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A NOVEL APPROACH FOR SEMANTIC SEGMENTATION
OF AUTOMATIC ROAD NETWORK EXTRACTIONS
FROM REMOTE SENSING IMAGES BY MODIFIED UNET

Accurate and up-to-date road maps are crucial for numerous applications such as urban planning, automatic
vehicle navigation systems, and traffic monitoring systems. However, even in the high resolutions remote sensing
images, the background and roads look similar due to the occlusion of trees and buildings, and it is difficult to
accurately segment the road network from complex background images. In this research paper, an algorithm
based on deep learning was proposed to segment road networks from remote sensing images. This semantic
segmentation algorithm was developed with a modified UNet. Because of the lower availability of remote sensing
images for semantic segmentation, the data augmentation method was used. Initially, the semantic segmentation
network was trained by a large number of training samples using traditional UNet architecture. After then, the
number of training samples is reduced gradually, and measures the performance of a traditional UNet model.
This basic UNet model gives better results in the form of accuracy, 10U, DICE score, and visualization of the
image for the 362 training samples. The idea here is to simply extract road data from remote sensing images. As
a result, unlike traditional UNet, there is no need for a deeper neural network encoder-decoder structure. Hence,
the number of convolutional layers in the modified UNet is lower than that in the standard UNet. Therefore, the
complexity of the deep learning architecture and the training time required by the road network model was
reduced. The model performance measured by the intersection over union (I0U) was 93.71% and the average
segmentation time of a single image was 0.28 sec. The results showed that the modified UNet could efficiently
segment road networks from remote sensing images with identical backgrounds. It can be used under various

situations.
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1. Introduction

Road network infrastructure is the backbone of any
country. In recent times many applications need updated
road information frequently such as urban planning, and
vehicle routing systems. Hence extraction of road sur-
faces from high-resolution images is highly significant.
On the other hand, updating the road network manually
is time consuming and tedious job. However, the roads
are modeled as a group of intersections and connections
among these intersections [1].

With the support of artificial intelligence, image
processing, and machine learning, the automatic extrac-
tion of roads from remotely sensed images is a cost-ef-
fective and successful mode to obtain road infor-
mation [2 - 5].

Many researchers proposed road extraction algo-
rithms based on various properties of road features. There
are two ways to develop a road network detection system,
semiautomatic road and automatic road extraction meth-
ods [6, 7]. The method was based on traditional road
knowledge, such as road geometry, grey level, and direc-

tion of the road were used to extract a road from RS im-
ages [8 —10]. For image detection and monitoring, the
majority of researchers have focused on mathematical
morphology techniques. This method is always used in
conjunction with other image segmentation techniques
[11, 12]. Anil P N described a three-step method for ex-
tracting road networks from RS pictures using active con-
tours [13].

Recently, the majority of techniques for road detec-
tion have relied on classification-based methods [5, 14].
The noisy Landsat satellite images are classified using
various algorithms, such as support vectors, logistic re-
gression, and neural networks based on multilayer per-
ceptrons [15]. The comparative analysis revealed that
while heterogeneous objects like roads and buildings are
recognized poorly overall, aerial objects like water and
grass are classified nicely in each method. Overall, the
best classification quality was achieved using the neural
network-based multilayer perceptron method.

Recently due to high processing hardware easily
available deep learning-based algorithms are used to de-
tect road networks from remote sensing images. With the
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emergence of deep learning the Convolution Neural Net-
works (CNN) improve the interpretation by learning
more discriminative features [16] such as structural fea-
tures of images.

1.1. State of art

Many researchers focused on the detection of road
parameters from remote sensing images. Road surface
extraction was done by a single patch-based Convolution
Neural Network (CNN) architecture [17]. RoadNet archi-
tecture was examined using high-resolution RS images in
a complicated urban scenario [14]. The RoadNet archi-
tecture was made up of three end-to-end connected CNNs
that perform various tasks. CasNet, a new deep model
connected cascaded end-to-end CNNs to extract road and
centerlines simultaneously [5]. DenseNet model used
few parameters and robust characteristics [18]. UNet
with combining residual learning units for road image ex-
traction [19]. From all the methods reported by various
researchers, it is concluded that the presence of complex
environments such as occlusion or shadows of trees and
high elevation buildings, sharp turns, junctions of roads,
etc. cause the problem of road extraction from remote
sensing images. Moreover, training time, the number of
samples used for training the model, and hyper parame-
ters selection are also playing arole in various deep learn-
ing-based methods. Therefore, automatic and fast extrac-
tion of road network from RS images challenging task.

1.2. Objective

The main objective of this work is to extract auto-
matic and fast road surfaces from remote sensing images
which have a complex environment. The method dis-
cussed in this paper is based on the UNet [20] architec-
ture as it requires fewer numbers of training samples to
train the road model. However, the various numbers of
training—testing samples are considered to find the opti-
mum number of training samples which has high road de-
tection accuracy in minimum time. Moreover, it also re-
duces the number of convolution and de-convolution
blocks used in the UNet architecture. This will cause
fewer memory resources used and have fast extraction of
the road network from the RS images as compared to
other methods.

The remainder of this paper is organized as follows.
Section 2 introduces the road dataset along with the train-
ing—testing splitting of the dataset. However, it also pre-
sented the details of our Modified UNet architecture and
proposed algorithm to train the road detection network
including evaluation metrics and performances. Training
- testing time comparison and applicability analysis of
our proposed method are provided in Section 3. Finally,
the conclusion and discussion will be outlined.

2. Materials and methods of research

2.1. Dataset

We choose the publically available Massachusetts
Roads Dataset consists of 1634 aerial images of the state
of Massachusetts [21]. Each image is 1500x1500 pixels
in size, resolution of 1.2 meter/pixel, covering an area of
2.25 square kilometers. Initially, the dataset has a training
set of 1208images, a validation set of 212 images, and a
test set of 214 images. Figure 1 represented some samples
of remote sensing images and Figure 2 shows the ground
truth of these sample images.

(© (d)

Figure 1. Remote Sensing Original Images:
(a) — imagel;(b) — image 2;(c) — image 3;
(d) —image 4

Figure 2.Remote Sensing Ground Truth Images:
(a) — imagel;(b) — image 2;(c) — image 3;
(d) —image 4

2.2. Data Augmentation

Initially, the UNet model have been trained by the
whole original Massachusetts road dataset. Due to the
huge amount of images and big image size needs high
training time to train the road segmentation model. So the
training sample reduces by half and now it is a total of
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604 images. These total images are divided into a training
set, validation set, and testing set. Training and testing
samples of the dataset are divided into various percent-
ages for evaluation of the road network segmentation
model performance as shown in Table 1. Due to less
number of training samples used by the model, the data
augmentation techniques are used to increase the number
of sampled images. The data augmentation [22] on im-
ages is done using different techniques such as flipping,
cropping, and rotation.

Table 1
Training — Testing Split
Training — No of No of No of
Testing Training Validation Testing
split images images images
90%-5% 543 30 31
80%-10% 483 60 61
70%-15% 422 91 91
60%-20% 362 121 121
50%-25% 302 151 151
40%-30% 241 182 181
30%-35% 181 212 211

2.3. Modified UNet Road Network System
Segmentation Network Structure

For image classification, object detection, and se-
mantic segmentation, convolutional neural networks
(CNNs) are beneficial. CNN is the foundation of many
well-known networks. These networks are always made
up of multiple layers, such as convolutional, pooling, and
fully connected layers. By convolving the input of the
convolutional layers with a set of filters, feature layers
could be obtained. During the training stage, the weights
of filters are automatically optimized. The pooling layers
combine local picture information and downsample to re-
duce computational load. CNN has had tremendous suc-
cess in a variety of fields [23 — 25]. In 2012, Alex Net
won the Image Net competition [26]. The Alex Net in-
spired the development of many CNN-based networks,
including inception-v3, GoogleNet, SegNet, VGG, and
ResNet [27 — 29]. Because of the ability to the extraction
of features these networks are widely used in image pro-
cessing neural networks. According to previous research,
when the number of convolutional layers is increased, the
network may extract higher-level image characteristics.
Image features extracted are simple when the number of
convolutional layers is limited. Here in this paper, binary
classification was used to extract road features from the
background. So it is not required a deeper neural network
for segmentation. The number of computational re-
sources consumed by a neural network can be reduced by
simplifying it. In this method, a simple VGG network

was used as the baseline. Figure 3 shows a block diagram
for the proposed method for extracting road networks.
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Figure 3. Block diagram for road network extraction
system from remote sensing images

The UNet performs very well in semantic
segmentation tasks [20]. The detailed architecture of the
UNet is described in Figure 4,a It was originally
proposed for biomedical image segmentation. This
network is extensively used in image segmentation for
two reasons: it is trained from end to end and performs
well on a tiny dataset, and the quantity of train samples
for UNet is relatively small. UNet is named because of
the U shape of its structure. There are two stages: an
encoder stage and a decoder stage. The encoding stage is
consisting of the convolutional network. It consists of
repeated two convolutions; each followed by a rectified
linear unit (ReLu) and a max-pooling layer for
downsampling. The filter was doubled after each down-
sampling step. Every step in the decoder stage comprises
a feature map upsampling layer, a concatenation with the
corresponding feature map from the encoding stage, and
two convolution layers, each followed by a ReLU. A
convolution layer is used as the last layer to convert each
feature vector to the desired number of classes.

In this paper, the encoder section of UNet and
Decoder section of UNet was modified respectively. The
four up sample parts of the proposed architecture were
reduced to three and the five down sample parts of the
proposed architecture were reduced to two. Since binary
classification was required to extract road features from
the background of the remote sensing images. Therefore,
it is not required deeper architecture for semantic
segmentation. This architecture was illustrated in the
figure by writing the depth of each layer. Due to Less
number of convolutional layers reduced the number of
hidden layers in the network architecture for modified
UNet road segmentation. This causes less number of
trainable parameters in the road detection model and
saves GPU memory significantly. This will also reduce
the training time and segmentation time of a single
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Figure 4. Network Structure:
(a) — UNet Architecture;
(b) — Modified UNet Architecture

remote sensing image. A simplified VGG network was
used as the backbone network for encoding. A modified
UNet was used as the semantic segmentation network for
the extraction of road networks from remote sensing
images. The detailed structure of seven convolutional
layers together with the max pooling layer and RelLu
activation layer at the encoder side of the modified UNet
along with the depth and filter size of each layer is

illustrated in Figure 4, b. The decoder is the mirror
network of an encoder which also comprises multiple
series of concating, deconvolutional, and ReLu activation
layers. A sigmoid layer is attached to the last stage of the
decoder network to transform the output into probability
maps. In this model, to train the road detection network,
the cross-entropy loss is utilized, which is defined as

b n
Lpce = — Z Z GTj;log(prediy) +

i=1 j=1

+(1- GTi]-)log(l - predii]-).

Where GTjis ground truth pixel of i" batch of j"
pixel of the image and predij; is predicted output pixel of
i"" batch of j™ pixel of the image; b is batch size and
n=no of the pixel in the images. The sigmoid function is
applied to the weighted sums of the hidden layer activa-
tions predi;, to generate the outputs of the modified UNet
model

dij = ——,
Predh =1 e

j=1

Using the chain rule, we can calculate the error's de-
rivative concerning each weight connecting the hidden
and output units

aLbce _ aLbce apredij (39”
aWIJ apredlu 691] anl

2.4. Training of road
segmentation Network

The hardware environment used to train the model
was Intel (R) Core(TM) i5-7500 K CPU, 8 GB RAM,
NVIDIA GeForce RTX 2080 Super. The software envi-
ronment was Windows 10, CUDA  10.1,
Python 3.6, and Tensorflow 2.3. A deep learning algo-
rithm's primary problem is the hyperparameter optimiza-
tion problem. The research optimizes convolution neural
network architecture and finds suitable hyperparameter
combinations applied to land cover classification prob-
lems using multispectral images [30].

The approach was used to train various architec-
tures for road surface detection, including UNet, SegNet,
and modified UNet, as illustrated in Figure 5. However,
the Adam optimizer was used to optimize the network.
The learning rate was set to 1 x 1073, If a larger learning
rate was set, the combination of the weights would devi-
ate from the optimal solution, so it was necessary



Methods and means of image processing 165
. Y.(predi) (GT)
iou = - - 100%, ........(1

Algorithm 1: Road Network Extraction System X predi+Y GT—-X(predi) (GT) ( )
Ingut : Traimning S_et = {_(Y_ 1__\;1__'}{1}__ ......... __(jr \\ 5.._X,ﬂ}l} . 2 % intersection
Where Y;=1..... N (Traming). V;=1......8 (Validation), dicescore = — - —
X=1. n (Testing) union + intersection
Y=Yy
Initialize : Initial Learning Rate o, Batch Size . Epochs T, .

z ; ; ; . d
Initial Loss function L(v, 8.1) dicescore = 2 * Z(pre—l_)(GT) 00%,........... )

Y, predi+GT
Initialize: v{,6;=0, p=0.99 TP
Build Unet() roadaccuracy = STPISFN 100%,......... 3)
if torch.no_grad() ==true; (Training phase)
start timer():
fort=1to T do (update parameters) overallaccuracy =
gt = Vert(6t — 1 = 2TP+ 2 TN 100%, ... (4)
) = 0«
vt=B(v(t— D+ (1 - Pt XTP+X TN+ X FP+XFN

6t =6(t— 1) — afnit/ Nt +g)
end for
output: trained 6t (resulting parameter)
calculate 1ou, dice score, accuracy, loss
if torch.no_grad() 1= true  (validation phase)
calculate 1ou, dice score, accuracy. loss
Plot T =-accuracy (for training and validation)
Plot T >-Loss (for training)
stop timer():

if torch.no_grad()!= true (testing phase)
calculate iou, dice score, accuracy;
import confusion matrix;

visualize the result
Figure 5. Algorithm for training the module

to reduce the learning rate. The loss function used cross-
entropy loss for binary segmentation. The batch size of
training was set to 4, hidden layers were set to 64, and
epochs were set to 100. During the training process, the
loss value, accuracy, dice score, and 10U of the training
set and validation set were recorded.

2.5. Road Network segmentation
performance evaluation

In this study, four quantitative criteria were used to
evaluate the segmentation results. The overall pixel ac-
curacy (Acc), Intersection over Union (loU), Dice score,
and road accuracy were used to assess and compare the
segmentation performance (Egs. (1) — (4)). These param-
eters are averaged for all the training samples. The Acc,
Dice, road accuracy, and loU were averaged over all im-
ages in the testing set. Moreover, the testing time was
also measured to assess the segmentation speed of single
image and training time was also measured for how long
time is required to train the module.

. intersection
iou =———7——
union

where TP is true positive;
TN is true negative;
FP is false positive;
FN is false negative.

3. Results and Discussion

3.1. Result Analysis based on Number
of Training Samples and Training Time

Initially, the UNet module was trained with the
original Massachusetts publically available dataset. It re-
quired a very high amount of training time. Hence the
number of training samples was reduced by half to train
the UNet model for road network detection. Hence total
of 604 training samples was randomly chosen from Mas-
sachusetts road data. These images had complex back-
grounds such as the occlusion of trees, and cars on road.
However, these training samples were divided into train-
ing, validation, and testing set. Moreover, we aimed to
find an optimized number of training samples that re-
duced the training time and memory requirement of the
model. Asaresult, the initially trained module employed
90 % of samples for training, 5 % for validation, and the
remaining 5 % for testing from 604 images. Successively
changed the training sample count from 90 % to 30 %
and measured the model's performance metrics by train-
ing time as presented in Table 2. Here we considered
epoch 30 for finding optimum values of training samples
because if trained the model with a large number of the
epoch is time consuming and tedious task. Hence the re-
sult was compared to the value of epoch 30 by changing
the training-testing splitting. As shown in Table 2 the
training time is approximate 3.89 hr for 90 % training
samples. It gradually decreased as the number of training
samples also decreased but the IOU, DICE, and accuracy
of the training, validation and testing phase of the model
were also decreased as shown in Table 3 and Table 4.
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Table 2
Training Time for epoch 30 of different number of Training samples
Training — No of the Training | No of Validation No of the Training Training Time
Testing split images images Testing images Time(sec) (Hr)
90%-5% 543 30 31 14010.86 3.89
80%-10% 483 60 61 13877.64 3.85
70%-15% 422 91 91 11748.96 3.26
60%6-20% 362 121 121 5151.07 1.43
50%-25% 302 151 151 4892.18 1.35
40%-30% 241 182 181 4800.2 1.33
30%-35% 181 212 211 4300.3 1.19
Table 3
Training Phase Parameters Comparison when epoch30
Training — Training Phase
Tes'ii_ng Training Validation
split
P Loss 10U DICE Acc 10U DICE Acc
90%-5% 9.81 79.85 88.37 91.80 87.10 93.05 95.83
80%-10% 8.11 80.10 88.50 92.40 80.66 89.10 93.11
70%-15% 8.87 78.62 87.54 91.32 80.43 88.96 92.47
60%-20% 7.60 79.25 87.97 90.20 79.85 88.55 90.71
50%-25% 5.71 80.39 88.66 91.07 77.33 86.91 88.95
40%-30% 5.84 80.52 88.76 91.08 77.98 87.33 88.87
30%-35% 2.99 82.56 87.79 78.95 78.95 87.96 89.26
Table 4

Testing Phase Parameters Comparison when epoch30

Training — Testing

Testing

split IoU DICE Overall Accuracy Road Accuracy
90%-5% 88.59 93.92 95.94 79.27
80%-10% 88.79 94.03 96.19 82.18
70%-15% 85.67 92.12 94.09 80.72
60%-20% 81.87 89.68 91.50 86.93
50%-25% 79.71 88.24 89.54 64.61
40%-30% 79.39 88.04 89.53 0
30%-35% 79.20 87.27 88.72 0.12
Table 5
Approximate the Same Training Time for different epoch
Training — Testing | Training Time Number Testing Phase
split (sec) of Epochs Overall Accuracy (%) Road Accuracy (%)
90%-5% 9941.59 20 93.24 70.87
80%-10% 9425.51 22 92.18 69.84
70%-15% 9321.23 23 91.20 68.32
60%6-20% 9488.41 60 94.16 91.66
50%-25% 9152.78 62 93.40 87.23
40%-30% 9234.07 70 93.20 74.17
30%-35% 9267.67 71 93.18 70.19
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The results of Table 4 indicated road accuracy approxi-
mates 0 % for the 40 % and 30 % training samples while
highest at the training testing splitting 60 % - 20 % is
86.93 % road pixels were correctly identified. Moreover,
the training time for 60 % of training samples was 1.43
hr which was less than half of the 90 % of training sam-
ples considered. This yielded the best number of training,
validation, and testing samples concerning training time,
and the accuracy of the test image was indicated with
bold letters in Table 2, Table 3, and Table 4. This result
was validated in Table 5 where the model was trained for
a similar time but a different nhumber of epochs. The
model was tested by testing images and evaluating the
performance metrics of overall accuracy and Road accu-
racy. When considered as 90% of training samples had
an epoch of 20 was produced road accuracy was 70.87 %
while 30% of trainings amples had an epoch of 71 re-
sulted road accuracy of 70.19 %. However, training sam-
ples of 60 % resulted in road accuracy of 91.66 % which
is more than 4 % better than 50 % of training samples.
However, the designed network is trained on the 1.2 me-
ter /pixel resolution image dataset. So Modified UNet
model applies to the resolution of near approximate same
but when the remote sensing images have higher resolu-
tion it may be required to retrain the model.

Then after this optimal dataset along with the distri-
bution of samples training-validation-testing splitting is
used to train our modified UNet architecture. During the
training process of the modified UNet, the loss value and
accuracy of each epoch were recorded for the training set
and validation set.

Figure 6 shows the process of network training us-
ing 60 %-20 % training —testing splitting. It could be seen
that with the increase of training epoch, the losses of
Modified UNet structure gradually decreased, and the ac-
curacy was gradually increased. There was no overfitting
and underfitting. So this number of training samples was
enough.

3.2. Comparison with Other
Segmentation Method

3.2.1. Training Time
and Testing Time Comparison

With the rapid growth of computer hardware in re-
cent years, high-end GPU or GPU clusters have made
network training easier. However, given the concern of
cost-effectiveness in training time and commercial cost,
trade-offs between layer depth, the number of channels,
kernel sizes, and other network attributes must still be
considered when designing network architectures [31]
for experimental research and practical application.
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Figure 6. Process of Training for modified UNet:
(a) — Epoch Vs Loss curve; (b) — Epoch Vs Accuracy
for Training and Validation Set

The various evaluation parameters, training time,
and inference time were compared to other state-of-the-
art deep learning algorithms such as SegNet, and UNet
about various numbers of training and testing samples.
The SegNet architecture was used as indicated in Fig-
ure 7 [32]. It's worth noting that numerous factors, in-
cluding parameters and model structure, can also affect
the running time of deep models, including training and
testing time [33]. Figure 8 shows that SegNet has the
longest training for all training —testing distribution of
any other model. This is due to the deeper structure of
SegNet with more Convolutional layers increases the
complexity of the model as well as the number of param-
eters. Moreover, SegNet has the highest inference times
compared to any model for all possible training data. The
UNet has training and testing time is shorter than SegNet
and modified UNet. This is due to the number of convo-
lutional layers being less in the Modified UNet compared
to the traditional UNet. Hence less number of learning
parameters are required to train the module. Therefore,
the least training time and testing time was noted for
modified UNet compared to other state of art methods.
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3.2.2. Applicability Analysis
of Modified UNet

The SegNet and UNet were constructed by the con-
volutional neural network. Their segment accuracy was
higher. SegNet obtained the details of the result by step-
by-step upsampling and convolutional layers. It needs a
higher number of training samples. The number of train-
ing samples were relatively used small in this paper.
Therefore, the performance of this algorithm was not
good. Moreover, the optimizer used in SegNet method
was SGD which is also one of the reasons for the poor
performance of SegNet. To obtain the same accuracy,
I0U, and DICE score, SegNet required more number
epochs to train the modeled with a lesser number of train-
ing samples. So this would be the cause of larger training
time and testing time. UNet recovered the details of the
result step by step upsampling and merging the features
layers from the backbone. Therefore, UNet could seg-
ment the details better from the remote sensing images.
The target of this image segmentation task was to extract
road parts from the remote sensing images. The complex-
ity of the image segmentation task was low. So, the en-
coding part of the UNet network was simplified accord-
ing to the characteristics of the low difficulty of the seg-
mentation task.

The last two convolution units (including two con-
volution layers and one pooling layer) of the VGG net-
work were removed, leaving only the first three convolu-
tion units and the two convolution layers in the decoding
unit (including one upsampling layer, one concatenate
layer, and two convolution layers) were changed into one
layer convolution layer. This way the redundant part was
removed. Therefore, the simplified network achieved the
best segmentation result while the training and testing
time was relatively small. The 10U, DICE score, and
overall accuracy on the training set were 93.28 %,
93.74 %, and 94.26 % respectively during the training
phase of the modified UNet. However, the 10U, DICE
score, Overall Accuracy, and Road accuracy have oc-
curred during the testing phase were 92.19 %, 92.68 %,
93.48 %, and 93.3 % respectively (Table 6). Figure 9 de-

picts the visual result of the various methods.

Conclusion

In this research work initially, road dataset was di-
vided into some Training — Testing splittings and meas-
ure the performance of the road detection method. This
will determine the optimized number of training samples
required to train samples for the deep learning-based
model. This same training set was applied to train the
module of different types of neural network architecture.
Each method applied the data augmentation method to
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Table 6
Evaluation of segmentation result with different segmentation methods
Training Testing
Model Name Overall Overall Road
0, 0, (0) (0)
DICE (%) | 10U (%) Acc (%) DICE (%) | 10U (%) Acc (%) | Accuracy (%)
SegNet 93.9 88.74 92.62 91.59 85.18 92.3 91.7
UNet 94.6 93.71 95.1 91.2 87.4 94.2 92.86
Proposed Unet 93.74 93.28 94.26 92.68 92.19 93.48 93.3

(b)

(d)

Figure 9. Visual Comparison Of Segmentation
Methods:(a) — Original Remote Sensing images;
(b) — Ground Truth; (c) — SegNet; (d) — UNet;
(e) — Modified UNet

training samples of various semantic segmentation meth-
ods. Then, the neural networks were trained for various
numbers of epochs to obtain automatic road network seg-
mentation. Through the analysis of the experiment re-
sults, it was found that:

1. The modified UNet can effectively segment road
images from the remote sensing images. The average
value of loU and Dice score of segmentation occurred at
93.74 %, and 93.28 % respectively during training of the
module. During the testing phase, the average value of
I0U and DICE scores occurred at 92.19 % and 92.68 %
respectively. The training time required for the road net-
work segmentation model was 1.34 hr and the testing
time for a single image was 0.3 sec.

2. The dataset could be effectively augmented by
the rotate and flip method. This could alleviate the over
fitting caused by the lack of training samples.

3. The results showed that the accuracy of the mod-
ified UNet was higher than that of other algorithms. And
the speed was relatively high.

4. The method of the road network extraction sys-
tem from the remote sensing images proposed in this pa-
per could accurately segment the road images from the
complex background remote sensing images.

The modified UNet proposed in this paper was sim-
plified compared with the basic UNet. The simplified
UNet has lower feature extraction and decoding abilities
than the original UNet. However, the semantic segmen-
tation task in this paper was a binary classification be-
tween the road and background. Only the road and back-
ground segments were targeted in this paper. Because of
these qualities, the network was simplified, and this sim-
plification diminishes the neural network's capability in
complex tasks. However, it improves the accuracy and
speed of semantic segmentation of road networks.

Future work

The capability of the road detection networks can
be improved with the use of pre-processing and post-pro-
cessing filters. Furthermore, the learning capacity of the
proposed modified UNet architecture can be studied by
different optimization techniques.

Contribution of authors: deep learning architec-
ture construction, selection of hyperparameters and opti-
mizer, dataset collection, selection of software tool, sim-
ulating and optimizing the model to the minimum amount
of training and testing time, analysis of the result, presen-
tation of result, and writing the paper — Miral J. Patel;
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formulation of conclusion, the content of the paper,
review, and analysis of the model and overall review
the paper — Ashish M. Kothari; analysis of the results,
formatting and checking for grammatically of the paper
— Hasmukh P. Koringa.

All the authors have read and agreed to the pub-
lished version of the manuscript.
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HOBMM IIJIXIJ IO CEMAHTUYHOI CETMEHTAIII
ABTOMATHUYHO BUJIYYEHHX JJOPOKHIX MEPEX 3 306PA’KEHb
JUCTAHIIAHOTI'O 30HIYBAHHS 3A JOIIOMOI'OIO MOJU®IKOBAHOI UNET

Mipan /Ixc. Ilamens, Awime M. Komapi,
Xacmyx I1. Kopinza

TouHi it akTyalbHi TOPOXKHI KAPTH MAIOTh BUPIIIaTbHE 3HAYCHHSI IS BEJIUKOI KUTbKOCTI 3aCTOCYBaHb, TAKUX K
MIChKe IUIaHYBaHHsI, aBTOMaTHYHa CHCTEMa HaBiramii TpaHCIIOPTHUX 3aco0iB i cHCTeMa MOHITOPHUHTY JIOPOXHbOTO
pyxy. OJHaK HaBiTh Ha 300paKEHHSIX JUCTAHIIIHHOTO 30HAYBAHHS 3 BUCOKOI PO3/IIIBHOI0 3[aTHICTIO (DOH 1 JOPOTH
BUIIIAJAIOTh CXO)KUMH UYepe3 OKII03it0 JiepeB 1 OyiBellb, TOMy Ba)KKO TOYHO CEIMEHTYBATH JIOPOXKHIO MEPEKY 3i
CKJIQJHUX (DOHOBUX 300pakeHb. Y il JOCIIAHUIIBKIN CTATTi OYJI0 3alPOIOHOBAHO AITOPUTM, 3aCHOBAHHUI HA IIIU-
O0OKOMY HaBYaHHI, JJIs1 CErMEHTAIlIl JOPOXKHBOI MEpexi 13 300pakeHb AUCTAHIIHOrO 30HAYBaHHs. Lleit aaropurm
CEMaHTUYHOI cerMeHTallii 0yno po3podieno 3 moaudikoBaHoro UNet. Uepes MeHIITy JOCTYIHICTh 300payKeHb JUcCTa-
HIIIHOrO 30HIyBaHHS JUI CEMaHTHYHOI CErMEHTallii BUKOPUCTOBYBABCA METOA ONOBHEHHS AaHMX. CHouaTky Me-
pexa ceMaHTH4HOI cerMeHTallii Oysa HaBueHa OlNIBIIO0 KUTBKICTIO HABYAILHHUX 3Pa3KiB 3 BUKOPHCTAHHSIM TPaAUIIii-
Hol apxitektypr UNet. [licyis iboro KijibKicTh HaBYQJILHHUX 3Pa3KiB MMOCTYIIOBO 3MEHIIYETHCS Ta BUMIPIOETHCS MPO-
JOYKTHBHICTh Tpaauuiinoi moneni UNet. s 6a3oBa mogens UNet nae kpammii pe3ynbTar y BUrisiai Tousocti, IOU,
ouinku DICE Ta Bizyanizauii 300paxxenHst aist 362 HaBuaibHUX 3pasKiB. [ies monsrae B Tomy, o0 mpocTo oTpuMarTu
JIaHi TIPO JIOPOTH 13 300paXkeHb AUCTAHIIHHOTO 30HyBaHHs. SIK HAC/IiJOK, Ha BiaMiHy Bia Tpaauiiinoi UNet, Hemae
noTpedu B THOIIii CTPYKTYpi Aekoepa HelpoHHOT Mepexi. OTke, KUIbKICTh 3rOPTKOBUX LIAPIB Y MOAU(IKOBaHIH
UNet menmia, Hixk y craugaptHiii UNet. Takum unHOM, OyJi0 3MEHIIIEHO CKJIAJHICTh apXITEKTYpH MIIMOOKOr0 HaB-
YaHHS Ta Yac HABYAHHs, HEOOXIHUH AJIsl MO TOPOXKHBOT Mepesxi. [IpoayKTHBHICTE MoOzIesi, BUMIPsIHA 32 J0I0-
Mmoroto 00’exHanns (IOU), cranoBuina 93,71%, a cepenHiit uac cermenraii onHoro 300paxenns craHosus 0,28 ce-
kyHu. Pe3ynbratu nokasanw, mo Moaudikosana UNet Moke epeKTHBHO CerMeHTyBaTH TOPOKHIO MEPEKY Ha OCHOBI
300pakeHb JUCTAHIIHOTO 30HyBaHHS 3 iIeHTHYHUM (GOHOM. V0ro MokHa BUKOPHCTOBYBATH B Pi3HHX CHTYAITisX.
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