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ABDOMINAL ELECTROMYOGRAMS MINING:  

BREATHING PATTERNS OF ASLEEP ADULTS 
 

The article’s subject matter is the processing of abdominal EMG recordings and finding breathing patterns. 

The goal is to automatically classify respiratory patterns into two classes, or clusters, by two breathing pat-

terns, regular and irregular, using machine learning (ML) methods. The object of the study was to obtain a 

dataset of 40 randomly picked abdominal EMG recordings (sampling rate equal to 200 Hz) borrowed from the 

complete dataset published by the Computational Clinical Neurophysiology Laboratory and the Clinical Data 

Animation Laboratory of Massachusetts General Hospital. The tasks to be solved are as follows: finding ETS 

(errors-trend-seasonality) model for the EMG series using the exponential smoothing method; obtaining de-

noised and detrended signals; obtaining the Hurst exponents for EMGs using the power-law decaying of corre-

lograms for the denoised and detrended signals; describing the variabilities, SNR, the outlier fractions, and 

Hurst exponents by robust statistics, performing correlation analysis, and Principal Components Analysis 
(PCA); analyzing the structure of the distant matrix by a graph-based technique; obtaining the periodograms 

in the frequency domain using the known Wiener-Khinchin theorem; and finding the best models and methods 

of classification and clusterization and evaluating them within modern Machine Learning methods. The meth-

ods used are exponential smoothing, the Wiener-Khinchin theorem, the graph theory method, principal com-

ponent analysis, programing within MAPLE 2020, and data processing by Weka. The authors obtained the fol-

lowing results: 1) wide data variability has been rated with the median absolute deviations, which is the most 

robust statistic in this case; 2) most of the signals (38 of 40) showed frequent outliers: from a few percent up to 

24.6 % of emissions; 3) these four variables: outliers' percentage, variability, SNR, and persistency factors – 

form the attributes of input vectors of the subjects for further Machine Learning with Weka software; 4) Man-

hattan distances matrix among subjects' vectors in 4D attributes space allows imaging the data set as a 

weighted graph, the vertices of which are subjects; 5) the weights of the graph's edges reflect distances be-
tween any pair of them. "Closeness centralities" of vertices allowed us to cluster the data set on two clusters 

with 11 and 29 subjects, and Weka clustering algorithms confirmed this result. 6) The learning curve shows 

that a sufficiently small data set (from 25 subjects) might be suitable for classification purposes. Conclusions. 

The scientific novelty of the results obtained is as follows: 1) the Error-Trend-Seasonality model was the same 

for all data sets. Abdominal EMG of sleeping patients had additive errors and undamped trends without any 

seasonality; 2) the correlograms' decaying according to power law had been set, and Hurst exponents were in 

the range (of 0.776–0.887). This testifies to "long memory" (high persistence) of abdominal EMGs; 3) the mod-

ified Z-scores and robust statistics with the highest breakdown values were used for the EMG parameters be-

cause of many outliers; 4) breathing patterns were set using the periodograms in the frequency domain using 

the Wiener-Khinchin theorem; 5) the new graph-based method was successfully exploited to cluster the da-

taset. Parallel clustering with Weka algorithms confirmed the graph-based clustering results. 
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tency. 
 

Introduction 
 

Healthy sleep is a necessary part of the life cycle 

and circadian rhythm. Sleep upsets have become a con-

joint field of study in physiology and medicine. For ex-

ample, many shared efforts have been devoted to this 

topic: several databases of known biomedical por-

tals [1], in particular [2], with detailed descriptions 

in [3]. The reasons for sleep disorders may be manifold. 

In particular, the authors [4], and even more coherent-

ly [5], have recently pointed out severe sleep maladies 

among various population layers caused by the  

COVID-19 pandemic [6].  

The breathing pattern of sleeping adults shall be, 

as an ideal, regular and maintain some range of frequen-

cies. The range (12–20) of breathing cycles per minute 

that meets frequencies (0.2–0.33) Hz is commonly ac-

cepted [7]. Less regular breathing characterizes the wak-

ing-up state for evident reasons. 

Abnormal breathing rates (BR), outgoing from the 

bounds of the above range, are perhaps the most fre-

quently admitted sign of sleep disorder. Although the 

BR can rise slightly at the so-called Rapid Eyes Moving 

(REM, fast sleep stage), this little climb drops again at 

the slow sleep. This slow stage of sleep is the prevailing 

one: 80 % versus 20 % [8]. 

 Gennady Chuiko, Yevhen Darnapuk, Olga Dvornik, Yaroslav Krainyk, 2023 
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Thus, asleep breathing is a low-frequency process 

that must be directly reflected by abdominal electromy-

ograms (EMGs) if one considers the role of the dia-

phragm and abdominal muscles in breathing. Therefore, 

abdominal EMGs picked from vaster data [1, 2] ran-

domly served as the dataset for mining BR in this paper.  

Breathing patterns are the main but not the only 

subject of this study. The persistence estimation of 

EMGs as time series, their exponential smoothing mod-

el, variability and outlier studies, clustering, and hetero-

geneity of the dataset are also on the "shortlist of inter-

ests" of this report. For example, the variability of med-

ical signals and EMGs displays the homeostasis phe-

nomenon inherent in living organisms [9]. Outliers are a 

common problem with EMGs that cannot be neglected 

during their proper processing. It was first noted in [10] 

concerning EMGs and then developed in [11]. 

Insight into persistence grade and the Errors-

Trend-Seasonality (ETS) model is vital for forecasting 

and interpreting the EMG series. The exponential 

smoothing method (or ETS modeling) prognoses the 

future results of a time series based on past results. Its 

feature is the exponentially decaying weights of past 

results [12]. The ETS model of the signal allows its de-

composition, denoising, and detrending if needed. 

The authors intend to knot these different aspects 

at first glance into one complete. Thus, non-trivial rela-

tions among the described subjects can define the novel-

ty of this research if they can be convincingly shown. 

Data mining is often described as patterns and non-

trivial knowledge discovery in databases. This approach 

relies on Machine Learning (ML) methods, robust sta-

tistics, and modern time series analysis tools. 

Let us recall the machine learning tasks [13, 14]. 

One can stress clustering of data, anomalies (outliers) 

search, probability density function estimation from 

data, data visualization, and Principal Component Anal-

ysis (PCA). The EMG data mining in this paper will 

include all of the above listed. 

The text above is the authors’ attempt to base the 

study’s relevancy, explain its subject and trend, and 

convince the reader that this topic is worthy of study. 

The reader can find the aims and tasks of this research 

in section 1. 

 

1. Related works, aims, and tasks  

of the study 

 

First, we should mention the papers [1 - 3] because 

our dataset is a small part of this richer data. 

Sources [2, 3] hold only common data descriptions and 

do not profoundly analyze their branches. These data 

ensured that studies of various sleep upsets. Apnoea of 

all types and hypopnea are dominant within the da-

ta [2, 3] (roughly in equal fractions [2]). The data in-

clude 13 physiological signals, and the abdominal 

EMGs of sleeping adults are only one of them. 

A row (23 publications) of recent works is devoted 

to these data and work with them. Source [15] contains 

their list and relevant references. Most consider methods 

for automatically detecting certain relatively rare sleep 

disorders within complete data using all or most signals. 

Machine Learning methods were used in their pure 

form. 

In contrast, we will consider a small data set 

picked randomly from the cited above data [2, 3] and 

source [15]. Moreover, this dataset will include only 

abdominal EMGs because they are correlated with 

sleeping respiratory patterns. Let us refer to the periodic 

movement of the diaphragm and its joined muscles dur-

ing breathing to explain this bond. 

Respiratory rate and breathing patterns (BPs) may 

serve as objective signs to identify lung diseases [16]. 

The commonly recognized classification of BPs, includ-

ing abnormal ones, has existed for a long time [7, 8, 17]. 

However, these patterns are considered within the time 

domain most often. Meanwhile, the regularity or irregu-

larity of breathing should manifest better in the frequen-

cy domain. Sad to say, but such frequency domain stud-

ies are rare. 

The paper [18] is worth more detailed mention as 

an example of frequency domain studies. A row of res-

piratory indicators is presented and extracted by remote 

photoplethysmography using a video camera. The signal 

power spectrum for 12 waking volunteers is shown in 

the frequency domain. Dominant peaks occupied the 

interval (0.12–0.39) Hz, matching BR from 7 to 23 

breaths per minute. In addition, two patterns, regular 

and irregular breathing, were presented for a volunteer. 

Note that similar BPs concerning asleep people will be 

the main subject of our paper. As one can see from [18], 

the pattern of regular breathing differs by a mighty and 

narrow peak (maybe with a pair of minor satellites) 

within the (0.2–0.33) Hz band. It corresponds to BR in 

the (12–20) breaths per minute. Irregular breathing 

shows lower and broader peaks, extending this band.  

In contrast to the work cited above, this study in-

tends to extract these respiratory patterns from ab-

dominal EMGs. These patterns will be bonded with 

these series' variability, outlier percentages, persistence 

factors, and signal-to-noise ratios (SNR). 

Thus, the aim of this study is defined. This study 

aims to automatically classify respiratory patterns into 

two classes, or clusters, by two breathing patterns, regu-

lar and irregular, using machine learning (ML) methods. 

Therefore, the input vectors include outlier percentage 

in series, variability, persistence factor (Hurst expo-

nent), and SNR. We need to resolve few associated 

problems to attain the abovementioned aim. One can 

arrange them in the following order: 
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1 Finding an error-trend-seasonality (ETS) model 

for EMG series using the exponential smoothing meth-

od [11] and obtaining denoised and detrended signals. 

2 Obtaining the Hurst exponents for EMGs using 

the power-law decaying of correlograms for the de-

noised and detrended signals [19, 20]. 

3 Describing the variabilities, SNR, outlier frac-

tions, and Hurst exponents using robust statistics, per-

forming correlation analysis, and Principal Components 

Analysis (PCA). 

4 Analyzing the structure of the distant matrix 

using a graph-based technique. 

5 Obtain the periodograms in the frequency do-

main using the known Wiener-Khinchin theorem [21]. 

6 Finding the best models and methods of classi-

fication and clusterization and evaluating them within 

modern Machine Learning methods. 
 

2. Methods and data 
 

2.1. Provenance and main features of the data 

 
The Computational Clinical Neurophysiology La-

boratory and the Clinical Data Animation Laboratory of 

Massachusetts General Hospital have provided their 

data for the 2018 Computing in Cardiology Challenge 

conference [2]. The data include 1,985 patients who 

were watched at the hospital to diagnose sleep condi-

tions. The balanced training set (n = 994) and testing set 

(n = 989) comprised two parts of data [2] and [3].  

One can find in [2] the means and standard devia-

tions of such parameters as age, gender, body mass in-

dex, drug use, and reasons for a clinic visit of the sub-

jects. Sleep and arousal features of patients have also 

been presented. We have not exploited these "demo-

graphic" descriptions, so these are presented here by 

reference instead of a large table or direct citation. 

Medics recorded a set of signals as the subjects 

slept. The offered time series included electroenceph-

alography (EEG), electrooculography (EOG), electro-

myography (EMG), electrocardiography (ECG), and 

arterial blood oxygen saturation (SaO2). EMGs were 

recorded at the chin, chest, and abdomen. The sampling 

rate was equal to 200 Hz. Almost all signals were meas-

ured in microvolts, except for SaO2 given in percentage. 

These data can be imported into Python, Matlab (V4 or 

higher), and C programs [2]. 

We randomly selected 40 abdominal EMG record-

ings from the test set. The selection of subjects for our 

dataset was performed by the "Random Tools" software 

package from Maple 2020 [22]. Thus, randomness of 

selection was the main criterion for creating the dataset 

(the studied population). The size of the studied popula-

tion (40 people) may have caused some complaints 

about its "insufficiency." In the framework of the learn-

ing curves method [23], we will return to this point lat-

er, evaluating the classifier by performance depending 

on the size of the population. 

Each series had an initial duration of 3 min  

(N = 36000 samples at the sampling rate of 200 Hz). 

However, we later slightly reduced it to N = 32768, an 

integer degree of two, for convenient calculations. 

 

2.2. Methods as a Shortlist 

 
Let us begin with exponential smoothing, as de-

scribed in electronic resources [12, 24] and in the pa-

per [25], since it is used to handle the data first. This 

method serves chiefly as a forecasting tool for time se-

ries. The main idea is that older data are much less valid 

for prognosis than fresh data. Therefore, older data have 

weights with exponential decay.  

On the other hand, it is also a series modeling 

method called the Error-Trend-Seasonality pattern. 

There are over 30 types of such models. It depends on 

additive or multiplicative errors. Is the trend existing or 

not? Furthermore, is it additive or multiplicative and 

damped if there is a trend? Whether seasonal changes 

are present and whether they are additive or multiplica-

tive. 

The ETS model choice is also an optimization 

problem. Information criteria evaluating the goodness of 

fit for a model for a time series are used. It may be a 

Bayesian criterion, as an example. 

In addition, the insight of the ETS model allows us 

to denoise and detrend the primary signals. Detrend 

Fluctuation Analysis (DFA) and similar methods of 

persistence studies of series demand such a prepared 

series. Below, we will study the power-law decay of the 

autocorrelation functions of detrended EMGs similar  

to [19, 20] but using the Wiener-Khinchin theorem [21]. 

Because the outliers’ problem is inherent in EMG 

signals, notable robust statistics are required for their 

description [10, 11]. This touches on the statistics that 

evaluate the central tendency and estimate the variabil-

ity. Their breakdown values [26] must be over 25% be-

cause the fraction of outliers sometimes exceeds that. 

Simplified, this means that statistics have to maintain 

reasonable meaning under conditions up to half of the 

outliers in a data. Robust statistical descriptors (estima-

tors) with high breakdown values (up to 50%) must re-

sist outliers. Fortunately, these statistics exist. 

The authors built histograms according to the 

methods of [27, 28]. Estimates of probability density 

from data were performed within the density estimation 

theory using kernel functions (KDE) [28]. The reader 

can consider these KDE curves to be highly smoothed 

histograms or as estimations of probability density func-

tions. 

First, we selected four numeric attributes in the in-

put vector (image) of a subject in the dataset. These 
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were modified z-scores of variability, outlier percent-

age, persistency factor, and signal-to-noise (SNR) ratio. 

However, the correlation analysis shows the decorrela-

tion necessity for these attributes. Principal component 

analysis (PCA) was performed by diagonalizing the 

covariation matrix. PCA allows us to rank variables 

(attributes) on their deposits into total variance. In addi-

tion, PCA often allows the reduction of the dimension-

ality of the problem. 

We used the Graph theory method to divide the da-

taset into two unequal subsets: the core and peripheral 

vertices (nodes). Both subsets define the biconnected 

subgraphs with weighted edges (arcs) by distance ma-

trix. Subgraphs have well-different diameters and non-

overlapping ranges of the so-called closeness centrality 

values. We have accepted the belonging of a Graph 

node (point in vector space of attributes) to one of two 

such ranges as the additional attribute. This attribute 

may be nominal ("low centrality" and "high centrality") 

or even binary (0 and 1). One can find various graph-

based clusterization methods in the book [29]. However, 

we could not find either there or elsewhere an approach 

similar enough to that used in our study 

The power spectrum is the Fourier transform of a 

signal's ACF. This claim is the Wiener-Khinchin theo-

rem content, also called the Wiener–Khinchin–Einstein 

theorem or the Khinchin Kolmogorov theorem [20]. 

One of the effects of this theorem is the linear correla-

tion among DFA scaling exponent (α), power spectra 

decay exponent (β), and ACF decay exponent (γ). On 

the basis of this theorem, we have built EMG power 

spectra not from the signal but from its ACFs. These 

spectra were used to define breathing pattern classes 

(regular or irregular) because they were easily separat-

ed, even visually. 
 

3. Experiments: data preprocessing 

 

3.1. Exponential Smoothing model  

and clearing of EMGs series 

 

The optimal exponential smoothing model was the 

same for all EMGs. Additive errors, additive undamped 

trends, and no seasonality are the points of this model. 

The uniform ETS model shows us some series affinity 

within the data set. 

Insight into the ETS model lets one clear off the 

initial series' noises and trends. According to the ETS 

model, one can separate noise and trends from signals. 

One can find autocorrelation functions (ACFs, correlo-

grams) with the plain decay for handled raw series 

without noises and trends. It looks like the well-known 

Detrended Fluctuation Analysis (DFA) method [19]. 

There is the same target as well: to estimate the persis-

tency of the series.  

Note that the noises are relatively low in data  

[1 - 3]. So, the signal-to-noise ratio (SNR) [30] belongs 

to the range (40–61) dB. That can slightly surprise one 

because such a high SNR is not often met among medi-

cal signals. For a collation: the SNR does not exceed 20 

dB for tibial EMG data [9, 11]. We have chosen the 

SNR of our data set as one of the numeric attributes of 

the input vectors for Machine Learning (it will be de-

noted as z4 further). 

 

3.2. Power-law decaying of correlograms  

and estimations of persistency 

 

Persistent and antipersistent time series can show 

hyperbolic, also called power-law, decay. Fractional 

Gaussian noise (FGN) is a known model with hyperbol-

ic decay [19, 20]. Detrended fluctuation analysis (DFA) 

is a popular method for determining the persistency fac-

tors of time series [19]. Time series with persistent 

"long memory" have diverged correlation times. They 

differ by power-law decaying autocorrelation functions 

(ACF, correlograms) with lags [20]: 
 

ACF~L−γ,                              (1) 
 

where L is a lag, and γ is the decay factor. The relation 

(1) must be a straight line with a slope equal to γ within 

the double logarithmic coordinates. 

There exists a simple linear relation between DFA 

scaling exponent (α) and the correlogram decay factor 

(γ) [19, 20]: 
 

α = 1 −
γ

2
.      (2) 

 

This relation is a result of mentioned already Wie-

ner-Khinchin theorem [21].  

Here we want to show the power law decaying ac-

cording to formula (1) for one of the correlograms, but 

the same straight lines are also typical for the others. Let 

it is a correlogram for subject ID = 6 (see Fig. 1). 

Note the excellent linearity of the graph: the ad-

justed coefficient of determination (R-squared) is 

0.9968. Other correlograms also showed acceptable 

linearity over several lags: L = (512–32768). Thus, the 

decay power law (see equation (1)) is valid in this 

range. 

The DFA scaling indices (α) were obtained by 

formula (2) and had a range of (0.776–0.887). Because 

this range was between 0 and 1, our results were Frac-

tional Gaussian Noise (FGN), as mentioned above. 

Then, and we mean the FGN case, the DFA expo-

nent coincides with the well-known Hurst expo-

nent [30]. The given range of these indicators indicates 

relatively high stability of abdominal EMG. In other 

words, we dealt with a time series with sufficiently long 

memory [20]. 
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Fig. 1. Power-law decaying of a correlogram (ID=6)  

in double-logarithmic coordinates; here, the "RMS" 

abbreviation means the known operation Root of Mean 

Square (the arithmetic mean of the squares  

of a set of numbers) 

 

The DFA exponent factor (nicknamed Hurst expo-

nent) has also become a numeric attribute. This will be 

mentioned further as z3 after z-scoring. 

 

3.3. Variability and Outliers 

 

Variability is one of the most common traits of 

medical signals. This reflects the homeostasis of living 

things in fickle surroundings—an example of this gen-

eral phenomenon is EMG [9]. This fact was first noted 

in [10] and then detailed in [11].  

Let us consider the robust statistical indicators of 

variability. The interquartile ranges (IQR) are the most 

known among them. This indicator is stable enough for 

the outliers’ impacts. The so-called breakdown point for 

IQR is equal to 1/4. In other words, IQR still has a rea-

sonable value, even if the outliers reach a quarter of the 

sample [26]. Statistical box plots are a handy tool for 

conjoint visual analysis of IQRs and outliers [32]. Fig-

ure 2 shows the box plots for all records in our dataset.  

The top whiskers show the so-called upper inner 

fence: (Q3+1.5IQR, where Q3 denotes the bound of the 

third quartile). The bottom whiskers show a lower inner 

fence: Q1-1.5IQR, where Q1 is the bound of the first 

quartile [32]. Points outside of fences are outliers (also 

called emissions). They can spoil the statistics but also 

hold valuable information [26, 33]. Therefore, one 

should not remove this part of the data at once without 

thorough analysis. 

IQRs are robust enough statistics. However, frac-

tions larger than 1/4 of outliers force us to search for 

even more robust descriptors for variability (see Fig. 2). 

Fortunately, more robust variability indexes exist with a 

breakdown value of up to 1/2. One is the median abso-

lute deviation (MAD) [26, 33], which we will use fur-

ther in this paper. In addition, we will prefer medians to 

means when analyzing the central tendencies for the 

same reason [10, 11]. MADs and IRQs are excellently 

correlated: the linear correlation coefficient is 0.9948 

for our dataset. 

We wrote a short program (procedure on the Ma-

ple programing language) to compute the outlier frac-

tions in the dataset records. There are a few methods of 

outlier detection and box plots, and Tukey’s method is 

the only one of them [34, 35]. We used the "median 

rule" [35], counting outliers.  

 

 

 
 

Fig. 2. The box-and-whisker plot with outliers for the abdominal EMGs for the studied data set; the horizontal axis 

shows the IDs of subjects (1 to 40); the vertical one is graduated in microvolts, which matches the EMG signal 

measure units; the height of boxes compares IQR (in mkV), the horizontal lines inside boxes show the medians;  

the boxes are colored according to the quartiles of variability: the first quartile (the lowest boxes highs)  

are white, the fourth one (highest boxes) is dark, and the second and third are middle colored 
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The results of outlier counting confirmed our pre-

liminary concern: the percentage of outliers can reach 

up to 24.6% of the samples (ID 2, for example). The 

significant parts of the outliers catch the eye in Fig. 2. 

The individual points that mark each outlier are merged 

into solid bold lines. Variability (as MADs) and outlier 

percentages were two additional numeric attributes  

(z2 and z1 after z-scoring, respectively). 

 

3.4. Norming by Z-scores and principal  

components analysis (PCA) 

 

Every subject from the dataset has a specific vector 

representation (input vector of attributes) with the four 

numeric attributes mentioned above. These numeric 

attributes (genes in accord with another terminology) 

are the following: outlier fraction (in percent), variabil-

ity (shown as MAD in mkV), persistence exponent, and 

SNR (both are dimensionless).  

Good practice in pattern recognition and Machine 

Learning areas [13, 29] requires the norming of such 

vectors to obtain dimensionless and comparable numer-

ic attributes. There are various ways to achieve this 

norm [13]. We have done these using modified  

Z-scores, which use medians and MADs [26, 33]: 

 

 z =
0.6745∙ (x−Median(𝐱))

MAD(𝐱)
,                   (3) 

 

where x is an attribute mentioned above. Statistics trials, 

which are histograms [27], probability density func-

tions [28], and normal plots, claim that all z-attributes 

have probability distributions that resemble Gauss ones 

skewed approximately. The highest modes for distribu-

tions were observed near zero z-scores, which was ex-

pected. 

The four normalized attributes (z1, z2, z3, and z4) 

were pairwise correlated; therefore, they cannot be con-

sidered entirely independent. The complete correlation 

coefficient matrix for them is as follows: 

 

  C =

(

 
 

1 −0.3096 −0.3538 −0.0245

1 0.2078 0.6167

1 −0.1419

1 )

 
 

 (4) 

 

These correlation coefficients might be statistically 

significant or not. This depends on the absolute value of 

the so-called critical correlation coefficient. This value 

separates significant and insignificant correlations. The 

critical values table, by Student statistics, has two in-

puts: the number of subjects in the population (40) and 

the confidence level (let it be standard 0.95). In such a 

case, the critical correlation coefficient is 0.2635. Thus, 

at least half of the matrix (4) correlations are statistical-

ly significant. Hence, the decorrelation by PCA (Princi-

pal Components Analysis) seems to be well-grounded. 

PCA is not only decorrelating but also ranking 

principal components. The chart in Fig. 3 shows that the 

contribution of the z_4 principal component to the total 

variance is the weakest. We can neglect z_4 further be-

cause it affects only about 4% of the total variance. 

Such a dimensionality reduction does not mean that we 

ignore SNR or some of the other data because the PCA 

procedure has already included them all in other princi-

pal components (z_1, z_2, and z_3). Therefore, we 

leave only the three above principal components in a 

further study as numeric attributes. 

There is also a cast of outliers among principal 

component values. Table 1 shows the IDs of such sub-

jects, which were recognized as outliers, using three 

different methods [33, 34]. 

 

 
 

Fig. 3. Ranking of principal components:  

the vertical axis shows the relative contribution  

of the principal component to the total variance 

 

Table 1 

Subjects with abnormal values (outliers)  

of the principal components 

Method of detection IDs 

Modified z-scoring {2, 5, 9, 15, 19, 27, 31, 32} 

Tukey's (box plot) {2, 5, 9, 15, 19, 27, 31, 32} 

Median rule {2, 5, 9, 15, 27, 31} 

 

4. Results 

 

4.1. Graph-based clustering of the dataset 

and one more categorial attribute 

 

Various clustering methods in machine learning 

use the distance matrix in one way [13] and [14] or an-

other [29]. Here, we refer to the distances among the 

subjects within the metric attribute vector space. Thus, 
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the dilemma "Manhattan or Euclidean distances?"  

appears at the beginning of the process.  

We have chosen Manhattan (also called Leming's 

or L1-metric). The point is that our variables are suffi-

ciently different by their nature. In addition to being 

statistically independent, they have different ranges of 

z-scores: approximately 14.0, 8.9, and 6.0, respectively. 

In addition, statistics recommend considering any modi-

fied z-score with modules greater than 3.5 as potential 

excess (outlier). The dataset has a cast of outliers (see 

Table 1).  

Therefore, we obtained a matrix holding 780 dis-

tances between 40 subjects, defined by points in the 

three-dimensional (3D) attribute vector space. One can 

show the points and distances among them in the men-

tioned space as a graph in the graph theory sense. This 

is a completely biconnected graph with 40 vertices and 

780 weighted edges. The center of this graph is the ver-

tex with ID 16, which has minimal eccentricity 

(12.854). The diameter of the graph is 20.103. 

Closeness centrality is, within graph theory, the 

inverse of the average shortest distance between the 

vertex and all other vertices in the graph. The inversion 

is used because a higher closeness centrality indicates a 

greater centrality, resulting in a shorter average distance 

to other vertices [36]. Thus, smaller values are typical 

for peripheral vertices (nodes) with mostly high edge 

(arc) weights. The compacter core nodes have shorter 

edges and larger values of closeness centralities (see 

Fig.4). 

Fig. 4 lets us consider two ranges of closeness cen-

tralities at least. The first of two is the range  

(0.158–0.202), which matches the right-shifted higher 

part of the histogram and determines the central (core) 

vertex subgraph. The second range (0.068–0.143) corre-

sponds to a subgraph of the peripheral vertices. Table 2 

shows some parameters of the complete graph and the 

two above subgraphs. 

 
Fig. 4. Histogram and estimation of the probabilities  

density function [28] for closeness centrality  

of the vertices of the complete graph 

 

Note that all outliers from Table 1 fall into the pe-

ripheral subgraph as a subset of its vertices. The diame-

ter of the complete graph is equal to that of its peripher-

al subgraph but roughly two and a half times larger than 

the diameter of the central core subgraph. Thus, we can 

now introduce the fourth categorical (or nominal) at-

tribute for a vertice, depending on whether it belongs to 

the closeness centrality ranges: low or high. This attrib-

ute may also be binary: 0 or 1, with an average weighted 

value of 0.75. 

 

4.2. Power spectra and breathing patterns 

 

Fig. 5 shows the visual odds between the breathing 

pattern spectra of the two representatives. The high and 

narrow peaks, possibly with a few minor satellites, are 

specific for regular breathing (left-hand side plot of Fig. 

5). The irregular one finds many far lower tops over a 

far broader frequency range. Thus, visual breathing pat-

tern recognition within the frequency domain is quite 

accessible to clinicians. 

We found 10 (25%) subjects with regular breath-

ing and 30 (75%) persons with irregular breathing 

among 40 sleeping adults. Curious that this percentage 
 

Table 2 

Some parameters of the complete graph and its subgraphs with low  

and high closeness centralities of the vertices 

Object 
Complete graph, 

biconnected 

Core subgraph, 

biconnected 

Peripheral subgraph, 

biconnected 

Parameters 

Vertices: 

from 1 to 40; 

total 40 

Vertices: 

{1, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 18, 

20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 

34, 35, 36, 37, 38, 39, 40}; 

total 29 

Vertices: 

{2, 3, 5, 9, 15, 17, 19, 22, 27, 

31, 32}; 

total 11 

780 weighted edges 406 weighted edges; 55 weighted edges 

Diameter: 20.1035 Diameter: 8.0450 Diameter: 20.1035  

Central vertex: 16 Central vertex: 34 Central vertex: 22 

Closeness centrality 

range: 

(0.068–0.202) 

Closeness centrality range: 

(0.158–0202) 

Closeness centrality range: 

(0.068–0.143) 
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Fig. 5. Power spectra or periodograms in arbitrary units for two representatives  

of the regular breathing pattern (left-hand side, ID 5) and the irregular one (right-hand, ID 34);  

pay attention to the different scales for the power axes 
 

relation roughly matches the number ratio of vertices in 

subgraphs (clusters) of the previous section (11 to 29). 

Therefore, the distribution into two breathing patterns is 

as follows: 

1. Ten subjects with IDs {3, 5, 6, 9, 11, 15, 20, 27, 

31, 37} belong to the second class (regular breathing 

pattern); 

2. Thirty subjects with IDs {1, 2, 4, 7, 8, 10, 12, 

13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 

32, 33, 34, 35, 36, 38, 39, 40} belong to the first one 

(irregular breathing). 

This permits us to form a categorial attribute of the 

class belonging: irregular and regular. Let us summa-

rize: we have three numeric and two nominal attributes. 

The last of them is the class attribute. This permits us to 

form a categorial attribute of the class belonging: irregu-

lar and regular.  

Now we can create an ARFF (Attribute-Relation 

file format) file with five attributes and forty instances, 

input for Weka software specified to Machine Learn-

ing [37]. This file, with the extension ".txt" instead of 

".arff," is attached to the paper for the readers working 

with Weka. They can perform their experiments with 

that. 

 

4.3. Machine Learning with Weka software: 

classification, learning curves, clustering,  

and variables rank 

 

Weka (we have worked with version 3-9-6) is an 

open-source data mining software that many researchers 

use. Weka has GUI (graphic user interface) that is 

handy and user-friendly. Weka Explorer allows prepro-

cessing, classifying, clustering, filtering, and visualizing 

data. 

The data set was preprocessed by a Weka- filter, 

which converts nominal attributes to binary (We-

ka.filters.unsupervised.attribute.NominalToBinary). 

This filter was used for the nominal attribute 

"close_centrality." 

The classification test option was cross-validation 

with eight folds (the data set was segmented into eight 

parts). All trials had this option varying according to the 

classifiers listed in the first column of Table 3. 

 
 

Table 3 

Comparison of classifier performances for the dataset 

Classifier 
Confusion 

matrix 
Precision 

Sensitivity 

(Recall) 
F-measure ROC area 

Kappa 

statistics 

Bayes Network 
26 4 

0.800 0.800 0.800 0.757 0.4667 
4 6 

Filtered Classifi-

er 

26 4 
0.800 0.800 0.800 0.810 0.4667 

4 6 

J48 
27 3 

0.825 0.825 0.822 0.815 0.5172 
4 6 

Random tree 
29 1 

0.875 0.875 0.867 0.809 0.6296 
4 6 

IMT (logistic 

model tree) 

30 0 
0.950 0.950 0.948 0.994 0.8571 

2 8 

Voted Percep-

tron  

30 0 
0.975 0.975 0.975 0.997 0.931 

1 9 

Multilayer Per-

ceptron 
30 0 0.975 0.975 0.975 1.000 0.931 
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Confusion matrices have an upper row matching 

the irregular pattern, whereas the lower one – is the reg-

ular pattern. The F-measure is the harmonic mean of the 

precision and sensitivity (recall). Receiver operating 

characteristic (ROC) is a plot illustrating a binary classi-

fier’s diagnostic ability at various decision-making 

thresholds. Many researchers use the area under ROC in 

the framework of Machine Learning for classifier com-

parison. The closer the ROC area is to 1.00, the better 

the classifier’s performance. Usually, ROC area greater 

than 0.85 may be considered acceptable. The kappa sta-

tistics (Cohen's statistics, Interrater reliability measure 

[38]) is also determined by confusion matrix elements. 

It estimates the agreement between the two classes' 

evaluations. Table 3 shows various estimations from 

moderate agreement (0.41 - 0.60) to near perfect (0.81-

0.99). 

Learning curves in ML show the predictive per-

formance as a function of the size of the population (or 

the number of instances), sometimes it may be the num-

ber of instances of a training set [23]. Fig. 6 shows the 

dependence of the ROC area as a measure of perfor-

mance on the number of instances in the study popula-

tion.  
 

 
 

Fig. 6. The Learning curve for LMT-classifier  

(see Table 3): points show the results of the experiments 

within Weka; the logistic curve is their  

interpolation (fitting) 
 

Hence, it is a learning curve. The logistic curve fitted 

the experimental results (points) obtained in the LMT 

classifier framework (logistic model tree, see Table 3). 

The LMT classifier performs well enough (ROC  

area > 0.85), already at 25 or more instances in the da-

taset. Note that the LMT classifier is not the champion 

of performance among those listed in Table 3. 

The clustering algorithm finds groups of similar 

instances in the entire dataset. WEKA supports several 

clustering algorithms. Some of them are displayed in 

Table 4. A new, graph-based method of clustering is 

also presented, described above in subsection 4.1 for 

comparison. 

One can see that the clustering result obtained by 

the suggested graph-based method is closest to the out-

comes of the EM algorithm of Weka. Although the out-

puts of Simple K-mean and Density Based clusters also 

are near enough to those predictions. Agreement among 

the four methods from Table 4 appears entirely satisfac-

tory, approving the technique suggested in section 4.1. 

Weka also allows the ranking of variables (attrib-

utes). We have exploited Evaluator named "weka.  

Attribute selection. InfoGainAttributeEval" that worked 

on all data set with "Information Gain Ranking Filter."  

Attributes were ranked in the following order:  

1. z_1(0.467); 2. z_2(0.456); 3. z_4 (close centrality, 

0.118); 4. z_3 (0).  

After this rating, the third numerical attribute (z_3) 

seems unnecessary for classification or clustering pur-

poses (see also Fig.3). The reader can check this suspi-

cion by changing the quantity of the attributes in the 

ARFF file for the dataset, which is an appendix to this 

article. 

 

5. Discussions 

 
The special processing of the abdominal EMG se-

ries described in this paper has permitted us to classify 

asleep adults' regular or irregular breathing patterns. In 

principle, this is possible by a few characteristics of 

their abdominal EMG using the classifiers by the Ma-

chine Learning method, with a small percentage of di-

agnostic errors. The initial set of such characteristics 

(attributes) includes variability, outlier percentage, 

SNR, and persistency factor (all as numeric). One more 

nominal (or binary) attribute belongs to one of two clus-

ters within the dataset.  

Table 4 

Comparison of clustering methods 

Method Simple K-mean 
EM (expectation 

maximization) 
Density Based 

Suggested 

Graph-Based 

Clusters 1 2 1 2 1 2 1 2 

Z_1 3.9866 -0.6924 2.5046 -0.2905 3.9866 -0.6924 2.4985 -0.2916 

Z_2 1.4067 0.0513 1.1049 0.1195 1.4067 0.0513 1.0645 0.0658 

Z_3 -1.0150 -1.2436 -2.5759 -0.6602 -1.0150 -1.2436 -2.5834 -0.6611 

Z_4 0.4 0.8333 0.0073 0.9968 0.4 0.8333 0.0 1.0 

Capacity 10 30 11 29 11 29 11 29 

Inter-cluster 

distance 
6.2630 5.6962 6.2630 5.7111 
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The new clustering met is suggested in this paper based 

on the Graph theory category as "the closeness  

centrality." 

Another new nontrivial result is that these EMG 

features are linked with breathing patterns. This con-

firms earlier hypotheses [9, 10, 11, 29] about maintain-

ing outliers in EMGs as carriers of specific information. 

Meanwhile, the haste of outliers ruling out at the start of 

research is typical not only for this paper [39] but also 

for many others devoted to biomedical signal statis-

tics [10, 11]. 

Let us note another type of "outlier" mentioned in 

the text (see Table 1 in subsection 3.4). These subjects 

belong to the far periphery of the weighted biconnected 

graph of the dataset (Table 2 in subsection 4.1), which is 

quite far from the graph center. Still, it does not prevent 

them from being classified within the dataset later. 

There is a question: how often do researchers reject 

such data simultaneously because they spoil the ortho-

dox statistics? 

Although the outliers are responsible for some ad-

verse effects, we obtained excellent performance indica-

tors, at least for some classifying algorithms (see Ta-

ble 3) using Weka 3-9-5 software [37]. The experimen-

tally obtained learning curve [23], the dependence of 

ROC area on the population size, testifies that accepta-

ble classification performance might be achieved even 

for relatively small datasets (25 and more subjects).  

An essential argument suggested by the new 

graph-based method is that the main cluster features 

(number of clusters, their capacities, centers coordi-

nates, and distances between centers) are close to the 

results obtained within Weka algorithms of clustering. 

A novelty and the advantage of this study is the 

more profound insight into the role of outliers in EMGs. 

This paper is one of the few first steps in this direc-

tion [9, 10, 28]. As an additional essential and promis-

ing direction, we consider studies of power-law decay-

ing of autocorrelation functions for EMGs reflecting the 

"long-memory" of these series. In the Introduction, we 

promised to stress this paper’s novelty elements. It is the 

following shortlist:  

– finding the first uniform ETS model for ab-

dominal EMGs that allows denoising and detrending of 

the signal;  

– determining the persistency grade and Hurst 

exponent for series cleared out of noises and trends;  

– a consequent and accurate account of outliers 

and their effects;  

– applying robust statistics to abdominal EMGs 

with many outliers;  

– the new bond finding among the breathing pat-

terns of asleep adults on the one hand and shares of out-

liers, variabilities, persistency factors, and SNR of ab-

dominal EMGs on the other. 

A new method of graph-based clustering for da-

tasets. 

Returning to the aims and tasks of this study, men-

tioned above in section 1, we are convinced that all of 

them have been achieved. 

 

Conclusions 

 

Machine Learning with Weka software is a power-

ful and promising tool for medical signal processing and 

associated diagnostics. The detailed physiological rela-

tionships between abdominal EMG parameters and 

sleeping breathing patterns have not yet confirmed ex-

cept for some general lore. Nonetheless, it did not pre-

vents us from finding this bond and even using it for 

sleep disorder diagnostics with acceptable precision.  

We classified 40 subjects' breathing patterns using 

cross-validations (k=8) and a few classifiers. The best 

performance shows classifiers on perceptions (multi-

layer and voted ones). At this, we did not neglect outli-

ers, which are inherent in most EMGs. Sure, it needs 

special processing of the raw EMGs. The development 

of such a technique is one of the results of this paper. 

Perhaps, these details of signal handling are hardly un-

derstandable, curious, and accessible to most clinicians. 

However, these aspects might be "packed" into comput-

er programs. Then clinicians become just users of them, 

without needing to "deep diving" inside specific details. 

Let us draw a few short conclusions, recalling our 

tasks from section 1. 

1. The Error-Trend-Seasonality model was the 

same for all data sets. Abdominal EMG of sleeping pa-

tients showed additive errors and undamped trends 

without any seasonality. 

2. The correlograms’ decaying according to the 

power law had been set, and Hurst exponents are in the 

range (of 0.776–0.887). It testifies to "long memory" 

(high persistence) of abdominal EMGs. 

3. The modified Z-scores and robust statistics 

with the highest breakdown values were used for the 

EMG parameters because of many outliers. 

4. Breathing patterns were set using periodograms 

in the frequency domain using the Wiener-Khinchin 

theorem. 

5. The new graph-based method was successfully 

exploited for clustering of the dataset. Parallel clustering 

with Weka algorithms confirmed the graph-based clus-

tering results. 
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МАЙНИНГ АБДОМІНАЛЬНИХ ЕЛЕКТРОМІОГРАМ:  
ПАТЕРНИ ДИХАННЯ СПЛЯЧИХ ДОРОСЛИХ 

Геннадій Чуйко, Євген Дарнапук, Ольга Дворник, Ярослав Крайник 

Предметом статті є обробка записів електроміограм (ЕМГ) черевної порожнини та визначення патер-
нів дихання. Мета полягає в тому, щоб автоматично класифікувати патерни дихання у двох класах або кла-
стерах за двома патернами дихання, регулярним і нерегулярним, використовуючи методи машинного нав-
чання (ML). Об’єктом дослідження був набір даних із 40 випадково вибраних записів ЕМГ черевної порож-
нини (частота дискретизації дорівнює 200 Гц), запозичених із повного набору даних, опублікованого Лабо-
раторією обчислювальної клінічної нейрофізіології та Лабораторією анімації клінічних даних Массачусет-
ської загальної лікарні. Завдання, які вирішуються: знайти модель ETS (errors-trend-seasonality) для серії 
ЕМГ методом експоненціального згладжування; отримання знешумлених і детрендованих сигналів; отри-
мання показників Херста для ЕМГ з використанням степеневого закону спаду корелограм для сигналів зі 
зниженим шумом і з виключеним трендом; опис варіабельності, SNR, фракцій викидів і показників Херста 
за допомогою робастної статистики, виконання кореляційного аналізу та аналізу головних компонентів 
(PCA); аналіз структури віддаленої матриці графовим методом; отримання періодограм у частотній області 
за відомою теоремою Вінера-Хінчина; пошук найкращих моделей і методів класифікації та кластеризації та 
їх оцінка в рамках сучасних методів машинного навчання. Використовувані методи: експоненціальне згла-
джування, теорема Вінера-Хінчіна, метод теорії графів, аналіз головних компонент, програмування в 
MAPLE 2020 та обробка даних Weka. Автори отримали наступні результати: 1) широка мінливість даних 
була оцінена за допомогою медіанних абсолютних відхилень, які є найбільш надійною статистикою в цьому 
випадку; 2) більшість сигналів (38 із 40) показали часті викиди: від кількох відсотків до 24,6 % викидів; 3) ці 
чотири змінні: відсоток викидів, мінливість, SNR і фактори стійкості – формують атрибути вхідних векторів 
суб’єктів для подальшого машинного навчання за допомогою програмного забезпечення Weka; 4) матриця 
манхеттенських відстаней серед векторів суб’єктів у просторі 4D атрибутів дозволяє представити набір да-
них у вигляді зваженого графа, вершинами якого є суб’єкти; 5) ваги ребер графа відображають відстані між 
будь-якою їх парою. «Центральність близькості» вершин дозволила нам кластеризувати набір даних на два 
кластери з 11 і 29 суб’єктами, і алгоритми кластеризації Weka підтвердили цей результат; 6) крива навчання 
показує, що достатньо малий набір даних (з 25 суб’єктів) може підійти для класифікації. Висновки. Науко-
ва новизна отриманих результатів полягає в наступному: 1) модель Error-Trend-Seasonality була однаковою 
для всіх наборів даних. Абдомінальна ЕМГ пацієнтів уві сні мала додаткові помилки та незатухаючі тренди 
без будь-якої сезонності; 2) розпад корелограм за степеневим законом встановлено, показники Херста зна-
ходяться в діапазоні (0,776–0,887). Це свідчить про «довгу пам'ять» (високу стійкість) абдомінальних ЕМГ; 
3) модифіковані Z-показники та надійна статистика з найвищими значеннями розбивки використовувалися 
для параметрів ЕМГ через багато викидів; 4) патерни дихання встановлювалися за періодограмами в часто-
тній області з використанням теореми Вінера-Хінчіна; 5) новий метод на основі графів успішно використа-
но для кластеризації набору даних. Паралельна кластеризація за допомогою алгоритмів Weka підтвердила 
результати кластеризації на основі графів. 

Ключові слова: абдомінальна електроміограма; паттерни дихання; машинне навчання; варіативність; 
викиди; постійність. 
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