s of each data. Next, we determine the value by 

wavelet transformation (Eq. 4). Then, we analyze the 

CWT function by calculating the convolution of the orig-

inal signal with the wavelet function (Eq. 3). The process 

of transformation and convolution of the signal produces 

the CWT coefficient value, which is used as the classifi-

cation input. Consisting of 16 channels against 16 clas-

ses, it can be seen in Table 1. 
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Fig. 4. The preprocessing result of EEG signal: (a) Normal class before ICA; (b) Normal class after ICA;  

(c) ASD class before ICA; (d) ASD class after ICA 

 

Table 1  

Feature extraction results from CWT 

Data 

(Hz) 
FP1 F3 T3 ... Oz Class 

1 10.44 23.11 14.50 ... 0.45 Normal 

2 10.44 34.43 11.14 ... 0.43 Normal 

3 10.44 40.32 12.20 ... 0.03 Normal 

... ... ... ... ... ... ... 

19998 68.26 9.78 6.68 ... 1.17 ASD 

 

Table 1 shows the head data resulting from the fea-

ture extraction data from the CWT coefficient of 16 chan-

nels. The wavelet convolution result for the CWT coeffi-

cient value is obtained with a matrix length of 16 x 19998 

features stored in CSV format. Then, the statistical fea-

ture value is calculated on the basis of the output of the 

CWT coefficient value. The calculation of statistical fea-

tures is used as a parameter or characteristic value that is 

more specific to the feature extraction process to learn or 

recognize objects from one another. 

The following are the results of the distribution of 

statistical features, namely the mean, standard deviation, 

skewness, and kurtosis values. The results of feature ex-

traction on all channels are shown in Fig. 5. 

Figure 5 shows the results of the mean value of the 

entire EEG channel with two different classes of normal 

and ASD, where the blue graph represents the normal 

class data and the orange graph represents the ASD class. 

The example of the distribution of statistical values is 

only on one data point to show the difference in values in 

different classes. The mean value generated in both clas-

ses is obtained from -10 Hz to 10 Hz. The largest mean 

value in the normal class is obtained in channel Fz with a 

value of 9.74 Hz, which has a large mean value that is not 

much different from the ASD class of 9.18 Hz in channel 

C4. In both classes, it can be seen that both classes have 

average values that are not far away for each channel data 

and only in the range of -10 to 10 Hz. 
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Fig. 5. Statistical feature of mean 

 

After showing the mean value in both classes, the 

next statistical feature distribution is also found in the 

standard deviation obtained from (Eq. 6). Standard devi-

ation is used to determine the extent of data spread in a 

sample with an average value (mean). Each data from 

both classes has a different standard deviation. Figure 6 

below shows the distribution of statistical values on one 

dataset to show the difference in values in different clas-

ses. The standard deviation values of all channels in the 

two classes are shown in Fig. 6. 

Figure 6 shows the standard deviation values of the 

16-channel EEG for both classes. It can be seen that the 

standard deviation value in the normal class graph is dif-

ferent from that of the ASD class. In the ASD class, the 

resulting standard deviation value does not have a large 

range, whereas in the normal class, the channel feature 

value has channel data with a larger data range in some 

cases. For example, on channel FP2, with a value of 

1.717 Hz, the standard deviation rises on channel Fz, 

which3 is 3.353 Hz. Furthermore, in the ASD class, the 

resulting standard deviation value is between 1-2 Hz for 

all channels. From these two cases, it is said that the nor-

mal class has a standard deviation value of several larger 

channels, which means the wider and further the spread 

of the data.  In contrast, in other data that have a low 

standard deviation value, it is closer to the average. 

The skewness statistical feature is obtained from 

Eq. 7, which is used to obtain the slope graph of the data. 

The following are the results of the distribution of the 

skewness statistical values of all channels in the two clas-

ses. Figure 7 shows the skewness value in each channel 

of the EEG signal for both classes. 

 

 
 

Fig. 6. Statistical feature of the standard deviation 
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The skewness value with a blue graph is for the normal 

class, while the orange graph is for the ASD class. The 

skewness value that shows normal data is when the value 

obtained is from -2 Hz to 2 Hz. 

In the normal class, the overall value obtained 

ranges from -2 Hz to 2 Hz, for example, in channel F3, 

which is 0.076 Hz, FP2, which is 0.114, and C3, which is 

0.421 Hz. This does not apply to channel T5, which ob-

tained a skewness value below -2, namely -2.594 Hz. In 

ASD class data, it is not much different from normal class 

data, which obtained almost the entire skewness value 

between -2 and 2 Hz. Channel T5 is 0.012 Hz, FP2 is 

0.937 Hz, and channel Pz is -0.732 Hz; the skewness 

value outside the normal system data range occurs in 

channel Oz with a value of 2.013 Hz. This shows that in 

both classes, there is 1 channel with a skewness value that 

is not normally distributed because it has a value outside 

the range of -2 to 2 Hz. At the same time, the skewness 

value for other channels indicates that the data is nor-

mally distributed.   

The kurtosis statistical feature is obtained from 

Eq. 8, which is used to determine the curvature of the 

data. The following are the results of the distribution of 

kurtosis statistical values of all channels in the two clas-

ses, as shown in Fig. 8. 

Figure 8 shows the results of the kurtosis value of 

the entire channel on one dataset with two different clas-

ses of normal and ASD, where, like the previous feature, 

the blue graph is the normal class data and the orange 

graph is the ASD class. The distribution of kurtosis fea-

ture values in both classes has kurtosis values with dif-

ferent ranges for several channel cases. In the normal 

class, the value obtained in channel F7 is 0.086 Hz, chan-

nel T3 is -0.672 Hz, and in channel T5, the kurtosis value 

is 8.338 Hz. 

 

 
 

Fig. 7. Statistical features of skewness 

 

 
 

Fig. 8. Statistical feature of kurtosis  
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In ASD data, the value obtained in channel F8 is 

1.473 Hz, C3 is 1.646 Hz, then the kurtosis value gets 

bigger in channel Cz, which is 9.448 Hz. The results of 

the kurtosis calculation obtained have a large kurtosis 

value (some data is too high), so the data distribution is 

said to be abnormal, or the level of data curvature is get-

ting bigger. As for other kurtosis values that obtain values 

in the range of -3 Hz to 3 Hz, it can be interpreted as the 

resulting data distribution that is normal (normal curve). 

 

3.3. Support Vector Machine results 

 

At this stage, the classification used includes all 

data extracted using CWT features. Before the classifica-

tion technique is performed using SVM, the data are di-

vided into 70% training data and 30% testing data. The 

data used for classification are the output of the results of 

two feature extraction processes, namely, extraction with 

CWT coefficients and merging with the distribution of 

statistical feature values.  

 

3.3.1. Classification with Continuous Wavelet 

Transfrom coefficient 

 

The number of features on one object is 1250 x 16 

data, with the amount of training data being 13998x16, 

consisting of 875 data features taken for one subject.  

The testing data amounts to 6000 x 16 data features con-

sisting of 375 features for one subject. The following are 

the results of the CWT coefficient classification shown  

in Fig. 9. 

Figure 9 shows the classification results of normal 

and ASD classes using SVM with RBF kernel function, 

which can separate the two pieces of data more accu-

rately by determining the hyper-plane in separating the 

two classes. The normal class is plotted in green, while 

the ASD class is plotted in red. As for the area in the ASD 

class, the dataset is depicted with a region that is also red 

and normal with a green image region. The amount of 

data in the training process is 13998 data, and the testing 

is 6000 data.  

In separating ASD and normal classes in SVM, we 

determine the hyperplane in separating the two classes. 

On the X axis with normal data and the Y axis with ASD 

data where previously the training data produced models 

for both classes, then tested with testing data to validate 

the model with new data. Therefore, from the two pro-

cesses of separating the two pieces of data, the classifica-

tion results using SVM with the help of the RBF kernel 

function obtained a good accuracy percentage of 95%. 

 

3.3.2. Classification of statistical features  

from Continuous Wavelet Transform 

 

The results of CWT feature extraction data with sta-

tistical features, namely Mean (Eq. 6), Standard Devia-

tion (Eq. 7), Skewness (Eq. 8), and Kurtosis (Eq. 9). Each 

data has a feature value of 16 channels. Furthermore, the 

classification results with the support vector are obtained 

from training and testing data as much as 70% and 30% 

of the total data. The following are the results of the clas-

sification of the statistical features from CWT, as shown 

in Fig. 10.  

Figure 10 shows the classification results of testing 

data for normal and ASD classes using SVM on EEG 

data against four statistical features. It can be seen that 

the normal class has a green plot, while the ASD class 

has a red plot. Then, in the ASD class, the dataset is de-

picted with a region that is also red and normal with a 

green image region. 

The SVM kernel type used in this research is Gauss-

ian RBF with kernel function (Eq. 11) to transform the 

data to a higher dimensional space to avoid overlap  

between the two classes. This is proven based on the al-

gorithm of the amount of data in the training process, 

which is 44 data and testing 20 data. From the separation  
 

 
 

Fig. 9. SVM classification results with CWT coefficient feature 
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Fig. 10. SVM classification results against the statistical feature distribution of CWT 
 

process between ASD and normal data, the classification 

results using SVM are obtained with an accuracy of 65%. 

 

3.4. Analysis of the confusion matrix 
 

3.4.1. Continuous Wavelet Transform  

coefficients 

 

An analysis of the performance of the CWT coeffi-

cient classification system based on the evaluation pa-

rameters of the confusion matrix is shown in Fig. 11. 

Figure 11 shows the result of obtaining the value of per-

formance analysis on classification with CWT coeffi-

cients, with a feature length of 6000 data. TP is obtained 

with a value of 2887, FP is 96, FN is 194, and TN is 2823. 

The number of values obtained by TP is ASD data pre-

dicted to be true ASD as much as 2887 data features. 

Then, FP is normal data predicted as ASD as much as 96 

data features. Next, FN obtained 194 data features where 

ASD data was predicted as normal. The last is TN, where 

normal data is predicted correctly as normal with 2823 

data features. The results of the evaluation parameter cal-

culation analysis on the CWT coefficient classification 

are shown in Fig. 12. 

Figure 12 shows the results of calculating the eval-

uation parameters on the confusion matrix obtained from 

the CWT coefficient feature classification. The accuracy 

value is obtained with a TP value of 2887 data features, 

FP is 96 data, FN is 194 data, and TN is 2823 data, using 

(Eq. 15), which gives a value of 95%. Then, the calcula-

tion of recall (Eq. 16) is with a value of 95%. Further-

more, the calculation of Specificity (Eq. 17) is 97%, and 

the calculation of F1-Score (Eq. 18) is 95%. 

 

 
 

Fig. 11. Confusion matrix value for CWT coefficient classification 



Methods and means of image processing 
 

85 

The results of this analysis prove that the testing process 

carried out with testing data on the classification model 

is good because it obtains a percentage of the results of 

the evaluation analysis on confusion with an accuracy 

value of 95%. 
 

3.4.2. Statistical feature of Continuous  

Wavelet Transform 
 

Analysis of the performance of the statistical feature 

classification system of CWT based on the evaluation pa-

rameters on the confusion matrix, as shown in Fig. 12. 

Figure 12 shows the result of obtaining the value of 

the performance analysis on the classification of statisti-

cal features from CWT with 20 data features.  

 

 

Fig. 12. Confusion matrix value on CWT  

coefficient classification 

The value for TP is 9, the FP value is 0, the FN value 

is 7, and the last is the TN value 4. TP is obtained on the 

basis of the results of ASD data that is predicted to be 

true ASD data with 9 data features; FP is normal data 

predicted as ASD, which is 0. Then, FN is ASD data pre-

dicted as normal with as many as 7 data features, and TN 

is normal data predicted to be normal with as many as 4 

data features. From these cases, the FP and FN values are 

the most influential because of an error in predicting the 

corresponding data. The resulting FP is zero, which 

means that the system predicts no error in detecting nor-

mal data that is considered ASD. 

As seen in Fig. 13, the dark color shows the lowest 

value, and the value increases with the lighter color. The 

value is based on the testing data used to test the model 

results from the training data totaling 20 features. The re-

sults of the value obtained from Fig. 13 are then used to 

calculate the value of the evaluation parameter in the con-

fusion matrix displayed in Fig. 14.  

Figure 14 shows the results of the calculation of pa-

rameter evaluation on the confusion matrix obtained in 

the classification of statistical feature values from CWT, 

obtained for accuracy values with TP values of 9 data 

features, FP is 0 data. FN 7 data and TN 4 data, using 

(Eq. 15), obtained a value of 65%. Then, the recall calcu-

lation (Eq. 16) has a value of 65%. Furthermore, the spec-

ificity calculation (Eq. 17) obtained the highest result of 

100%, and finally, the F1-Score calculation (Eq. 18) ob-

tains a value of 62%. The results of this analysis prove 

that the system can categorize ASD and normal classes 

with calculation analysis using recall and specificity is 

the best because it can predict the correct data, namely in 

recall with correct data ASD of all children predicted 

ASD. Likewise, in specificity, namely correct data nor-

mal of all children predicted normal. Therefore, it is true 

that there is no detection error in children who are normal 

but declared ASD.  

 

 

 

Fig. 13. Confusion matrix results on the statistical features of CWT 
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Fig. 14. Confusion matrix value  

on the statistical feature classification of CWT 

 

4. Discussion 

 

The results of calculating system evaluation param-

eters with the confusion matrix value of the SVM classi-

fication scenario by comparing system performance be-

tween the two scenarios are shown in Table 2. 

 

Table 2  

Comparison of the evaluation analysis  

of the two classifications 

Classification Accuracy Recall 
Specifi-

city 

F1- 

Score 

CWT  

Coefficient 
95% 95% 97% 95% 

Statistical 

Feature 
65% 65% 100% 62% 

 

Table 2 shows the results of SVM classification per-

formance for the two classification scenarios. It can be 

seen that the value of the evaluation analysis on the larg-

est confusion matrix is the CWT coefficient feature-

based classification, where the highest percentage value 

is obtained compared to the statistical feature-based clas-

sification of CWT, with an accuracy value of 95%; recall 

95%, specificity 97%, and F1 Score 95%. The selection 

of the calculation value of the confusion matrix parame-

ter is not based on the accuracy value alone because if the 

FP value with the resulting FN has a very close value, 

then the system's reference is said to be successful 

through the accuracy value alone. This applies to calcu-

lating the confusion matrix for the classification of statis-

tical features where the FP value with a value of 0 is far 

apart or asymmetrical with a false negative value of 7. 

Furthermore, the specificity was chosen because it has a 

high value caused by the non-occurrence of FP, which is 

expected to result in no misdetection of children who are 

normal but are declared ASD.  

Based on the classification stage with two scenar-

ios, the greater the data features, the better the accuracy 

obtained. This proves that SVM classification based on 

CWT coefficient feature values is more accurate and ef-

fective at classifying both classes because it has more 

data feature values than classification based on statistical 

feature values from CWT. 

 

Conclusions 
 

This study successfully integrated CWT and SVM 

to improve the classification accuracy of children with 

ASD. The proposed method yields 95% accuracy. In ad-

dition, this study evaluates the application of CWT with 

statistical features, namely mean, standard deviation, 

kurtosis, and skewness. The experimental results show 

that combining CWT and statistical features produces an 

accuracy of 65%. The number of data features is directly 

proportional to the quality of accuracy, where the more 

data features used, the better the accuracy. This is be-

cause the feature classification of the CWT coefficient 

has many features; therefore, the classification system 

can distinguish between the two classes.  

In future research, this study indicates several re-

search directions that can be carried out, such as the de-

velopment of more effective and efficient classification 

or feature extraction methods, the exportation of the use 

of Deep Learning (DL) techniques in EEG signal analy-

sis, and the use of larger and diversified datasets to test 

the performance of the proposed methods more broadly. 
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ЗАСТОСУВАННЯ НЕПЕРЕРВНОГО ВЕЙВЛЕТ-ПЕРЕТВОРЕННЯ  

ТА МАШИНИ ОПОРНОГО ВЕКТОРА ДЛЯ КЛАСИФІКАЦІЇ СИГНАЛІВ 

ЕЛЕКТРОЕНЦЕФАЛОГРАФІЧНОГО РОЗЛАДУ СПЕКТРУ АУТИЗМУ  

Мелінда Мелінда, Філберт Х. Джувоно, І Кетут Агунг Енріко,  

Мауліса Октіана, Сіті Мульяні,  

Хайрун Саддамі 

Предметом статті є класифікація сигналів електроенцефалографії (ЕЕГ) у хворих на розлад аутистичного 

спектру (РАС). Мета полягає в тому, щоб розробити модель класифікації з використанням алгоритмів машин-

ного навчання (ML), які часто використовуються для реалізації в технології Brain-Computer Interfaces (BCI). 

Завданнями, які необхідно вирішити, є: попередня обробка сигналу набору даних ЕЕГ для відділення сигналу 

джерела від сигналу шуму/артефакту для отримання сигналу спостереження, який не містить шуму/арте-

факту; отримання ефективного порівняння ознак для використання як атрибута на етапі класифікації; ро-

зробка більш оптимального методу класифікації для виявлення людей з РАС за сигналами ЕЕГ. Використо-

вувані методи: один із методів вейвлетів, а саме безперервне вейвлет-перетворення (CWT), що є технікою для 

розкладання частотно-часових сигналів. CWT почав використовуватися в сигналах ЕЕГ, оскільки він може 

дуже детально описувати сигнали в частотно-часовій області. Сигнали ЕЕГ класифікуються за двома сце-

наріями: класифікація коефіцієнтів CWT; класифікація статистичних характеристик (середнє значення, стан-

дартне відхилення, асиметрія та ексцес) CWT. Метод класифікації цього дослідження використовує ML, який 

зараз дуже розвинений у обробці сигналів. Одним із найкращих методів ML є Support Vector Machine (SVM). 

SVM – це ефективний контрольований метод навчання для розділення даних на різні класи шляхом знаход-

ження гіперплощини з найбільшим запасом серед даних спостереження. Було отримано наступні результати: 

застосування CWT і SVM призвело до найкращої класифікації на основі коефіцієнтів CWT, отриманої точ-

ності на 95% вище, ніж класифікація CWT на основі статистичних ознак, яка отримала точність 65%. Вис-

новки. Наукова новизна отриманих результатів полягає в наступному: 1) здійснює обробку сигналу ЕЕГ у 
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дітей з РАС за допомогою виділення ознак за допомогою CWT та класифікації за допомогою SVM; 2) поєд-

нання цих методів класифікації сигналу може покращити продуктивність системи в класифікації сигналу ЕЕГ 

РАС у попередніх дослідженнях; 3) реалізація цього дослідження може пізніше допомогти у виявленні сиг-

налів ЕЕГ РАС на основі характеристик мозкових хвиль. 

Ключові слова: розлад спектру аутизму (ASD); безперервне вейвлет-перетворення (CWT); електроен-

цефалограма (EEG); опорна векторна машина (SVM). 
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