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HELICOPTER RADIO SYSTEM FOR LOW ALTITUDES AND FLIGHT SPEED
MEASURING WITH PULSED ULTRA-WIDEBAND STOCHASTIC SOUNDING
SIGNALS AND ARTIFICIAL INTELLIGENCE ELEMENTS

The subject matter of this study is algorithms for measuring the components of an aircraft speed vector and alti-
tude. The goal of this study is to improve algorithms for processing wideband stochastic pulse signals in helicop-
ter low-altitude and flight-speed radio systems by introducing secondary signal processing based on artificial in-
telligence elements. The tasks to be solved are as follows: to develop an optimal algorithm for determining the
speed and altitude of flight for a helicopter radio complex; to supplement the signal processing algorithm with an
artificial intelligence-based processor to determine the "safety” of the current trajectory; provide the pilot with
relevant information about possible options for further actions based on an analysis of the current position of the
helicopter and flight parameters; and to analyse the efficiency of the proposed complex when using various artifi-
cial intelligence-based algorithms. The methods used are as follows: methods of mathematical statistics and op-
timal solutions for solving problems of statistical synthesis of active radio complex structure; methods of machine
learning; and methods of computer simulation. The following results were obtained. The algorithms for signal
processing in a helicopter radio complex are obtained by the method of maximum likelihood, and the use of three
radio channels to calculate the full vector of speed and altitude is argued. The structure of a secondary infor-
mation processing system, using algorithms based on artificial intelligence is proposed. The effectiveness of de-
termining the safety of the current landing trajectory using various algorithms based on artificial intelligence
(LinearSVC, GaussianNB, DecisionTreeClassifier, RandomForestClassifier, KNeighborsClassifier, MLPClassifi-
er and RidgeClassifier) was analysed. Conclusions. The simulation results show that in the presence of accurate
(noise-free) information on the current location of the helicopter, its axial velocities, and a map of the terrain with
defined areas dangerous for landing, the DecisionTreeClassifier and RandomForestClassifier algorithms can
provide a high probability of correctly determining the safety of the current landing trajectory. At the same time,
in the presence of instability in the measurements of helicopter movement parameters, only the Random-
ForestClassifier algorithm maintains high accuracy.

Keywords: signal processing algorithm; onboard altitude radar; optimal algorithm; machine learning; artifi-
cial intelligence.

with more accurate information about the current state
of the aircraft and flight parameters and eliminate some
of their errors during control [5, 6]. Particular attention

Introduction

Motivation. Today, aviation is one of the most

technologically advanced modes of transport that con-
tinues to develop rapidly. Different types of aircraft are
used in many areas, ranging from civilian cargo trans-
portation to military applications. However, despite
their widespread use, aircraft have some of the highest
requirements for pilot and maintenance personnel train-
ing and onboard systems for various purposes. This is
because any, even a minor, pilot error, equipment mal-
function, etc. can cause an airplane crash [1, 2].
Currently, significant efforts of various organiza-
tions and manufacturers are aimed at reducing opera-
tional safety risks in aviation [3]. As can be seen from
the ICAO statistics [4], since 2013, the number of acci-
dents has decreased by about 40% and has a downward
trend. This decrease can be partially attributed to the
development of onboard systems that can provide pilots

is paid to the safe landing of the aircraft, since 267 sig-
nificant accidents out of 782 (34%) since 2013 occurred
at this stage of the flight [4]. To reduce the accident rate
at this stage, various automatic landing systems are be-
ing actively developed and tested [7, 8]. However, they
mostly require specially equipped sites, which is not
achievable for all types of air transport, including heli-
copters.

Thus, an important feature of helicopters is their
ability to land on unequipped sites with limited free
space. This requires both high pilot skill and the acquisi-
tion of information from a significant number of
onboard systems, including radio altimeters and flight
speed meters [9, 10]. Currently, these are mostly two
separate onboard active radio systems that use narrow-
band signals, with some limitations. The separation of

© Dmytro Vlasenko, Olha Inkabaieva, Maksym Peretiatko, Danyil Kovalchuk, Oleksandr Sereda, 2023



Radioelectronic systems

49

these systems increases their overall weight and size and
power consumption, which is extremely undesirable for
aviation systems. When helicopters are used in wartime
(even when far from the front), narrowband signals can
be easily jammed by the enemy. This does not allow
pilots to safely using radio systems during flight and
landing, which significantly increases the possibility of
accidents. Therefore, the current task is to develop algo-
rithms and structure of a single complex capable of
measuring both helicopter altitude and speed, which will
significantly reduce the weight and dimensions of the
system. It is also advisable to provide for work with
wideband noise sensing signals [11, 12] and the use of
Al-based piloting assistance algorithms [13]. This will
make the operation of the complex invisible to radio
reconnaissance and reduce the probability of an accident
in critical situations when the possibility of a pilot’s
error is greatest.

State of the Art. In [14], the problem of designing
an algorithm for processing wideband stochastic pulse
signals and developing a relevant structural scheme for
a helicopter radio altimeter was solved. The develop-
ment of the ideas and approaches set forth in [14] was
obtained in [15], where signal-processing algorithms
were synthesized for a helicopter radio complex of low
altitudes and flight speeds, and an indirect method was
proposed to measure altitude. Simulation has confirmed
that such a complex [15] provides measurement of three

components {Vx(t),Vy(t),Vz(t)} velocity vector

V(t) and flight altitude h(t) of the helicopter. In con-
trast to the known methods for determining velocity
components [16, 17], the approach proposed in [15]
works with pulsed ultra-wideband noise signals [18,
19]. This provides a double effect. It increases the
stealth of advanced helicopter equipment (by reducing
the reliability of radio registration) and increases the
accuracy of range measurement to the elements of the
underlying surface. The disadvantage of using pulsed
stochastic signals is the difficulty of determining the
threshold for their detection [20], and the fact that their
shape "scatters" when operating at a range of several
km, after which it is not possible to perform coherent
signal processing. This disadvantage is not fundamental
for a radio complex with low altitudes and flight speeds,
but for the unification of the system (ensuring arbitrary
distances of operation), it is advisable to use signals
with a large base [21, 22].

Another disadvantage of the signal-processing al-
gorithm in [15] is the lack of sensitivity for detecting
vertically oriented objects in the landing zone (tree,
mast, etc.). This is because of the peculiarities of using
an indirect method for measuring flight altitude. Such
an indirect method does not require irradiation of the
area of the underlying surface directly under the heli-

copter and is insensitive to some objects during a verti-
cal landing.

Objectives. This article proposes to improve the
structural scheme of the helicopter radio complex [15]
by introducing artificial intelligence elements into the
algorithms for signal secondary processing [23, 24]. In
this case, considerable attention will be paid to two ap-
proaches. The first is to consider a priori data on the
underlying surface and use digital image processing
methods [25, 26], and the second is to detect indirect
signs of the presence of an object in the landing zone,
which is similar to the ideas presented in [27]. In both
cases, the decision-making process for safe landing is
based on elements of artificial intelligence [28, 29].

Initial data.
Description of the problem
geometry and the main parameters

The geometry of the problem of synthesizing a hel-
icopter radio complex for low altitudes and flight
speeds [15] is shown in Fig. 1.

In Fig. 1, the following notations are introduced:
coordinate system Oxyz is associated with the underly-
ing surface (the plane x0y passes through the average

height of the underlying surface irregularities); the co-
ordinate system 0'X'y'(z—h") is associated with the

underlying surface (the plane x'0'y’ passes through the

phase center of the helicopter antenna system and is
parallel to the plane x0y); Aq,A, are transmitting

and receiving antennas; h’ is a flight altitude; ¢; are

angles in the picture plane on the underlying surface
between the direction of flight and the projections of the
axes of the directional diagrams onto the underlying
surface (i=1,2,3); pi are angles between the direction

into the nadir and the corresponding beam of the radia-
tion pattern (measured from the axis of the radiation

pattern); V; is a helicopter speed vector.

When synthesizing the signal processing algorithm
in [15], a hypothesis was applied that assumes
knowledge of the law of change in the range of the un-
derlying surface elements for each beam of the pattern.
For this purpose, Fig. 1 shows three points
L; (i=12,3), which move along the arrows and go to

the point Li when the helicopter is moving. This

movement of the points is observed because real radia-
tion patterns always have a width differently from the
delta function. With this movement, the point constantly
changes its range within the irradiated area by moving
along lines of equal ranges.
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Fig. 1. Geometric relationships used for speed and altitude measurements

To determine the law of range change we need to
refer to Fig. 2. In Fig. 2 the following notations have
been added: Ry, Rmax a@re minimum and maximum
range within the irradiated area of the underlying sur-
face; Ry is a continuous range of the point L.

Fig. 2. Geometry for determining the law of range
change during point L migration within the irradiated
area of the underlying surface

Other angles on the Fig 2 have no individual val-
ues and are mathematically defined below:

o = arctan (Z—:J , )
g=2-m, ©)
p=m-t="4m. @

In (1) the following notations are added

yi () =h"(Dtg(p)sin (¢’ +a’ (1)) cos (3" (1)) +
+h'(Dtg (1) cos (¢ +o’ (1))sin (6" (1))sin (x (1)) +
+h'(t)cos (0" (1)sin (" (1)), (5)
z () =h"(D1g (w)sin (¢ +a’(D)sin(z" (1)) -
—h" (D tg (n)cos (¢’ + o’ (1)sin (6" (1)) cos(x"" (1)) -
—h"(t)cos (" (1)) cos (" (1)), (6)
where we assume that the height h'(t), yaw angles

a'(t), pitch roll 6”(t) and roll %'(t) of the helicop-
ter are functions of time.
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In (2) we add the range designation from the phase
center of the antenna system to the center of the irradi-
ated area (measured along the axis of the antenna pat-
tern)

R(a, 0" 1w, ) =R ()] =

_ h’(t)\/xﬁ (1) +yZ (1) +2% (1)
2% (1)

, ()

were

Xy (1) =h’(t)tg(n")cos(¢")cos(a’(t))cos(0”(t))-
—h’(t)tg(w')sin(¢)sin (o’ (t))cos (6" (t)) -

—h'(t)sin(0"(t)). (8)

When the analytical equations (1)-(8) have been
determined, consider the equation for the change in the
range law of a point L (an elementary area on the
underlying surface) when the helicopter is moving:

a) for the rays directed to the front hemisphere:
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b) for a ray directed into the rear hemisphere:
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Calculate the derivative of the law of range change
and determine the speed. However, it should be noted

0.5

(10)

“2|R()[| RO

that the derivative of this range will give the relative
speed of the point's L and helicopters approach. There-
fore, to calculate the speed of a helicopter, the following
computations must be performed:

d

*|§f| ((1,, 9”, x///, h,, H,1 (pr, t)|
V, (=1t

05 (2) 4

To determine the components V4 (1), Vi (1),

V, (t) velocity vector V, the following operations
must be performed to process the speeds:

V, ()= V5 (1)

V, (1) =
v, (0= Vl(t);VZ (t);
_dh(t)
V, (1) = et (12)

where V;(t) (i=12,3) are the velocities calculated

from the corresponding rays, and the height is computed
through the ranges as follows

e RaGYRs(Y
RZ(,t)+R3 (1)~
~2Ry (+t)R3 (- t)cos(2u)

(13)

where R;(-t) are distances calculated in accordance
with (7) on the i -th ray.

The emitted signal.
Equation of observation.
Algorithm for processing

the received signals

In [15], we use the following emitted signal form:

s(t) = A((Ts ) Reexp( 2 (fot + 0.50t? ) a4

where A(th’l) is signal envelope; T, is a signal
(pulse) duration; f, is a frequency of the emitted signal,
a:(Fmax—Fmin)Ts’l; Fnax and Fpin, are maximum
and minimum frequencies in the operating frequency
spectrum.

The signal received by the antenna (one i -th ray
of the radiation pattern) is presented in the following
form
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“Re j F (t— 2|§ﬂ (t,f)|c‘1)x .After differentiation it can be represented as fol-
lows:
fo t—2|§ﬂ(t,?)|c_l + Ts 5
xexp| j2n ( ) ) ) (15) _[Si (thfI,i(txr))éR Ok (t Ra,i (L, r))
+050(t-2[Rg (t.7)c?) 0 fli
=123, U () ———5; (t,Rgy; (£, 7)) dt. 17
I 6Rf||() ( ﬂl( )) ( )
where F(7)=|F(T)[exp(j&(T)) isa complex reflection

coefficient of the underlying surface; a(?) is a random
phase taper during reflection from the underlying sur-
face; D; is the area of the underlying surface irradiated
by the radiation pattern G(); c is the speed of light;
|ﬁf| (t,F)| is determined in accordance with (9) or (10)
considering that the angles o',0",¢" h’,u,¢@" are
uniquely associated with the radius vector fe(X,y),
which characterizes the position of the irradiated ele-
mental area on the underlying surface relative to the
coordinate origin.

Signal (15) is observed against the background of
internal interference of the receiver. Therefore, the ob-
servation equation can be represented in the additive
form of the signal and noise

Ui(t)ZSi (t)+ni(t), i=123, (16)
where n(t) is a white Gaussian noise (internal receiver
noise) with power spectral density 0.5N, and the corre-
lation function

Runij (1, t2) = (i (t2)nj (t2)) = 0.5Ng3(t —t ) 83
8(ty—tp) is a delta function; & is the Kronecker

symbol [30].
The peculiarity of the problem to be solved is op-
timization with reference to the process evaluation, spe-

cifically the law of range change Rg; (?)=|F§ﬂj (F)|

for each range band within the irradiated area of the
underlying surface (see Fig. 2). In this case, the likeli-
hood equation takes the form

dln p(ui (t)] R (t,f)) L B
SRﬂ i () B SRﬂ i (r)

Nlomj(u (0-s; (t.Rq; (1, r))) dt =

The left side is the mathematical expectation of the
right side; therefore, (17) is an equation, not an equality.
The left side can be viewed as an ambiguity function of
the system, provided that in signal (15) we take

F(r)=38(r—7"), where 3(F—F) is a spatial delta
function.
Range estimation R (t,7) can be obtained on the

basis of (17) in the form of the following variational
derivative:

—8Rﬂ6,( i (LR, (t.7))=

~ WENPR: 5 2Ry, (1.T) y
_Regil:( )G )| |:5Rf|,i (?)A(t c j:|

xexp[jZn[fo (t —MJ +

olt- (6T 1)
+ (t 2Rﬂ’,2(t,r)c ) dr +Re(-j)2nF(7)x

«[6 (7 A[t—

2Ry (t,?)j 2fy  2at
c c c

+ . (18)

If we have information about the range Ry (t,F),

helicopter speed V, (t) can be further estimated using

formula (11). However, the information obtained from
only one beam of the radiation pattern is not sufficient
to calculate the full helicopter velocity vector and its
height using formulas (12) and (13). To achieve this,
two additional measurement channels must be added to
the system with radiation patterns pointing in different
directions relative to each other, as shown in Figure 1.
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Then, on the basis of the range estimates of the three
channels, it is possible to calculate the flight speeds

Vy (1), Vy (), V; (1) and height h(t). Subsequently,

the pilot or the onboard automatic control system to
adjust the flight and avoid emergencies can use the in-
formation obtained.

Simulation of the algorithms
for warning about dangerous helicopter
landing trajectories

In the previous section, algorithms for measuring
helicopter movement parameters were obtained, which
the pilot for safe maneuvers subsequently analyzed. All
measurements have errors resulting from internal re-
ceiver noise, various destabilizing factors, and radio
interference. These errors distort information about the
helicopter’s position in space. In addition, the change in
spatial position can be affected by errors in the opera-
tion of spatial stabilization systems and bad weather
conditions, particularly squally gusts of wind. The sec-
ondary processing of the measurement results in a cer-
tain time can reduced the influence of these factors. The
synthesis of secondary processing algorithms can be
performed by statistical optimization methods of filter-
ing algorithms or modern methods of artificial intelli-
gence. Next, this article considers the possibilities of
machine learning methods for analyzing trajectories and
providing information to the pilot about dangerous heli-
copter trajectories despite interference.

Auviation accident statistics show that most heli-
copter accidents occur during takeoff and landing. Thus,
for further analysis, we considered the current situation
of helicopters landing on different trajectories, indicat-
ing critical ones in terms of overloads or descent angles.
In addition, onboard optical vision systems at night and
in bad weather do not allow the pilot to visualize the
surface to make a decision on choosing a safe landing
site. In this case, it is advisable to have a map of the
terrain with marked safe zones, a system for calculating
the landing point based on current trajectories, and algo-
rithms for warning of dangerous trajectories, which are
integrated into the pilot’s decision support system.

The idea of improving the helicopter’s control sys-
tem can be implemented as follows. Data from the radio
engineering complex for measuring flight parameters
(speed, altitude, and drift angles) are transmitted to an
artificial intelligence processor. This processor also re-
ceives a periodically updated terrain map. Using digital
image processing methods, the map identifies areas that
pose a danger to the helicopter landing (areas with a
slope of more than 3 degrees, infrastructure, forest plan-
tations and individual trees, and water bodies). In addi-

tion, the processor considers the restrictions imposed on
the trajectories of this type of helicopter due to its tacti-
cal and technical characteristics. Next, artificial intelli-
gence algorithms in the processor, controlling the cur-
rent flight parameters, calculate the current trajectory
and landing site. The calculation results are compared
with a digital map with preclassified areas that are con-
ditionally "safe" for landing and "unsafe" for landing. If
the trajectory is classified as dangerous, the pilot is giv-
en a warning about the dangerous trajectory in advance
and is offered actions to correct it for a safe landing.
A block diagram of the described system for secondary
processing of measurement results is shown in Fig. 3.

L
v, (t) ¥
v, ()
» M » Al —»I/AP
Vy (0 x
h(t)
AM

Fig. 3. Block diagram of the system secondary
processing of the measurement results

In Fig. 3 Al is an artificial intelligence processor;
AM is an area map; I/AP is an indicator or autopilot
system; L is limitations of the helicopter's flight charac-
teristics; block M determines the system operation
mode.

To validate the proposed approach, we performed
simulations of various algorithms and modeled two-
dimensional trajectories and studied the performance of
a few machine learning methods for the classification
task. An example of the trajectories analyzed is shown
in Fig. 4.

h, m
500N
400
300f\
200

100

v ~ N N
0 1000 2000 3000 4000 5000 distance, m

Fig. 4. Examples of helicopter landing trajectories from
the database of possible trajectories

Two components are needed to train ML (machine
learning) algorithms: "features" and "labels". "'Labels"
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are the results we want to obtain from the model. In this
case, whether the current trajectory is safe for landing or
not, they are obtained by comparing a set of trajectories
and a digital map. "Signs" are the array of information
that is usually collected during the operation of a partic-
ular system (or generated on the basis of known operat-
ing conditions) and from which one can distinguish the
actual signs that can directly or indirectly affect the
above-mentioned "labels".

In this study, the "marks" and "signs" were inde-
pendently formed according to typical models of heli-
copter landing trajectories, as shown in Fig. 4. In the
future, these data will be obtained experimentally from
the onboard systems of Motor Sich helicopters. The
"labels™ and "signs" were formed according to the fol-
lowing algorithm.

1. A database of landing trajectories based on the
current position and Two components are needed to
train ML (machine learning) algorithms: "features” and
"labels". "Labels" are the results we want to obtain from
the model. In this case, whether the current trajectory is
safe for landing or not, they are obtained by comparing
a set of trajectories and a digital map. "Signs" are the
array of information that is usually collected during the
operation of a particular system (or generated on the
basis of known operating conditions) and from which
one can distinguish the actual signs that can directly or
indirectly affect the above-mentioned "labels".

In this study, the "marks" and "signs" were inde-
pendently formed according to typical models of heli-
copter landing trajectories, as shown in Fig. 4. In the
future, these data will be obtained experimentally from
the onboard systems of Motor Sich helicopters. The
"labels™ and "signs" were formed according to the fol-
lowing algorithm V, (t) i V,(t). The trajectories are
shown graphically in Fig 4.

2. A conditional digital map with highlighted areas
of "dangerous landing" was constructed (Figure 5).
Because we are considering a simplified two-
dimensional case, only one line from this map is used in
the following. In practice, such a map can be quickly
created.

Fed.oe.r

Fig. 5. Digital map of the area after processing

3. Trajectories that are recognized as unsafe based
on helicopter operating conditions (too high or low
speed for landing, critical angles) are marked as "un-
safe" in the trajectory database.

4. By comparing the endpoints of the trajectories
with the points on the map, the trajectories that lead to

landing in dangerous areas were identified (accordingly,
their status in the trajectory database is indicated as
"dangerous")

5. The data for training is generated using the Oc-
tave environment. The result is a two-dimensional ma-
trix in which the bulk of the columns represent the pa-
rameters of the trajectory points, and the last column is
the "labels" in binary form (0 is "safe" trajectory, 1 is
"dangerous” trajectory). Subsequently, the matrix is
written to a file in the format CSV.

6. Machine learning models were trained in the
Spyder programming environment of the specialized
Anaconda Navigator package with the numpy, pandas,
and scikit-learn libraries.

In the first step, the CSV file is divided into arrays
of features. The "features” is used for training and label-
ing, where "labels" are the results that we want to train
the model to predict. Next, these arrays are divided into
training and testing samples in the proportion of 75% to
25%.

7. The next step is to download the ML models
from the scikit-learn library. The following models have
been added: LinearSVC, GaussianNB, Decision-
TreeClassifier, = RandomForestClassifier, =~ KNeigh-
borsClassifier, MLPClassifier, and RidgeClassifier.

LinearSVC is a linear classification model. It is
used for binary and multiclass classification tasks. It
works by finding the hyperplane that best separates the
classes in the training data. Gaussian Naive Bayes is a
probabilistic classification algorithm. It assumes that the
features are normally distributed and independent. A
Decision Tree is a tree-like model used for both classifi-
cation and regression tasks. It partitions the data into
subsets based on the values of features to minimize im-
purities. RandomForest is an ensemble learning method
that combines multiple decision trees to improve accu-
racy and reduce overfitting. It works by aggregating the
predictions of the individual decision trees. K-Nearest
Neighbors is a lazy learning algorithm used for classifi-
cation tasks. It assigns a class label to an instance based
on the majority class among its k-nearest neighbors in
the training data, where k is a user-defined parameter.
MLP is an artificial neural network commonly used for
classification tasks. It consists of multiple layers of in-
terconnected nodes (neurons) and can learn complex
patterns in data. RidgeClassifier is a linear classifier that
uses L2 regularization (ridge regression) to prevent
overfitting. Implementations of these algorithms, which
are part of the scikit-learn package [31], were used in
this study.

These models were trained on a training set of
"features™ and "labels". The training curve for the Ran-
domForestClassifier algorithm is shown in Fig. 6.

After training, the trained models were tested by
providing them with only "features" and obtaining pre-
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dicted "labels". To assess the quality of the work, the
percentage of correct predictions for the trained models
was calculated (Table 1).

Based on the obtained estimates, we can con-
clude that the accuracy of the presented algorithms in
the task context is quite high. Thus, given parameters
such as the current position, terrain map, and axial ve-
locities, machine learning algorithms can be used to
determine whether the current descent trajectory is safe
for landing.

The analysis of the scores shows that some ma-
chine learning models are not suitable for this task. The
best results were obtained using the model Random-
Forest (accuracy: 91.5 %) i DecisionTree (accuracy:
91.5 %).

1.000 @ L 4 @ L 4 2
i@t ®
0.998 P i
-
0.996 |
9
= 0.994 e
< !
0.992 |4
&
0.990
-@- Training Score
0.988 || -@-- Test Score

4000 6000 8000 10000 12000
Number of samples in the training set

Fig. 6. Training curve for the algorithm
RandomForestClassifier

Table 1
Percentage of correct predictions
for different machine learning models

Model name Correct prediction in %
LinearSVC 52.3
GaussianNB 43.1
DecisionTreeClassifier 915
RandomForestClassifier 915
KNeighborsClassifier 76.0
MLPClassifier 51.3
RidgeClassifier 51.3

Next, consider these two algorithms when working in
noise.

Further research is performed under the
assumption that the training was performed on ideal
trajectories, and it is advisable to test the developed
algorithms in the presence of noise (wind gusts) that
changes the shape of the trajectory. Such factors are
quite difficult to account for when tuning the parameters
of machine learning models. We use additive Wiener
noise, which is generally a Markov process of the first
kind. Wiener noise was generated in Octave as an
integral of white Gaussian noise. Examples of
trajectories with different levels of Gaussian noise
variance are shown in Fig. 7.

The test results of the RandomForest and Deci-
sionTree algorithms for the variance level of Gaussian
noise from 1 to 100 are shown in Fig. 8
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i) T .|— Trajectory 2
ool Trajectory 3
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200} b ....... ....... ......  red e . I —
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a
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b

0 :
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Fig. 7. Helicopter landing trajectories accounting
for the influence of additive noise:
a —noise variance is 3 m;
b — noise variance is 10 m

Discussion

From the analysis of the data obtained, it follows
that when changing the measurement errors of helicop-
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ter movement parameters and increasing the accuracy of
spatial stabilization means, it is possible to use either of
the two methods considered, since the accuracy of de-
tecting dangerous trajectories at low noise levels is
91.5%. In the case when there is a probability of unsta-
ble helicopter flight, it is more appropriate to use the
RandomForestClassifier algorithm for the task assigned,
which maintains an accuracy of at least 90% even when
exposed to noise with a dispersion of 35.

It should also be noted that to reduce the impact of
noise on the results of the algorithms, it is advisable to
perform secondary data processing. To do this, it is pos-
sible to either calculate new filtering algorithms that are
optimal for the system under consideration or adapt ex-
isting filters, such as those used for image pro-
cessing [32].
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Fig. 8. Testing algorithms for detecting dangerous
landing trajectories under the influence of noise:
a — RandomForestClassifier algorithm,

b — DecisionTreeClassifier algorithm

Conclusions

This paper considers analytical expressions for de-
termining the components of V, (1), V, (1), V, (1)

velocity vector V, and flight altitude h(t) of the air-

craft. The peculiarity of the calculations is the need to
use three measuring channels in the onboard radio com-
plex, i.e., three patterns of reception and transmission
formed in different directions relative to the helicopter’s
movement direction. By calculating the relative speed of
movement, as well as the range to the underlying sur-
face for each beam, it is possible to obtain current in-

formation on the speed of the aircraft V, (t) and
V, (1), as well as the height of the flight. Subsequently,

it becomes possible to determine the flight altitude as a
derivative of the flight altitude.

Particular attention is paid to the secondary pro-
cessing of information in the proposed radio complex.
Thus, the possibility of using artificial intelligence algo-
rithms to process information on the safety of the cur-
rent helicopter flight path at the landing stage is consid-
ered. Simulation modeling was performed, during which
the models LinearSVC, GaussianNB, Decision-
TreeClassifier, = RandomForestClassifier, =~ KNeigh-
borsClassifier, MLPClassifier, and RidgeClassifier were
trained on examples of helicopter landing trajectories to
determine the safety of the current landing trajectory,
based on information about the current speed and alti-
tude of the flight, as well as a map of the area with de-
fined zones safe for landing. The modeling results are
particularly significant for the DecisionTreeClassifier
and RandomForestClassifier models, which, in the ab-
sence of noise in the measurements, provided a proba-
bility of correct prediction of 91.5%. However, in the
presence of noise in the measurements, Decision-
TreeClassifier loses its effectiveness. At the same time,
RandomForestClassifier maintains an accuracy of at
least 90% even when exposed to noise with a sufficient-
ly high variance. The results obtained indicate the pos-
sible effectiveness of involving machine learning algo-
rithms in solving the problem of secondary information
processing in onboard radio altimeters and the feasibil-
ity of further research in this area.

Further research on this topic will be directed in
several directions. Currently, software is being devel-
oped to generate different types of bedding surfaces
with a given level of elevation and roughness. This will
enable the simulation to replace the terrain map image,
which is not always available, with a terrain map that
can currently be generated in real time by the onboard
radars of some aircraft. It is also planned to collaborate
with Motor Sich to collect and systematize information
on the landing trajectories of real helicopters. This will
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allow training and testing of the performance of artifi-
cial intelligence algorithms in real-world conditions.
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BEPTOJIITHUI PAJIOKOMILIEKC MAJIMX BUCOT I HIBUJIKOCTEM OJbOTY
3 OBPOBJIEHHSAM IMITIYJIbCHUX HAJHITUPOKOCMYT'OBUX CTOXACTHUYHUX CUT'HAJIIB
TA EJIEMEHTAMMU ITYYHOI'O IHTEJIEKTY

JImumpo Bnacenko, Onvea Inkapoacea, Makcum Ilepemamuko,
anuin Kosanvuyk, Onexcandp Cepeoa

IIpeameToM OCIIKEHHS € aITOPUTMH BUMIPIOBAHHS CKIIAZIOBIX BEKTOPY IIBHIKOCTI Ta BHCOTH IIONBOTY Ji-
TAIbHUX anapatiB. MeTol0 poOOTH € yIOCKOHAJIEHHS alrOPUTMIB 0OPOOKH ITMPOKOCMYIOBUX CTOXACTHYHUX IMITY-
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JILCHUX CHUTHAJIIB Y BEPTONITHUX PaJiOKOMIUIEKCAX MAJMX BHCOT Ta IIBHIKOCTEH MOJHOTY HIISIXOM BBEICHHS BTO-
PUHHOI 00pOOKM CHUTHAJIIB HAa OCHOBI €JIEMEHTIB IUITYYHOTO iHTEJEKTY. 3aBJAaHHs: PO3POOUTH ONTHUMAJIBHUK aJro-
PUTM BH3HAYEHHS IIBUJIKOCTI Ta BUCOTHU IOJHOTY VIS BEPTOJITHOTO PajiiOKOMILIEKCY; JOMIOBHUTH OTPUMAaHU ai-
TOPUTM OOpOOJICHHS CHT'HAJIIB MPOLIECOPOM Ha OCHOBI IITYYHOT'O 1HTEJIEKTY 3311 BU3HAUCHHS «OE3MEYHOCTI» o~
TOYHOI TPA€EKTOpii, 3aBYACHOTO Ha/IaHHS BiATIOBIIHOI iH(pOpPMAIiIO MJIOTY MO0 MOMJIMBUX BapiaHTIB MOAAIBIINX
i Ha OCHOBI aHaJII3y MOTOYHOT'O TTOJIOXKEHHS BEPTOJILOTY Ta IMapaMeTpiB IOJIbOTY; NpOaHalizyBaTH e(heKTHBHICTh
po0OTH MPONOHOBAHOTO KOMIUIEKCY TIPH 3aJydeHHI Pi3HHX aJTOPUTMIB HA OCHOBI INTYYHOTO iHTENIEKTY. Bukopuc-
TOBYBAaHUMH METOIAMH €: METOJM MAaTeMaTUYHOI CTATHCTHKH Ta ONTHMAJIBHUX PIllIeHb NPU BUPIIICHHI 3a/1a4 CTa-
TUCTUYHOTO CHHTE3Y CTPYKTYp aKTHBHHX DPaJiOTEXHIYHMX KOMIUIEKCIB; METOAM MAIIMHHOTO HAaBYAHHS; METOIU
KOMIT FOTEpHOTr'0 iMiTaniifHoro MojetoBanHs. OTpuMaHi Taki pe3yJibTaTH. METoIoM MaKCHMAJIBHOI MPaBIoIoio-
HOCTi OTPUMAHO aJTrOpUTMU OOpOOKH CHT'HANIB Y BEPTONITHOMY PaiOKOMILIEKCI Ta apryMEHTOBaHO BUKOPUCTAHHS
TPHOX pajiOKaHaTIB /IS PO3PAXYHKY HOBHOTO BEKTOPY HIBHIKOCTI Ta BUCOTH TOJLOTY. 3alIpOIIOHOBAHA CTPYKTypa
CHCTEMH BTOPHHHOI 00poOkH iH(opMarii 3 3aTydeHHsIM aIrOpUTMIB Ha OCHOBI IITYYHOrO iHTeNekTy. [IpoaHasizo-
BaHO e(eKTHBHICTh BU3HAYEHHS OE3MEYHOCTI MOTOYHOI TPAEKTOPIii MOCaJKU MPH 3aJyd9eHHI Pi3HUX aJTOPUTMIB Ha
ocHoBi mmryynoro inrenekry (LinearSVC, GaussianNB, DecisionTreeClassifier, RandomForestClassifier, KNeigh-
borsClassifier, MLPClassifier i RidgeClassifier). BucHoBkH. Y pe3ynbTari iMITAI[IHHOTO MOJICIOBAHHS MTOKa3aHo,
110 3a HAasiBHOCTI TOYHOI (0€3 BIUTMBY LIyMiB) iH(OpMAIIii 010 TOTOYHOT'0 MiCLIETIOJIOKEHHS BEPTOJIBOTY, HOTO IIBH-
JKOCTEH TO OCSAM Ta KapTH MICHEBOCTI 3 BH3HAYEHMMH 30HaMH, HEOE3MEYHUMH IUIsl TIOC3/IKH, aJTrOpPUTMHU
DecisionTreeClassifier ta RandomForestClassifier MmoxyTb 3a0e3nedyBaTi BUCOKY HMOBIPHICTh MPaBHILHOTO BH3HA-
YeHHst O€3MeYHOCTI MMOTOYHOI TPAEKTOPIil 3HWKEHHS IS Toca ki, BomHouac 3a3HaveHo, 10 MPU HAsIBHOCTI HecTali-
JIBHOCTI y BUMIPIOBAHHSX TMapaMeTpiB pyXy BepTonboTy, nuiie anroput™ RandomForestClassifier 36epirae Bucoky
TOYHICTHh POOOTH.

KurouoBi cioBa: anroputm oOpoOku cUrHajiB; OOPTOBHN paiOBUCOTOMIp; ONTUMAJIbHUI ajrOpUTM; MalliH-
HE HaBYaHHS, IITYYHUI 1HTEJIEKT.
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