
ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2023, no. 3(107)               ISSN 2663-2012 (online) 

18 

UDC 004.272.021  doi: 10.32620/reks.2023.3.02 
 

Ahmed Lahjouji El IDRISSI1, Ismail Ezzerrifi AMRANI1,  

Adil BEN-HDECH1, Ahmad El ALLAOUI2  
 
1 Abdelmalek Essaâdi University, Tétouan, Morocco 
2 Moulay Ismail University, Meknes, Morocco 
 

A NOVEL APPROACH AND HYBRID PARALLEL ALGORITHMS FOR SOLVING 

THE FIXED CHARGE TRANSPORTATION PROBLEM  
 

This article is dedicated to the efficient resolution of the fixed charge transport problem (FCTP) with the goal 

of identifying optimal solutions within reduced timeframes. FCTP is a combinatorial and NP-complete problem 

known for its exponential time complexity relative to problem size. Metaheuristic methods, including genetic 

algorithms, represent effective techniques for obtaining high-quality FCTP solutions. Consequently, the 

integration of parallel algorithms emerges as a strategy for expediting problem-solving. The proposed 

approach, referred to as the parallel genetic algorithm (PGA), entails the application of a genetic algorithm 
across multiple parallel architectures to tackle the FCTP problem. The primary aim is to explore fresh solutions 

for the fixed charge transportation problem using genetic algorithms while concurrently optimizing the time 

required to achieve these solutions through parallelism. The FCTP problem is fundamentally a linear 

programming challenge, revolving around the determination of optimal shipment quantities from numerous 

source locations to multiple destinations with the overarching objective of minimizing overall transportation 

costs. This necessitates consideration of constraints tied to product availability at the sources and demand 

dynamics at the destinations. In this study, a pioneering approach to addressing the Fixed Charge 

Transportation Problem (FCTP) using parallel genetic algorithms (PGA) is unveiled. The research introduces 

two distinct parallel algorithms: The Master-Slave Approach (MS-GA) and the Coarse-Grained Approach (CG-

GA). Additionally, investigation into the hybridization of these approaches has led to the development of the 

NMS-CG-GA approach. The numerical results reveal that our parallelism-based approaches significantly 
improve the performance of genetic algorithms. Specifically, the Master-Slave (MS-GA) approach demonstrates 

its advantages in solving smaller instances of the FCTP problem, while the Coarse-Grained (CG-GA) approach 

exhibits greater effectiveness for larger problem instances. The conclusion reached is that the novel hybrid 

parallel genetic algorithm approach (NMS-CG-GA) outperforms its predecessors, yielding outstanding results, 

particularly across diverse FCTP problem instances. 

 

Keywords: Parallel Genetic Algorithm (PGA); Fixed Charge Transportation Problem (FCTP); Master-Slave 

Approach; Coarse-Grained Approach; Hybrid parallel genetic algorithm Approach. 

 
1. Introduction 

Combinatorial optimization problems seek to 

optimize an objective function subject to constraints by 

finding the best solution from a finite set of possible 

solutions that are characterized by a combinatorial 

structure, such as a graph, network, or set of objects. 

They have wide-ranging applications in various domains, 

including computer science, operations research, 

physics, economics, and biology. One primary 

motivation for studying combinatorial problems is their 

relevance to real-world problems. For example, in 

operation research, combinatorial problems are used to 

optimize resource allocation, scheduling, and logistics. 
 

1.1. Problematic 

The fixed charge transportation problem (FCTP) is 

a well-known combinatorial optimization problem that 

belongs to the class of NP-hard problems [1]. It is an 

extension of the liner transportation problem, which 

involves minimizing the cost of shipping goods from a 

set of suppliers to a set of customer’s subject to supply 

and demand constraints. The objective is to minimize the 

total cost of shipping goods from a set of suppliers to a 

set of customers, subject to supply and demand 

constraints. In a real problem, the fixed costs may include 

costs such as handling and setup costs, which are incurred 

regardless of the amount of goods being shipped.  

The computational complexity of FCTP depends on 

several factors, including the number of sources and 

destinations. The complexity is bounded by the size of 

the problem instance, which generally increases as the 

problem size increases, making it more difficult to solve. 

Therefore, more efficient tools and methods are needed 

to solve larger instances of the problem. 
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1.2. Objective and approach 

We seek to solve the FCTP problem in a more 

efficient way. To achieve this, we have opted for the 

utilization of parallel genetic algorithms (PGA) [2 – 4]. 

The main objective of PGAs is to increase the 

effectiveness of genetic algorithms by leveraging the 

power of parallel computing. To find new optimal 

solutions to the FCTP problem in a reasonable and fast 

time. This approach offers several benefits, including the 

effectiveness of genetic algorithms and the strength of 

parallel architectures. The effectiveness of genetic 

algorithms comes from their ability to adapt and evolve 

solutions over time, while the strength of parallel 

architectures lies in their ability to process large amounts 

of data in parallel. By combining these two strengths, we 

hope to find solutions to the FCTP problem that are both 

high-quality and generated quickly. 
 

1.3. Paper outline 

To achieve this objective, the work was divided into 

the following order: first, we provide a general overview 

of the FCTP problem and its mathematical model. The 

following section discusses related works that deal with 

the FCTP problem. Next, we present a general overview 

of standard genetic algorithms, including their main 

processes and genetic operators, such as selection, 

crossover, and mutation. The proposed parallel genetic 

algorithm for FCTP problem explores three different 

models of parallelism. The first model, "The Master-

Slave approach," is a commonly used parallel algorithm 

design pattern in parallel computing. The second parallel 

genetic algorithm model, called "Coarse-Grained 

Approach," divides the initial population into small 

subpopulations, which are then processed by different 

processors in parallel. The third model combines the 

advantages of both Master-Slave and Coarse-Grained 

approaches to find better solutions to the FCTP problem. 

The proposed approaches based on genetic algorithms 

and parallelism architectures are tested on several 

instances of the FCTP problem. The results are then 

compared to the standard genetic algorithm SGAs in the 

numerical results section. Finally, the paper concludes 

with a summary of the findings and potential future 

directions for research or perspectives. 

2. Related work 

There are several methods to solve FCTP problem. 

Here are some of the most commonly used methods with 

their logical links; First, we find the Integer Linear 

Programming (ILP). It is an exact optimization method 

that solves the FCTP by expressing the problem as a set 

of linear equations and constraints [8]. The logical link 

between ILP and FCTP is that the problem can be 

mathematically represented and solved using a set of 

linear equations and constraints, where the objective is to 

minimize the total cost of shipping goods while 

considering the fixed costs [9]. Second, there is the 

Heuristic Algorithm; they are approximate optimization 

methods that quickly find near-optimal solutions to the 

FCTP. The logical link between heuristic algorithms and 

FCTP is that they use a set of heuristics to find good 

solutions, without guaranteeing that the solution is 

optimal [10]. Third, we discover the Metaheuristic 

Algorithms: Metaheuristics are optimization methods 

that are designed to explore the search space more 

efficiently than heuristic algorithms [11, 12]. The most 

widely known Meta-heuristic algorithms are Genetic 

algorithm (GA) [13]. Lastly, we come across the Hybrid 

Approaches; these approaches combine different 

optimization techniques, such as ILP formulations, 

heuristic and metaheuristic algorithms, to find good 

solutions to the FCTP. The logical link between hybrid 

approaches and FCTP is that they leverage the strengths 

of each optimization technique to find high-quality 

solutions more efficiently [14]. Recently, we embarked 

on a novel approach by harnessing parallelism for the 

first time to address the FCTP problem, yielding 

remarkable results when compared to alternative 

methods [15]. In summary, the methods for solving the 

FCTP vary in terms of their approach and level of 

optimization. By choosing the most appropriate method 

for a given problem instance. 

 

3. Problem description  

and mathematical model 

The Fixed Charge Transport Problem (FCTP) is a 

combinatorial optimization problem. It was formulated 

by Hirsch and Dantzig [4]. Balinski modified the FCTP 

to make the problem as a linear integer problem [6]. 

Adlakha proposed a simple heuristic algorithm to solve 

the FCTP at a small size [7]. We have a destination group 

j = 1, ..., n served by a group of production centers  

i = 1, ..., m while each producer has a given production 

capacity Si and each destination has a demand to satisfy 

Dj. A variable transportation cost is charged for each 

product unit sent by the producers to the warehouses plus 

a fixed cost regardless of the quantity transported. The 

problem is to determine the amount of product to be sent 

from each production location for each warehouse to 

minimize the total fixed and variable costs to serve all 

destinations. Thus, the problem contains two costs; 

variable cost cij xij proportional to the quantity shipped 

and a fixed cost fijyij regardless of the quantity 

transported. Moreover, it is better to consider the 

balanced problem Si = Dj. Indeed, it is easy to find a 

solution for this type of problems. The mathematical 

formulation of the FCTP is as follows: 
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where cij  : variable cost from source i to destination  j; 

xij  : quantity transported on the route (i,j); 

fij  : fixed cost associated with route (i,j); 

yij  : a binary variable yij =1 if xij >0 and 0 if  xij = 0;  

Si  : amount of supply at source i; 

Dj  : amount of demand at destination j; 

 

4. Methodology and implementation 

In this study, we employed two distinct approaches 

to solve the FCTP problem. The first approach used a 

standard genetic algorithm with its standard processes 

(SGA). For the second approach, we proposed and 

implemented a parallel genetic algorithm (PGA) that 

incorporates a parallel mechanism into the genetic 

algorithm processes. Subsequently, we compared the two 

methods to demonstrate the superiority of the second 

method (PGA) in terms of efficiency, which can refer to 

either discovering new solutions to the FCTP problem or 

obtaining existing solutions within a shorter period. Since 

solving combinatorial problems involves finding 

ultimate solutions, we also place a significant emphasis 

on the time it takes to find them. Hence, time plays a 

crucial role in solving these problems. 

 

4.1 . Genetic algorithm for FCTP 

The standard genetic algorithm (SGA) operates on 

a population of candidate solutions, each represented as 

a set of parameters, often called a chromosome. The 

algorithm begins by randomly generating an initial 

population of solutions. Then, it iteratively selects pairs 

of parent solutions from the current population, based on 

their fitness, and combines them to create new child 

solutions. next generation solutions are created by 

applying genetic operators such as crossover and 

mutation. The new child solutions are then evaluated for 

their fitness, and the best ones are selected to become part 

of the next generation. This process of selection, 

reproduction, and evaluation is repeated for a fixed 

number of generations or until a satisfactory solution is 

found. The hope is that by applying these genetic 

operators, the population will converge to the optimal 

solution [16]. 

 

4.1.1 Priority based encoding 

There are several encoding methods adapted to 

FCTP problem; like the matrix encoding [17], the prüfer 

number encoding [18]. However, the priority-based 

encoding is a more suitable coding for our FCTP 

problem [19]. In this case, the solution is represented by 

an entire string of length equal to the number of sources 

(m) plus the number of customers (n). Fig. 1. represents 

an example of this encoding. 
 

 
Fig. 1. Chromosome by priority based-encoding 

 

4.1.2 SWAP mutation 

Mutation is a genetic operator that consists of 

exchanging the positions of some genes within the same 

chromosome with probability. There are typically 

numerous mutations that are suitable for the FCTP. 

Besides, we are interested in the SWAP, he works on the 

permutation of the gene values of two randomly chosen 

positions [20], the principle of which is shown below 

(Fig. 2). 

 

 

Fig. 2. Example of SWAP crossover 

 

4.1.3 IPX crossover operator 

The crossover is the most important operator in GA, 

it allows to create new solution spaces at each iteration of 

the algorithm. For the FCTP problem, several operators 

are applied. So, we have already developed a new 

crossover operator that we called Inversion Position-

based crossover IPX [21] (Fig. 3). 

   
 

Fig. 3. Example of the IPX crossover 



Intelligent information technologies 
 

21 

4.1.4 Elitism selection  

Selection is a genetic process that selects 

chromosomes from the current generation which will be 

used to create new populations. It is formulated to ensure 

that the best members of the population persist. We used 

the method of selection by elitism which consists of 

copying the best chromosome to pass to the next 

generation [22] (Fig. 4). 

 

 
 

Fig. 4. Standard genetic algorithm diagram 

 

Note that the diagram above is a simplified 

representation of a genetic algorithm, and there are many 

variations and additional steps that can be included 

depending on the specific problem being solved. 

 

4.2 . A proposed parallel algorithm  

for FCTP problem 

Parallel genetic algorithms (PGAs) are particularly 

useful for problems that require a large amount of 

computational resources to solve because they can 

distribute the workload across multiple processors or 

computing nodes. Additionally, PGAs can help 

overcome the limitations of standard genetic algorithms 

(GAs), such as premature convergence or difficulty in 

finding a global optimum. Normally, after a certain 

number of iterations, the standard genetic algorithm finds 

the best solution. However, to save more time and 

optimize the objective function; the parallelism will 

introduce diversity in the population and give more 

dynamism to explore and exploit new probable solutions, 

in order to obtain a better solution for the FCTP problem 

compared to that obtained by the standard genetic 

algorithm (SGA). There are several parallel genetic 

architectures. In this study, we used three models that we 

have presented below. 

 

4.2.1 Master-Slave approach  

The Master-Slave approach (MS-GA) is based on 

distributed evolutionary algorithms. In practice, with 

each evolution, the population is divided into subsets that 

are the subject of genetic operations (crossing and 

mutation) in parallel on several threads. Then, we 

combine the subsets of the population so that it moves on 

to the next evolution. For this case, the population is 

shared between the different threads and each one starts 

the processes (crossover and mutation) individually, as 

illustrated in Fig. 5. In practice, each thread launches the 

genetic processes and finds new individuals to select the 

better [23]. Algorithm 2 represents the evolution 

algorithm in which a transmitted population is divided 

into subsets according to equation (2) below: 

 

 
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.
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For each thread, their population is passed to 

Algorithm 1 after the genetic operations. The join() 

function ensures that the main thread waits for all other 

threads to complete. Finally, all returned subpopulations 

are combined to form a new population. In general, the 

master processor acts as a central controller and manages 

the flow of data between the slaves. The slaves, on the 

other hand, perform the actual computations and 

communicate with the master only when they have 

completed their task. 
 

 
 

Fig. 5. Illustrative depiction  

of the Master-Slave model 
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Algorithm 1 : For each thread (Master-Slave Approach) 

Begin 

Get the size for old population 

Create a new population with the same size to store result 

For counter j from 0 to size do 

Perform evolution on the population passed in 

Choose two parents from old population 

Perform crossover on the two parents 

Add child Tour to new population 

End for 

For each Tour in the new population do 

Perform mutation on the Tour to add more genetic 

material 

End for 

End 

 

Algorithm 2 : Parallel genetic algorithm (Master-Slave 

Approach) 

Begin 

Create two lists with size 4 to store Population 

Create 4 threads  

Get the size for each sub-population = pop/thread-size (4) 

Split the population into sub-populations 

For number of threads do 

Create sub population 

Create threads and start 

End for 

Wait for all threads to finish using join () 

Store evolved populations in an array 

Create a new population of the original size 

For number of threads do (Combine sub-sets into one) 

Add the new tour list to the new population 

End for 

Return the new population 

End 

 

4.2.2 Coarse-Grained approach MS-GA 

The Coarse-Grained approach consists of 

partitioning the population into subsets before 

performing the genetic evolution processes, such that 

each subpopulation performs the genetic evolution 

processes on its own and returns the best fitness of its 

population. After all subpopulations have completed 

operations, Coarse-Grained must manually choose the 

most optimal chromosome within the subpopulations. 

So, we divide the population into four sets of subsets of 

the population. Thus, in this case, each initialized 

subpopulation consists of 25 chromosomes as long as the 

initial population and the maximum number of iterations 

is 100 times. This is shown in Figure 6. 

The Coarse-Grained approach is based on 

separating the population on the different threads before 

performing the genetic evolution operators, so that the 

threads only need to send their new generation to the 

algorithm common general genetics [24]. Indeed, after an 

iteration of the parallel general algorithm, we can know 

the best chromosome according to their fitness function. 

In this scenario, the operation was performed 100 times. 

Algorithm 3 represents the pseudo-code of the Coarse-

Grained Approach. 

 

 
 

Fig. 6. Representative scheme  

of Coarse-Grained model 
 

Algorithm 3 : For each thread (Master-Slave Approach) 

Begin 
For counter j from 0 to 100 do 

Perform evolution on the population passed in 
End for 
End 

 

In Algorithm 3, we present the Coarse-Grained 

model approach. In this model, the population is divided 

by the number of threads to ensure that the workloads of 

each thread are equivalent to optimize the capacity of the 

processors. After each genetic evolution, we evaluate the 

fitness of populations returned by different threads to 

obtain the best solution during the next generations. On 

the other hand, the main thread must wait until all the 

threads have finished their processes before performing 

the comparison and choosing the best fitness. 
 

4.2.3 New hybrid approach NMSCG-GA 

The performance improvement of the master-slave 

approach decreases when the size of the instances 

increases on the other hand and the performance of the 

Coarse-Grained approach is not efficient for small 

instances. Therefore, it largely takes time to configure the 

threads; therefore, we propose a hybridization approach 

NMSCG of two previous approaches (Master-Slave and 

Coarse-Grained in order to find new solutions for the 

FCTP problem [25]. To address FCTP and optimize 

objective functions more efficiently, especially for large 

instances that demand substantial solving time, we 

introduce a hybrid approach in Algorithm 4. This 

approach is adaptable, contingent on the instance size. 
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For instances with a small size (less than 10*20), the 

algorithm attempts to implement the Master-Slave 

parallel approach, while for larger instances, it utilizes 

the parallel Coarse-Grained approach. You can find the 

detailed description of the proposed approach in 

Algorithm 4 below.   

 

Algorithm 4 : NMSCG-GA 

Begin 
If the size is smaller than (10*20) then 

Choose the Master-Slave Approach 
Else 

Choose the Coarse-Grained Approach 

End if 
End 

 

5. Experimental results  

and discussion 

After the results obtained for other similar 

combinatorial problems such as the traveling salesman 

problem TSP, an extension of the genetic approach with 

the principle of parallelism in the case of FCTP is carried 

out. so, we applied this approach to solve several 

instances of the standard FCTP problem already cited in 

previous articles with different sizes using the priority-

based representation. This experimental study is treated 

the linear version of the FCTP problem. Thus, to see the 

effectiveness of the proposed approaches, we compared 

them with the standard genetic algorithm using four 

randomly generated test problems with different FCTP 

problem sizes and different difficulty levels. 

As the size and complexity of search problems 

increase in the application of GAs, it becomes imperative 

to develop faster algorithms that can still yield 

satisfactory solutions. The work conducted has 

showcased various instances where parallel GAs have 

effectively combined speed and efficiency. This means 

we're getting better at using parallel GAs effectively in 

the future. 

In this section of the numerical experiments, we 

conducted a comparative analysis between the standard 

genetic algorithm (GA) and two parallel genetic 

algorithm models (MS-GA and CG-GA) [15]. 

Additionally, we introduced a new parallel genetic 

algorithm, NMSCG-GA, which seamlessly integrates 

both genetic algorithm and parallelism mechanisms. 

These methods were put to the test in solving five 

instances of the Fixed Charge Transportation Problem 

(FCTP) with varying sizes: 4x5, 5x10, 10x10, 10x20, 

20x30, 30x50, and 50x100. The objective was to deduce 

the optimal solutions obtained by each method, 

particularly focusing on the NMSCG-GA model. Table 1 

showcases a comprehensive comparison of the results 

achieved using these different approaches. 

 

Table 1  

Best results by proposed approach  

and standard GA for FCTP problem 

Problem 

size 
SGA MS-GA CG-GA NMSCG-GA 

4 x 5 9291 9291 9291 9291 

5 x 10 12718 12718 12718 12718 

10 x 10 13987 13934 13987 13934 

10 x 20 22258 22150 22095 22095 

20 x 30 32936 32683 32526 32471 

30 x 50 55450 55269 55007 54700 

50x100 85235 84312 84312 83963 

 
Above is the table of the best solutions found by the 

different models of the proposed approach in comparison 

with the standard genetic algorithm mentioned in 

Section 2. The results obtained by the models of the 

parallel genetic algorithm are more optimal than those of 

the standard genetic algorithm, especially for large 

instances (10x20, 20x30, and 30x50). For example, the 

solution found by the NMSCG-GA model for the 30x50 

instance is 54700, while it is 55450 for the SGA, 55269 

for the MG-GA and 55007 for CG-GA. To evaluate the 

performance of the numerical results found, we used the 

standard instances of the FCTP problem that are already 

mentioned in the reference articles. 
 

 
 

Fig. 7. Best Cost Comparison of NMSCG-GA  

Hybrid Approach and Other Methods  

for Seven Different FCTP Problem instances  
 

The obtained results demonstrate that the novel 

approach, which leverages parallelism (NMSCG-GA), 

significantly enhances the performance of the genetic 

algorithm (GA). Specifically, the Master-Slave (MS-GA) 

approach proves to be advantageous for smaller instances 

(5 x 10 and 10 x 10), whereas the Coarse-Grained (CG-

GA) approach exhibits greater effectiveness for larger 

instances. However, the most remarkable finding is that 

new hybrid approach (NMSCG-GA) combines the 

strengths of both MS-GA and CG-GA, making it more 

efficient and outperforming the other methods across all 

types of problem instances. 
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Conclusions 

 
In this study, the integration of parallelism into the 

genetic algorithm successfully enhanced the solving 

performance of the Fixed Charge Transportation Problem 

(FCTP). A comparison was made between the standard 

genetic algorithm and three distinct architectures: 

Master-Slave (MS-GA), Coarse-Grained (CG-GA), and 

the novel Hybrid Approach (NMSCG-GA). All three 

approaches showcased the effectiveness of employing 

genetic algorithms in conjunction with parallelism. 

However, the recently proposed Hybrid Approach 

(NMSCG-GA) surpassed the others by introducing 

diversity and dynamism into the population, resulting in 

significant time savings and optimization of the objective 

function. Leveraging parallelism, NMSCG-GA 

demonstrated superior performance in effectively 

addressing the FCTP problem with enhanced efficiency 

and effectiveness. These findings underscore the 

potential of this approach as a promising solution for 

complex optimization challenges. 

As the size and complexity of search problems 

increase in the application of GAs, it becomes imperative 

to develop faster algorithms that can still yield 

satisfactory solutions. The work conducted has 

showcased various instances where parallel GAs have 

effectively combined speed and efficiency. This study 

enables us to observe the impact of parallelism on both 

the results and the time required to solve the FCTP 

problem. Furthermore, since genetic algorithms have 

successfully implemented parallelism to solve the 

combinatorial optimization problem of FCTP, it 

encourages us to consider using parallelism in 

conjunction with other methods, such as exact methods, 

approximate methods, or artificial intelligence, to 

discover new solutions for FCTP [25]. Finally, all 

combinatorial problems have been resolved.  
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НОВИЙ ПІДХІД І ГІБРИДНІ ПАРАЛЕЛЬНІ АЛГОРИТМИ ДЛЯ РОЗВ’ЯЗАННЯ ЗАДАЧІ  

З ТРАНСПОРТУВАННЯМ ФІКСОВАНОГО ЗАРЯДУ 

Ахмед Лахджуджі Ель Ідріссі, Ісмаїл Еззерріфі Амрані,  

Аділ Бен-Hдеч, Ахмад Ель Аллауї 

У статті основна увага приділяється ефективному розв'язанню задачі перенесення фіксованого заряду 

(FCTP) шляхом пошуку оптимальних рішень за коротший проміжок часу. Завдання FCTP – це комбінаторна 

та NP-повна задача, для вирішення якої потрібен експонентний час по відношенню до розміру завдання. 

Метаевристичні методи, такі як генетичні алгоритми, це методи, які можуть забезпечити високоякісні рішення 

проблеми FCTP. Отже, використання паралельних алгоритмів може допомогти скоротити час, необхідний 

вирішення завдання. Пропонований метод, який називається паралельним генетичним алгоритмом (PGA), 

передбачає застосування генетичного алгоритму з використанням декількох паралельних архітектур для 

вирішення проблеми FCTP. Мета полягає в тому, щоб досліджувати нові рішення для фіксованого завдання 

перенесення заряду з використанням генетичного алгоритму, одночасно оптимізуючи час, необхідний 
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досягнення цих рішень, використовуючи паралелізм. Завдання FCTP – це завдання лінійного програмування, 

що включає визначення оптимальної кількості продуктів, які необхідно транспортувати з декількох пунктів 

відправлення в кілька пунктів призначення, з метою мінімізації загальної вартості транспортування. Це має 

бути зроблено з урахуванням обмежень щодо наявності продуктів у пунктах відправлення та попиту на 

продукти у пунктах призначення. Ми пропонуємо генетичний алгоритм із трьома архітектурами паралелізму 

на вирішення завдання перенесення фіксованого заряду. Перший підхід – це підхід «провідний-підлеглий», 

другий – це «великозернистий» підхід, а третій поєднує в собі обидва підходи, щоб скористатися їхніми 

відповідними перевагами. Численні результати показують, що наші підходи, що базуються на паралелізмі, 

покращують продуктивність генетичних алгоритмів. Зокрема, для вирішення проблеми FCTP підхід 

«провідний-підлеглий» (MS-GA) виявився кращим для невеликих екземплярів, в той час як підхід Coarse-

Grained більш ефективний для більших екземплярів тієї ж проблеми. Ми укладаємо, що запропоновані 

підходи до вирішення фіксованого завдання перенесення заряду є чудовим прикладом того, як ці алгоритми 

можуть бути використані для вирішення інших комбінаторних завдань та підвищення ефективності існуючих 

рішень. 

Ключові слова: паралельний генетичний алгоритм (PGA); завдання перенесення фіксованих зарядів 

(FCTP); підхід «провідний-підлеглий»; «великозернистий» підхід; підхід гібридного паралельного 

генетичного алгоритму. 
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