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ABDOMINAL ELECTROMYOGRAMS MINING:
BREATHING PATTERNS OF ASLEEP ADULTS

The article’s subject matter is the processing of abdominal EMG recordings and finding breathing patterns.
The goal is to automatically classify respiratory patterns into two classes, or clusters, by two breathing pat-
terns, regular and irregular, using machine learning (ML) methods. The object of the study was to obtain a
dataset of 40 randomly picked abdominal EMG recordings (sampling rate equal to 200 Hz) borrowed from the
complete dataset published by the Computational Clinical Neurophysiology Laboratory and the Clinical Data
Animation Laboratory of Massachusetts General Hospital. The tasks to be solved are as follows: finding ETS
(errors-trend-seasonality) model for the EMG series using the exponential smoothing method; obtaining de-
noised and detrended signals; obtaining the Hurst exponents for EMGs using the power-law decaying of corre-
lograms for the denoised and detrended signals; describing the variabilities, SNR, the outlier fractions, and
Hurst exponents by robust statistics, performing correlation analysis, and Principal Components Analysis
(PCA); analyzing the structure of the distant matrix by a graph-based technique; obtaining the periodograms
in the frequency domain using the known Wiener-Khinchin theorem; and finding the best models and methods
of classification and clusterization and evaluating them within modern Machine Learning methods. The meth-
ods used are exponential smoothing, the Wiener-Khinchin theorem, the graph theory method, principal com-
ponent analysis, programing within MAPLE 2020, and data processing by Weka. The authors obtained the fol-
lowing results: 1) wide data variability has been rated with the median absolute deviations, which is the most
robust statistic in this case; 2) most of the signals (38 of 40) showed frequent outliers: from a few percent up to
24.6 % of emissions; 3) these four variables: outliers' percentage, variability, SNR, and persistency factors —
form the attributes of input vectors of the subjects for further Machine Learning with Weka software; 4) Man-
hattan distances matrix among subjects' vectors in 4D attributes space allows imaging the data set as a
weighted graph, the vertices of which are subjects; 5) the weights of the graph's edges reflect distances be-
tween any pair of them. "Closeness centralities™ of vertices allowed us to cluster the data set on two clusters
with 11 and 29 subjects, and Weka clustering algorithms confirmed this result. 6) The learning curve shows
that a sufficiently small data set (from 25 subjects) might be suitable for classification purposes. Conclusions.
The scientific novelty of the results obtained is as follows: 1) the Error-Trend-Seasonality model was the same
for all data sets. Abdominal EMG of sleeping patients had additive errors and undamped trends without any
seasonality; 2) the correlograms' decaying according to power law had been set, and Hurst exponents were in
the range (of 0.776-0.887). This testifies to "long memory" (high persistence) of abdominal EMGs; 3) the mod-
ified Z-scores and robust statistics with the highest breakdown values were used for the EMG parameters be-
cause of many outliers; 4) breathing patterns were set using the periodograms in the frequency domain using
the Wiener-Khinchin theorem; 5) the new graph-based method was successfully exploited to cluster the da-
taset. Parallel clustering with Weka algorithms confirmed the graph-based clustering results.

Keywords: Abdominal Electromyogram; Breathing Patterns; Machine Learning; Variability; Outliers; Persis-
tency.

The breathing pattern of sleeping adults shall be,
as an ideal, regular and maintain some range of frequen-

Introduction

Healthy sleep is a necessary part of the life cycle
and circadian rhythm. Sleep upsets have become a con-
joint field of study in physiology and medicine. For ex-
ample, many shared efforts have been devoted to this
topic: several databases of known biomedical por-
tals [1], in particular [2], with detailed descriptions
in [3]. The reasons for sleep disorders may be manifold.
In particular, the authors [4], and even more coherent-
ly [5], have recently pointed out severe sleep maladies
among various population layers caused by the
COVID-19 pandemic [6].

cies. The range (12-20) of breathing cycles per minute
that meets frequencies (0.2-0.33) Hz is commonly ac-
cepted [7]. Less regular breathing characterizes the wak-
ing-up state for evident reasons.

Abnormal breathing rates (BR), outgoing from the
bounds of the above range, are perhaps the most fre-
quently admitted sign of sleep disorder. Although the
BR can rise slightly at the so-called Rapid Eyes Moving
(REM, fast sleep stage), this little climb drops again at
the slow sleep. This slow stage of sleep is the prevailing
one: 80 % versus 20 % [8].
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Thus, asleep breathing is a low-frequency process
that must be directly reflected by abdominal electromy-
ograms (EMGs) if one considers the role of the dia-
phragm and abdominal muscles in breathing. Therefore,
abdominal EMGs picked from vaster data [1, 2] ran-
domly served as the dataset for mining BR in this paper.

Breathing patterns are the main but not the only
subject of this study. The persistence estimation of
EMGs as time series, their exponential smoothing mod-
el, variability and outlier studies, clustering, and hetero-
geneity of the dataset are also on the "shortlist of inter-
ests” of this report. For example, the variability of med-
ical signals and EMGs displays the homeostasis phe-
nomenon inherent in living organisms [9]. Outliers are a
common problem with EMGs that cannot be neglected
during their proper processing. It was first noted in [10]
concerning EMGs and then developed in [11].

Insight into persistence grade and the Errors-
Trend-Seasonality (ETS) model is vital for forecasting
and interpreting the EMG series. The exponential
smoothing method (or ETS modeling) prognoses the
future results of a time series based on past results. Its
feature is the exponentially decaying weights of past
results [12]. The ETS model of the signal allows its de-
composition, denoising, and detrending if needed.

The authors intend to knot these different aspects
at first glance into one complete. Thus, non-trivial rela-
tions among the described subjects can define the novel-
ty of this research if they can be convincingly shown.
Data mining is often described as patterns and non-
trivial knowledge discovery in databases. This approach
relies on Machine Learning (ML) methods, robust sta-
tistics, and modern time series analysis tools.

Let us recall the machine learning tasks [13, 14].
One can stress clustering of data, anomalies (outliers)
search, probability density function estimation from
data, data visualization, and Principal Component Anal-
ysis (PCA). The EMG data mining in this paper will
include all of the above listed.

The text above is the authors’ attempt to base the
study’s relevancy, explain its subject and trend, and
convince the reader that this topic is worthy of study.
The reader can find the aims and tasks of this research
in section 1.

1. Related works, aims, and tasks
of the study

First, we should mention the papers [1 - 3] because
our dataset is a small part of this richer data.
Sources [2, 3] hold only common data descriptions and
do not profoundly analyze their branches. These data
ensured that studies of various sleep upsets. Apnoea of
all types and hypopnea are dominant within the da-
ta [2, 3] (roughly in equal fractions [2]). The data in-

clude 13 physiological signals, and the abdominal
EMGs of sleeping adults are only one of them.

A row (23 publications) of recent works is devoted
to these data and work with them. Source [15] contains
their list and relevant references. Most consider methods
for automatically detecting certain relatively rare sleep
disorders within complete data using all or most signals.
Machine Learning methods were used in their pure
form.

In contrast, we will consider a small data set
picked randomly from the cited above data [2, 3] and
source [15]. Moreover, this dataset will include only
abdominal EMGs because they are correlated with
sleeping respiratory patterns. Let us refer to the periodic
movement of the diaphragm and its joined muscles dur-
ing breathing to explain this bond.

Respiratory rate and breathing patterns (BPs) may
serve as objective signs to identify lung diseases [16].
The commonly recognized classification of BPs, includ-
ing abnormal ones, has existed for a long time [7, 8, 17].
However, these patterns are considered within the time
domain most often. Meanwhile, the regularity or irregu-
larity of breathing should manifest better in the frequen-
cy domain. Sad to say, but such frequency domain stud-
ies are rare.

The paper [18] is worth more detailed mention as
an example of frequency domain studies. A row of res-
piratory indicators is presented and extracted by remote
photoplethysmography using a video camera. The signal
power spectrum for 12 waking volunteers is shown in
the frequency domain. Dominant peaks occupied the
interval (0.12-0.39) Hz, matching BR from 7 to 23
breaths per minute. In addition, two patterns, regular
and irregular breathing, were presented for a volunteer.
Note that similar BPs concerning asleep people will be
the main subject of our paper. As one can see from [18],
the pattern of regular breathing differs by a mighty and
narrow peak (maybe with a pair of minor satellites)
within the (0.2-0.33) Hz band. It corresponds to BR in
the (12-20) breaths per minute. Irregular breathing
shows lower and broader peaks, extending this band.

In contrast to the work cited above, this study in-
tends to extract these respiratory patterns from ab-
dominal EMGs. These patterns will be bonded with
these series' variability, outlier percentages, persistence
factors, and signal-to-noise ratios (SNR).

Thus, the aim of this study is defined. This study
aims to automatically classify respiratory patterns into
two classes, or clusters, by two breathing patterns, regu-
lar and irregular, using machine learning (ML) methods.
Therefore, the input vectors include outlier percentage
in series, variability, persistence factor (Hurst expo-
nent), and SNR. We need to resolve few associated
problems to attain the abovementioned aim. One can
arrange them in the following order:
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1 Finding an error-trend-seasonality (ETS) model
for EMG series using the exponential smoothing meth-
od [11] and obtaining denoised and detrended signals.

2 Obtaining the Hurst exponents for EMGs using
the power-law decaying of correlograms for the de-
noised and detrended signals [19, 20].

3 Describing the variabilities, SNR, outlier frac-
tions, and Hurst exponents using robust statistics, per-
forming correlation analysis, and Principal Components
Analysis (PCA).

4 Analyzing the structure of the distant matrix
using a graph-based technique.

5 Obtain the periodograms in the frequency do-
main using the known Wiener-Khinchin theorem [21].

6 Finding the best models and methods of classi-
fication and clusterization and evaluating them within
modern Machine Learning methods.

2. Methods and data

2.1. Provenance and main features of the data

The Computational Clinical Neurophysiology La-
boratory and the Clinical Data Animation Laboratory of
Massachusetts General Hospital have provided their
data for the 2018 Computing in Cardiology Challenge
conference [2]. The data include 1,985 patients who
were watched at the hospital to diagnose sleep condi-
tions. The balanced training set (n = 994) and testing set
(n =989) comprised two parts of data [2] and [3].

One can find in [2] the means and standard devia-
tions of such parameters as age, gender, body mass in-
dex, drug use, and reasons for a clinic visit of the sub-
jects. Sleep and arousal features of patients have also
been presented. We have not exploited these "demo-
graphic" descriptions, so these are presented here by
reference instead of a large table or direct citation.

Medics recorded a set of signals as the subjects
slept. The offered time series included electroenceph-
alography (EEG), electrooculography (EOG), electro-
myography (EMG), electrocardiography (ECG), and
arterial blood oxygen saturation (SaO2). EMGs were
recorded at the chin, chest, and abdomen. The sampling
rate was equal to 200 Hz. Almost all signals were meas-
ured in microvolts, except for SaO2 given in percentage.
These data can be imported into Python, Matlab (V4 or
higher), and C programs [2].

We randomly selected 40 abdominal EMG record-
ings from the test set. The selection of subjects for our
dataset was performed by the "Random Tools" software
package from Maple 2020 [22]. Thus, randomness of
selection was the main criterion for creating the dataset
(the studied population). The size of the studied popula-
tion (40 people) may have caused some complaints
about its "insufficiency." In the framework of the learn-
ing curves method [23], we will return to this point lat-

er, evaluating the classifier by performance depending
on the size of the population.

Each series had an initial duration of 3 min
(N = 36000 samples at the sampling rate of 200 Hz).
However, we later slightly reduced it to N = 32768, an
integer degree of two, for convenient calculations.

2.2. Methods as a Shortlist

Let us begin with exponential smoothing, as de-
scribed in electronic resources [12, 24] and in the pa-
per [25], since it is used to handle the data first. This
method serves chiefly as a forecasting tool for time se-
ries. The main idea is that older data are much less valid
for prognosis than fresh data. Therefore, older data have
weights with exponential decay.

On the other hand, it is also a series modeling
method called the Error-Trend-Seasonality pattern.
There are over 30 types of such models. It depends on
additive or multiplicative errors. Is the trend existing or
not? Furthermore, is it additive or multiplicative and
damped if there is a trend? Whether seasonal changes
are present and whether they are additive or multiplica-
tive.

The ETS model choice is also an optimization
problem. Information criteria evaluating the goodness of
fit for a model for a time series are used. It may be a
Bayesian criterion, as an example.

In addition, the insight of the ETS model allows us
to denoise and detrend the primary signals. Detrend
Fluctuation Analysis (DFA) and similar methods of
persistence studies of series demand such a prepared
series. Below, we will study the power-law decay of the
autocorrelation functions of detrended EMGs similar
to [19, 20] but using the Wiener-Khinchin theorem [21].

Because the outliers’ problem is inherent in EMG
signals, notable robust statistics are required for their
description [10, 11]. This touches on the statistics that
evaluate the central tendency and estimate the variabil-
ity. Their breakdown values [26] must be over 25% be-
cause the fraction of outliers sometimes exceeds that.
Simplified, this means that statistics have to maintain
reasonable meaning under conditions up to half of the
outliers in a data. Robust statistical descriptors (estima-
tors) with high breakdown values (up to 50%) must re-
sist outliers. Fortunately, these statistics exist.

The authors built histograms according to the
methods of [27, 28]. Estimates of probability density
from data were performed within the density estimation
theory using kernel functions (KDE) [28]. The reader
can consider these KDE curves to be highly smoothed
histograms or as estimations of probability density func-
tions.

First, we selected four numeric attributes in the in-
put vector (image) of a subject in the dataset. These



Methods and means of image processing

63

were modified z-scores of variability, outlier percent-
age, persistency factor, and signal-to-noise (SNR) ratio.
However, the correlation analysis shows the decorrela-
tion necessity for these attributes. Principal component
analysis (PCA) was performed by diagonalizing the
covariation matrix. PCA allows us to rank variables
(attributes) on their deposits into total variance. In addi-
tion, PCA often allows the reduction of the dimension-
ality of the problem.

We used the Graph theory method to divide the da-
taset into two unequal subsets: the core and peripheral
vertices (nodes). Both subsets define the biconnected
subgraphs with weighted edges (arcs) by distance ma-
trix. Subgraphs have well-different diameters and non-
overlapping ranges of the so-called closeness centrality
values. We have accepted the belonging of a Graph
node (point in vector space of attributes) to one of two
such ranges as the additional attribute. This attribute
may be nominal ("low centrality” and "high centrality")
or even binary (0 and 1). One can find various graph-
based clusterization methods in the book [29]. However,
we could not find either there or elsewhere an approach
similar enough to that used in our study

The power spectrum is the Fourier transform of a
signal's ACF. This claim is the Wiener-Khinchin theo-
rem content, also called the Wiener—Khinchin—Einstein
theorem or the Khinchin Kolmogorov theorem [20].
One of the effects of this theorem is the linear correla-
tion among DFA scaling exponent (o), power spectra
decay exponent (), and ACF decay exponent (y). On
the basis of this theorem, we have built EMG power
spectra not from the signal but from its ACFs. These
spectra were used to define breathing pattern classes
(regular or irregular) because they were easily separat-
ed, even visually.

3. Experiments: data preprocessing

3.1. Exponential Smoothing model
and clearing of EMGs series

The optimal exponential smoothing model was the
same for all EMGs. Additive errors, additive undamped
trends, and no seasonality are the points of this model.
The uniform ETS model shows us some series affinity
within the data set.

Insight into the ETS model lets one clear off the
initial series' noises and trends. According to the ETS
model, one can separate noise and trends from signals.
One can find autocorrelation functions (ACFs, correlo-
grams) with the plain decay for handled raw series
without noises and trends. It looks like the well-known
Detrended Fluctuation Analysis (DFA) method [19].
There is the same target as well: to estimate the persis-
tency of the series.

Note that the noises are relatively low in data
[1 - 3]. So, the signal-to-noise ratio (SNR) [30] belongs
to the range (40-61) dB. That can slightly surprise one
because such a high SNR is not often met among medi-
cal signals. For a collation: the SNR does not exceed 20
dB for tibial EMG data [9, 11]. We have chosen the
SNR of our data set as one of the numeric attributes of
the input vectors for Machine Learning (it will be de-
noted as z4 further).

3.2. Power-law decaying of correlograms
and estimations of persistency

Persistent and antipersistent time series can show
hyperbolic, also called power-law, decay. Fractional
Gaussian noise (FGN) is a known model with hyperbol-
ic decay [19, 20]. Detrended fluctuation analysis (DFA)
is a popular method for determining the persistency fac-
tors of time series [19]. Time series with persistent
"long memory" have diverged correlation times. They
differ by power-law decaying autocorrelation functions
(ACF, correlograms) with lags [20]:

ACF~L", (1)

where L is a lag, and y is the decay factor. The relation
(1) must be a straight line with a slope equal to y within
the double logarithmic coordinates.

There exists a simple linear relation between DFA
scaling exponent (o) and the correlogram decay factor

(y) [19, 20]:
a=1-— % 2

This relation is a result of mentioned already Wie-
ner-Khinchin theorem [21].

Here we want to show the power law decaying ac-
cording to formula (1) for one of the correlograms, but
the same straight lines are also typical for the others. Let
it is a correlogram for subject ID = 6 (see Fig. 1).

Note the excellent linearity of the graph: the ad-
justed coefficient of determination (R-squared) is
0.9968. Other correlograms also showed acceptable
linearity over several lags: L = (512-32768). Thus, the
decay power law (see equation (1)) is valid in this
range.

The DFA scaling indices (o) were obtained by
formula (2) and had a range of (0.776-0.887). Because
this range was between 0 and 1, our results were Frac-
tional Gaussian Noise (FGN), as mentioned above.

Then, and we mean the FGN case, the DFA expo-
nent coincides with the well-known Hurst expo-
nent [30]. The given range of these indicators indicates
relatively high stability of abdominal EMG. In other
words, we dealt with a time series with sufficiently long
memory [20].
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Fig. 1. Power-law decaying of a correlogram (ID=6)
in double-logarithmic coordinates; here, the "RMS"
abbreviation means the known operation Root of Mean
Square (the arithmetic mean of the squares
of a set of numbers)

The DFA exponent factor (nicknamed Hurst expo-
nent) has also become a numeric attribute. This will be
mentioned further as z3 after z-scoring.

3.3. Variability and Outliers

Variability is one of the most common traits of
medical signals. This reflects the homeostasis of living
things in fickle surroundings—an example of this gen-
eral phenomenon is EMG [9]. This fact was first noted
in [10] and then detailed in [11].

Let us consider the robust statistical indicators of
variability. The interquartile ranges (IQR) are the most
known among them. This indicator is stable enough for
the outliers’ impacts. The so-called breakdown point for
IQR is equal to 1/4. In other words, IQR still has a rea-

sonable value, even if the outliers reach a quarter of the
sample [26]. Statistical box plots are a handy tool for
conjoint visual analysis of IQRs and outliers [32]. Fig-
ure 2 shows the box plots for all records in our dataset.

The top whiskers show the so-called upper inner
fence: (Q3+1.51QR, where Q3 denotes the bound of the
third quartile). The bottom whiskers show a lower inner
fence: Q1-1.51QR, where Q1 is the bound of the first
quartile [32]. Points outside of fences are outliers (also
called emissions). They can spoil the statistics but also
hold valuable information [26, 33]. Therefore, one
should not remove this part of the data at once without
thorough analysis.

IQRs are robust enough statistics. However, frac-
tions larger than 1/4 of outliers force us to search for
even more robust descriptors for variability (see Fig. 2).
Fortunately, more robust variability indexes exist with a
breakdown value of up to 1/2. One is the median abso-
lute deviation (MAD) [26, 33], which we will use fur-
ther in this paper. In addition, we will prefer medians to
means when analyzing the central tendencies for the
same reason [10, 11]. MADs and IRQs are excellently
correlated: the linear correlation coefficient is 0.9948
for our dataset.

We wrote a short program (procedure on the Ma-
ple programing language) to compute the outlier frac-
tions in the dataset records. There are a few methods of
outlier detection and box plots, and Tukey’s method is
the only one of them [34, 35]. We used the "median
rule" [35], counting outliers.
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Variabilities, mkV
fe=]
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Fig. 2. The box-and-whisker plot with outliers for the abdominal EMGs for the studied data set; the horizontal axis
shows the IDs of subjects (1 to 40); the vertical one is graduated in microvolts, which matches the EMG signal
measure units; the height of boxes compares IQR (in mkV), the horizontal lines inside boxes show the medians;

the boxes are colored according to the quartiles of variability: the first quartile (the lowest boxes highs)
are white, the fourth one (highest boxes) is dark, and the second and third are middle colored
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The results of outlier counting confirmed our pre-
liminary concern: the percentage of outliers can reach
up to 24.6% of the samples (ID 2, for example). The
significant parts of the outliers catch the eye in Fig. 2.
The individual points that mark each outlier are merged
into solid bold lines. Variability (as MADs) and outlier
percentages were two additional numeric attributes
(z2 and z1 after z-scoring, respectively).

3.4. Norming by Z-scores and principal
components analysis (PCA)

Every subject from the dataset has a specific vector
representation (input vector of attributes) with the four
numeric attributes mentioned above. These numeric
attributes (genes in accord with another terminology)
are the following: outlier fraction (in percent), variabil-
ity (shown as MAD in mkV), persistence exponent, and
SNR (both are dimensionless).

Good practice in pattern recognition and Machine
Learning areas [13, 29] requires the norming of such
vectors to obtain dimensionless and comparable numer-
ic attributes. There are various ways to achieve this
norm [13]. We have done these using modified
Z-scores, which use medians and MADs [26, 33]:

= 0.6745- (x—Median(x))
- MAD (%) ’

®)

where X is an attribute mentioned above. Statistics trials,
which are histograms [27], probability density func-
tions [28], and normal plots, claim that all z-attributes
have probability distributions that resemble Gauss ones
skewed approximately. The highest modes for distribu-
tions were observed near zero z-scores, which was ex-
pected.

The four normalized attributes (z1, z2, z3, and z4)
were pairwise correlated; therefore, they cannot be con-
sidered entirely independent. The complete correlation
coefficient matrix for them is as follows:

/1 —0.3096 —0.3538 —0.0245\
c=| 1 0.2078  0.6167

I
\ 1 —0.1419 /
1

These correlation coefficients might be statistically
significant or not. This depends on the absolute value of
the so-called critical correlation coefficient. This value
separates significant and insignificant correlations. The
critical values table, by Student statistics, has two in-
puts: the number of subjects in the population (40) and
the confidence level (let it be standard 0.95). In such a
case, the critical correlation coefficient is 0.2635. Thus,

at least half of the matrix (4) correlations are statistical-
ly significant. Hence, the decorrelation by PCA (Princi-
pal Components Analysis) seems to be well-grounded.

PCA is not only decorrelating but also ranking
principal components. The chart in Fig. 3 shows that the
contribution of the z_4 principal component to the total
variance is the weakest. We can neglect z_4 further be-
cause it affects only about 4% of the total variance.
Such a dimensionality reduction does not mean that we
ignore SNR or some of the other data because the PCA
procedure has already included them all in other princi-
pal components (z_1, z_2, and z_3). Therefore, we
leave only the three above principal components in a
further study as numeric attributes.

There is also a cast of outliers among principal
component values. Table 1 shows the IDs of such sub-
jects, which were recognized as outliers, using three
different methods [33, 34].

z_ 1

0.57

0.41

0.31 z 2

0.21

0.11 z 4

Fig. 3. Ranking of principal components:
the vertical axis shows the relative contribution
of the principal component to the total variance

Table 1
Subjects with abnormal values (outliers)
of the principal components

Method of detection IDs

Modified z-scoring {2,5,9, 15, 19, 27, 31, 32}

Tukey's (box plot) {2,5,9, 15, 19, 27, 31, 32}

Median rule {2,5,9,15 27,31} (4

4. Results

4.1. Graph-based clustering of the dataset
and one more categorial attribute

Various clustering methods in machine learning
use the distance matrix in one way [13] and [14] or an-
other [29]. Here, we refer to the distances among the
subjects within the metric attribute vector space. Thus,
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the dilemma "Manhattan or Euclidean distances?"
appears at the beginning of the process.

We have chosen Manhattan (also called Leming's
or L1-metric). The point is that our variables are suffi-
ciently different by their nature. In addition to being
statistically independent, they have different ranges of
z-scores: approximately 14.0, 8.9, and 6.0, respectively.
In addition, statistics recommend considering any modi-
fied z-score with modules greater than 3.5 as potential
excess (outlier). The dataset has a cast of outliers (see
Table 1).

Therefore, we obtained a matrix holding 780 dis-
tances between 40 subjects, defined by points in the
three-dimensional (3D) attribute vector space. One can
show the points and distances among them in the men-
tioned space as a graph in the graph theory sense. This
is a completely biconnected graph with 40 vertices and
780 weighted edges. The center of this graph is the ver-
tex with ID 16, which has minimal eccentricity
(12.854). The diameter of the graph is 20.103.

Closeness centrality is, within graph theory, the
inverse of the average shortest distance between the
vertex and all other vertices in the graph. The inversion
is used because a higher closeness centrality indicates a
greater centrality, resulting in a shorter average distance
to other vertices [36]. Thus, smaller values are typical
for peripheral vertices (nodes) with mostly high edge
(arc) weights. The compacter core nodes have shorter
edges and larger values of closeness centralities (see
Fig.4).

Fig. 4 lets us consider two ranges of closeness cen-
tralities at least. The first of two is the range
(0.158-0.202), which matches the right-shifted higher
part of the histogram and determines the central (core)
vertex subgraph. The second range (0.068-0.143) corre-
sponds to a subgraph of the peripheral vertices. Table 2
shows some parameters of the complete graph and the
two above subgraphs.

(=]
<
|

N

s

Relative frequency

h

P

e

008 010 012 014 016 018 020
Closeness centrality
Fig. 4. Histogram and estimation of the probabilities
density function [28] for closeness centrality
of the vertices of the complete graph

Note that all outliers from Table 1 fall into the pe-
ripheral subgraph as a subset of its vertices. The diame-
ter of the complete graph is equal to that of its peripher-
al subgraph but roughly two and a half times larger than
the diameter of the central core subgraph. Thus, we can
now introduce the fourth categorical (or nominal) at-
tribute for a vertice, depending on whether it belongs to
the closeness centrality ranges: low or high. This attrib-
ute may also be binary: 0 or 1, with an average weighted
value of 0.75.

4.2. Power spectra and breathing patterns

Fig. 5 shows the visual odds between the breathing
pattern spectra of the two representatives. The high and
narrow peaks, possibly with a few minor satellites, are
specific for regular breathing (left-hand side plot of Fig.
5). The irregular one finds many far lower tops over a
far broader frequency range. Thus, visual breathing pat-
tern recognition within the frequency domain is quite
accessible to clinicians.

We found 10 (25%) subjects with regular breath-
ing and 30 (75%) persons with irregular breathing
among 40 sleeping adults. Curious that this percentage

Table 2

Some parameters of the complete graph and its subgraphs with low
and high closeness centralities of the vertices

Object Complete graph, Core subgraph, Peripheral subgraph,
biconnected biconnected biconnected
Vertices: Vertices: Vertices:
from 1 to 40; {1,4,6,7,8,10, 11, 12, 13, 14, 16, 18, | {2, 3,5, 9, 15, 17, 19, 22, 27,
total 40 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 31, 32};
34, 35, 36, 37, 38, 39, 40}; total 11
total 29
Parameters | 780 weighted edges 406 weighted edges; 55 weighted edges

Diameter: 20.1035

Diameter: 8.0450

Diameter: 20.1035

Central vertex: 16

Central vertex: 34

Central vertex: 22

Closeness centrality
range:
(0.068-0.202)

Closeness centrality range:
(0.158-0202)

Closeness centrality range:
(0.068-0.143)
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Fig. 5. Power spectra or periodograms in arbitrary units for two representatives
of the regular breathing pattern (left-hand side, ID 5) and the irregular one (right-hand, ID 34);
pay attention to the different scales for the power axes

relation roughly matches the number ratio of vertices in
subgraphs (clusters) of the previous section (11 to 29).
Therefore, the distribution into two breathing patterns is
as follows:

1. Ten subjects with IDs {3, 5, 6, 9, 11, 15, 20, 27,
31, 37} belong to the second class (regular breathing
pattern);

2. Thirty subjects with 1Ds {1, 2, 4, 7, 8, 10, 12,
13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30,
32, 33, 34, 35, 36, 38, 39, 40} belong to the first one
(irregular breathing).

This permits us to form a categorial attribute of the
class belonging: irregular and regular. Let us summa-
rize: we have three numeric and two nominal attributes.
The last of them is the class attribute. This permits us to
form a categorial attribute of the class belonging: irregu-
lar and regular.

Now we can create an ARFF (Attribute-Relation
file format) file with five attributes and forty instances,
input for Weka software specified to Machine Learn-
ing [37]. This file, with the extension ".txt" instead of
".arff," is attached to the paper for the readers working

with Weka. They can perform their experiments with
that.

4.3. Machine Learning with Weka software:
classification, learning curves, clustering,
and variables rank

Weka (we have worked with version 3-9-6) is an
open-source data mining software that many researchers
use. Weka has GUI (graphic user interface) that is
handy and user-friendly. Weka Explorer allows prepro-
cessing, classifying, clustering, filtering, and visualizing
data.

The data set was preprocessed by a Weka- filter,
which converts nominal attributes to binary (We-
ka.filters.unsupervised.attribute.Nominal ToBinary).
This filter was used for the nominal attribute
"close_centrality."

The classification test option was cross-validation
with eight folds (the data set was segmented into eight
parts). All trials had this option varying according to the
classifiers listed in the first column of Table 3.

Table 3
Comparison of classifier performances for the dataset
Classifier Confus_lon Precision Sensitivity F-measure ROC area Ka_ppa
matrix (Recall) statistics

Bayes Network 246 g 0.800 0.800 0.800 0.757 0.4667
eFr"tered Classifi- 246 g 0.800 0.800 0.800 0.810 0.4667
J48 247 2 0.825 0.825 0.822 0.815 0.5172
Random tree Zf (13 0.875 0.875 0.867 0.809 0.6296
IMT (logistic 30 0 0.950 0.950 0.948 0.994 0.8571
model tree) 2 8
Voted Percep- 30 0 0.975 0.975 0.975 0.997 0.931
tron 1 9
Multilayer Per- | = 4, 0 0.975 0.975 0.975 1,000 0.931
ceptron
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Confusion matrices have an upper row matching
the irregular pattern, whereas the lower one — is the reg-
ular pattern. The F-measure is the harmonic mean of the
precision and sensitivity (recall). Receiver operating
characteristic (ROC) is a plot illustrating a binary classi-
fier’s diagnostic ability at various decision-making
thresholds. Many researchers use the area under ROC in
the framework of Machine Learning for classifier com-
parison. The closer the ROC area is to 1.00, the better
the classifier’s performance. Usually, ROC area greater
than 0.85 may be considered acceptable. The kappa sta-
tistics (Cohen's statistics, Interrater reliability measure
[38]) is also determined by confusion matrix elements.
It estimates the agreement between the two classes'
evaluations. Table 3 shows various estimations from
moderate agreement (0.41 - 0.60) to near perfect (0.81-
0.99).

Learning curves in ML show the predictive per-
formance as a function of the size of the population (or
the number of instances), sometimes it may be the num-
ber of instances of a training set [23]. Fig. 6 shows the
dependence of the ROC area as a measure of perfor-
mance on the number of instances in the study popula-
tion.

[]
0.95] ®
0.904
g 0.859
5 0.801 s
& (0.759
0.7(4
0.651
[
15 20 25 30 35 40
Data set size

Fig. 6. The Learning curve for LMT-classifier
(see Table 3): points show the results of the experiments
within Weka; the logistic curve is their
interpolation (fitting)

Hence, it is a learning curve. The logistic curve fitted
the experimental results (points) obtained in the LMT
classifier framework (logistic model tree, see Table 3).
The LMT classifier performs well enough (ROC

area > 0.85), already at 25 or more instances in the da-
taset. Note that the LMT classifier is not the champion
of performance among those listed in Table 3.

The clustering algorithm finds groups of similar
instances in the entire dataset. WEKA supports several
clustering algorithms. Some of them are displayed in
Table 4. A new, graph-based method of clustering is
also presented, described above in subsection 4.1 for
comparison.

One can see that the clustering result obtained by
the suggested graph-based method is closest to the out-
comes of the EM algorithm of Weka. Although the out-
puts of Simple K-mean and Density Based clusters also
are near enough to those predictions. Agreement among
the four methods from Table 4 appears entirely satisfac-
tory, approving the technique suggested in section 4.1.

Weka also allows the ranking of variables (attrib-
utes). We have exploited Evaluator named "weka.
Attribute selection. InfoGainAttributeEval" that worked
on all data set with "Information Gain Ranking Filter."
Attributes were ranked in the following order:
1. z 1(0.467); 2. z_2(0.456); 3. z_4 (close centrality,
0.118); 4. z_3 (0).

After this rating, the third numerical attribute (z_3)
seems unnecessary for classification or clustering pur-
poses (see also Fig.3). The reader can check this suspi-
cion by changing the quantity of the attributes in the
ARFF file for the dataset, which is an appendix to this
article.

5. Discussions

The special processing of the abdominal EMG se-
ries described in this paper has permitted us to classify
asleep adults' regular or irregular breathing patterns. In
principle, this is possible by a few characteristics of
their abdominal EMG using the classifiers by the Ma-
chine Learning method, with a small percentage of di-
agnostic errors. The initial set of such characteristics
(attributes) includes variability, outlier percentage,
SNR, and persistency factor (all as numeric). One more
nominal (or binary) attribute belongs to one of two clus-
ters within the dataset.

Table 4
Comparison of clustering methods
. EM (expectation . Suggested

Method Simple K-mean ma>(<imFi)zation) Density Based Gragr?—Base q
Clusters 1 2 1 2 1 2 1 2

Z1 3.9866 -0.6924 2.5046 -0.2905 3.9866 -0.6924 2.4985 -0.2916

Z2 1.4067 0.0513 1.1049 0.1195 1.4067 0.0513 1.0645 0.0658

Z3 -1.0150 -1.2436 -2.5759 -0.6602 -1.0150 -1.2436 -2.5834 -0.6611

Z4 0.4 0.8333 0.0073 0.9968 0.4 0.8333 0.0 1.0
Capacity 10 30 11 29 11 29 11 29

Inter-cluster 6.2630 5.6962 6.2630 5.7111

distance
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The new clustering met is suggested in this paper based
on the Graph theory category as "the closeness
centrality.”

Another new nontrivial result is that these EMG
features are linked with breathing patterns. This con-
firms earlier hypotheses [9, 10, 11, 29] about maintain-
ing outliers in EMGs as carriers of specific information.
Meanwhile, the haste of outliers ruling out at the start of
research is typical not only for this paper [39] but also
for many others devoted to biomedical signal statis-
tics [10, 11].

Let us note another type of "outlier" mentioned in
the text (see Table 1 in subsection 3.4). These subjects
belong to the far periphery of the weighted biconnected
graph of the dataset (Table 2 in subsection 4.1), which is
quite far from the graph center. Still, it does not prevent
them from being classified within the dataset later.
There is a question: how often do researchers reject
such data simultaneously because they spoil the ortho-
dox statistics?

Although the outliers are responsible for some ad-
verse effects, we obtained excellent performance indica-
tors, at least for some classifying algorithms (see Ta-
ble 3) using Weka 3-9-5 software [37]. The experimen-
tally obtained learning curve [23], the dependence of
ROC area on the population size, testifies that accepta-
ble classification performance might be achieved even
for relatively small datasets (25 and more subjects).

An essential argument suggested by the new
graph-based method is that the main cluster features
(number of clusters, their capacities, centers coordi-
nates, and distances between centers) are close to the
results obtained within Weka algorithms of clustering.

A novelty and the advantage of this study is the
more profound insight into the role of outliers in EMGs.
This paper is one of the few first steps in this direc-
tion [9, 10, 28]. As an additional essential and promis-
ing direction, we consider studies of power-law decay-
ing of autocorrelation functions for EMGs reflecting the
"long-memory" of these series. In the Introduction, we
promised to stress this paper’s novelty elements. It is the
following shortlist:

— finding the first uniform ETS model for ab-
dominal EMGs that allows denoising and detrending of
the signal;

— determining the persistency grade and Hurst
exponent for series cleared out of noises and trends;

— a consequent and accurate account of outliers
and their effects;

— applying robust statistics to abdominal EMGs
with many outliers;

— the new bond finding among the breathing pat-
terns of asleep adults on the one hand and shares of out-
liers, variabilities, persistency factors, and SNR of ab-
dominal EMGs on the other.

A new method of graph-based clustering for da-
tasets.

Returning to the aims and tasks of this study, men-
tioned above in section 1, we are convinced that all of
them have been achieved.

Conclusions

Machine Learning with Weka software is a power-
ful and promising tool for medical signal processing and
associated diagnostics. The detailed physiological rela-
tionships between abdominal EMG parameters and
sleeping breathing patterns have not yet confirmed ex-
cept for some general lore. Nonetheless, it did not pre-
vents us from finding this bond and even using it for
sleep disorder diagnostics with acceptable precision.

We classified 40 subjects' breathing patterns using
cross-validations (k=8) and a few classifiers. The best
performance shows classifiers on perceptions (multi-
layer and voted ones). At this, we did not neglect outli-
ers, which are inherent in most EMGs. Sure, it needs
special processing of the raw EMGs. The development
of such a technique is one of the results of this paper.
Perhaps, these details of signal handling are hardly un-
derstandable, curious, and accessible to most clinicians.
However, these aspects might be "packed" into comput-
er programs. Then clinicians become just users of them,
without needing to "deep diving" inside specific details.

Let us draw a few short conclusions, recalling our
tasks from section 1.

1. The Error-Trend-Seasonality model was the
same for all data sets. Abdominal EMG of sleeping pa-
tients showed additive errors and undamped trends
without any seasonality.

2. The correlograms’ decaying according to the
power law had been set, and Hurst exponents are in the
range (of 0.776-0.887). It testifies to "long memory"
(high persistence) of abdominal EMGs.

3. The modified Z-scores and robust statistics
with the highest breakdown values were used for the
EMG parameters because of many outliers.

4. Breathing patterns were set using periodograms
in the frequency domain using the Wiener-Khinchin
theorem.

5. The new graph-based method was successfully
exploited for clustering of the dataset. Parallel clustering
with Weka algorithms confirmed the graph-based clus-
tering results.
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MAWHUHI ABIOMIHAJILHAX EJEKTPOMIOI PAM:
IMATEPHU JUXAHHSA CILIAYUX JOPOCINX

T'ennaoin Yyiko, €e2en [apuanyk, Onvea /leopnuux, Apocnae Kpaiinux

IIpenmeTom cratTi € 00poOKka 3amuciB enekTpomiorpam (EMI') yepeBHOI MOPOKHUHU Ta BU3HAUCHHS MaTep-
HIB TuxaHHA. MeTa Mojirae B ToMy, 100 aBTOMAaTHYHO KJIacH(DiKyBaTH MAaTePHU MUXAaHHS y JBOX Kilacax abo Kia-
cTepax 3a JIBOMa MaTepHaMH JUXAHHS, PErySIPHAM i HEPEryIsSpHHM, BUKOPHCTOBYIOYM METOIU MAIMHHOIO HAB-
yanHs (ML). O6’exkTom nociimkenHs OyB HaOip nanux i3 40 BunankoBo BuOpanux 3anuciB EMI™ uepeBHOi mopox-
HUHM (YacToTta auckperu3anii nopiBHioe 200 I'), 3amo3ndeHnx i3 MOBHOro Habopy AaHMX, omyosikoBaHoro JlaGo-
paropiero oOuHCITIOBaNIbHOI KIIiHIYHOI Helpodizionorii Ta JlabopaTopiero aHimMamii KIiHIYHUX JaHUX Maccadycer-
CBKOI 3aranpHOl JiKapHi. 3aBIaHHs, SKi BUPIMIYIOThCS: 3HalTH Mozens ETS (errors-trend-seasonality) mms cepii
EMI" MeTooM eKCIOHEHIaJbHOIO 3TIIaPKyBaHHS; OTPUMAaHHs 3HENIYMJICHHX 1 JIETPEHIOBAaHUX CUTHAIIIB; OTpPH-
MaHHs Noka3HHKiB Xepcra it EMIT 3 BUKOPUCTaHHSM CTENEHEBOT0 3aKOHY CIajay KOpenorpam IJisl CUTHAIIB 3i
3HW)KEHUM IIYMOM 1 3 BHUKIIOYEHHM TpeH/IoM; onurc BapiabenbHocTi, SNR, ¢pakuiii BUKHIIB 1 MoKka3HUKIB XepcTa
3a JIONOMOrO0 po0ACTHOI CTATHCTHKM, BUKOHAHHS KOPEJSALIMHOIO aHali3y Ta aHaji3y TOJIOBHUX KOMIIOHEHTIB
(PCA); aHami3 cTpyKTYpH BiJaJieHOT MaTpuili rpad)OBMM METOIOM; OTPUMAHHS MepioJorpaM y YacTOTHIH 00JacTi
3a BiIOMOIO TeopeMoro Binepa-XiH4unHa; momyk Haiikpaiux Mozeneit 1 MeroziB knacugikalii Ta Kiactepusarii ta
X OIliHKa B paMKax Cy4aCHHX METOJIB MAIIMHHOTO HaBYaHHs. BUKOPHCTOBYBaHI METOIM: €KCIIOHEHIiaIbHE 3TJIa-
JUKyBaHHs, Teopema Binepa-XiHuiHa, merosa Teopii rpadiB, aHalli3 TOJOBHUX KOMIIOHEHT, MpPOrpaMyBaHHS B
MAPLE 2020 ta o6podka nanux Weka. ABTopu oTpuMaiy HacTyIHI pe3ynbTaTd: 1) MHpOKa MIiHJIMBICTH JTAHUX
Oyna omiHeHa 3a JOIOMOrOI0 MEiaHHNX a0COIOTHUX BiAXHJIEHB, SKi € HAaHO1IbII HA/IIHHOIO CTATHCTUKOIO B IILOMY
BHIIAKY; 2) OumbIicTh curHaitis (38 i3 40) moka3aiay yacTi BUKHIU: Bifl KITBKOX BiCOTKIB 10 24,6 % BUKHIIB; 3) 1
YOTHPY 3MiHHI: BiZICOTOK BUKHIiB, MiHIKBIicTh, SNR i (hakropu cTiikocTi — GOpMYIOTh aTpUOYTH BX1THHX BEKTODIB
Cy0’€KTIiB JJIsl O/IANBIIOTO0 MAIIMHHOTO HaBYaHHS 3a JIOIOMOTOI0 ITporpaMHoro 3adesnedeHnst Weka; 4) MaTpuiis
MaHXETTEHCbKHX BiJICTaHell cepe]] BEeKTOpiB cy0’ekTiB y npocTopi 4D aTpuOyTiB A03BOJISE MPEACTaBUTH HAOIp na-
HHX Y BUIJIIZI 3BOKEHOr0 Tpada, BEpIIMHAMU SIKOTO € cy0’eKTH; 5) Bark pebep rpada BigoOpaxaroTh BiICTaHI MiX
Oynb-AKor0 1X mapor. «LleHTpanbHicTh OJIM3BKOCTI» BEPILIUH JIO3BOJIIIA HAM KJIACTEPU3YBaTH Ha0lp JaHUX Ha JBa
wiactepu 3 111 29 cy6’extamu, i anroputmu kiaactepusarii Weka miarBepauiiu neit pe3yaprar; 6) KpuBa HABYAHHS
HOKa3ye, 110 JOCTaTHhO Majui HaOlp naHux (3 25 cy0’eKTiB) Moxe mifiiT ajst kinacudikanii. BucHoBku. Hayko-
Ba HOBM3HA OTPHMAHHX PE3y/IbTaTiB moisirae B HactymHomy: 1) monens Error-Trend-Seasonality 6yma o1HaKOBOO
Jutst BCiX HaOopiB nanux. AGpominanbHa EMI nmauieHTiB yBi CHI Mana JOJATKOBI OMMJIKH Ta HE3aTyXaroul TPeH !
6e3 Oymb-SKOi CE30HHOCTI; 2) PO3Ma KOPEIorpam 3a CTEIIEHEBUM 3aKOHOM BCTAHOBJICHO, MMOKA3HUKH XepcTa 3Ha-
xomsThes B aianasoHi (0,776—0,887). Lle cBigunTh Npo «IOBry mam'sth» (BUCOKY CTiHKicTh) abnominanbHux EMI;
3) MomudikoBaHi Z-MOKA3HUKK Ta HAiMHA CTATUCTHKA 3 HAWBHIMMH 3HAYCHHIMH PO30OUBKH BHKOPHCTOBYBAJIHCS
1t mapametpis EMIT uepe3 6arato BUKHIIB; 4) ATepHH JUXAHHSA BCTAHOBJIIOBAIMCS 32 TIEPiOJOrpaMaMH B 4acTo-
THii 00JacTi 3 BUKOPUCTaHHAM Teopemu Binepa-XindiHa; 5) HOBHIA METO HA OCHOBI rpadiB YCIIlIHO BUKOPUCTA-
HO /Il Kiactepusauii HaOopy nanux. [lapanenbHa kinacrepu3sanis 3a gornoMororo anropurmiB Weka miareepanina
pe3ynbTaTh Kilactepu3allii Ha ocHOBI TpadiB.

Karwuosi ciioBa: abjomiHanbHa eleKTpoMiorpaMa; MaTTepHU ITUXaHHS, MalllMHHE HaBYaHHS; BapiaTHBHICTS,
BUKUAU, MTOCTINHICTD.
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