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The subject matter of this study is algorithms for measuring the components of an aircraft speed vector and alti-
tude. The goal of this study is to improve algorithms for processing wideband stochastic pulse signals in helicop-

ter low-altitude and flight-speed radio systems by introducing secondary signal processing based on artificial in-

telligence elements. The tasks to be solved are as follows: to develop an optimal algorithm for determining the 

speed and altitude of flight for a helicopter radio complex; to supplement the signal processing algorithm with an 

artificial intelligence-based processor to determine the "safety" of the current trajectory; provide the pilot with 

relevant information about possible options for further actions based on an analysis of the current position of the 

helicopter and flight parameters; and to analyse the efficiency of the proposed complex when using various artifi-

cial intelligence-based algorithms. The methods used are as follows: methods of mathematical statistics and op-

timal solutions for solving problems of statistical synthesis of active radio complex structure; methods of machine 

learning; and methods of computer simulation. The following results were obtained. The algorithms for signal 

processing in a helicopter radio complex are obtained by the method of maximum likelihood, and the use of three 
radio channels to calculate the full vector of speed and altitude is argued. The structure of a secondary infor-

mation processing system, using algorithms based on artificial intelligence is proposed. The effectiveness of de-

termining the safety of the current landing trajectory using various algorithms based on artificial intelligence 

(LinearSVC, GaussianNB, DecisionTreeClassifier, RandomForestClassifier, KNeighborsClassifier, MLPClassifi-

er and RidgeClassifier) was analysed. Conclusions. The simulation results show that in the presence of accurate 

(noise-free) information on the current location of the helicopter, its axial velocities, and a map of the terrain with 

defined areas dangerous for landing, the DecisionTreeClassifier and RandomForestClassifier algorithms can 

provide a high probability of correctly determining the safety of the current landing trajectory. At the same time, 

in the presence of instability in the measurements of helicopter movement parameters, only the Random-

ForestClassifier algorithm maintains high accuracy. 

 

Keywords: signal processing algorithm; onboard altitude radar; optimal algorithm; machine learning; artifi-
cial intelligence. 

 

Introduction 

 

Motivation. Today, aviation is one of the most 

technologically advanced modes of transport that con-

tinues to develop rapidly. Different types of aircraft are 

used in many areas, ranging from civilian cargo trans-

portation to military applications. However, despite 

their widespread use, aircraft have some of the highest 

requirements for pilot and maintenance personnel train-

ing and onboard systems for various purposes. This is 

because any, even a minor, pilot error, equipment mal-

function, etc. can cause an airplane crash [1, 2]. 

Currently, significant efforts of various organiza-

tions and manufacturers are aimed at reducing opera-

tional safety risks in aviation [3]. As can be seen from 

the ICAO statistics [4], since 2013, the number of acci-

dents has decreased by about 40% and has a downward 

trend. This decrease can be partially attributed to the 

development of onboard systems that can provide pilots 

with more accurate information about the current state 

of the aircraft and flight parameters and eliminate some 

of their errors during control [5, 6]. Particular attention 

is paid to the safe landing of the aircraft, since 267 sig-

nificant accidents out of 782 (34%) since 2013 occurred 

at this stage of the flight [4]. To reduce the accident rate 

at this stage, various automatic landing systems are be-

ing actively developed and tested [7, 8]. However, they 

mostly require specially equipped sites, which is not 

achievable for all types of air transport, including heli-

copters. 

Thus, an important feature of helicopters is their 

ability to land on unequipped sites with limited free 

space. This requires both high pilot skill and the acquisi-

tion of information from a significant number of 

onboard systems, including radio altimeters and flight 

speed meters [9, 10]. Currently, these are mostly two 

separate onboard active radio systems that use narrow-

band signals, with some limitations. The separation of 
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these systems increases their overall weight and size and 

power consumption, which is extremely undesirable for 

aviation systems. When helicopters are used in wartime 

(even when far from the front), narrowband signals can 

be easily jammed by the enemy. This does not allow 

pilots to safely using radio systems during flight and 

landing, which significantly increases the possibility of 

accidents. Therefore, the current task is to develop algo-

rithms and structure of a single complex capable of 

measuring both helicopter altitude and speed, which will 

significantly reduce the weight and dimensions of the 

system. It is also advisable to provide for work with 

wideband noise sensing signals [11, 12] and the use of 

AI-based piloting assistance algorithms [13]. This will 

make the operation of the complex invisible to radio 

reconnaissance and reduce the probability of an accident 

in critical situations when the possibility of a pilot’s 

error is greatest. 

State of the Art. In [14], the problem of designing 

an algorithm for processing wideband stochastic pulse 

signals and developing a relevant structural scheme for 

a helicopter radio altimeter was solved. The develop-

ment of the ideas and approaches set forth in [14] was 

obtained in [15], where signal-processing algorithms 

were synthesized for a helicopter radio complex of low 

altitudes and flight speeds, and an indirect method was 

proposed to measure altitude. Simulation has confirmed 

that such a complex [15] provides measurement of three 

components       x y zV t ,V t ,V t  velocity vector 

 V t  and flight altitude  h t  of the helicopter. In con-

trast to the known methods for determining velocity 

components [16, 17], the approach proposed in [15] 

works with pulsed ultra-wideband noise signals [18, 

19]. This provides a double effect. It increases the 

stealth of advanced helicopter equipment (by reducing 

the reliability of radio registration) and increases the 

accuracy of range measurement to the elements of the 

underlying surface. The disadvantage of using pulsed 

stochastic signals is the difficulty of determining the 

threshold for their detection [20], and the fact that their 

shape "scatters" when operating at a range of several 

km, after which it is not possible to perform coherent 

signal processing. This disadvantage is not fundamental 

for a radio complex with low altitudes and flight speeds, 

but for the unification of the system (ensuring arbitrary 

distances of operation), it is advisable to use signals 

with a large base [21, 22]. 

Another disadvantage of the signal-processing al-

gorithm in [15] is the lack of sensitivity for detecting 

vertically oriented objects in the landing zone (tree, 

mast, etc.). This is because of the peculiarities of using 

an indirect method for measuring flight altitude. Such 

an indirect method does not require irradiation of the 

area of the underlying surface directly under the heli-

copter and is insensitive to some objects during a verti-

cal landing.  

Objectives. This article proposes to improve the 

structural scheme of the helicopter radio complex [15] 

by introducing artificial intelligence elements into the 

algorithms for signal secondary processing [23, 24]. In 

this case, considerable attention will be paid to two ap-

proaches. The first is to consider a priori data on the 

underlying surface and use digital image processing 

methods [25, 26], and the second is to detect indirect 

signs of the presence of an object in the landing zone, 

which is similar to the ideas presented in [27]. In both 

cases, the decision-making process for safe landing is 

based on elements of artificial intelligence [28, 29]. 

 

Initial data.  

Description of the problem  

geometry and the main parameters 

 

The geometry of the problem of synthesizing a hel-

icopter radio complex for low altitudes and flight 

speeds [15] is shown in Fig. 1. 

In Fig. 1, the following notations are introduced: 

coordinate system 0xyz  is associated with the underly-

ing surface (the plane x0y  passes through the average 

height of the underlying surface irregularities); the co-

ordinate system 0 x y (z h )     is associated with the 

underlying surface (the plane x 0 y    passes through the 

phase center of the helicopter antenna system and is 

parallel to the plane x0y ); 1 2A ,A  are transmitting 

and receiving antennas; h  is a flight altitude; i  are 

angles in the picture plane on the underlying surface 

between the direction of flight and the projections of the 

axes of the directional diagrams onto the underlying 

surface ( i 1,2,3 ); i  are angles between the direction 

into the nadir and the corresponding beam of the radia-

tion pattern (measured from the axis of the radiation 

pattern); aV  is a helicopter speed vector. 

When synthesizing the signal processing algorithm 

in [15], a hypothesis was applied that assumes 

knowledge of the law of change in the range of the un-

derlying surface elements for each beam of the pattern. 

For this purpose, Fig. 1 shows three points 

iL ( i 1,2,3 ), which move along the arrows and go to 

the point iL  when the helicopter is moving. This 

movement of the points is observed because real radia-

tion patterns always have a width differently from the 

delta function. With this movement, the point constantly 

changes its range within the irradiated area by moving 

along lines of equal ranges. 
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Fig. 1. Geometric relationships used for speed and altitude measurements 

 

To determine the law of range change we need to 

refer to Fig. 2. In Fig.  2 the following notations have 

been added: min maxR ,R  are minimum and maximum 

range within the irradiated area of the underlying sur-

face; flR  is a continuous range of the point L .  

 

 

Fig. 2. Geometry for determining the law of range 

change during point L  migration within the irradiated 

area of the underlying surface 

Other angles on the Fig 2 have no individual val-

ues and are mathematically defined below: 
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K

y
arctan

z

 
   

 
, (1) 

 
   

h
arccos

R cos

 
   

  

, (2) 

 
2


   , (3) 

 
2


     . (4) 

 

In (1) the following notations are added 

 

 
           

            
Ky t h t tg sin t cos t

h t tg cos t sin t sin t

         

           
 

        h t cos t sin t ,      (5) 

 
           

            
Kz t h t tg sin t sin t

h t tg cos t sin t cos t

         

           
  

        h t cos t cos t ,      (6) 

 

where we assume that the height  h t , yaw angles 

 t , pitch roll  t  and roll  t  of the helicop-

ter are functions of time.  
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In (2) we add the range designation from the phase 

center of the antenna system to the center of the irradi-

ated area (measured along the axis of the antenna pat-

tern) 

 

   R , , ,h , , , t R              

 
       

 

2 2 2
K K K

2
K

h t x t y t z t
,

z t

  
  (7) 

 

were  

 

 
             

           
Kx t h t tg cos cos t cos t

h t tg sin sin t cos t

         

         
  

     h t sin t .    (8) 

 

When the analytical equations (1)-(8) have been 

determined, consider the equation for the change in the 

range law of a point L  (an elementary area on the  

underlying surface) when the helicopter is moving: 

a) for the rays directed to the front hemisphere: 

 

 
 

   
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2
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              
   

  

     

0.5
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2

2 R R V t cos ;

sin
2 2

   
  

       
  

   
   

(9) 

 

b) for a ray directed into the rear hemisphere: 

 

 

   
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2
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2
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     

0.5
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2

2 R R V t cos

sin
2 2
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  

       
  

   
   

.(10) 

 

Calculate the derivative of the law of range change 

and determine the speed. However, it should be noted 

that the derivative of this range will give the relative 

speed of the point's L  and helicopters approach. There-

fore, to calculate the speed of a helicopter, the following 

computations must be performed: 

 

  
 

 

fl

a

d
R , , ,h , , , t

dtV t
cos

         




. (11) 

 

To determine the components  
xV t ,  

yV t , 

 
zV t  velocity vector aV  the following operations 

must be performed to process the speeds: 

 

  
   

2 3
x

V t V t
V t ;

2


  

 
   

1 2
y

V t V t
V t ;

2


  

 
 

z
dh t

V t ,
dt

                                (12) 

 

where  
iV t  ( i 1,2,3 ) are the velocities calculated 

from the corresponding rays, and the height is computed 

through the ranges as follows 

 

  
   

   

     

1 3

2 2
1 3

1 3

R , t R , t
h t ,

R , t R , t

2R , t R , t cos 2

 


   

   

 (13) 

 

where  iR , t  are distances calculated in accordance 

with (7) on the i -th ray. 

 

The emitted signal.  

Equation of observation.  

Algorithm for processing  

the received signals 
 

In [15], we use the following emitted signal form:  

 

       1 2
s 0s t A tT Reexp j2 f t 0.5 t    ,(14) 

 

where  1
sA tT  is signal envelope; sT  is a signal 

(pulse) duration; 0f  is a frequency of the emitted signal, 

  1
max min sF F T   ; maxF  and minF  are maximum 

and minimum frequencies in the operating frequency 

spectrum. 

The signal received by the antenna (one i -th ray 

of the radiation pattern) is presented in the following 

form 
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        
i

1
i fl

D

s t Re F r G r A t 2 R t, r c
     

 
  

  

1
0 fl

2
1

fl

f t 2 R t, r c

exp j2 dr,

0.5 t 2 R t, r c





   
  

   
    

  

 (15) 

 i 1,2,3,   

 

where       F r F r exp j r   is a complex reflection 

coefficient of the underlying surface;  r  is a random 

phase taper during reflection from the underlying sur-

face; iD  is the area of the underlying surface irradiated 

by the radiation pattern  G r ; c  is the speed of light; 

 flR t, r  is determined in accordance with (9) or (10) 

considering that the angles , , ,h , ,           are 

uniquely associated with the radius vector  r x, y , 

which characterizes the position of the irradiated ele-

mental area on the underlying surface relative to the 

coordinate origin. 

Signal (15) is observed against the background of 

internal interference of the receiver. Therefore, the ob-

servation equation can be represented in the additive 

form of the signal and noise 

 

      
i i iu t s t n t  , i 1,2,3 ,  (16) 

 

where  n t  is a white Gaussian noise (internal receiver 

noise) with power spectral density 00.5N  and the corre-

lation function 

 

       nij 1 2 i 1 j 2 0 1 2 ijR t , t n t n t 0.5N t t     ; 

 

 1 2t t   is a delta function; ij  is the Kronecker 

symbol [30]. 

The peculiarity of the problem to be solved is op-

timization with reference to the process evaluation, spe-

cifically the law of range change    
fl,i fl,iR r R r  

for each range band within the irradiated area of the 

underlying surface (see Fig. 2). In this case, the likeli-

hood equation takes the form 

 

 

    
   

 
     
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T
2
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ln p u t | R t, r k

R r R r

1
u t s t,R t, r dt 0.

N R r

 
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 


  

 

  

 

After differentiation it can be represented as fol-

lows:  

 

  
 

  
sT

i fl,i i fl,i
fl,i0

s t,R t, r s t,R t, r dt
R r




  

  
 

  
sT

i i fl,i
fl,i0

u t s t,R t, r dt.
R r




  (17) 

 

The left side is the mathematical expectation of the 

right side; therefore, (17) is an equation, not an equality. 

The left side can be viewed as an ambiguity function of 

the system, provided that in signal (15) we take 

   F r r r   , where  r r   is a spatial delta 

function. 

Range estimation  flR̂ t, r  can be obtained on the 

basis of (17) in the form of the following variational 

derivative: 

 

 
  

   
 

 

 

i

i fl,i
fl,i

fl,i

fl,iD

fl,i
0

s t,R t, r
R r

2R t, r
Re F r G r A t

R r c

2R t, r
exp j2 f t

c








  
    

    

   
         

  

  
   

 
 

   

2
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


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 
 

  
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  

    
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  

2
1

fl,it 2R t, r c
.

2

 
  
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 
 

 (18) 

 

If we have information about the range  flR̂ t, r , 

helicopter speed  
aV t  can be further estimated using 

formula (11). However, the information obtained from 

only one beam of the radiation pattern is not sufficient 

to calculate the full helicopter velocity vector and its 

height using formulas (12) and (13). To achieve this, 

two additional measurement channels must be added to 

the system with radiation patterns pointing in different 

directions relative to each other, as shown in Figure 1. 
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Then, on the basis of the range estimates of the three 

channels, it is possible to calculate the flight speeds 

 
xV t ,  

yV t ,  
zV t  and height  h t . Subsequently, 

the pilot or the onboard automatic control system to 

adjust the flight and avoid emergencies can use the in-

formation obtained. 

. 

 

Simulation of the algorithms  

for warning about dangerous helicopter 

landing trajectories 

 

In the previous section, algorithms for measuring 

helicopter movement parameters were obtained, which 

the pilot for safe maneuvers subsequently analyzed. All 

measurements have errors resulting from internal re-

ceiver noise, various destabilizing factors, and radio 

interference. These errors distort information about the 

helicopter’s position in space. In addition, the change in 

spatial position can be affected by errors in the opera-

tion of spatial stabilization systems and bad weather 

conditions, particularly squally gusts of wind. The sec-

ondary processing of the measurement results in a cer-

tain time can reduced the influence of these factors. The 

synthesis of secondary processing algorithms can be 

performed by statistical optimization methods of filter-

ing algorithms or modern methods of artificial intelli-

gence. Next, this article considers the possibilities of 

machine learning methods for analyzing trajectories and 

providing information to the pilot about dangerous heli-

copter trajectories despite interference. 

Aviation accident statistics show that most heli-

copter accidents occur during takeoff and landing. Thus, 

for further analysis, we considered the current situation 

of helicopters landing on different trajectories, indicat-

ing critical ones in terms of overloads or descent angles. 

In addition, onboard optical vision systems at night and 

in bad weather do not allow the pilot to visualize the 

surface to make a decision on choosing a safe landing 

site. In this case, it is advisable to have a map of the 

terrain with marked safe zones, a system for calculating 

the landing point based on current trajectories, and algo-

rithms for warning of dangerous trajectories, which are 

integrated into the pilot’s decision support system.  

The idea of improving the helicopter’s control sys-

tem can be implemented as follows. Data from the radio 

engineering complex for measuring flight parameters 

(speed, altitude, and drift angles) are transmitted to an 

artificial intelligence processor. This processor also re-

ceives a periodically updated terrain map. Using digital 

image processing methods, the map identifies areas that 

pose a danger to the helicopter landing (areas with a 

slope of more than 3 degrees, infrastructure, forest plan-

tations and individual trees, and water bodies). In addi-

tion, the processor considers the restrictions imposed on 

the trajectories of this type of helicopter due to its tacti-

cal and technical characteristics. Next, artificial intelli-

gence algorithms in the processor, controlling the cur-

rent flight parameters, calculate the current trajectory 

and landing site. The calculation results are compared 

with a digital map with preclassified areas that are con-

ditionally "safe" for landing and "unsafe" for landing. If 

the trajectory is classified as dangerous, the pilot is giv-

en a warning about the dangerous trajectory in advance 

and is offered actions to correct it for a safe landing.  

A block diagram of the described system for secondary 

processing of measurement results is shown in Fig. 3. 
 

 
 

Fig. 3. Block diagram of the system secondary  

processing of the measurement results 

 

In Fig. 3 AІ is an artificial intelligence processor; 

AM is an area map; І/АP is an indicator or autopilot 

system; L is limitations of the helicopter's flight charac-

teristics; block M determines the system operation 

mode. 

To validate the proposed approach, we performed 

simulations of various algorithms and modeled two-

dimensional trajectories and studied the performance of 

a few machine learning methods for the classification 

task. An example of the trajectories analyzed is shown 

in Fig. 4. 
 

 
 

Fig. 4. Examples of helicopter landing trajectories from 

the database of possible trajectories 

 

Two components are needed to train ML (machine 

learning) algorithms: "features" and "labels". "Labels" 
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are the results we want to obtain from the model. In this 

case, whether the current trajectory is safe for landing or 

not, they are obtained by comparing a set of trajectories 

and a digital map. "Signs" are the array of information 

that is usually collected during the operation of a partic-

ular system (or generated on the basis of known operat-

ing conditions) and from which one can distinguish the 

actual signs that can directly or indirectly affect the 

above-mentioned "labels". 

In this study, the "marks" and "signs" were inde-

pendently formed according to typical models of heli-

copter landing trajectories, as shown in Fig. 4. In the 

future, these data will be obtained experimentally from 

the onboard systems of Motor Sich helicopters. The 

"labels" and "signs" were formed according to the fol-

lowing algorithm. 

1. A database of landing trajectories based on the 

current position and Two components are needed to 

train ML (machine learning) algorithms: "features" and 

"labels". "Labels" are the results we want to obtain from 

the model. In this case, whether the current trajectory is 

safe for landing or not, they are obtained by comparing 

a set of trajectories and a digital map. "Signs" are the 

array of information that is usually collected during the 

operation of a particular system (or generated on the 

basis of known operating conditions) and from which 

one can distinguish the actual signs that can directly or 

indirectly affect the above-mentioned "labels". 

In this study, the "marks" and "signs" were inde-

pendently formed according to typical models of heli-

copter landing trajectories, as shown in Fig. 4. In the 

future, these data will be obtained experimentally from 

the onboard systems of Motor Sich helicopters. The 

"labels" and "signs" were formed according to the fol-

lowing algorithm  
xV t  і  

zV t . The trajectories are 

shown graphically in Fig 4. 

2. A conditional digital map with highlighted areas 

of "dangerous landing" was constructed (Figure 5). 

Because we are considering a simplified two-

dimensional case, only one line from this map is used in 

the following. In practice, such a map can be quickly 

created. 
 

 
 

Fig. 5. Digital map of the area after processing 

 

3. Trajectories that are recognized as unsafe based 

on helicopter operating conditions (too high or low 

speed for landing, critical angles) are marked as "un-

safe" in the trajectory database. 

4. By comparing the endpoints of the trajectories 

with the points on the map, the trajectories that lead to 

landing in dangerous areas were identified (accordingly, 

their status in the trajectory database is indicated as 

"dangerous") 

5. The data for training is generated using the Oc-

tave environment. The result is a two-dimensional ma-

trix in which the bulk of the columns represent the pa-

rameters of the trajectory points, and the last column is 

the "labels" in binary form (0 is "safe" trajectory, 1 is 

"dangerous" trajectory). Subsequently, the matrix is 

written to a file in the format CSV. 

6. Machine learning models were trained in the 

Spyder programming environment of the specialized 

Anaconda Navigator package with the numpy, pandas, 

and scikit-learn libraries. 

In the first step, the CSV file is divided into arrays 

of features. The "features" is used for training and label-

ing, where "labels" are the results that we want to train 

the model to predict. Next, these arrays are divided into 

training and testing samples in the proportion of 75% to 

25%. 

7. The next step is to download the ML models 

from the scikit-learn library. The following models have 

been added: LinearSVC, GaussianNB, Decision-

TreeClassifier, RandomForestClassifier, KNeigh-

borsClassifier, MLPClassifier, and RidgeClassifier.  

LinearSVC is a linear classification model. It is 

used for binary and multiclass classification tasks. It 

works by finding the hyperplane that best separates the 

classes in the training data. Gaussian Naive Bayes is a 

probabilistic classification algorithm. It assumes that the 

features are normally distributed and independent. A 

Decision Tree is a tree-like model used for both classifi-

cation and regression tasks. It partitions the data into 

subsets based on the values of features to minimize im-

purities. RandomForest is an ensemble learning method 

that combines multiple decision trees to improve accu-

racy and reduce overfitting. It works by aggregating the 

predictions of the individual decision trees. K-Nearest 

Neighbors is a lazy learning algorithm used for classifi-

cation tasks. It assigns a class label to an instance based 

on the majority class among its k-nearest neighbors in 

the training data, where k is a user-defined parameter. 

MLP is an artificial neural network commonly used for 

classification tasks. It consists of multiple layers of in-

terconnected nodes (neurons) and can learn complex 

patterns in data. RidgeClassifier is a linear classifier that 

uses L2 regularization (ridge regression) to prevent 

overfitting. Implementations of these algorithms, which 

are part of the scikit-learn package [31], were used in 

this study. 

These models were trained on a training set of 

"features" and "labels". The training curve for the Ran-

domForestClassifier algorithm is shown in Fig. 6. 

After training, the trained models were tested by 

providing them with only "features" and obtaining pre-
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dicted "labels". To assess the quality of the work, the 

percentage of correct predictions for the trained models 

was calculated (Table 1). 

Based on the obtained estimates, we can con-

clude that the accuracy of the presented algorithms in 

the task context is quite high. Thus, given parameters 

such as the current position, terrain map, and axial ve-

locities, machine learning algorithms can be used to 

determine whether the current descent trajectory is safe 

for landing. 

The analysis of the scores shows that some ma-

chine learning models are not suitable for this task. The 

best results were obtained using the model Random-

Forest (accuracy: 91.5 %) і DecisionTree (accuracy: 

91.5 %). 

 
 

Fig. 6. Training curve for the algorithm  

RandomForestClassifier 

 

Table 1 

Percentage of correct predictions  

for different machine learning models 

Model name Correct prediction in % 

LinearSVC 52.3 

GaussianNB 43.1 

DecisionTreeClassifier 91.5 

RandomForestClassifier 91.5 

KNeighborsClassifier 76.0 

MLPClassifier 51.3 

RidgeClassifier 51.3 

 

Next, consider these two algorithms when working in 

noise. 

Further research is performed under the 

assumption that the training was performed on ideal 

trajectories, and it is advisable to test the developed 

algorithms in the presence of noise (wind gusts) that 

changes the shape of the trajectory. Such factors are 

quite difficult to account for when tuning the parameters 

of machine learning models. We use additive Wiener 

noise, which is generally a Markov process of the first 

kind. Wiener noise was generated in Octave as an 

integral of white Gaussian noise. Examples of 

trajectories with different levels of Gaussian noise 

variance are shown in Fig. 7. 

The test results of the RandomForest and Deci-

sionTree algorithms for the variance level of Gaussian 

noise from 1 to 100 are shown in Fig. 8 

 

 
a 

 

 
b 

 

Fig. 7. Helicopter landing trajectories accounting  

for the influence of additive noise:  

a – noise variance is 3 m; 

b – noise variance is 10 m 

 

Discussion 

 

From the analysis of the data obtained, it follows 

that when changing the measurement errors of helicop-
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ter movement parameters and increasing the accuracy of 

spatial stabilization means, it is possible to use either of 

the two methods considered, since the accuracy of de-

tecting dangerous trajectories at low noise levels is 

91.5%. In the case when there is a probability of unsta-

ble helicopter flight, it is more appropriate to use the 

RandomForestClassifier algorithm for the task assigned, 

which maintains an accuracy of at least 90% even when 

exposed to noise with a dispersion of 35. 

It should also be noted that to reduce the impact of 

noise on the results of the algorithms, it is advisable to 

perform secondary data processing. To do this, it is pos-

sible to either calculate new filtering algorithms that are 

optimal for the system under consideration or adapt ex-

isting filters, such as those used for image pro-

cessing [32]. 

 

 
a 

 

 
b 

 

Fig. 8. Testing algorithms for detecting dangerous  

landing trajectories under the influence of noise:  

a – RandomForestClassifier algorithm,  

b – DecisionTreeClassifier algorithm 

 

Conclusions 
 

This paper considers analytical expressions for de-

termining the components of  
xV t ,  

yV t ,  
yV t  

velocity vector aV  and flight altitude  h t of the air-

craft. The peculiarity of the calculations is the need to 

use three measuring channels in the onboard radio com-

plex, i.e., three patterns of reception and transmission 

formed in different directions relative to the helicopter’s 

movement direction. By calculating the relative speed of 

movement, as well as the range to the underlying sur-

face for each beam, it is possible to obtain current in-

formation on the speed of the aircraft  
xV t  and 

 
yV t , as well as the height of the flight. Subsequently, 

it becomes possible to determine the flight altitude as a 

derivative of the flight altitude. 

Particular attention is paid to the secondary pro-

cessing of information in the proposed radio complex. 

Thus, the possibility of using artificial intelligence algo-

rithms to process information on the safety of the cur-

rent helicopter flight path at the landing stage is consid-

ered. Simulation modeling was performed, during which 

the models LinearSVC, GaussianNB, Decision-

TreeClassifier, RandomForestClassifier, KNeigh-

borsClassifier, MLPClassifier, and RidgeClassifier were 

trained on examples of helicopter landing trajectories to 

determine the safety of the current landing trajectory, 

based on information about the current speed and alti-

tude of the flight, as well as a map of the area with de-

fined zones safe for landing. The modeling results are 

particularly significant for the DecisionTreeClassifier 

and RandomForestClassifier models, which, in the ab-

sence of noise in the measurements, provided a proba-

bility of correct prediction of 91.5%. However, in the 

presence of noise in the measurements, Decision-

TreeClassifier loses its effectiveness. At the same time, 

RandomForestClassifier maintains an accuracy of at 

least 90% even when exposed to noise with a sufficient-

ly high variance. The results obtained indicate the pos-

sible effectiveness of involving machine learning algo-

rithms in solving the problem of secondary information 

processing in onboard radio altimeters and the feasibil-

ity of further research in this area. 

Further research on this topic will be directed in 

several directions. Currently, software is being devel-

oped to generate different types of bedding surfaces 

with a given level of elevation and roughness. This will 

enable the simulation to replace the terrain map image, 

which is not always available, with a terrain map that 

can currently be generated in real time by the onboard 

radars of some aircraft. It is also planned to collaborate 

with Motor Sich to collect and systematize information 

on the landing trajectories of real helicopters. This will 
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allow training and testing of the performance of artifi-

cial intelligence algorithms in real-world conditions. 
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ВЕРТОЛІТНИЙ РАДІОКОМПЛЕКС МАЛИХ ВИСОТ І ШВИДКОСТЕЙ ПОЛЬОТУ  

З ОБРОБЛЕННЯМ ІМПУЛЬСНИХ НАДШИРОКОСМУГОВИХ СТОХАСТИЧНИХ СИГНАЛІВ  

ТА ЕЛЕМЕНТАМИ ШТУЧНОГО ІНТЕЛЕКТУ 

Дмитро Власенко, Ольга Інкарбаєва, Максим Перетятько,  

Даниїл Ковальчук, Олександр Середа 

Предметом дослідження є алгоритми вимірювання складових вектору швидкості та висоти польоту лі-

тальних апаратів. Метою роботи є удосконалення алгоритмів обробки широкосмугових стохастичних імпу-
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льсних сигналів у вертолітних радіокомплексах малих висот та швидкостей польоту шляхом введення вто-

ринної обробки сигналів на основі елементів штучного інтелекту. Завдання: розробити оптимальний алго-

ритм визначення швидкості та висоти польоту для вертолітного радіокомплексу; доповнити отриманий ал-

горитм оброблення сигналів процесором на основі штучного інтелекту задля визначення «безпечності» по-

точної траєкторії, завчасного надання відповідної інформацію пілоту щодо можливих варіантів подальших 

дій на основі аналізу поточного положення вертольоту та параметрів польоту; проаналізувати ефективність 

роботи пропонованого комплексу при залученні різних алгоритмів на основі штучного інтелекту. Викорис-

товуваними методами є: методи математичної статистики та оптимальних рішень при вирішенні задач ста-

тистичного синтезу структур активних радіотехнічних комплексів; методи машинного навчання; методи 

комп’ютерного імітаційного моделювання. Отримані такі результати. Методом максимальної правдоподіб-

ності отримано алгоритми обробки сигналів у вертолітному радіокомплексі та аргументовано використання 
трьох радіоканалів для розрахунку повного вектору швидкості та висоти польоту. Запропонована структура 

системи вторинної обробки інформації з залученням алгоритмів на основі штучного інтелекту. Проаналізо-

вано ефективність визначення безпечності поточної траєкторії посадки при залученні різних алгоритмів на 

основі штучного інтелекту (LinearSVC, GaussianNB, DecisionTreeClassifier, RandomForestClassifier, KNeigh-

borsClassifier, MLPClassifier і RidgeClassifier). Висновки. У результаті імітаційного моделювання показано, 

що за наявності точної (без впливу шумів) інформації щодо поточного місцеположення вертольоту, його шви-

дкостей по осям та карти місцевості з визначеними зонами, небезпечними для посадки, алгоритми 

DecisionTreeClassifier та RandomForestClassifier можуть забезпечувати високу ймовірність правильного визна-

чення безпечності поточної траєкторії зниження для посадки. Водночас зазначено, що при наявності нестабі-

льності у вимірюваннях параметрів руху вертольоту, лише алгоритм RandomForestClassifier зберігає високу 

точність роботи. 
Ключові слова: алгоритм обробки сигналів; бортовий радіовисотомір; оптимальний алгоритм; машин-

не навчання; штучний інтелект. 
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