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A NOVEL APPROACH AND HYBRID PARALLEL ALGORITHMS FOR SOLVING
THE FIXED CHARGE TRANSPORTATION PROBLEM

This article is dedicated to the efficient resolution of the fixed charge transport problem (FCTP) with the goal
of identifying optimal solutions within reduced timeframes. FCTP is a combinatorial and NP-complete problem
known for its exponential time complexity relative to problem size. Metaheuristic methods, including genetic
algorithms, represent effective techniques for obtaining high-quality FCTP solutions. Consequently, the
integration of parallel algorithms emerges as a strategy for expediting problem-solving. The proposed
approach, referred to as the parallel genetic algorithm (PGA), entails the application of a genetic algorithm
across multiple parallel architectures to tackle the FCTP problem. The primary aim is to explore fresh solutions
for the fixed charge transportation problem using genetic algorithms while concurrently optimizing the time
required to achieve these solutions through parallelism. The FCTP problem is fundamentally a linear
programming challenge, revolving around the determination of optimal shipment quantities from numerous
source locations to multiple destinations with the overarching objective of minimizing overall transportation
costs. This necessitates consideration of constraints tied to product availability at the sources and demand
dynamics at the destinations. In this study, a pioneering approach to addressing the Fixed Charge
Transportation Problem (FCTP) using parallel genetic algorithms (PGA) is unveiled. The research introduces
two distinct parallel algorithms: The Master-Slave Approach (MS-GA) and the Coarse-Grained Approach (CG-
GA). Additionally, investigation into the hybridization of these approaches has led to the development of the
NMS-CG-GA approach. The numerical results reveal that our parallelism-based approaches significantly
improve the performance of genetic algorithms. Specifically, the Master-Slave (MS-GA) approach demonstrates
its advantages in solving smaller instances of the FCTP problem, while the Coarse-Grained (CG-GA) approach
exhibits greater effectiveness for larger problem instances. The conclusion reached is that the novel hybrid
parallel genetic algorithm approach (NMS-CG-GA) outperforms its predecessors, yielding outstanding results,
particularly across diverse FCTP problem instances.

Keywords: Parallel Genetic Algorithm (PGA); Fixed Charge Transportation Problem (FCTP); Master-Slave
Approach; Coarse-Grained Approach; Hybrid parallel genetic algorithm Approach.

belongs to the class of NP-hard problems [1]. It is an
extension of the liner transportation problem, which
involves minimizing the cost of shipping goods from a

1. Introduction

Combinatorial optimization problems seek to

optimize an objective function subject to constraints by
finding the best solution from a finite set of possible
solutions that are characterized by a combinatorial
structure, such as a graph, network, or set of objects.
They have wide-ranging applications in various domains,
including computer science, operations research,
physics, economics, and biology. One primary
motivation for studying combinatorial problems is their
relevance to real-world problems. For example, in
operation research, combinatorial problems are used to
optimize resource allocation, scheduling, and logistics.

1.1. Problematic

The fixed charge transportation problem (FCTP) is
a well-known combinatorial optimization problem that

set of suppliers to a set of customer’s subject to supply
and demand constraints. The objective is to minimize the
total cost of shipping goods from a set of suppliers to a
set of customers, subject to supply and demand
constraints. In areal problem, the fixed costs may include
costs such as handling and setup costs, which are incurred
regardless of the amount of goods being shipped.

The computational complexity of FCTP depends on
several factors, including the number of sources and
destinations. The complexity is bounded by the size of
the problem instance, which generally increases as the
problem size increases, making it more difficult to solve.
Therefore, more efficient tools and methods are needed
to solve larger instances of the problem.
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1.2. Objective and approach

We seek to solve the FCTP problem in a more
efficient way. To achieve this, we have opted for the
utilization of parallel genetic algorithms (PGA) [2 — 4].
The main objective of PGAs is to increase the
effectiveness of genetic algorithms by leveraging the
power of parallel computing. To find new optimal
solutions to the FCTP problem in a reasonable and fast
time. This approach offers several benefits, including the
effectiveness of genetic algorithms and the strength of
parallel architectures. The effectiveness of genetic
algorithms comes from their ability to adapt and evolve
solutions over time, while the strength of parallel
architectures lies in their ability to process large amounts
of data in parallel. By combining these two strengths, we
hope to find solutions to the FCTP problem that are both
high-quality and generated quickly.

1.3. Paper outline

To achieve this objective, the work was divided into
the following order: first, we provide a general overview
of the FCTP problem and its mathematical model. The
following section discusses related works that deal with
the FCTP problem. Next, we present a general overview
of standard genetic algorithms, including their main
processes and genetic operators, such as selection,
crossover, and mutation. The proposed parallel genetic
algorithm for FCTP problem explores three different
models of parallelism. The first model, "The Master-
Slave approach," is a commonly used parallel algorithm
design pattern in parallel computing. The second parallel
genetic algorithm model, called "Coarse-Grained
Approach," divides the initial population into small
subpopulations, which are then processed by different
processors in parallel. The third model combines the
advantages of both Master-Slave and Coarse-Grained
approaches to find better solutions to the FCTP problem.
The proposed approaches based on genetic algorithms
and parallelism architectures are tested on several
instances of the FCTP problem. The results are then
compared to the standard genetic algorithm SGAs in the
numerical results section. Finally, the paper concludes
with a summary of the findings and potential future
directions for research or perspectives.

2. Related work

There are several methods to solve FCTP problem.
Here are some of the most commonly used methods with
their logical links; First, we find the Integer Linear
Programming (ILP). It is an exact optimization method
that solves the FCTP by expressing the problem as a set
of linear equations and constraints [8]. The logical link
between ILP and FCTP is that the problem can be

mathematically represented and solved using a set of
linear equations and constraints, where the objective is to
minimize the total cost of shipping goods while
considering the fixed costs [9]. Second, there is the
Heuristic Algorithm; they are approximate optimization
methods that quickly find near-optimal solutions to the
FCTP. The logical link between heuristic algorithms and
FCTP is that they use a set of heuristics to find good
solutions, without guaranteeing that the solution is
optimal [10]. Third, we discover the Metaheuristic
Algorithms: Metaheuristics are optimization methods
that are designed to explore the search space more
efficiently than heuristic algorithms [11, 12]. The most
widely known Meta-heuristic algorithms are Genetic
algorithm (GA) [13]. Lastly, we come across the Hybrid
Approaches; these approaches combine different
optimization techniques, such as ILP formulations,
heuristic and metaheuristic algorithms, to find good
solutions to the FCTP. The logical link between hybrid
approaches and FCTP is that they leverage the strengths
of each optimization technique to find high-quality
solutions more efficiently [14]. Recently, we embarked
on a novel approach by harnessing parallelism for the
first time to address the FCTP problem, yielding
remarkable results when compared to alternative
methods [15]. In summary, the methods for solving the
FCTP vary in terms of their approach and level of
optimization. By choosing the most appropriate method
for a given problem instance.

3. Problem description
and mathematical model

The Fixed Charge Transport Problem (FCTP) is a
combinatorial optimization problem. It was formulated
by Hirsch and Dantzig [4]. Balinski modified the FCTP
to make the problem as a linear integer problem [6].
Adlakha proposed a simple heuristic algorithm to solve
the FCTP at a small size [7]. We have a destination group
j =1, .., nserved by a group of production centers
i =1, ..., m while each producer has a given production
capacity S;i and each destination has a demand to satisfy
D;. A variable transportation cost is charged for each
product unit sent by the producers to the warehouses plus
a fixed cost regardless of the quantity transported. The
problem is to determine the amount of product to be sent
from each production location for each warehouse to
minimize the total fixed and variable costs to serve all
destinations. Thus, the problem contains two costs;
variable cost cjj Xj; proportional to the quantity shipped
and a fixed cost fiyij regardless of the quantity
transported. Moreover, it is better to consider the
balanced problem S; = Dj. Indeed, it is easy to find a
solution for this type of problems. The mathematical
formulation of the FCTP is as follows:
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where cj; : variable cost from source i to destination j;
Xij : quantity transported on the route (i,j);
fij : fixed cost associated with route (i,j);
yii : abinary variable y;; =1 if x;; >0 and 0 if x;=0;
Si : amount of supply at source i;
D; : amount of demand at destination j;

4. Methodology and implementation

In this study, we employed two distinct approaches
to solve the FCTP problem. The first approach used a
standard genetic algorithm with its standard processes
(SGA). For the second approach, we proposed and
implemented a parallel genetic algorithm (PGA) that
incorporates a parallel mechanism into the genetic
algorithm processes. Subsequently, we compared the two
methods to demonstrate the superiority of the second
method (PGA) in terms of efficiency, which can refer to
either discovering new solutions to the FCTP problem or
obtaining existing solutions within a shorter period. Since
solving combinatorial problems involves finding
ultimate solutions, we also place a significant emphasis
on the time it takes to find them. Hence, time plays a
crucial role in solving these problems.

4.1. Genetic algorithm for FCTP

The standard genetic algorithm (SGA) operates on
a population of candidate solutions, each represented as
a set of parameters, often called a chromosome. The
algorithm begins by randomly generating an initial
population of solutions. Then, it iteratively selects pairs
of parent solutions from the current population, based on
their fitness, and combines them to create new child
solutions. next generation solutions are created by
applying genetic operators such as crossover and
mutation. The new child solutions are then evaluated for
their fitness, and the best ones are selected to become part
of the next generation. This process of selection,
reproduction, and evaluation is repeated for a fixed
number of generations or until a satisfactory solution is
found. The hope is that by applying these genetic

operators, the population will converge to the optimal
solution [16].

4.1.1Priority based encoding

There are several encoding methods adapted to
FCTP problem; like the matrix encoding [17], the priifer
number encoding [18]. However, the priority-based
encoding is a more suitable coding for our FCTP
problem [19]. In this case, the solution is represented by
an entire string of length equal to the number of sources
(m) plus the number of customers (n). Fig. 1. represents
an example of this encoding.

Origines Destinations
node ID
pJ'iori{\‘-bnsedrode‘ 1 | 6 ‘ 8 | 2

4]3]9]7]s

Fig. 1. Chromosome by priority based-encoding

4.1.2 SWAP mutation

Mutation is a genetic operator that consists of
exchanging the positions of some genes within the same
chromosome with probability. There are typically
numerous mutations that are suitable for the FCTP.
Besides, we are interested in the SWAP, he works on the
permutation of the gene values of two randomly chosen
positions [20], the principle of which is shown below

(Fig. 2).

Parent : [e]2]7][s5]a][6]3]1]2]
Id

Cd

Offspring : |9|2|3.|5‘4‘6|7|1|8|

Fig. 2. Example of SWAP crossover

4.1.31PX crossover operator

The crossover is the most important operator in GA,
it allows to create new solution spaces at each iteration of
the algorithm. For the FCTP problem, several operators
are applied. So, we have already developed a new
crossover operator that we called Inversion Position-
based crossover IPX [21] (Fig. 3).

b4
Parent1: [9]2[7]s[4a[s[6[s]8] Parenmt1: [s]2[7[5]a[5]6[a]s]

offpring 1 [7]2] 9 [5[a]6[3[1]8] offsprng2: [6[8]s[a]7]s]2]0[a]

Paen2:  [2[8[3]6[s[5]7[a[a] Parent2: EBBEIHII!I

7 3 RN

Fig. 3. Example of the IPX crossover
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4.1.4Elitism selection

Selection is a genetic process that selects
chromosomes from the current generation which will be
used to create new populations. It is formulated to ensure
that the best members of the population persist. We used
the method of selection by elitism which consists of
copying the best chromosome to pass to the next
generation [22] (Fig. 4).

Generation of the initial population by

¥

Evaluation (Calculate Fitness)

l

[ ¥
[ Elitism Selection
[

[

¥
Crossover by IPX

¥

Mutation by SWAP

Stopping criterion

Fig. 4. Standard genetic algorithm diagram

Note that the diagram above is a simplified
representation of a genetic algorithm, and there are many
variations and additional steps that can be included
depending on the specific problem being solved.

4.2. A proposed parallel algorithm
for FCTP problem

Parallel genetic algorithms (PGAS) are particularly
useful for problems that require a large amount of
computational resources to solve because they can
distribute the workload across multiple processors or
computing nodes. Additionally, PGAs can help
overcome the limitations of standard genetic algorithms
(GAs), such as premature convergence or difficulty in
finding a global optimum. Normally, after a certain
number of iterations, the standard genetic algorithm finds
the best solution. However, to save more time and
optimize the objective function; the parallelism will
introduce diversity in the population and give more
dynamism to explore and exploit new probable solutions,
in order to obtain a better solution for the FCTP problem

compared to that obtained by the standard genetic
algorithm (SGA). There are several parallel genetic
architectures. In this study, we used three models that we
have presented below.

4.2.1 Master-Slave approach

The Master-Slave approach (MS-GA) is based on
distributed evolutionary algorithms. In practice, with
each evolution, the population is divided into subsets that
are the subject of genetic operations (crossing and
mutation) in parallel on several threads. Then, we
combine the subsets of the population so that it moves on
to the next evolution. For this case, the population is
shared between the different threads and each one starts
the processes (crossover and mutation) individually, as
illustrated in Fig. 5. In practice, each thread launches the
genetic processes and finds new individuals to select the
better [23]. Algorithm 2 represents the evolution
algorithm in which a transmitted population is divided
into subsets according to equation (2) below:

Size(Population)
number of threads

Size(subpopulation) = )

For each thread, their population is passed to
Algorithm 1 after the genetic operations. The join()
function ensures that the main thread waits for all other
threads to complete. Finally, all returned subpopulations
are combined to form a new population. In general, the
master processor acts as a central controller and manages
the flow of data between the slaves. The slaves, on the
other hand, perform the actual computations and
communicate with the master only when they have
completed their task.

Initial Population

¥

Population - Before Evolution

¥ + + ¥

Corossover Corossover || Corossover Corossover
Mutation Mutation Mutation Mutation

i + + +

Poplation - After Evolution

!

Final Population - Get the Best Fitness

Fig. 5. llustrative depiction
of the Master-Slave model
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Algorithm 1 : For each thread (Master-Slave Approach)
Begin
Get the size for old population
Create a new population with the same size to store result
For counter j from O to size do
Perform evolution on the population passed in
Choose two parents from old population
Perform crossover on the two parents
Add child Tour to new population
End for
For each Tour in the new population do
Perform mutation on the Tour to add more genetic
material
End for
End

Algorithm 2 : Parallel genetic algorithm (Master-Slave
Approach)
Begin
Create two lists with size 4 to store Population
Create 4 threads
Get the size for each sub-population = pop/thread-size (4)
Split the population into sub-populations
For number of threads do
Create sub population
Create threads and start
End for
Wait for all threads to finish using join ()
Store evolved populations in an array
Create a new population of the original size
For number of threads do (Combine sub-sets into one)
Add the new tour list to the new population
End for
Return the new population

End

4.2.2 Coarse-Grained approach MS-GA

The Coarse-Grained approach consists of
partitioning the population into subsets before

performing the genetic evolution processes, such that
each subpopulation performs the genetic evolution
processes on its own and returns the best fitness of its
population. After all subpopulations have completed
operations, Coarse-Grained must manually choose the
most optimal chromosome within the subpopulations.
So, we divide the population into four sets of subsets of
the population. Thus, in this case, each initialized
subpopulation consists of 25 chromosomes as long as the
initial population and the maximum number of iterations
is 100 times. This is shown in Figure 6.

The Coarse-Grained approach is based on
separating the population on the different threads before
performing the genetic evolution operators, so that the
threads only need to send their new generation to the
algorithm common general genetics [24]. Indeed, after an

iteration of the parallel general algorithm, we can know
the best chromosome according to their fitness function.
In this scenario, the operation was performed 100 times.
Algorithm 3 represents the pseudo-code of the Coarse-
Grained Approach.

Initial Population

! i { !

Sub- Sub- Sub- Sub-
Population Population Population Population
Crossover Crossover Crossover Crossover
Mutation Mutation Mutation Mutation

Elitesm Elitesm Elitesm Elitesm
Get the Best Fitness

Fig. 6. Representative scheme
of Coarse-Grained model

Algorithm 3 : For each thread (Master-Slave Approach)
Begin
For counter j from 0 to 100 do
Perform evolution on the population passed in
End for
End

In Algorithm 3, we present the Coarse-Grained
model approach. In this model, the population is divided
by the number of threads to ensure that the workloads of
each thread are equivalent to optimize the capacity of the
processors. After each genetic evolution, we evaluate the
fitness of populations returned by different threads to
obtain the best solution during the next generations. On
the other hand, the main thread must wait until all the
threads have finished their processes before performing
the comparison and choosing the best fitness.

4.2.3New hybrid approach NMSCG-GA

The performance improvement of the master-slave
approach decreases when the size of the instances
increases on the other hand and the performance of the
Coarse-Grained approach is not efficient for small
instances. Therefore, it largely takes time to configure the
threads; therefore, we propose a hybridization approach
NMSCG of two previous approaches (Master-Slave and
Coarse-Grained in order to find new solutions for the
FCTP problem [25]. To address FCTP and optimize
objective functions more efficiently, especially for large
instances that demand substantial solving time, we
introduce a hybrid approach in Algorithm 4. This
approach is adaptable, contingent on the instance size.
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For instances with a small size (less than 10*20), the Table 1
algorithm attempts to implement the Master-Slave Best results by proposed approach
parallel approach, while for larger instances, it utilizes and standard GA for FCTP problem
the parallel Coarse-Grained approach. You can find the Problem
detailed description of the proposed approach in size SGA | MS-GA | CG-GA | NMSCG-GA
Algorithm 4 below. 4x5 9291 9291 9291 9291
5x10 12718 | 12718 12718 12718
Algorithm 4 : NMSCG-GA 10x10 | 13987 | 13934 13987 13934
Begin 10x20 | 22258 | 22150 22095 22095
If the size is smaller than (10*20) then 20 x 30 32936 | 32683 32526 32471
flce Choose the Master-Slave Approach 30X 50 55250 | 55269 55007 54700
Choose the Coarse-Grained Approach 50x100 | 85235 | 84312 | 84312 83963
End if
End Above is the table of the best solutions found by the
different models of the proposed approach in comparison
5. Experimental results with the standard genetic algorithm mentioned in
and discussion Section 2. The results obtained by the models of the
parallel genetic algorithm are more optimal than those of
After the results obtained for other similar the standard genetic algorithm, especially for large

combinatorial problems such as the traveling salesman
problem TSP, an extension of the genetic approach with
the principle of parallelism in the case of FCTP is carried
out. so, we applied this approach to solve several
instances of the standard FCTP problem already cited in
previous articles with different sizes using the priority-
based representation. This experimental study is treated
the linear version of the FCTP problem. Thus, to see the
effectiveness of the proposed approaches, we compared
them with the standard genetic algorithm using four
randomly generated test problems with different FCTP
problem sizes and different difficulty levels.

As the size and complexity of search problems
increase in the application of GAs, it becomes imperative
to develop faster algorithms that can still yield
satisfactory solutions. The work conducted has
showcased various instances where parallel GAs have
effectively combined speed and efficiency. This means
we're getting better at using parallel GAs effectively in
the future.

In this section of the numerical experiments, we
conducted a comparative analysis between the standard
genetic algorithm (GA) and two parallel genetic
algorithm models (MS-GA and CG-GA) [15].
Additionally, we introduced a new parallel genetic
algorithm, NMSCG-GA, which seamlessly integrates
both genetic algorithm and parallelism mechanisms.
These methods were put to the test in solving five
instances of the Fixed Charge Transportation Problem
(FCTP) with varying sizes: 4x5, 5x10, 10x10, 10x20,
20x30, 30x50, and 50x100. The objective was to deduce
the optimal solutions obtained by each method,
particularly focusing on the NMSCG-GA model. Table 1
showcases a comprehensive comparison of the results
achieved using these different approaches.

instances (10x20, 20x30, and 30x50). For example, the
solution found by the NMSCG-GA model for the 30x50
instance is 54700, while it is 55450 for the SGA, 55269
for the MG-GA and 55007 for CG-GA. To evaluate the
performance of the numerical results found, we used the
standard instances of the FCTP problem that are already
mentioned in the reference articles.

400000
350000
300000
250000
200000
150000
100000

50000

ax5s 5x10

10x10

10x20 20x30 30 x50 50x100

| <copes SGA == MS-GA =—+ CG-GA —C—NMSCG—GA‘

Fig. 7. Best Cost Comparison of NMSCG-GA
Hybrid Approach and Other Methods
for Seven Different FCTP Problem instances

The obtained results demonstrate that the novel
approach, which leverages parallelism (NMSCG-GA),
significantly enhances the performance of the genetic
algorithm (GA). Specifically, the Master-Slave (MS-GA)
approach proves to be advantageous for smaller instances
(5 x 10 and 10 x 10), whereas the Coarse-Grained (CG-
GA) approach exhibits greater effectiveness for larger
instances. However, the most remarkable finding is that
new hybrid approach (NMSCG-GA) combines the
strengths of both MS-GA and CG-GA, making it more
efficient and outperforming the other methods across all
types of problem instances.
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Conclusions

In this study, the integration of parallelism into the
genetic algorithm successfully enhanced the solving
performance of the Fixed Charge Transportation Problem
(FCTP). A comparison was made between the standard
genetic algorithm and three distinct architectures:
Master-Slave (MS-GA), Coarse-Grained (CG-GA), and
the novel Hybrid Approach (NMSCG-GA). All three
approaches showcased the effectiveness of employing
genetic algorithms in conjunction with parallelism.
However, the recently proposed Hybrid Approach
(NMSCG-GA) surpassed the others by introducing
diversity and dynamism into the population, resulting in
significant time savings and optimization of the objective
function.  Leveraging parallelism, NMSCG-GA
demonstrated superior performance in effectively
addressing the FCTP problem with enhanced efficiency
and effectiveness. These findings underscore the
potential of this approach as a promising solution for
complex optimization challenges.

As the size and complexity of search problems
increase in the application of GAs, it becomes imperative
to develop faster algorithms that can still vyield
satisfactory solutions. The work conducted has
showcased various instances where parallel GAs have
effectively combined speed and efficiency. This study
enables us to observe the impact of parallelism on both
the results and the time required to solve the FCTP
problem. Furthermore, since genetic algorithms have
successfully implemented parallelism to solve the
combinatorial optimization problem of FCTP, it
encourages us to consider using parallelism in
conjunction with other methods, such as exact methods,
approximate methods, or artificial intelligence, to
discover new solutions for FCTP [25]. Finally, all
combinatorial problems have been resolved.
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HOBMIA MIIXIJ I FIBPUTHI HAPAJIEJIBHI AJITOPUTMU JIJI PO3B’SI3AHHS 3AJTAUIT
3 TPAHCHHOPTYBAHHSAM ®IKCOBAHOI'O 3APSAY

Axmeo Jlaxoxncyosci Ens Iopicci, Icmain E33eppighi Ampati,
Aoin ben-Hoeu, Axmao Env Annayi

VY craTTi OCHOBHA yBara MPHIIISAETHCS ePEKTUBHOMY PO3B'I3aHHIO 3aj[aui epeHeceHHs (pikcoBaHOTO 3apsay
(FCTP) muisxoMm NOIIYKY ONTUMANBHUX PIillIeHb 3a KOPOTMIHN MpoMixkok dacy. 3aBmaHas FCTP — e kombiHaTopHa
ta NP-mioBHa 3amadva, ISl BUPIMICHHS SKOi MOTPiOEH €KCIIOHEHTHHWH Yac MO BIAHOMICHHIO J0 PO3Mipy 3aBIaHHS.
MertaeBpHuCTHYHI METOIH, TaKi IK TeHETHYHI aJTOPUTMHU, IIe METOH, SIKi MOXKYTh 3a0€3IIeYHTH BUCOKOSIKICHI pilIICHHS
mpobiaemu FCTP. Omxe, BUKOPUCTAHHS MapalelbHAX alTOPUTMIB MOXKE TOIIOMOTTH CKOPOTHUTH Yac, HEOOXiTHUI
BUpIlIeHHS 3aBOaHHS. [IpOMOHOBaHMI METOM, KU HAa3WBAETHCS TMapajelbHIM reHeTHUHuUM airoputMoMm (PGA),
nepeadavyae 3aCTOCYBaHHS T'€HETHYHOTO aITOPHTMY 3 BHKOPHCTAHHSAM JEKIJIBKOX MapasieNlbHUX apXiTeKTyp IS
BupimeHas npodnemu FCTP. Mera mossirae B ToMy, o0 AOCIiIKYBaTH HOBI PillieHHS TS (PiKCOBAHOTO 3aBJaHHSI
TIEpEeHECeHHS 3apsAay 3 BHKOPHCTAHHSIM TEHETHYHOTO aJrOPUTMY, OAHOYACHO ONTHUMI3YyIOUM dYac, HEOOXiTHWH
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JOCSITHEHHSI [TUX pillleHb, BAKOPUCTOBYIOUH napanenizM. 3asnanHs FCTP — e 3aBiaHHs JIiHIHHOTO MporpaMyBaHHS,
10 BKJIIOYA€ BU3HAYCHHS ONTHMAJIBHOI KIJIBKOCTI ITPOAYKTIB, SIKi HEOOX1THO TPAaHCIIOPTYBATH 3 NEKUIBKOX ITYHKTIB
BiJIIpaBIICHHS B KiJIbKa MyHKTIiB MIPU3HAYCHHS, 3 METOIO0 MiHIMi3alii 3araipHOI BapTOCTi TpaHcropTyBaHHs. Lle Mae
Oyru 3po0iieHO 3 ypaxyBaHHSM OOMEXKEHb IIOJI0 HAsSBHOCTI NMPOAYKTIB y IMYHKTaX BiJNpPAaBIEHHS Ta IONHUTY Ha
MIPOAYKTH Y ITyHKTaX MPHU3HAYEHHS. MU IPOITOHYEMO TEHETHYHHH aJlTOPUTM i3 TPhOMa apXiTeKTypaMu IapajienizMy
Ha BUpIIICHHS 3aBJaHHS MepeHeceHHs! (ikcoBaHOro 3apsny. Ilepmmii miaxia — e miaxin «IpoBiIHMNA-TI I,
JIPYTUH — TIe «BETUKO3CPHHUCTHUID MiIXiJ, a TPETid MmoemaHye B cobi 0OMIBa MiAXOH, 100 CKOPUCTATUCS iXHIMH
BiJITIOBITHMMU TIepeBaramMu. YHCIIeHHI pe3yinbTaTh MOKa3yloTh, 0 HAIli ITiXO0H, 10 0a3yloThCs Ha MapalielnizMi,
TIOKPAIIYIOTh IPOXYKTUBHICTh TEHETUYHHX alropUTMiB. 30Kpema, jausi BupimeHHs npobmemu FCTP minxin
«mpoBiaaui-mimiernuity (MS-GA) BUSBHUBCS KpalllUM IS HEBEJIHMKUX €K3eMIULIpiB, B Toi yac sk miaxim Coarse-
Grained Oinbmr edeKTUBHHUN Ayt OLMBIIMX €K3EeMIULIpIB Ti€l K mpobieMu. Mu ykiagaeMo, IO 3arpolioOHOBaHi
I IXO0/IM /10 BUPIIIeHHs (PIKCOBAHOTO 3aBJaHHS MEPEHECEHHS 3apsly € YyJAOBHM IIPUKIAJOM TOTO, SIK Il aJlTOPUTMH
MOXYTb OyTH BUKOPHCTaHI JUIS BUPIIIEHHS 1HIINX KOMOIHATOPHUX 3aB/IaHb Ta MiIBUIIEHHS €(DEKTHBHOCTI ICHYIOUNX
pilleHs.

Koarouosi cioBa: napanensHuil renernunuid anroput™ (PGA); 3aBmaHHs nepeHeceHHst (iKCOBaHMX 3apsiliB
(FCTP); mipxin «mpoBiTHUH-MIANETIINI; «BETMKO3EPHUCTHI» MIAXiN; MiAXig TiOpWAHOTO MapanenbHOro
TEHETUYHOI'O AJITOPUTMY.

Axmen Jlaxmxkymki Eab Iapicei — npodecop, Hamionanbna mikonma npukiagaux Hayk Aub-XoceliMa,
naboparopist NPUKIAIHUX HayK, YHiBepcuteT AOaenpmaneka Ecaani, Teryan, Mapokko.

Iemain E3zeppidi Ampani — noxrop dinocodii, Jlaboparopis npukinagaux Hayk Anb-Xoceimu, YHiBepCUTET
Abnenbmaneka Ecaani, Teryan, Mapokko.

Anin Ben-Haeu — npodecop indopmaTuku Ta cucteMHol iHxeHepii, pakynbrer Hayk — Teryan, YHiBepcuter
Abnenbmaneka Ecaani, Teryan, Mapokko.

Axman Eab Annayi — npodecop, GpaxyabTeT HayKH 1 TEXHOJOTIH, tadopaTopist M21, komanna ASIA, Eppadifis,
YuiBepcuter Mynaii Icmain, Meknec, Mapokko.
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