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APPROXIMATE BOUNDARY CONDITIONS  

FOR ELECTROMAGNETIC FIELDS IN ELECTRODMAGNETICS 
 

The results of an analytical review of literature sources on the use of approximate boundary conditions for elec-
tromagnetic fields of impedance type in solving boundary value problems of electromagnetism for more than 80 

recent years are presented. During this period, the impedance approach was generalized to various electrody-

namic problems, in which its use made it possible to significantly expand the limits of mathematical modeling, 

which adequately considers the physical properties of real boundary surfaces. More than eighty years have 

passed since the publication of approximate boundary conditions for electromagnetic fields. The meaning and 

value of these conditions lies in the fact that they allow solving diffraction problems about fields outside well-

conducting bodies without considering the fields inside them, which greatly simplifies the solution. Since then, 

numerous publications have been devoted to the application of impedance boundary conditions, the main of 

which (according to the authors) are presented in this paper. Particular attention is paid to the characteristics of 

electrically thin impedance vibrators and film-type surface structures as a personal contribution of the authors to 

the theory of impedance boundary conditions in electromagnetism. The subject of research in this article is the 
analysis of the limits and conditions for the correct application of impedance boundary conditions. The goal is to 

systematize the results of using the concept of approximate impedance boundary conditions for electromagnetic 

fields in problems of electrodynamics based on an analytical review of literature sources. The following results 

were obtained. The types of metal-dielectric structures are presented, for which methods of theoretical determina-

tion of the values of surface impedances for film-type structures are currently known, which are the most promis-

ing for creating technological control elements on their basis in centimeter and millimeter wavelength devices. 

Conclusions. The materials of this paper do not pretend to be a complete reference book covering all the results 

and aspects of the development of the concept of approximate impedance type boundary conditions in problems of 

electromagnetism over the past decades. Simultaneously, the authors hope that the information presented in this 

paper will be useful to specialists in the field of theoretical and applied electrodynamics, as well as graduate stu-

dents, young scientists and students who are just mastering radiophysics and radio engineering specialties. 

 
Keywords: impedance approach; impedance-type boundary conditions; surface impedance; effective impedance; 

impedance surface. 

 

Introduction 
 

Eighty years have passed since the publication of 

the approximate boundary conditions for 

electromagnetic fields [1–3]. The meaning and value of 

these conditions lies in the fact that they make it 

possible to solve diffraction problems about fields 

outside of well-conducting bodies without considering 

the fields inside them, which greatly simplifies the 

solution. Since then, a large number of publications 

have been devoted to the application of impedance 

boundary conditions, the main of which (according to 

the authors) are presented in this paper (see References). 

Particular attention is paid to the characteristics of 

electrically thin impedance vibrators and surface 

structures of the film type, as the personal contribution 

of the authors to the theory of impedance boundary 

conditions in electrodynamics. The general information 

and specialized information presented in the paper will 

allow the reader to use the materials of the paper in their 

work, without resorting to searching for special hard-to-

reach literary sources. 

 

1. Impedance boundary conditions  

and the limits of their correct application 

 

The one-sided impedance boundary conditions al-

low to reduce the number of interfacing electrodynamic 

volumes which should be taken in the problem solution. 

Eliminating the need to determine fields inside the adja-

cent metal-dielectric elements at the problem formula-
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tion level is the main advantage of the impedance ap-

proach. The Shchukin-Leontovich impedance condition 

on the boundary surface S  can be written in the follow-

ing form [1–3] 

 

S S S[n,E] Z [n,[n,H]] ,                 (1) 

 

where E  and H  are the vectors the electric and mag-

netic harmonic fields, n  is the impedance surface nor-

mal, directed inside the impedance region, S S 0Z Z / Z  

is the normalized surface impedance, and 0Z 120   

Ohm is the resistance of free space. 

If the SZ 0 , i.e., interface surface is perfectly 

conducting, the formula (1) is reduces to 
S

n, E 0    . 

It should be noted that the boundary condition (1) is 

approximate, since, in this case, the solution of the elec-

trodynamic problem represents the first term of the as-

ymptotic expansion of the exact solution [3,4] in powers 

of the small parameter  

 

S| Z | 1 .                                (2) 

 

Since only the tangential components are included 

in the boundary condition (1), there exists some re-

strictions on the surface S  geometry. It is evident that 

condition (1) holds if the surface curvature radius is 

much greater than the length of the incident wave. The 

conditions which take into account the interface curva-

ture can be read as [2, 5]: 

 

1 2
1 S 2

1 1 S

2 1
2 S 1

1 1 S

E Z 1 H ,
2ik

E Z 1 H ,
2ik

 

 

   
  

   

   
   

   

            (3) 

 

where 1  and 2  are the main Gaussian curvatures of 

the surface, E  and H  are the tangential components 

of the electromagnetic fields on the interface surface, 

2 /k    ,   is the wavelength of free space, 1 1,   are 

the material parameters of the environment. 

The surface impedance of an electromagnetic field 

is usually interpreted as relationships determining links 

between the tangential components of the complex am-

plitudes on the surface S . If the impedance value does 

not depend on the incidence angle and incident wave 

polarization, it is known as extraneous impedance [4]. If 

the impedance value does not depend on the wave inci-

dence angle, but depends on the wave polarization and 

spatial orientation of the surface S , the surface imped-

ance is a two-dimensional second-rank tensor which 

components are extraneous impedances. In the general 

case, a concept of anisotropic surface impedance is in-

troduced as matrix 
 

S11 S12
S

S21 S22

Z Zˆ
Z

Z Z
 , Sjk Sjk SjkZ R iX , j,k {1,2}   , (4) 

  

under conditions that inequalities  

 

S11R 0,  S22R 0,  
2

S11 S22 S12 S214R R Z Z   (5) 

 

hold. In (4) and (5) S21Z  is complex conjugate of S21Z . 

The inequalities (5) ensure that additional energy 

sources on the surface S  and energy flows through this 

surface are absent. Of course, the impedance SZ  in (1) 

and (4) must be replaced by the tensor S
ˆ
Z . It should be 

emphasized that the surface S , on which the impedance 

boundary condition should be satisfied, does not have to 

coincide with the real impedance boundary surface and 

can be considered as a conditional boundary surface. A 

spectral analysis of complex structures and media 

should require introduction of a partial impedance, the 

value of which in the general case depends on the fre-

quency and the number of spatial harmonics in the elec-

tromagnetic field representation. Such impedance prob-

lems are beyond the scope of this paper.  

First, let us consider possible formulations of the 

impedance conditions and the solution accuracies they 

can provide. According to results obtained in [3], the 

boundary condition (1) is applicable when the following 

requirements are met: a penetration depth of electric 

fields into an impedance material and a field wavelength 

should be small compared to an incident wave wave-

length, a distance from a field source, and curvature 

radii of a boundary surface S . In addition, variations of 

the material parameters of the impedance layer at dis-

tances comparably with the field wavelength or penetra-

tion depth should be small. In the general case, the accu-

racy of the formula (1) was estimated to be proportional 

to 2
S| Z | , since only the first term of the solution ob-

tained as asymptotic series with respect to the normal-

ized impedance SZ  was used. Leontovich obtained a 

similar estimate by comparing the plane wave reflection 

obtained in the impedance approximation with that of 

the exact Fresnel solution [2]. However, for a certain 

class of propagation models, corrections to (1) are pro-

portional to cubic but not quadratic terms in the small 

parameter S| Z |  [3]. 

Even though the accuracy estimates of the condi-

tion (1) were obtained on the basis of the skin-effect 
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theory for of conducting body surfaces [2, 3], they can 

be uniquely extended to the more general case of im-

pedance domains [4]. All the above requirements can be 

integrated into one of a purely physical nature: the field 

at the impedance surface must be a plane wave propa-

gating in a direction normal to a boundary S . This con-

dition is always fulfilled for electrically thin impedance 

structures, including film coatings. 

However, the presented requirement cannot be 

waves at small incident or Brewster angles. In the first 

case, the reflected and refracted rays are gliding near the 

surface, while in the second case they must be mutually 

perpendicular. In both cases, the directions of the re-

fracted rays do not coincide with the direction of the 

boundary surface normal. Therefore, it is customary to 

distinguish between three separate cases of the imped-

ance conditions depending upon the wave incidence 

angle: 1) normal incidence, when the Shchukin-

Leontovich condition are valid, 2) Brewster angle inci-

dence, and 3) tangential incidence. Apparently for the 

first time, the condition (1) was corrected and used in 

[6] where problem of the reflection of electromagnetic 

waves from the surface of real soil at angles close to the 

sliding incidence angle was solved. Subsequently, simi-

lar cases were studied for a number of other media in-

cluding inhomogeneous plasma. The analysis of various 

variants of the approximate impedance boundary condi-

tions are presented in [7–9]. 

The accuracy justification of the impedance 

boundary condition (1) cannot give a complete answer 

to the question: with what accuracy the specific charac-

teristics of the wave fields can be calculated for arbi-

trary angles of a plane wave incidence on the media 

interface. General conclusions concerning for the small-

est errors relative to exact values for the whole range of 

incidence angles were formulated in [10-12] for perpen-

dicular and parallel polarizations relative to the interface 

surface. For the perpendicular polarization, the reflec-

tion coefficients should be calculated based on the 

Shchukin-Leontovich approximate boundary conditions. 

For a wave of parallel polarization, the formulas valid 

for the Brewster angle are preferable. These conclusions 

were made based on the exact formulas obtained in [13]. 

The above analysis of the boundary condition (1) 

accuracy was performed under condition that surface 

impedance SZ  presented by a power series only terms 

proportional to the first degree of a small parameter 

were taken into account. However, this simplification 

permits only the small SZ , and secondly, and does not 

provide the necessary accuracy for solving the diffrac-

tion problem when the wave is incident at the Brewster 

angle or tangential to the surface interface. These short-

comings can be eliminated by the method proposed in 

[14], where a generalized impedance approximation was 

formulated as: 

 

SE Z H ,n 
     

 
2s3 2

S 1 S 2s 1s
s 1

1 (2s 1)!!
Z n N Z n N H 0

2 2 (s 1)!



 



 
  

  
 , (6) 

 

where the matrices  mN m 2s 1   are defined as 

 

m

0 1
N

m 0
 ,                            (7) 

 

0n k k  is a dimensionless refraction parameter, k  

and 0k  are wavenumbers in the impedance medium and 

external space, respectively. In the first approximation, 

the equation (6) coincides with the boundary condition 

(1), but the vectors E  and H  are related through the 

refraction factor n , which in a reflection problem is 

uniquely connected to a wave incidence angle. 

Thus, the approximate Shchukin-Leontovich con-

dition (1) valid for a small surface impedance SZ , is 

generalized for arbitrary SZ  as the series expansion (6), 

which expand the applicability of the impedance ap-

proach. Since the exact boundary condition (6) is de-

composed in a series in odd powers of the parameter 

SZ , the Shchukin-Leontovich condition linear in SZ  

differs from the exact only by terms proportional to 
3

S| Z | . That is, the fields obtained using condition (1) 

are correct up to 2
S| Z | . Thus, the accuracy of condi-

tion (1) application turns out to be higher than it could 

be supposed based on the results obtained in [3]. 

 

2. Surface impedance of metal-dielectric 

structures 
 

The key stage of the impedance approach applica-

tion is the problem of determining the surface imped-

ance for a specific spatial structure. In this subsection, 

we analyze metal-dielectric structures, which theoretical 

estimates of surface impedance are well-known. Let us 

first consider a problem of a plane electromagnetic 

wave incidence on a flat interface between two media 

[5, 6, 13], to demonstrate a general approach for obtain-

ing surface impedance formulas. 

Let a plane in a rectangular coordinate system 

X0Y  be the interface between two media with parame-

ters 1 1 1( , , )    and 2 2 2( , , )   , and a conductivity of 
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the second medium 2 1 . Consider reduced electro-

magnetic fields in the two media: 

 

1 1 1E E  , 1 1 1H H  , 

(8) 

2 2 2E E  , 2 2 2H H  , 

where 1 1{E ,H }  and 2 2{E ,H }  are the true fields, 

1 1 14 i /        and 2 2 24 i /        are complex 

permittivity’s of the media. Here, the periodic depend-

ence of the fields on time t  is preserved, as in [5], in the 

form i te  . A plane wave incident at an angle 1  meas-

ured from the normal to the interface can be represented 

as  1 1E E ,0,0 , where 1 1 1ik (ysin zcos )
1 0E E e

  
 . 

Therefore, we can write 

1 1 1 1
1 1

1 1
H rotE [k ,E ]

ik k
  ,                  (9) 

where  1 1 1k 0,sin , cos    , 1 1 1k
c


    , 1 1E H . 

Since a plane wave of the same polarization is ex-

cited in the second medium, and the density of the sur-

face current is zero, 

 

 2 2E E ,0,0 , 2 2 2
2

1
H [k ,E ]

k
 ,        (10) 

where  2 2 2k 0,sin , cos    , 2 2 2k
c


    , 

2 2E H . The tangential components of the electro-

magnetic field in the second medium are equal to 

2 2x 2E E E    and 2 2y 2 2H H H cos    , where 2  

is the wave propagation angle in this medium. Then, the 

ratio of the tangential components of the electromagnet-

ic field in the second medium can be immediately de-

termined as 

2x 2

2y 2 2 2

E E 1

H H cos cos
 

 
.                 (11) 

The cosine of the angle 2  can be easily fined by 

using the Snell law 1 2 2

2 1 1

sin
n

sin

  
 

  
, where n  is the 

refractive index between the two media. Since 2 1 , 

2 1  and n 1 . Then 

2 2
2 2 12

1
cos 1 sin 1 sin

n
       .      (12) 

If the inequality 1sin
1

n


 holds, the 2cos 1  , 

and we obtain the Shchukin-Leontovich condition, i.e., 

according to (11), 2x

2y

E
1

H
 . For the true fields we ob-

tain 

2x 2

2y 2

E

H





.                              (13) 

Further, surface currents are absent, we will use 

the continuity of the tangential components of the elec-

tric and magnetic fields and take into account the 

boundary condition (1). The relation for the fields only 

in the first medium can be written as 

1x S 1yE Z H ,                         (14) 

therefore, the surface impedance of the second medium 

is equal to 

S 2 2Z    .                        (15) 

Since the value of the surface impedance SZ  is de-

termined as the square root of the complex value, the 

branch of the root, for which the imaginary part 

SImZ 0  should be selected. In this case 2Im 0  , 

and the waves propagating in the second media are 

damping. For another polarization of the incident wave, 

we obtain the expression 

1y S 1xE Z H  .                          (16) 

If the angle 1 2   , we obtain using the expres-

sion (12) that 2
2 12 2

1 1
cos 1 sin 1

n n
       valid 

for the arbitrary refractive index n . The surface 

impedance for the sliding waves can be easily obtained 

based on this result and expression (11). Analogously, 

the impedance for the wave incident at the Brewster 

angle can be obtained based on expression (12). Below 

in this section, the impedances of various structures are 

considered only for the normal incidence of the 

excitation wave on the flat interface between impedance 

surface and free half-space. The formula (16) can also 

be used to determine the impedance value if the material 

parameters of a medium filling the second region have 

been previously determined. 
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2.1. Real Metals 

As is known, electromagnetic waves penetrate into 

metals at a depth small compared to a free space 

wavelength  . For superconductors and normal metals, 

the penetration depth at high and microwave 

frequencies is equal to about 2(10 10)  micron. Due to 

the small penetration depth, the fields components 

normal to the surface are much greater than their 

tangential components. The penetration depth 0  can 

be determined using the expression [15] 

0 / k 2   .                      (17) 
 

Since the phenomenon of the electromagnetic field 

concentration near the surface of the body is related to 

the skin-effect, it is argued that the impedance boundary 

condition (1) occur when strong skin-effect is present, 

i.e., the skin layer thickness 0  is small compared to all 

values with length dimensions that characterize the elec-

trodynamic structure. First of all, the inequalities 
0 (2 )    and 0 R  hold, where R  is the dis-

tance from the impedance surface to the source. The 

skin layer thickness should be small as compared with 

to the body dimensions, 0 l , in all directions, and to 

the curvature radii of the body surface, 0 D  . 

In the general case, for the time dependence of the 

fields i te  , the complex depth of field penetration into 

the metal is introduced [7, 16]: 

 

1 1 2
1 z 0

0

1
H (z)dz i

H




 

      ,         (18) 

 

where {0,z}  is the axis directed inside the metal along 

the surface normal. The symbols 1  and 2  denote the 

resistive and inductive skin layer depth. In this case, the 

surface impedance can be written as 

 

S S S 2 1Z R iX k ik      ,               (19) 

 

where SR  and SX  are the normalized surface resistance 

and reactance. 

Let us analyze the case when the metal is located 

in an electromagnetic field at room temperature. A cur-

rent in any point inside the metal is defined by two fac-

tors: first electrons are accelerated under the action of 

the electric field E , and, second, the path between two 

successive collisions with the lattice is limited by the 

free path l  of the electrons. When the current is form-

ing, the fields existing on the length l  should be taken 

into account. Since the free path l  of electrons in metals 

at room temperature is much less than the depth of the 

skin layer, the field E  in the process of current for-

mation can be considered to be constant. Hence, in this 

case, the current density j  is determined only by the 

magnitude of the field at that point. Under these 

conditions, the skin-effect is called by the classic skin-

effect. To find a local relationship between the quanti-

ties j  and E , a simple model of free electrons can be 

used to obtain [16]:  

 

2j E (1 i )    ,                        (20) 

 

where Fl v  , Fv  is the Fermi velocity. 

When relaxation effects can be neglected, i.e., 

when the condition 1  is fulfilled, the formula (20) 

transfers into the traditional Ohm’s law, 2j E  . Then, 

for an isotropic homogeneous metal, the formulas defin-

ing the normalized surface impedance and penetration 

depth can be determined as [17]  

 
cl
S 2 0Z (1 i) k 2 Z   ,                     (21) 

cl 0 2 12 (kZ ) 2     .                    (22) 

 

As can be seen, the essential feature of the formu-

las is equality of surface resistance and reactance, 
cl cl
S S 0R X k 2 Z   . 

If the electron mean free path l  is comparable to 

or greater than the penetration depth, then the formation 

of a current in the vicinity any point of the metal is be 

determined by collision processes in an area where the 

electric field differs markedly from the field at that 

point. In this case, the current density j  depends on the 

fields defined in the vicinity of this point with the radi-

us l . If cll    or even cll  , the effect becomes typi-

cal for pure metals at low temperatures and is known as 

the anomalous skin-effect. Really, when the temperature 

is decreasing, the average free-path length l  increases 

as 2 , while decreases cl  as 
1 2

2


 . Of course, with 

such free path lengths, the theory of the classical skin-

effect is no longer applicable and a more general 

consideration is required. For example, for the pure 

copper  2l 5 10  μm, the ratio 2
cll 3 10    at 

0300 K  and 10 GHz . The pure copper conductivity 2  

at helium temperatures can increase by a factor of 510  

[18], while the ratio cll   can be about 610 . Of course, 

in this case the formula for the classical skin-effect is no 
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longer applicable and a more general consideration is 

required. 

A rigorous theory of the anomalous skin-effect 

based on the free electron model was developed by 

Reuter and Sondheimer [19]. The theory assumes that if 

external perturbations are absent, the electrons at some 

point in the metal are distributed in the momentum 

space sphere of radius Fmv , where m  is the electron 

mass. If, for some reason, the sphere is deformed, the 

total electron momentum arises appearing, which 

determines the current in the metal. When the anoma-

lous skin-effect is present, the free path length l  is 

comparable to or greater than the field penetration 

depth, the fields at an arbitrary point will be defined by 

the fields of other region where electrons were located 

before entering the considered place. To take into ac-

count this effect, the effective field effE  in the metal is 

included in the expression for current density, similar to 

(20). This approach resembles accounting for the 

secondary fields due to induced currents on the scatterer 

the diffraction problems. 

However, the question arises: how to correctly de-

fine the current j  at any point, if it lies at a distance 

less than l  from the metal boundary? To so the 

boundary conditions for the reflection of electrons on 

the metal surface should be taken into account. One of 

the possible assumptions consists in that the electrons 

colliding with the interface completely lose information 

about the field in which they were before the collision, 

and are reflected equiprobable in all directions, i.e., the 

reflection is diffuse. Moreover, in the absence of exter-

nal influences outside the metal, the field E 0 . 

Another assumption consists in that the electrons 

collides with a surface, the reflection can be specular. In 

this case, an electron moving to a flat boundary and 

reflected back to the observation point after the collision 

with the boundary to can be considered as moving from 

free space in the field which is the mirror-symmetric 

with respect to the interface. That is, the field outside 

the metal surface is assumed to be a mirror-symmetric 

field inside the metal. In the intermediate case of the 

two regimes, when a part of electrons p  is mirror re-

flected and the remaining part (1 p)  is diffuse reflect-

ed. The specularity coefficient p  is equal to zero or one 

for diffuse or mirror reflections. 

As a result of a rather complicated solution of the 

general problem the correct expressions for impedances 

in specular mir
SZ  and dif

SZ  mode of electron reflections 

can be found in [16] 
 

mir
S 2

0

2ikl d
Z

i k( )





     ,                   (23) 

dif 2
S

0

Z ikl ln(1 i k( ) )d



       ,        (24) 

 

where 

 

2

3

2
k( ) [(1 )arctg ]      


,  

 
22

mir
0 2

2 cl

3 l 3 l
kZ ,

4 2

  
      

    
.            (25) 

 

The plots of expressions (23) and (24) as functions 

of 2  are similar. For small  , i.e., when mean free 

path of electrons is small, the formulas 

1 2
S S S2Z ,R X


   are valid for the diffuse and specu-

lar reflection, and are consistent with the classical skin-

effect (21). For the large   the impedances mir(dif )
SZ  

tend to the limits  

 

mir(dif )
SZ


  

1 3 1 3 2 3

0
mir(dif ) 0

2

kZ3 l
k Z (1 i 3)

4 2

     
            

,  (26) 

 

where the coefficients mirk 8 9  and difk 1 . As can 

be seen, the limiting values for diffuse and specular 

reflections differ only by the coefficients. In this case, 

the surface resistance and reactance are related as 

 

S SX 3R  .                             (27) 

 

Of course, values of the impedances can only be 

calculated by numerical integration of formulas (23) and 

(24) valid for anomalous skin-effect. However, in, 

Chambers [20] have obtained simple interpolation for-

mulas that allow to quickly calculate the values for the 

intermediate region between the classical and anoma-

lous limits 

 
G

S S RR R (1 F )    ; G
S S XX X (1 F )    ,    (28)  

 

where the values of the constant R(X)F  and G  for are 

given in Table 1.  

 

Table 1 

The values of the coefficients in the formulas (28) 
p  

RF  XF  G  

0 1.157 0.473 0.2757 

1 1.376 0.416 0.3592 
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The resistance SR  and reactance SX  calculated by 

the interpolation formulas (28) and by expressions (23) 

and (24) with an accuracy of 0.1% [16]. For the 

arbitrary p , Hartman and Luttinger in [21] have 

obtained the highly accurate solution for the extremely 

anomalous region in the form 

dif
S S

2
Z (p) 2Z 1 cos arccosp (1 p)

3

    
    

  
.     (29) 

The surface impedance of superconductors is of a 

separate fundamental interest for the researchers. As 

known that the electrical resistance of many pure 

metals, alloys and compounds at the DC disappears 

sharply at a critical temperature crT , which for all 

known superconductors are in the region of low 

temperatures. The highest critical temperature for pure 

metals, 09.3 K , has niobium, while for compound 

3Nb Ge  it equals 022.3 K . Perfect conductivity, 

 , i.e., total absence of resistance at the DC is 

considered the only fundamental property of 

superconductors. Meissner and R. Oxenfeld in [22] have 

found that the magnetic flux is pushed out of the 

conductor when it goes into the superconducting state. 

This effect cannot be explain by the perfect conductivity 

directly from the ideal conductivity and is another 

important fundamental property of superconductors. It 

should also be noted that the surface resistance of 

superconductors in alternating fields, in contrast to the 

DC resistance, is not zero, since transitions between 

adjacent quasiparticle excitations that occur in a 

superconductor at temperatures T 0  can be induced. 

Phenomenological theories of superconductivity 

(see a overview in [16]) describe a number of 

superconductor properties, but in many cases, they give 

only an approximate description and often they cannot 

adequately describe the specific superconductor 

parameter. Therefore, the microscopic theory of 

superconductivity, the BCS theory [23] is of great 

importance. This theory is based on a fact established by 

Cooper in [24] that an arbitrarily weak attraction be-

tween two electrons can lead to the formation of a 

bound state, which energy is less than the sum of the 

energies of the individual electrons.  

The attraction can be explained by the polarization 

of the ion lattice by one electron, which leads to the 

attraction of the second electron. If attraction exceeds 

the repulsive Coulomb interaction, the bound pairs of 

electrons, the Cooper pairs are formed. Electron pairs do 

not exist independently of each other, but form a 

condensate that provides a single quantum state of the 

superconductor. If the Cooper pairs are exposed to 

external forces, for example, created by an electric field, 

their momentum is increased due to accelerating acquire 

a pulse, the same for all pairs. Thus a continuous 

electric current is arising. By acquiring momentum the 

kinetic energy of the couples is increased, but when it 

excides a binding energy, the Cooper pairs are 

destroyed.  

The electrodynamics of superconductors, based on 

the microscopic theory [23], makes it possible to obtain 

expressions for the normalized impedances specular 

reflection and diffuse modes in the temperature range 

cr0 T T    

 

mir
S 2

00

2ik d
Z

kZ Q( , ) /





      ,             (30)  

dif 2
S 0

0

Z ik ln(1 kZ Q( , ) / )d



       .     (31) 

 

The most difficult problem related to formulas (30) 

и (31) consists in determining the integral kernel 

Q( , )  . However, it should be noted that the integral 

kernel can be represented as A P CQ( , ) Q Q Q      

where the first two terms are real and only the third term 

CQ  have both real and imaginary part, which determine 

the losses . Since the real parts of the impedances mir
SZ  

and dif
SZ  in most external problems are small, they can 

be neglected, and the more convenient formulas for the 

surface reactance can be used for calculations [16]. 

 

2.2. Rough and Corrugated Metal Screens 

 

Above, we considered the surface impedance of 

real metals and superconductors with absolutely smooth 

surfaces on which the Schukin-Leontovich boundary 

condition (1) are valid. However, surface roughness, i.e. 

imperfections associated with the surface deviation from 

geometrically perfect form is unavoidably existing on 

solid material surfaces. The surface imperfections can 

be caused by a corpuscular structure of matter, techno-

logical defects as result of the surface treatment, ets. 

There exist many approaches to study the effect of 

roughness upon the surface impedance. In several publi-

cations (for example, [25]), increase of the surface re-

sistance and reactance was associated with a propor-

tional increase of the actual area of a rough surface as 

compared to a flat one. However, this technique is valid 

only if characteristic dimensions noticeably exceed the 

penetration depth. 

The most common techniques to study rough sur-

faces is statistical approach (for example, [26]), when a 

real surface is described by random function. Small de-
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viations of the boundary shape from the plane are de-

scribed by a set of random functions describing the 

boundary deviation from the plane z 0  at the point   

(  is a two-dimensional vector in the plane 0z ). 

This approach is often used for studying electromagnet-

ic waves scattering by rough surfaces, when the effec-

tive surface scattering impedance is introduced [26]. In 

the common sense, the impedance is a characteristic of 

metal surfaces, determined by energy accumulated in 

the metal and its losses [16], while the scattering imped-

ance describes the scattering properties of the surface 

and characterizes the energy loss by the coherent field 

component due to its transformation into a scattered 

component. In this case, the scattering processes are 

determined by diffraction effects which depend on the 

ratio between a wavelength and irregularity dimension. 

This effect can be significant, for example, in guide 

systems of large length, when, due to scattering, the 

energy of the fundamental mode is transformed into 

non-fundamental modes. 

Naturally, the impedance boundary conditions are 

not satisfied at each point of the surface, and only the 

effective surface impedance eff eff eff
S S SZ R iX   can be 

defined. It is usually assumed that characteristic dimen-

sions of the surface irregularities (average height h  and 

average horizontal dimension d ) are much smaller than 

the free space wavelength and distance at which the 

incident wave field varies considerably. In other words, 

it is assumed that the impedance boundary conditions 

are valid on some plane surface that corresponds to a 

rough surface and is determined by the shape of the ob-

ject at a given place. If the surface roughness is iso-

tropic and the average dimensions and radii of curvature 

of the surface elements are much larger than the pene-

tration depth, the impedance can be defined in the fol-

lowing form [16]: 

 

eff
S SR kR , eff

S SX kX ,                 (32) 

 

where 
2

2

0 0 S

1
k H ds

S H


 




 , 0S  is the flat surface 

part corresponding to the area of the rough surface S . 

The parameter k  is known as the roughness coefficient 

[27], which is a ratio between the surface resistance or 

reactance of the rough surface and that for the flat sur-

face. The general approach for determining the parame-

ter k  can be found in the monograph [18], where ex-

plicit formulas were obtained for some types of rough 

surfaces. 

In the case of rectangular, periodically located 

notches (corrugations) in a conducting screen, the effec-

tive surface impedance can be determined in a different 

way, based on electrodynamic methods of diffraction 

grating analysis. If the corrugations are small, the 

equivalent boundary conditions can be written in the 

following form [28]: eff
z S x xE Z H , E 0   or 

eff
z x S zE 0, E Z H   for transverse or longitudinal 

notches with respect to the axis {0,z} . The axis {0,y}  

is supposed to be directed vertically to the corrugated 

surface. Then according to [28] 

 
eff
SZ i(2g / L)tgkc ,                   (33) 

 

where g  is the notch width, c  is the notch height, and 

L  is the period of the corrugations. 

 

2.3. Layered Dielectric Structures 

 

Among of layered magnetodielectric structures 

which material parameters of the medium are piecewise 

constant functions of one coordinate, dielectric materi-

als are used most frequently, since the layers are non-

magnetic materials in most applications. Electromagnet-

ic waves propagation outside such structures (for exam-

ple, above the underlying surface), can be analyzed by 

introducing the surface impedance, as for the air-

dielectric interface over the half-space (formula (14)). 

Initially, such a formulation of the problem was caused 

by the interest in simulating of radio waves propagation 

over real layered soils. In some cases, it turns out to be 

methodically expedient to classified the layered dielec-

trics into natural and artificial structures. 

Now, the method of radioimpedance sounding al-

lowing to define the physical properties of inhomogene-

ous structures by application of interpretation models 

for experimental frequency dependences of surface im-

pedance. This method applies to studies of the surface 

layer structure of the earth’s crust (for example, [29]), 

and to a bio-impedance analysis of human body compo-

sition (for example, [30]). However, these questions are 

beyond the scope of this paper. 

As for as the artificial structures are concerned, the 

most interesting from the point of view of practical ap-

plications are multilayer plane-parallel systems. Multi-

layer interference structures (MIS) are a set of various 

dielectric layers of small thicknesses which is of order 

or less than an operating wavelength. The MIS opera-

tion is based on interference effects occurring inside the 

system with multiple wave reflections at the interfaces 

between layers with different wave parameters. The 

material of the individual layers, layer numbers, se-

quence order and thickness are chosen depending on the 

spectral characteristics of the system as a whole. 

The MIS are widely used in optics; however, these 

structures are increasingly being used in microwave 
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techniques for creating matching devices, filters, wave 

energy absorbers, rejection elements and other wave-

guide sections. An important advantage of the MIS 

waveguide elements is absence of the wave mode con-

version at the flat interface between media with differ-

ent permeability. This is especially important in the mil-

limeter wavelength range, since diffraction losses in-

crease when the frequency is increasing and the wave-

guide dimension is decreasing. This effect can be ex-

plained by the wave front distortion at inhomogeneities 

of the waveguide path and the main mode transfor-

mation into rapidly damping higher modes, which are 

the source of the main wave energy losses. 

The MIS are effective phase shifters: phases of the 

waves reflected by and transmitted through the structure 

can be easily controlled by variation of the structure 

parameters. Therefore, layered dielectric structures can 

be used as mirrors, band-pass and single-frequency fil-

ters, impedance matchers, absorbing materials, power 

dividers, and high Q resonant elements. As is known, it 

is very difficult to manufacture conventional dia-

phragm-pin impedance transformers for the millimeter 

and submillimeter wavelengths, while production of the 

high quality layered dielectric structures is quite simple.  

Let an area occupied by the layered structure coin-

cides with the half-space z 0,( x,y )      

in the Cartesian coordinate system and the properties of 

the structure itself can vary only along the coordinate 

z . Then the electromagnetic field as function of 

R(x,y,z)  can be represented as the discrete or continu-

um superposition of spatial inhomogeneous plane waves 

 

ikrE(R) E(k,z)e , ikrH(R) H(k,z)e ,     (34) 

 

where x yk (k ,k ,0)  is a spectral parameter, E(k,z)  

and H(k,z)  are the vector amplitude of electric and 

magnetic wave, and r (x,y,0) . Then, the impedance 

boundary condition (1) can be written as 

 

S 0
ˆ

E (k,z) Z (k)[z ,H (k,z)]  ,              (35) 

 

which establishes a relationship between the tangential 

components of the vector amplitudes on the plane 

z 0 . More precisely, limit values of the tangential 

components when z 0  or z 0  coincide in the 

formula (35) by virtue of the boundary condition defin-

ing continuity of the tangential field components. In the 

above formula, 0z  s the unit vector of the axis {0,z}  

considered to be directed upwards normal to the inter-

face directed vertically upwards. The non-local imped-

ance S
ˆ
Z (k)  known also as frequency-dependent im-

pedance is a dyadic function of the spectral parameter 

k  that fully describes the interaction of the electromag-

netic field with the medium in the lower half-space. 

For an isotropic layered medium, the tensor S
ˆ
Z (k)  

is expressed in terms of two scalar values, which have 

the meaning of scalar impedance for waves of vertical 

and horizontal polarization, respectively. The scalar 

impedances can be calculated numerically using the 

Riccati equation. For a piecewise homogeneous medi-

um, it can be determined analytically using recurrent 

formulas [13]. As an example, we present the result of 

problem solving for a layer of a magnetodielectric with 

material parameters ( , )   located on an perfectly con-

ducting screen, when a layer is excited by a normally 

incident monochromatic plane wave 

 

S dZ i tg(kh )


 


,                     (36) 

 

where dh  is the layer thickness. More detailed formulas 

for this case are presented in subsection 2.6. 

For an arbitrarily anisotropic layered medium, the 

dyad S
ˆ
Z (k)  is determined by four scalar quantities. In 

the general case, the dyad can be constructed only nu-

merically by solving the matrix Riccati equation [31]. 

Application of the constant surface impedance (36) 

is usually limited by a condition associated with the 

provision of a single-mode wave propagation (including 

surface wave propagation) in the layered dielectric 

structures. For more general conditions, the frequency-

dependent impedance (35) should be used. However, in 

some cases, even under the multimode regime of the 

layered structure, a constant surface impedance could be 

used. For example, if a dielectric layer on a metal screen 

is excited by a vertically oriented electric dipole, then 

the amplitudes of the reflected field can be correctly 

determined by using the constant impedance [32]. This 

is explained by the fact that of the possible for propaga-

tion of two or three types of waves inside a layer, in the  

cases considered, only the highest one will be effective-

ly excited, thus providing the conditional single-mode 

mode. 

Let us now consider a dielectric structure in which 

one of the layers is the planar volume of a cold plasma 

[33]. The equivalent permeability eff  and conductivity 

eff  of such layer is determined by the relations, 

2 2 2
eff 0 p1 / ( )       

  , 2 2 2
eff 0 p / ( ),        

where p  is the angular plasma frequency, 

2 2
p e 0 en e / ( m )   , 0  is the vacuum permittivity, e  is 

the electron charge, em  is the electron mass, en  is the 
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electron concentration, and   is the frequency of elec-

tron-neutral collisions. 

At present, interest in the studies of magnetoelec-

tric materials and multiferroics, which are characterized 

by the interrelation of magnetic and electrical proper-

ties, has increased significantly. The magnetoelectric 

effect of such substances, i.e., to polarize in a magnetic 

field and to magnetized in an electric field, opens up a 

whole series of new areas for their practical use. The 

properties of magnetoelectric are described in the exten-

sive overview [34], where a special attention is paid to 

media that have magnetoelectric properties at room 

temperature, for example, materials based on bismuth 

ferrite, films of garnet ferrites, etc., since these materials 

are most promising for practical applications. However, 

it turns out that the greatest magnetoelectric effects can 

be observed for composite multilayer structures. For 

example, the coefficient of the magnetoelectric effect in 

composites based on a piezoelectric-ferromagnetic, 

reaches 110 , which is almost three orders of magni-

tude grater as compared to the best samples of single-

phase multifferoics. Of course, these multi-layered 

structures can be described, as mentioned above, using 

the impedance approach. It is important, that the effec-

tive surface impedance can be varied by external elec-

tric and magnetic fields. 

 

2.4. Thin Dielectric Frequency-Selective  

and Chiral Layers 

 

Flat metal-dielectric frequency-selective surfaces 

(FSS) are now actively used to create microwave cir-

cuits and antennas, high-quality filters and resonators, 

wave-guiding structures, etc. The electrodynamic theory 

of the FSS based on metal screens have already being 

formed. For example, in monographs [35, 36], the effec-

tive transmission coefficients ware determined for sev-

eral FSS structures. The transmission coefficients can be 

used to defined the effective surface impedance of the 

FSS. For doubly periodic dielectric structures [37], new 

problems have arisen associated with applicability of 

various cell and array geometries, the cell material pa-

rameters and metallic inclusions. 

The mechanism of frequency-selectivity in dielec-

tric frequency-selective structures differ from that in 

ordinary metal frequency-selective surfaces. Thin metal 

screens separated by a layer of a uniform dielectric with 

thickness of about a quarter wavelength can function as 

filters only for main waves. If a ratio of distances be-

tween layers and an operating frequency is large, higher 

modes can be excited in dielectric plates. The selectivity 

of the dielectric FSS is based on the behavior of higher 

modes excited in the plate, when these modes interfere 

with the main mode. At high frequencies, the character-

istics of such structures strongly depend on a wave inci-

dence angle. However, the dielectric structure at fre-

quencies significantly lower than a cutoff frequency 

behaves as a homogeneous anisotropic material at a 

fundamental mode [38]. In this case, the properties of 

the artificial layer can be described by using the effec-

tive dielectric constant tensor, which, of course, allows 

us to introduce into consideration the effective surface 

impedance. Similar assertion can be made for the case 

of plane wave scattering at a two-periodic gyrotropic 

layer [39]. 

Among flat structures that are being actively inves-

tigated at the present time, thin chiral layers, structures 

with the property of chirality or enantiomorphism (from 

the Greek “χερ” – “hand”), should also be singled out. 

The chirality is a property of a living or non-living ob-

ject that cannot be superposed on its image in a flat mir-

ror for any movement and rotation. At microwave fre-

quencies, the chiral properties can have only artificial 

media. The chiral inclusions at microwave frequencies 

are artificial conductive one-, two-, or three-dimensional 

microelements having a mirror-asymmetric shape, 

which dimensions are significantly smaller than the 

length of an excitation wave [40–42]. The chiral medi-

um has a spatial dispersion; therefore, mirror-

asymmetric microelements should be placed periodical-

ly at distances commensurate with a wavelength. The 

orientation of the geometrical axes of microelements 

must be chaotic, therefore, the chiral medium is biiso-

tropic at the macroscopic level. If all the chiral micro-

elements are oriented in one direction, then the structure 

becomes anisotropic [43, 44]. 

Various elements can be used in the chiral struc-

tures: three-dimensional objects (right-and-left handed 

metallic spirals [45, 46], spherical particles with spiral 

conductivity [47], open rings with protruding ends [48]) 

and two-dimensional microscopic objects (S-strip ele-

ments and their mirror equivalents [49, 50], flat multi- 

thread spirals, Möbius tapes [51], and others). The chi-

ral layer is called planar if its elements are conductive 

microscopic strips of mirror-asymmetric shapes that are 

uniformly distributed on a dielectric or ferrite substrate. 

From the point of view of technical implementations of 

the chiral structure, the planar model is more preferable, 

however, its degree of chirality is less than that of the 

three-dimensional chiral structure. An increase in the 

chirality structure can be achieved by creating multi-

layer chiral meta-structures, at the layer interfaces on 

which the stripe chiral microelements are distributed. 

The electrodynamic properties of single-layer  

arrays based on chiral strip elements are detailly stud-

ied [49–51]. 

Microwave chiral media can be described with the 

help of three material parameters: the relative permittiv-

ity  , permeability  , physical chirality parameter  . 
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The material equations for the chiral medium can be 

presented in the CGS unit system as 

 

D E i H   , B H i E   ,             (37) 

 

where D  and B  are the electric and magnetic induc-

tions. The upper plus or minus signs in the formulas 

(37) correspond to the physically chiral medium based 

on the right mirror forms of chiral elements, while the 

lower signs correspond to that based on the left mirror 

forms. Since the physically chiral medium is gyrotropic, 

the material equations include the tensor permittivity 
( )ˆ   and permeability ( )ˆ   [44, 52], 

 
( )ˆD E  ,  ( )ˆB H  , 

E
( )

E

i 0

ˆ i 0

0 0



   
    
 
  

,  

H
( )

H

i 0

ˆ i 0

0 0



  
     
 
  

,                 (38) 

 

where E    , H   ,    . The upper plus 

or minus signs correspond to the chiral medium based 

on right spirals, while the lower signs correspond to the 

medium based on left spirals. The chirality parameter is 

included into the off-diagonal elements of tensors for 

the biotropic medium. The gyrotropic axis is directed 

along the axis {0z} . The determinants of matrices in 

(38) ( ) 2 2
EˆDet ( )      and ( ) 2 2

HˆDet ( )     

depend on the medium chirality parameters. 

The parameter of physical chirality is determined 

by the dimension, shape and concentration of the mi-

croparticles in the medium, that is, it takes into account 

the resonant properties of the chiral element itself. 

Therefore, a physically chiral medium must be created 

for a specific, fairly narrow range of incident wave fre-

quency, near the resonant frequency of the chiral ele-

ment. This extremely complicates the theoretical and 

experimental study of the chirality parameter for practi-

cal media implementation. Strictly speaking, the de-

scription of wave processes in a bounded chiral medium 

is currently an intractable problem. Therefore, there is a 

need to develop approximate methods and algorithms 

for calculating the characteristics and parameters of 

limited chiral structures. We will not analyze geometric-

chiral structures classified in a separate class, since they 

cannot be implemented in a thin-film format, consisting 

of a large number of layers, each of which is an ordered 

chiral composition. 

 

2.5. Surface Impedance of Electrically  

Thin Vibrator 
 

The surfaces of radiating or scattering vibrator an-

tennas may have similar characteristics, with some of 

the impedance surfaces discussed above, i.e., they may 

differ from a perfectly conducting surface, hence the 

vibrators to be characterized as impedance ones. 

Linear impedance vibrators are widely used in ra-

dio engineering and radio electronic complexes for var-

ious purposes, as stand along receiving and transmitting 

structures, elements of antenna systems, and devices of 

antenna-feeder paths. Wide application and multi-

functional use of the impedance vibrators, including 

multi-element structures, is an objective prerequisite for 

theoretical studies of electrodynamic characteristics of 

such systems. Since longitudinal dimensions of the vi-

brators are comparable with the operating wavelength in 

the surrounding space, asymptotic long-wave or short-

wave (quasi-optical) approximations for their analysis 

cannot be used. A correct mathematical modeling of 

real vibrator structures without increasing the complexi-

ty of formulating a corresponding electrodynamic prob-

lem, an impedance concept is successfully used (for 

example, the monographs [53–55] and references in it). 

To determine the electrodynamic characteristics of 

electrically thin impedance vibrators, formulas for the 

numerical evaluation of the vibrator surface impedance 

should be obtained. With this purpose in mind, we con-

sider an auxiliary problem of axially symmetric excita-

tion of an infinite two-layer cylinder (external and inter-

nal radiuses are r  and ir ) by a converging cylindrical 

wave. Let us introduce a cylindrical coordinate system 

( , , )  z  so that the axis {0z}  is directed along the cyl-

inder axis. Then, due to the problem symmetry, the elec-

tromagnetic field has only components zE  and H , 

which depend only on the coordinate  . Permittivity 

and permeability of the media are ,   and i i,   in the 

region  ir ,r  and ir  , respectively. 

The normalized surface impedance S zZ E H  

can be found according to (1), under the condition as a 

solution of Maxwell equations in terms of the Bessel 

0,1I  and 0,1N  Neumann functions 

 

z 0 0

1 1

iE I (k r) N (k r)

H I (k r) N (k r)

      
    

      

 

i
1 i 0 i i i 0 i 1 i i i

i

i
0 i 1 i i i 1 i 0 i i i

i

N (k r )I (k r ) N (k r )I (k r )

.

I (k r )I (k r ) I (k r )I (k r )


      

 


 
      

 

 

(39) 
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Assuming that ir 0  and  1 

( 4 / i )      , we obtain the well-known formula 

the surface impedance of a cylindrical conductor which 

takes into account the skin-effect [56, 57] 

 

0
S

1

I (k r)k
Z ,

120 I (k r)





                      (40) 

 

where 0 0k (1 i) / , / k 2        is the skin 

layer thickness, and   is metal conductivity. 

It is possible to average the impedances along the 

cell period for the corrugated ( 1L  2L ) or the ribbed 

( 1L  2L ) conductors (here 1L  is the ridge thickness 

with SZ 0 , 2L  is the cavity width with SZ 0 ) with 

the cells period 1 2(L L )  /   and at i 1. 

Then, taking into account (39), we have: 

 

2
S

1 2

L
Z i

L L


  

 
 

0 0 i 0 i 0

1 0 i 0 i 1

I (k r)N (k r ) I (k r )N (k r)

I (k r)N (k r ) I (k r )N (k r)

    


    
, (41) 

 

which is also true for conductors with an insulating 

coating of an electrically-magneto-electrician 1(L 0) , 

as well as for metal cylinders i(r 0)  with transverse 

dielectric inserts 2(L  1L ) . 

Of particular practical interest is the case of thin 

vibrators, 
2

i(k r) ln(k r ) 1   , when the surface 

impedance does not depend on the excitation method of 

a conductor, and the corresponding boundary conditions 

become external [4], i.e. they coincide for exciting 

fields of any structure. Then, according to (39) – (41), 

we obtain expressions for the vibrator impedance in the 

thin wire approximation 

 

S 0

1 i
Z

120





                         (42) 

 

  the solid metallic cylinder of the r  0  radius 

( SZ 0  for the case of the perfect conductivity, when 

 ); 
 

S
0

1
Z

120 h ikr( 1) / 2


   
             (43) 

 

  the dielectrical metalized cylinder with covering, 

made of the metal of the 0h 
0  thickness, hence at 

1  ; 

S
0

1
Z

120 h



                          (44) 

 

 the tube metallic cylinder of the r  0  radius (for 

the “nano-radius” vibrator [57–59] 0h r , r  0 ), 

and at 0h 0  in (43); 

 

S

2
Z i

kr( 1)
 

 
                           (45) 

 

  the dielectrical cylinder; 

 

2
S

1 2

L 2
Z i

L L kr
 

 
                      (46) 

 

 the metal-dielectrical cylinder; 

 

S
0 i

1
Z

120 h i / kr ln(r / r )


  
             (47) 

 

  the magnetodielectrical metalized cylinder with the 

inner conducting cylinder, hence (44) at ir r , and at 

0h 0 ; 

 

S iZ ikr ln(r / r )                          (48) 

 

  the metallic cylinder with covering, made of magne-

todielectric of the ir r  thickness or the ribbed cylinder. 

The surface impedance for a vibrator with spiral 

conductivity, i.e., for the kiral objects [42], in a particu-

lar case of a monopillar metal helix can be found using 

the formula (31) as 

 
2

SZ (i / 2)krctg  ,                    (49) 

 

where r (kr 1) is helix radius and   is an angle of 

helix. 

The formulas (42) – (49) obtained within the 

framework of a general impedance concept are valid for 

thin infinite and finite cylinders, located in free space. If 

the vibrator is located in a material medium with pa-

rameters 1  and 1 , a multiplier 1 1/   should be 

included in the formulas. If the medium parameters   

and   can be smoothly varied by a static electric or 

magnetic field, then the radiation characteristics of the 

system with fixed geometry can be controlled by these 

fields. As can be seen from formulas (48) and (49) the 

characteristics of the vibrators with the purely inductive 
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surface impedance can be described by using a concept 

of effective vibrator length, defined by the formula 

 

i
eff

ln(r / r )
2L 1 2L

2ln(2L / r)

 
  
 

, 

 

2

eff

ctg
2L 1 2L

4ln(2L / r)

 
  
 

.              (50) 

 

Thus, the electrodynamic characteristics of the im-

pedance vibrator with the length 2L  is equivalent to a 

perfectly conducting vibrator with a length eff2L , so 

that eff2L  2L . 

Separately, it is necessary to emphasize the possi-

bility of calculating the surface resistance of a carbon 

nanotube [57–59]. For example, if the nanotube is locat-

ed entirely in a dielectric with permittivity   and per-

meability 1  , the surface resistance can be deter-

mined using the following relation 

 
2 2 2

S Fi a ( iv) / (2e v )    ,             (51) 

 

where a  is nanotube radius, Fv  is Fermi velocity, 

5
Fv 9.71 10  m/s,   is cyclic frequency, v  is relaxa-

tion frequency, 4v 3.33 10  Hz, e  is electron charge, 

 is Planck constant. 

 

2.6. Surface Impedance of a Magnetodielectric Layer 

on a Metal Substrate Surface 

 

In this subsection, we present formulas determin-

ing the impedance SZ  for some specific examples of 

the physical implementation of impedance surfaces, 

First, we consider an auxiliary problem concerning a 

normal incidence of a plane electromagnetic wave on a 

dielectric layer that separates two half-spaces. The layer 

thickness is dh , complex permittivity and permeability 

are 1 , and 1 , and the wave number 1 1 1k k   . The 

incidence wave propagates in the free upper half-space 

( 1)    , while the lower half space is characterized 

by material parameters 2 2,  . 

The boundary value problem solution can be easily 

obtained by taking into account the boundary conditions 

for the electric and magnetic fields on both surfaces of 

the dielectric layer. Comparing this solution with the 

requirements of the Shchukin-Leontovich impedance 

boundary condition (1) on the upper boundary of the 

dielectric layer, we obtain the rigorous expression for 

the distributed surface impedance 

 

1 1 d 2
S 1

1 2 1 d

iZ tg(k h ) Z
Z Z ,

Z iZ tg(k h )





                 (52) 

 

where 1 1 1Z /    and 2 2 2Z /   . 

If the layer of magnetodielectric is on the perfectly 

metal surface, the formula (52) after substitution 2Z 0  

is reduced to the relation similar to (36) 

 

S 1 1 1 dZ i / tg(k h )   ,                  (53) 

 

where dh  is magnetodielectric thickness. In the case of 

an arbitrary incident field, formula (53) is approximate 

and becomes more accurate if the inequality 1 1| |  1 

better inequality holds (approximation of geometrical 

optics [4]). 

As shown in the references [60 – 62], real parts of 

permittivity and/or permeability of magnetodielectric 

metamaterials can become negative. Therefore, the for-

mula (53) can be written as [63] (first received by the 

authors): 

 

S 1 1 1 dZ i / tg(k h )    ,                (54) 

 

where the sign plus or minus correspond to the cases 

1Re >0 or 1Re <0. 

If a layer is electrically thin ( 1 d| k h |1), when 

the quasi-stationary approximation [4, 64]), the relations 

(53) and (54) allow to obtain that S 1 dZ ik h   [64 –

 66], i.e. the normalized surface impedance does not 

depend on the material permittivity, as is the case for 

thin impedance vibrators (see formula (48)). 

If a thin conductive film with a thickness Rh  

(( 0
Rh /  )1), is deposited on a layer of a magnetodi-

electric metamaterial located on a metal plane, the sur-

face impedance defined by the formula (52) is equal to 

 

SR
SR SR

SR S 0 1 R

R 1
Z , R

1 R / Z Z h
 

 
,         (55) 

 

where SZ  is defined by formulas (53) and (54). 

 

Conclusion 
 

The purpose of the paper was to systematize the 

results of using the concept of approximate impedance 

boundary conditions for electromagnetic fields in 

electrodynamics problems based on an analytical review 

of literature sources. The limits and conditions for their 

correct application are analyzed, including the 
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requirements for the geometry of the boundary surfaces 

on which it is performed. The types of metal-dielectric 

structures are presented, for which methods of 

theoretical determination of the values of surface 

impedances are currently known. For most of the 

considered cases, the article contains formula 

expressions for calculating the values of surface 

impedances (except for those where the formulas are too 

cumbersome and contain a large number of different 

structural parameters that require a separate 

description). At the same time, attention is paid to the 

structures of the film type, which are the most 

promising for the creation of technological control 

elements on their basis in devices of the centimeter and 

millimeter wavelength ranges. The results for surface 

impedances, which can characterize electrically thin 

vibrators, are also presented quite fully, and used in the 

publication of monographs [53 – 55]. Of course, the 

materials of the paper do not claim to be a complete 

reference book covering all the results and aspects of 

the development of the concept of approximate 

boundary conditions of the impedance type in problems 

of electrodynamics over the last 80 years. At the same 

time, the authors hope that the information given in the 

paper will be useful for specialists in the field of 

theoretical and applied electrodynamics, as well as for 

graduate students, young scientists and students who are 

just mastering radio physical and radio engineering 

specialties.  
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НАБЛИЖЕНІ ГРАНИЧНІ УМОВИ  

ДЛЯ ЕЛЕКТРОМАГНІТНИХ ПОЛІВ В ЕЛЕКТРОМАГНЕТИЗМІ 

С. Л. Бердник, А. В. Гомозов, Д. В. Грецьких,  

В. О. Катрич, М. В. Нестеренко 

Наведено результати аналітичного огляду літературних джерел щодо використання наближених грани-

чних умов для електромагнітних полів імпедансного типу при вирішенні крайових завдань електромагнети-

зму за більш ніж 80 останніх років. У цей період імпедансний підхід був узагальнений на широке коло елек-

тродинамічних завдань, у яких його використання дозволило суттєво розширити межі математичного моде-

лювання, що адекватно враховує фізичні властивості реальних граничних поверхонь. Минуло понад вісімде-

сят років з моменту публікації наближених граничних умов для електромагнітних полів. Сенс і цінність цих 

умов полягає в тому, що вони дозволяють вирішувати завдання дифракції про поля поза тілом, що добре 
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проводять, без урахування полів усередині них, що значно спрощує рішення. З того часу застосуванню ім-

педансних граничних умов присвячено велику кількість публікацій, основні з яких (на думку авторів) пред-

ставлені у цій статті. Особливу увагу приділено характеристикам електрично тонких імпедансних вібраторів 

та поверхневих структур плівкового типу, як особистому внеску авторів у теорію імпедансних граничних 

умов в електромагнетизмі. Предметом дослідження у статті є аналіз меж та умов коректного застосування 

імпедансних граничних умов. Метою є систематизація результатів використання концепції наближених ім-

педансних граничних умов електромагнітних полів у завданнях електродинаміки з урахуванням аналітично-

го огляду літературних джерел. Отримано такі результати. Представлені типи металодіелектричних струк-

тур, для яких в даний час відомі методи теоретичного визначення значень поверхневих імпедансів для конс-

трукцій плівкового типу, які є найбільш перспективними для створення на їх основі технологічних елемен-

тів управління в приладах сантиметрового та міліметрового діапазонів довжин хвиль. Висновки. Матеріали 

статті не претендують на звання повного довідника, що охоплює всі результати та аспекти розвитку концеп-

ції наближених граничних умов імпедансного типу у завданнях електромагнетизму за останні десятиліття. 

Водночас автори сподіваються, що інформація, викладена у статті, буде корисною фахівцям у галузі теоре-

тичної та прикладної електродинаміки, а також аспірантам, молодим вченим та студентам, які тільки осво-

юють радіофізичні та радіотехнічні спеціальності. 

Ключові слова: імпедансний підхід; граничні умови імпедансного типу; поверхневий імпеданс; ефек-

тивний імпеданс; імпедансна поверхня. 
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