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APPROXIMATE BOUNDARY CONDITIONS
FOR ELECTROMAGNETIC FIELDS IN ELECTRODMAGNETICS

The results of an analytical review of literature sources on the use of approximate boundary conditions for elec-
tromagnetic fields of impedance type in solving boundary value problems of electromagnetism for more than 80
recent years are presented. During this period, the impedance approach was generalized to various electrody-
namic problems, in which its use made it possible to significantly expand the limits of mathematical modeling,
which adequately considers the physical properties of real boundary surfaces. More than eighty years have
passed since the publication of approximate boundary conditions for electromagnetic fields. The meaning and
value of these conditions lies in the fact that they allow solving diffraction problems about fields outside well-
conducting bodies without considering the fields inside them, which greatly simplifies the solution. Since then,
numerous publications have been devoted to the application of impedance boundary conditions, the main of
which (according to the authors) are presented in this paper. Particular attention is paid to the characteristics of
electrically thin impedance vibrators and film-type surface structures as a personal contribution of the authors to
the theory of impedance boundary conditions in electromagnetism. The subject of research in this article is the
analysis of the limits and conditions for the correct application of impedance boundary conditions. The goal is to
systematize the results of using the concept of approximate impedance boundary conditions for electromagnetic
fields in problems of electrodynamics based on an analytical review of literature sources. The following results
were obtained. The types of metal-dielectric structures are presented, for which methods of theoretical determina-
tion of the values of surface impedances for film-type structures are currently known, which are the most promis-
ing for creating technological control elements on their basis in centimeter and millimeter wavelength devices.
Conclusions. The materials of this paper do not pretend to be a complete reference book covering all the results
and aspects of the development of the concept of approximate impedance type boundary conditions in problems of
electromagnetism over the past decades. Simultaneously, the authors hope that the information presented in this
paper will be useful to specialists in the field of theoretical and applied electrodynamics, as well as graduate stu-
dents, young scientists and students who are just mastering radiophysics and radio engineering specialties.

Keywords: impedance approach; impedance-type boundary conditions; surface impedance; effective impedance;
impedance surface.

of the authors to the theory of impedance boundary
conditions in electrodynamics. The general information

Introduction

Eighty years have passed since the publication of
the approximate boundary  conditions for
electromagnetic fields [1-3]. The meaning and value of
these conditions lies in the fact that they make it
possible to solve diffraction problems about fields
outside of well-conducting bodies without considering
the fields inside them, which greatly simplifies the
solution. Since then, a large number of publications
have been devoted to the application of impedance
boundary conditions, the main of which (according to
the authors) are presented in this paper (see References).
Particular attention is paid to the characteristics of
electrically thin impedance vibrators and surface
structures of the film type, as the personal contribution

and specialized information presented in the paper will
allow the reader to use the materials of the paper in their
work, without resorting to searching for special hard-to-
reach literary sources.

1. Impedance boundary conditions
and the limits of their correct application

The one-sided impedance boundary conditions al-
low to reduce the number of interfacing electrodynamic
volumes which should be taken in the problem solution.
Eliminating the need to determine fields inside the adja-
cent metal-dielectric elements at the problem formula-
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tion level is the main advantage of the impedance ap-
proach. The Shchukin-Leontovich impedance condition
on the boundary surface S can be written in the follow-
ing form [1-3]

[ﬁ!E:”S :Zs[ﬁ![ﬁ’ﬁ]:”S ’ (1)

where E and H are the vectors the electric and mag-
netic harmonic fields, n is the impedance surface nor-
mal, directed inside the impedance region, Zg =Zg/Z,
is the normalized surface impedance, and Z; =120z
Ohm is the resistance of free space.

If the Z5 =0, i.e., interface surface is perfectly
conducting, the formula (1) is reduces to [ﬁ, E] ‘S =0.

It should be noted that the boundary condition (1) is
approximate, since, in this case, the solution of the elec-
trodynamic problem represents the first term of the as-
ymptotic expansion of the exact solution [3,4] in powers
of the small parameter

|Zg |<<1. )

Since only the tangential components are included
in the boundary condition (1), there exists some re-
strictions on the surface S geometry. It is evident that
condition (1) holds if the surface curvature radius is
much greater than the length of the incident wave. The
conditions which take into account the interface curva-
ture can be read as [2, 5]:

S 3)

S X2~ X1
E,=-2Z¢|1+ === |H
12 S( 2ik Slulj Tl

where y; and y, are the main Gaussian curvatures of

S

the surface, E, and H, are the tangential components

of the electromagnetic fields on the interface surface,
k=2n/X\, L is the wavelength of free space, &;,p, are

the material parameters of the environment.

The surface impedance of an electromagnetic field
is usually interpreted as relationships determining links
between the tangential components of the complex am-
plitudes on the surface S. If the impedance value does
not depend on the incidence angle and incident wave
polarization, it is known as extraneous impedance [4]. If
the impedance value does not depend on the wave inci-
dence angle, but depends on the wave polarization and
spatial orientation of the surface S, the surface imped-

ance is a two-dimensional second-rank tensor which
components are extraneous impedances. In the general
case, a concept of anisotropic surface impedance is in-
troduced as matrix

5 Zsn Zsp| 5 5 o
s = st stz ) ZSjk = RSjk +|ijkr]1k€{11 2}, (4

ZSZl ZSZZ

under conditions that inequalities
_ — - _ - —. 12
Rs11 20, Rgp 20, 4Rgy1Rs Z|2312 +ZSZl| ®)

hold. In (4) and (5) Zs,, is complex conjugate of Zs,, .
The inequalities (5) ensure that additional energy
sources on the surface S and energy flows through this

surface are absent. Of course, the impedance Zg in (1)

and (4) must be replaced by the tensor ?S. It should be

emphasized that the surface S, on which the impedance
boundary condition should be satisfied, does not have to
coincide with the real impedance boundary surface and
can be considered as a conditional boundary surface. A
spectral analysis of complex structures and media
should require introduction of a partial impedance, the
value of which in the general case depends on the fre-
guency and the number of spatial harmonics in the elec-
tromagnetic field representation. Such impedance prob-
lems are beyond the scope of this paper.

First, let us consider possible formulations of the
impedance conditions and the solution accuracies they
can provide. According to results obtained in [3], the
boundary condition (1) is applicable when the following
requirements are met: a penetration depth of electric
fields into an impedance material and a field wavelength
should be small compared to an incident wave wave-
length, a distance from a field source, and curvature
radii of a boundary surface S. In addition, variations of
the material parameters of the impedance layer at dis-
tances comparably with the field wavelength or penetra-
tion depth should be small. In the general case, the accu-
racy of the formula (1) was estimated to be proportional

to ~|Zg 2, since only the first term of the solution ob-
tained as asymptotic series with respect to the normal-
ized impedance Zg was used. Leontovich obtained a

similar estimate by comparing the plane wave reflection
obtained in the impedance approximation with that of
the exact Fresnel solution [2]. However, for a certain
class of propagation models, corrections to (1) are pro-
portional to cubic but not quadratic terms in the small

parameter | Zg | [3].

Even though the accuracy estimates of the condi-
tion (1) were obtained on the basis of the skin-effect
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theory for of conducting body surfaces [2, 3], they can
be uniquely extended to the more general case of im-
pedance domains [4]. All the above requirements can be
integrated into one of a purely physical nature: the field
at the impedance surface must be a plane wave propa-
gating in a direction normal to a boundary S . This con-
dition is always fulfilled for electrically thin impedance
structures, including film coatings.

However, the presented requirement cannot be
waves at small incident or Brewster angles. In the first
case, the reflected and refracted rays are gliding near the
surface, while in the second case they must be mutually
perpendicular. In both cases, the directions of the re-
fracted rays do not coincide with the direction of the
boundary surface normal. Therefore, it is customary to
distinguish between three separate cases of the imped-
ance conditions depending upon the wave incidence
angle: 1) normal incidence, when the Shchukin-
Leontovich condition are valid, 2) Brewster angle inci-
dence, and 3) tangential incidence. Apparently for the
first time, the condition (1) was corrected and used in
[6] where problem of the reflection of electromagnetic
waves from the surface of real soil at angles close to the
sliding incidence angle was solved. Subsequently, simi-
lar cases were studied for a number of other media in-
cluding inhomogeneous plasma. The analysis of various
variants of the approximate impedance boundary condi-
tions are presented in [7-9].

The accuracy justification of the impedance
boundary condition (1) cannot give a complete answer
to the question: with what accuracy the specific charac-
teristics of the wave fields can be calculated for arbi-
trary angles of a plane wave incidence on the media
interface. General conclusions concerning for the small-
est errors relative to exact values for the whole range of
incidence angles were formulated in [10-12] for perpen-
dicular and parallel polarizations relative to the interface
surface. For the perpendicular polarization, the reflec-
tion coefficients should be calculated based on the
Shchukin-Leontovich approximate boundary conditions.
For a wave of parallel polarization, the formulas valid
for the Brewster angle are preferable. These conclusions
were made based on the exact formulas obtained in [13].

The above analysis of the boundary condition (1)
accuracy was performed under condition that surface

impedance Zg presented by a power series only terms

proportional to the first degree of a small parameter
were taken into account. However, this simplification
permits only the small Zg, and secondly, and does not
provide the necessary accuracy for solving the diffrac-
tion problem when the wave is incident at the Brewster
angle or tangential to the surface interface. These short-
comings can be eliminated by the method proposed in

[14], where a generalized impedance approximation was
formulated as:

E, +Zs[H,.fi]+

25 (25 l)
_23 z(Nﬁz 25(5+1)'N2M] =0, (6)

where the matrices N, (m=2s+1) are defined as

d o

m O

n=Kk/k, is a dimensionless refraction parameter, k
and k, are wavenumbers in the impedance medium and
external space, respectively. In the first approximation,
the equation (6) coincides with the boundary condition
(1), but the vectors E. and H_ are related through the
refraction factor n, which in a reflection problem is

uniquely connected to a wave incidence angle.
Thus, the approximate Shchukin-Leontovich con-

dition (1) valid for a small surface impedance Zg, is
generalized for arbitrary Zg as the series expansion (6),

which expand the applicability of the impedance ap-
proach. Since the exact boundary condition (6) is de-
composed in a series in odd powers of the parameter

Zs, the Shchukin-Leontovich condition linear in Zg
differs from the exact only by terms proportional to
~1Z . That is, the fields obtained using condition (1)

are correct up to ~|Zg . Thus, the accuracy of condi-

tion (1) application turns out to be higher than it could
be supposed based on the results obtained in [3].

2. Surface impedance of metal-dielectric
structures

The key stage of the impedance approach applica-
tion is the problem of determining the surface imped-
ance for a specific spatial structure. In this subsection,
we analyze metal-dielectric structures, which theoretical
estimates of surface impedance are well-known. Let us
first consider a problem of a plane electromagnetic
wave incidence on a flat interface between two media
[5, 6, 13], to demonstrate a general approach for obtain-
ing surface impedance formulas.

Let a plane in a rectangular coordinate system
XOY be the interface between two media with parame-

ters (eg,1y,04) and (e,,1,,0,), and a conductivity of
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the second medium o, >1. Consider reduced electro-
magnetic fields in the two media:

Elz\/gél, ﬁlz\/aﬂl'
Ezlegézx |E|2 :\/Eﬂzv

where {E;,H,} and {E, H,} are the true fields,

g =¢& +4mnic; /o and g, =&, +4mnic, / ® are complex

(®)

permittivity’s of the media. Here, the periodic depend-
ence of the fields on time t is preserved, as in [5], in the

form e™'. A plane wave incident at an angle 0, meas-
ured from the normal to the interface can be represented
as £, =(E;00),

Therefore, we can write

where El _ Eoeikl(ysin 0,—zcos0,) )

~ 1 ~ 1 - =

1Ky

where k, =(0,sin0,,—cos#, ), kl_ ey ‘El‘ ‘Hl‘

Since a plane wave of the same polarlzatlon is ex-
cited in the second medium, and the density of the sur-
face current is zero,

E2=(EZQ0),ﬁ2:£ERZEﬂ, (10)

where  k, =(0,5in0,,—cos0,),  k,=

& !/ ’
Ex/’s‘zuz '
‘Ez‘z‘ﬁz‘. The tangential components of the electro-

magnetic field in the second medium are equal to
E, =E, =E, and Hzt—sz—Hzcosez, where 6,

is the wave propagation angle in this medium. Then, the
ratio of the tangential components of the electromagnet-
ic field in the second medium can be immediately de-
termined as

By B 1 (11)
H,, H,cos6, cosb,

y

The cosine of the angle 6, can be easily fined by
using the Snell law sinby 2

EM2 \vhere n s the
sin o, gLy

refractive index between the two media. Since o, >1,
e[ >1 and n>>1. Then

c0s0, =[1-5in? 6, = #1—izsin2 0,. (12)
n

If the inequality sin6; <1 holds, the cos6, =1,

and we obtain the Shchukin-Leontovich condition, i.e.,

—<X ~1. For the true fields we ob-

2y

tain
En_ |ro (13)
H,y €

Further, surface currents are absent, we will use
the continuity of the tangential components of the elec-
tric and magnetic fields and take into account the
boundary condition (1). The relation for the fields only
in the first medium can be written as

Eix = ZSHly ' (14)
therefore, the surface impedance of the second medium
is equal to

Zg = M2 /e -

Since the value of the surface impedance Zg is de-

termined as the square root of the complex value, the
branch of the root, for which the imaginary part

(15)

ImZs <0 should be selected. In this case Im,/g), >0,

and the waves propagating in the second media are
damping. For another polarization of the incident wave,
we obtain the expression

Eyy =—ZsHy, - (16)

If the angle 6, ~7/2, we obtain using the expres-

sion (12) that cos, :\/1—n—12$in2 0, :\/1—%2 valid
for the arbitrary refractive index n. The surface
impedance for the sliding waves can be easily obtained
based on this result and expression (11). Analogously,
the impedance for the wave incident at the Brewster
angle can be obtained based on expression (12). Below
in this section, the impedances of various structures are
considered only for the normal incidence of the
excitation wave on the flat interface between impedance
surface and free half-space. The formula (16) can also
be used to determine the impedance value if the material
parameters of a medium filling the second region have
been previously determined.
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2.1. Real Metals

As is known, electromagnetic waves penetrate into
metals at a depth small compared to a free space
wavelength A . For superconductors and normal metals,
the penetration depth at high and microwave

frequencies is equal to about (1072 +10) micron. Due to
the small penetration depth, the fields components
normal to the surface are much greater than their
tangential components. The penetration depth A° can
be determined using the expression [15]
A® = o/ k2romp . a7

Since the phenomenon of the electromagnetic field
concentration near the surface of the body is related to
the skin-effect, it is argued that the impedance boundary
condition (1) occur when strong skin-effect is present,
i.e., the skin layer thickness A° is small compared to all
values with length dimensions that characterize the elec-
trodynamic structure. First of all, the inequalities
A% «2/(2r) and A° <R hold, where R is the dis-
tance from the impedance surface to the source. The
skin layer thickness should be small as compared with
to the body dimensions, A® <1, in all directions, and to

the curvature radii of the body surface, A° <D.
In the general case, for the time dependence of the

fields e'!, the complex depth of field penetration into
the metal is introduced [7, 16]:

_t

d=
H'l:l|

J.Hﬂ(z)dz =5, -5,
z=0 0

(18)

where {0,z} is the axis directed inside the metal along
the surface normal. The symbols &, and &, denote the
resistive and inductive skin layer depth. In this case, the

surface impedance can be written as

where Rg and Xg are the normalized surface resistance

and reactance.

Let us analyze the case when the metal is located
in an electromagnetic field at room temperature. A cur-
rent in any point inside the metal is defined by two fac-
tors: first electrons are accelerated under the action of

the electric field E, and, second, the path between two
successive collisions with the lattice is limited by the
free path | of the electrons. When the current is form-
ing, the fields existing on the length | should be taken

into account. Since the free path | of electrons in metals
at room temperature is much less than the depth of the

skin layer, the field E in the process of current for-
mation can be considered to be constant. Hence, in this

case, the current density j is determined only by the

magnitude of the field at that point. Under these
conditions, the skin-effect is called by the classic skin-
effect. To find a local relationship between the quanti-

ties j and E, a simple model of free electrons can be
used to obtain [16]:

j=0,E/A+ion), (20)
where t=I/vg, vg is the Fermi velocity.

When relaxation effects can be neglected, i.e.,
when the condition wt <1 is fulfilled, the formula (20)
transfers into the traditional Ohm’s law, j=o,E . Then,
for an isotropic homogeneous metal, the formulas defin-

ing the normalized surface impedance and penetration
depth can be determined as [17]

z¢ =(+i)Jk/26,Z, , (21)
8y =+2/(kZy0,) =23,. (22)

As can be seen, the essential feature of the formu-
las is equality of surface resistance and reactance,

If the electron mean free path | is comparable to
or greater than the penetration depth, then the formation
of a current in the vicinity any point of the metal is be
determined by collision processes in an area where the
electric field differs markedly from the field at that

point. In this case, the current density ] depends on the

fields defined in the vicinity of this point with the radi-
us I. If I=3, oreven I> 3§, , the effect becomes typi-

cal for pure metals at low temperatures and is known as
the anomalous skin-effect. Really, when the temperature
is decreasing, the average free-path length | increases

as o,, while decreases &, as 051/2. Of course, with

such free path lengths, the theory of the classical skin-
effect is no longer applicable and a more general
consideration is required. For example, for the pure

copper 1~5.102 um, the ratio 1/8,=3-107 at
300°K and 10 GHz . The pure copper conductivity o,
at helium temperatures can increase by a factor of 10°

[18], while the ratio 1/, can be about 10° . Of course,
in this case the formula for the classical skin-effect is no
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longer applicable and a more general consideration is
required.

A rigorous theory of the anomalous skin-effect
based on the free electron model was developed by
Reuter and Sondheimer [19]. The theory assumes that if
external perturbations are absent, the electrons at some
point in the metal are distributed in the momentum
space sphere of radius mvg, where m is the electron

mass. If, for some reason, the sphere is deformed, the
total electron momentum arises appearing, which
determines the current in the metal. When the anoma-
lous skin-effect is present, the free path length | is
comparable to or greater than the field penetration
depth, the fields at an arbitrary point will be defined by
the fields of other region where electrons were located
before entering the considered place. To take into ac-

count this effect, the effective field E in the metal is

included in the expression for current density, similar to
(20). This approach resembles accounting for the
secondary fields due to induced currents on the scatterer
the diffraction problems.

However, the question arises: how to correctly de-

fine the current ] at any point, if it lies at a distance

less than | from the metal boundary? To so the
boundary conditions for the reflection of electrons on
the metal surface should be taken into account. One of
the possible assumptions consists in that the electrons
colliding with the interface completely lose information
about the field in which they were before the collision,
and are reflected equiprobable in all directions, i.e., the
reflection is diffuse. Moreover, in the absence of exter-

nal influences outside the metal, the field E=0.
Another assumption consists in that the electrons
collides with a surface, the reflection can be specular. In
this case, an electron moving to a flat boundary and
reflected back to the observation point after the collision
with the boundary to can be considered as moving from
free space in the field which is the mirror-symmetric
with respect to the interface. That is, the field outside
the metal surface is assumed to be a mirror-symmetric
field inside the metal. In the intermediate case of the
two regimes, when a part of electrons p is mirror re-

flected and the remaining part (1—p) is diffuse reflect-
ed. The specularity coefficient p is equal to zero or one

for diffuse or mirror reflections.
As a result of a rather complicated solution of the

general problem the correct expressions for impedances
in specular ZI" and Z2" mode of electron reflections

can be found in [16]

Smie _2KI T dr

Z3" = _—, 23
s T 012+i0ck(1:) @3)

29 — ikin j In(L+iok()/t3)de,  (24)
0

where

k(1) = 33[(1+ 2)arctgr — 1],
T

2 2
(>L=§kZ0 L ,csrznir=§ L .
4 (oP) 2 60'

The plots of expressions (23) and (24) as functions
of o, are similar. For small o, i.e., when mean free
path of electrons is small, the formulas

(25)

Zs ~ 5,72 Rg =X are valid for the diffuse and specu-
lar reflection, and are consistent with the classical skin-
effect (21). For the large o the impedances Zo" (™)
tend to the limits

Zgnir(dif)‘DO _

1/3 13 2/3
=Rmir(dif)(J§J (LJ (ﬁj Z,(1+i3), (26)

4n oy 2

where the coefficients k., =8/9 and kg =1. As can
be seen, the limiting values for diffuse and specular
reflections differ only by the coefficients. In this case,
the surface resistance and reactance are related as
X =3R%. (27)

Of course, values of the impedances can only be
calculated by numerical integration of formulas (23) and
(24) valid for anomalous skin-effect. However, in,
Chambers [20] have obtained simple interpolation for-
mulas that allow to quickly calculate the values for the

intermediate region between the classical and anoma-
lous limits

R =RI(A+Frar®); Xg =XSA+Fa®), (28)

where the values of the constant Fzx, and G for are

given in Table 1.

Table 1
The values of the coefficients in the formulas (28)
p Fr Fx G
0 1.157 0.473 0.2757
1 1.376 0.416 0.3592
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The resistance Rg and reactance Xg calculated by

the interpolation formulas (28) and by expressions (23)
and (24) with an accuracy of 0.1% [16]. For the
arbitrary p, Hartman and Luttinger in [21] have

obtained the highly accurate solution for the extremely
anomalous region in the form

ZZ (p) = 224" {1— cos@arccos pﬂ /(1— p). (29)

The surface impedance of superconductors is of a
separate fundamental interest for the researchers. As
known that the electrical resistance of many pure
metals, alloys and compounds at the DC disappears

sharply at a critical temperature T, which for all

known superconductors are in the region of low
temperatures. The highest critical temperature for pure

metals, 9.3°K, has niobium, while for compound
Nb,Ge it equals 22.3°K.

c—0, i.e, total absence of resistance at the DC is
considered the only fundamental property of
superconductors. Meissner and R. Oxenfeld in [22] have
found that the magnetic flux is pushed out of the
conductor when it goes into the superconducting state.
This effect cannot be explain by the perfect conductivity
directly from the ideal conductivity and is another
important fundamental property of superconductors. It
should also be noted that the surface resistance of
superconductors in alternating fields, in contrast to the
DC resistance, is not zero, since transitions between
adjacent quasiparticle excitations that occur in a
superconductor at temperatures T >0 can be induced.

Phenomenological theories of superconductivity
(see a overview in [16]) describe a number of
superconductor properties, but in many cases, they give
only an approximate description and often they cannot
adequately describe the specific superconductor
parameter. Therefore, the microscopic theory of
superconductivity, the BCS theory [23] is of great
importance. This theory is based on a fact established by
Cooper in [24] that an arbitrarily weak attraction be-
tween two electrons can lead to the formation of a
bound state, which energy is less than the sum of the
energies of the individual electrons.

The attraction can be explained by the polarization
of the ion lattice by one electron, which leads to the
attraction of the second electron. If attraction exceeds
the repulsive Coulomb interaction, the bound pairs of
electrons, the Cooper pairs are formed. Electron pairs do
not exist independently of each other, but form a
condensate that provides a single quantum state of the
superconductor. If the Cooper pairs are exposed to
external forces, for example, created by an electric field,

Perfect conductivity,

their momentum is increased due to accelerating acquire
a pulse, the same for all pairs. Thus a continuous
electric current is arising. By acquiring momentum the
kinetic energy of the couples is increased, but when it
excides a binding energy, the Cooper pairs are
destroyed.

The electrodynamics of superconductors, based on
the microscopic theory [23], makes it possible to obtain
expressions for the normalized impedances specular
reflection and diffuse modes in the temperature range
0<T<Tg

2ik | d
me 2+ kZOQ(r,o))/co 7

(30)
4 _ ik1/ Iln(1+ kZ,O(t,0)/ ot?)de.  (31)
0

The most difficult problem related to formulas (30)
u (31) consists in determining the integral kernel

Q(t,®) . However, it should be noted that the integral

kernel can be represented as Q(t,w)=Qa +Qp +Qc
where the first two terms are real and only the third term
Qc have both real and imaginary part, which determine

the losses . Since the real parts of the impedances ig“"

and Z2" in most external problems are small, they can

be neglected, and the more convenient formulas for the
surface reactance can be used for calculations [16].

2.2. Rough and Corrugated Metal Screens

Above, we considered the surface impedance of
real metals and superconductors with absolutely smooth
surfaces on which the Schukin-Leontovich boundary
condition (1) are valid. However, surface roughness, i.e.
imperfections associated with the surface deviation from
geometrically perfect form is unavoidably existing on
solid material surfaces. The surface imperfections can
be caused by a corpuscular structure of matter, techno-
logical defects as result of the surface treatment, ets.

There exist many approaches to study the effect of
roughness upon the surface impedance. In several publi-
cations (for example, [25]), increase of the surface re-
sistance and reactance was associated with a propor-
tional increase of the actual area of a rough surface as
compared to a flat one. However, this technique is valid
only if characteristic dimensions noticeably exceed the
penetration depth.

The most common techniques to study rough sur-
faces is statistical approach (for example, [26]), when a
real surface is described by random function. Small de-
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viations of the boundary shape from the plane are de-
scribed by a set of random functions describing the
boundary deviation from the plane z=0 at the point p

(p is a two-dimensional vector in the plane z=0).

This approach is often used for studying electromagnet-
ic waves scattering by rough surfaces, when the effec-
tive surface scattering impedance is introduced [26]. In
the common sense, the impedance is a characteristic of
metal surfaces, determined by energy accumulated in
the metal and its losses [16], while the scattering imped-
ance describes the scattering properties of the surface
and characterizes the energy loss by the coherent field
component due to its transformation into a scattered
component. In this case, the scattering processes are
determined by diffraction effects which depend on the
ratio between a wavelength and irregularity dimension.
This effect can be significant, for example, in guide
systems of large length, when, due to scattering, the
energy of the fundamental mode is transformed into
non-fundamental modes.

Naturally, the impedance boundary conditions are
not satisfied at each point of the surface, and only the

effective surface impedance Z&" =RE™ +ixE" can be
defined. It is usually assumed that characteristic dimen-
sions of the surface irregularities (average height h and
average horizontal dimension d) are much smaller than
the free space wavelength and distance at which the
incident wave field varies considerably. In other words,
it is assumed that the impedance boundary conditions
are valid on some plane surface that corresponds to a
rough surface and is determined by the shape of the ob-
ject at a given place. If the surface roughness is iso-
tropic and the average dimensions and radii of curvature
of the surface elements are much larger than the pene-
tration depth, the impedance can be defined in the fol-
lowing form [16]:

RY" —kRg, X&" =kXs, (32)

~ 2
where k = 1 5 J‘|HT| ds, AS, is the flat surface

ASO |H07:| AS
part corresponding to the area of the rough surface AS.

The parameter k is known as the roughness coefficient
[27], which is a ratio between the surface resistance or
reactance of the rough surface and that for the flat sur-
face. The general approach for determining the parame-

ter k can be found in the monograph [18], where ex-
plicit formulas were obtained for some types of rough
surfaces.

In the case of rectangular, periodically located
notches (corrugations) in a conducting screen, the effec-
tive surface impedance can be determined in a different

way, based on electrodynamic methods of diffraction
grating analysis. If the corrugations are small, the
equivalent boundary conditions can be written in the

form [28: E,=Z"H,E,=0 or

E,=0E, = zgff H, for transverse or longitudinal

following

notches with respect to the axis {0,z}. The axis {0,y}
is supposed to be directed vertically to the corrugated

surface. Then according to [28]

Z&" —i(2g/ L)tgke, (33)

where g is the notch width, c is the notch height, and
L is the period of the corrugations.

2.3. Layered Dielectric Structures

Among of layered magnetodielectric structures
which material parameters of the medium are piecewise
constant functions of one coordinate, dielectric materi-
als are used most frequently, since the layers are non-
magnetic materials in most applications. Electromagnet-
ic waves propagation outside such structures (for exam-
ple, above the underlying surface), can be analyzed by
introducing the surface impedance, as for the air-
dielectric interface over the half-space (formula (14)).
Initially, such a formulation of the problem was caused
by the interest in simulating of radio waves propagation
over real layered soils. In some cases, it turns out to be
methodically expedient to classified the layered dielec-
trics into natural and artificial structures.

Now, the method of radioimpedance sounding al-
lowing to define the physical properties of inhomogene-
ous structures by application of interpretation models
for experimental frequency dependences of surface im-
pedance. This method applies to studies of the surface
layer structure of the earth’s crust (for example, [29]),
and to a bio-impedance analysis of human body compo-
sition (for example, [30]). However, these questions are
beyond the scope of this paper.

As for as the artificial structures are concerned, the
most interesting from the point of view of practical ap-
plications are multilayer plane-parallel systems. Multi-
layer interference structures (MIS) are a set of various
dielectric layers of small thicknesses which is of order
or less than an operating wavelength. The MIS opera-
tion is based on interference effects occurring inside the
system with multiple wave reflections at the interfaces
between layers with different wave parameters. The
material of the individual layers, layer numbers, se-
quence order and thickness are chosen depending on the
spectral characteristics of the system as a whole.

The MIS are widely used in optics; however, these
structures are increasingly being used in microwave
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techniques for creating matching devices, filters, wave
energy absorbers, rejection elements and other wave-
guide sections. An important advantage of the MIS
waveguide elements is absence of the wave mode con-
version at the flat interface between media with differ-
ent permeability. This is especially important in the mil-
limeter wavelength range, since diffraction losses in-
crease when the frequency is increasing and the wave-
guide dimension is decreasing. This effect can be ex-
plained by the wave front distortion at inhomogeneities
of the waveguide path and the main mode transfor-
mation into rapidly damping higher modes, which are
the source of the main wave energy losses.

The MIS are effective phase shifters: phases of the
waves reflected by and transmitted through the structure
can be easily controlled by variation of the structure
parameters. Therefore, layered dielectric structures can
be used as mirrors, band-pass and single-frequency fil-
ters, impedance matchers, absorbing materials, power
dividers, and high Q resonant elements. As is known, it
is very difficult to manufacture conventional dia-
phragm-pin impedance transformers for the millimeter
and submillimeter wavelengths, while production of the
high quality layered dielectric structures is quite simple.

Let an area occupied by the layered structure coin-
cides with the half-space —0<z<0,(—00< X,y <-+0)

in the Cartesian coordinate system and the properties of
the structure itself can vary only along the coordinate
z. Then the electromagnetic field as function of

R(x,y,z) can be represented as the discrete or continu-
um superposition of spatial inhomogeneous plane waves

E(R)=E(k,2)e ™ , A(R)=H(k,2)e ™™, (34)

where R:(kx,ky,O) is a spectral parameter, E(k,z)

and H(k,z) are the vector amplitude of electric and
magnetic wave, and f =(X,y,0). Then, the impedance
boundary condition (1) can be written as

E. (k,2) = Z5(K)[Zg,H. (k,2)], (35)
which establishes a relationship between the tangential
components of the wvector amplitudes on the plane
z=0. More precisely, limit values of the tangential
components when z——-0 or z—+0 coincide in the
formula (35) by virtue of the boundary condition defin-
ing continuity of the tangential field components. In the
above formula, Z, s the unit vector of the axis {0,z}

considered to be directed upwards normal to the inter-
face directed vertically upwards. The non-local imped-

ance ?S(R) known also as frequency-dependent im-

pedance is a dyadic function of the spectral parameter

k that fully describes the interaction of the electromag-
netic field with the medium in the lower half-space.

For an isotropic layered medium, the tensor Z (K)

is expressed in terms of two scalar values, which have
the meaning of scalar impedance for waves of vertical
and horizontal polarization, respectively. The scalar
impedances can be calculated numerically using the
Riccati equation. For a piecewise homogeneous medi-
um, it can be determined analytically using recurrent
formulas [13]. As an example, we present the result of
problem solving for a layer of a magnetodielectric with
material parameters (g,u) located on an perfectly con-

ducting screen, when a layer is excited by a normally
incident monochromatic plane wave

Zs= i\/%tgamdﬁ) ,

(36)

where hy is the layer thickness. More detailed formulas

for this case are presented in subsection 2.6.
For an arbitrarily anisotropic layered medium, the

dyad fS(R) is determined by four scalar quantities. In

the general case, the dyad can be constructed only nu-
merically by solving the matrix Riccati equation [31].

Application of the constant surface impedance (36)
is usually limited by a condition associated with the
provision of a single-mode wave propagation (including
surface wave propagation) in the layered dielectric
structures. For more general conditions, the frequency-
dependent impedance (35) should be used. However, in
some cases, even under the multimode regime of the
layered structure, a constant surface impedance could be
used. For example, if a dielectric layer on a metal screen
is excited by a vertically oriented electric dipole, then
the amplitudes of the reflected field can be correctly
determined by using the constant impedance [32]. This
is explained by the fact that of the possible for propaga-
tion of two or three types of waves inside a layer, in the
cases considered, only the highest one will be effective-
ly excited, thus providing the conditional single-mode
mode.

Let us now consider a dielectric structure in which
one of the layers is the planar volume of a cold plasma
[33]. The equivalent permeability e,; and conductivity

o Of such layer is determined by the relations,
Eoff = & [1—0),2) / (0 +v2)J , Oeff :sovmg /(&% +V?),

where ®, is the angular plasma frequency,

p
@ =nee?/(gM,) , & is the vacuum permittivity, e is

the electron charge, m, is the electron mass, n, is the
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electron concentration, and v is the frequency of elec-
tron-neutral collisions.

At present, interest in the studies of magnetoelec-
tric materials and multiferroics, which are characterized
by the interrelation of magnetic and electrical proper-
ties, has increased significantly. The magnetoelectric
effect of such substances, i.e., to polarize in a magnetic
field and to magnetized in an electric field, opens up a
whole series of new areas for their practical use. The
properties of magnetoelectric are described in the exten-
sive overview [34], where a special attention is paid to
media that have magnetoelectric properties at room
temperature, for example, materials based on bismuth
ferrite, films of garnet ferrites, etc., since these materials
are most promising for practical applications. However,
it turns out that the greatest magnetoelectric effects can
be observed for composite multilayer structures. For
example, the coefficient of the magnetoelectric effect in
composites based on a piezoelectric-ferromagnetic,

reaches ~107!, which is almost three orders of magni-
tude grater as compared to the best samples of single-
phase multifferoics. Of course, these multi-layered
structures can be described, as mentioned above, using
the impedance approach. It is important, that the effec-
tive surface impedance can be varied by external elec-
tric and magnetic fields.

2.4. Thin Dielectric Frequency-Selective
and Chiral Layers

Flat metal-dielectric frequency-selective surfaces
(FSS) are now actively used to create microwave cir-
cuits and antennas, high-quality filters and resonators,
wave-guiding structures, etc. The electrodynamic theory
of the FSS based on metal screens have already being
formed. For example, in monographs [35, 36], the effec-
tive transmission coefficients ware determined for sev-
eral FSS structures. The transmission coefficients can be
used to defined the effective surface impedance of the
FSS. For doubly periodic dielectric structures [37], new
problems have arisen associated with applicability of
various cell and array geometries, the cell material pa-
rameters and metallic inclusions.

The mechanism of frequency-selectivity in dielec-
tric frequency-selective structures differ from that in
ordinary metal frequency-selective surfaces. Thin metal
screens separated by a layer of a uniform dielectric with
thickness of about a quarter wavelength can function as
filters only for main waves. If a ratio of distances be-
tween layers and an operating frequency is large, higher
modes can be excited in dielectric plates. The selectivity
of the dielectric FSS is based on the behavior of higher
modes excited in the plate, when these modes interfere
with the main mode. At high frequencies, the character-

istics of such structures strongly depend on a wave inci-
dence angle. However, the dielectric structure at fre-
quencies significantly lower than a cutoff frequency
behaves as a homogeneous anisotropic material at a
fundamental mode [38]. In this case, the properties of
the artificial layer can be described by using the effec-
tive dielectric constant tensor, which, of course, allows
us to introduce into consideration the effective surface
impedance. Similar assertion can be made for the case
of plane wave scattering at a two-periodic gyrotropic
layer [39].

Among flat structures that are being actively inves-
tigated at the present time, thin chiral layers, structures
with the property of chirality or enantiomorphism (from
the Greek “yep” — “hand”), should also be singled out.
The chirality is a property of a living or non-living ob-
ject that cannot be superposed on its image in a flat mir-
ror for any movement and rotation. At microwave fre-
quencies, the chiral properties can have only artificial
media. The chiral inclusions at microwave frequencies
are artificial conductive one-, two-, or three-dimensional
microelements having a mirror-asymmetric shape,
which dimensions are significantly smaller than the
length of an excitation wave [40—42]. The chiral medi-
um has a spatial dispersion; therefore, mirror-
asymmetric microelements should be placed periodical-
ly at distances commensurate with a wavelength. The
orientation of the geometrical axes of microelements
must be chaotic, therefore, the chiral medium is biiso-
tropic at the macroscopic level. If all the chiral micro-
elements are oriented in one direction, then the structure
becomes anisotropic [43, 44].

Various elements can be used in the chiral struc-
tures: three-dimensional objects (right-and-left handed
metallic spirals [45, 46], spherical particles with spiral
conductivity [47], open rings with protruding ends [48])
and two-dimensional microscopic objects (S-strip ele-
ments and their mirror equivalents [49, 50], flat multi-
thread spirals, Mobius tapes [51], and others). The chi-
ral layer is called planar if its elements are conductive
microscopic strips of mirror-asymmetric shapes that are
uniformly distributed on a dielectric or ferrite substrate.
From the point of view of technical implementations of
the chiral structure, the planar model is more preferable,
however, its degree of chirality is less than that of the
three-dimensional chiral structure. An increase in the
chirality structure can be achieved by creating multi-
layer chiral meta-structures, at the layer interfaces on
which the stripe chiral microelements are distributed.
The electrodynamic  properties of  single-layer
arrays based on chiral strip elements are detailly stud-
ied [49-51].

Microwave chiral media can be described with the
help of three material parameters: the relative permittiv-
ity €, permeability p, physical chirality parameter y .
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The material equations for the chiral medium can be
presented in the CGS unit system as
D=¢EFixH, B=pH+iyE, 37)
where D and B are the electric and magnetic induc-
tions. The upper plus or minus signs in the formulas
(37) correspond to the physically chiral medium based
on the right mirror forms of chiral elements, while the
lower signs correspond to that based on the left mirror

forms. Since the physically chiral medium is gyrotropic,
the material equations include the tensor permittivity

&® and permeability 1) [44, 52],

e tixg O
W =giye & 0],
| 0 0 ¢
[ Fiyy O
A9 =gy 0o 0|, (38)
L0 0

where ye =x/M, %y =N, n=+1/€. The upper plus
or minus signs correspond to the chiral medium based
on right spirals, while the lower signs correspond to the
medium based on left spirals. The chirality parameter is
included into the off-diagonal elements of tensors for
the biotropic medium. The gyrotropic axis is directed
along the axis {0z}. The determinants of matrices in
(38) Dete™ =g(e? —x2) and Detid™® =p(u? —x3)
depend on the medium chirality parameters.

The parameter of physical chirality is determined
by the dimension, shape and concentration of the mi-
croparticles in the medium, that is, it takes into account
the resonant properties of the chiral element itself.
Therefore, a physically chiral medium must be created
for a specific, fairly narrow range of incident wave fre-
quency, near the resonant frequency of the chiral ele-
ment. This extremely complicates the theoretical and
experimental study of the chirality parameter for practi-
cal media implementation. Strictly speaking, the de-
scription of wave processes in a bounded chiral medium
is currently an intractable problem. Therefore, there is a
need to develop approximate methods and algorithms
for calculating the characteristics and parameters of
limited chiral structures. We will not analyze geometric-
chiral structures classified in a separate class, since they
cannot be implemented in a thin-film format, consisting
of a large number of layers, each of which is an ordered
chiral composition.

2.5. Surface Impedance of Electrically
Thin Vibrator

The surfaces of radiating or scattering vibrator an-
tennas may have similar characteristics, with some of
the impedance surfaces discussed above, i.e., they may
differ from a perfectly conducting surface, hence the
vibrators to be characterized as impedance ones.

Linear impedance vibrators are widely used in ra-
dio engineering and radio electronic complexes for var-
ious purposes, as stand along receiving and transmitting
structures, elements of antenna systems, and devices of
antenna-feeder paths. Wide application and multi-
functional use of the impedance vibrators, including
multi-element structures, is an objective prerequisite for
theoretical studies of electrodynamic characteristics of
such systems. Since longitudinal dimensions of the vi-
brators are comparable with the operating wavelength in
the surrounding space, asymptotic long-wave or short-
wave (quasi-optical) approximations for their analysis
cannot be used. A correct mathematical modeling of
real vibrator structures without increasing the complexi-
ty of formulating a corresponding electrodynamic prob-
lem, an impedance concept is successfully used (for
example, the monographs [53-55] and references in it).

To determine the electrodynamic characteristics of
electrically thin impedance vibrators, formulas for the
numerical evaluation of the vibrator surface impedance
should be obtained. With this purpose in mind, we con-
sider an auxiliary problem of axially symmetric excita-
tion of an infinite two-layer cylinder (external and inter-
nal radiuses are r and r,) by a converging cylindrical

wave. Let us introduce a cylindrical coordinate system
(p,o,z) so that the axis {0z} is directed along the cyl-

inder axis. Then, due to the problem symmetry, the elec-
tromagnetic field has only components E, and H,,

which depend only on the coordinate p. Permittivity
and permeability of the media are g,n and g;,p; in the
region pe[r,r] and p<r;, respectively.

The normalized surface impedance Zg =E,/H,

can be found according to (1), under the condition as a
solution of Maxwell equations in terms of the Bessel
lo; and Ny; Neumann functions

{iEZ} 1o (Kyfepr) + N (Kyfepr) \F
- — X
Hol  [1(kyeur) + Ny(kyfepr) | Ve
\/ENl(kﬁn)lo(kH n)—f%(kﬁn)h(kﬁ )
Elo(k@n)u(kﬁ ri)—\/?l(k@n)lo(kﬁ )

(39)
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Assuming  that =0 and  [¢f>>1 7. - 1 (44)
(e=¢'+4nc/iw), we obtain the well-known formula 120mch,

the surface impedance of a cylindrical conductor which
takes into account the skin-effect [56, 57]

s K 1k
" 120m6 1,(K'r)

(40)

where k'=(1-i)/A% A° =w/k2mcmp is the skin
layer thickness, and o is metal conductivity.

It is possible to average the impedances along the
cell period for the corrugated (L;~L,) or the ribbed

(L, <<L,) conductors (here L, is the ridge thickness
with Zg =0, L, is the cavity width with Zg #0) with
the cells period (Ly+L,)<<A/ fen and at |g|>>1.
Then, taking into account (39), we have:

i L u

=—i
ST L e

o (ky/eun)No (kyfepr) = I (kyfepr )No (k/epr)
1 (kfeur)No (Kyferr;) = lo (K feur )Ny (kyfaur)

which is also true for conductors with an insulating
coating of an electrically-magneto-electrician (L; =0),

(41)

as well as for metal cylinders (r; =0) with transverse
dielectric inserts (L, <<L,).
Of particular practical interest is the case of thin

vibrators, ‘(kﬁr)z In(k\/ari)‘ <<1, when the surface

impedance does not depend on the excitation method of
a conductor, and the corresponding boundary conditions
become external [4], i.e. they coincide for exciting
fields of any structure. Then, according to (39) — (41),
we obtain expressions for the vibrator impedance in the
thin wire approximation

- 1+i
= 42
" 120m6A° (42)
— the solid metallic cylinder of the r>>A° radius
(Zs =0 for the case of the perfect conductivity, when
c—>0);

= 1
ZS = n
120nch, +ikr(e-1)/2

(43)

— the dielectrical metalized cylinder with covering,
made of the metal of the h,<<A° thickness, hence at
e=1,

— the tube metallic cylinder of the r>>A° radius (for
the “nano-radius™ vibrator [57-59] hy=r, r<<A®),
and at hy =0 in (43);

Zg=—i 2 (45)
kr(e-1)
— the dielectrical cylinder;
Zg =i L, 2 (46)
L, +L, kre
— the metal-dielectrical cylinder;
Z - 47)

~ 120mhy — i/ kruln(r /)

— the magnetodielectrical metalized cylinder with the
inner conducting cylinder, hence (44) at r=r,, and at

Zg =ikruln(r/r,) (48)
— the metallic cylinder with covering, made of magne-
todielectric of the r—r; thickness or the ribbed cylinder.

The surface impedance for a vibrator with spiral
conductivity, i.e., for the kiral objects [42], in a particu-
lar case of a monopillar metal helix can be found using
the formula (31) as

Zs =(i/ 2)krctg?y, (49)

where 1 (kr <<1) is helix radius and v is an angle of

helix.

The formulas (42) — (49) obtained within the
framework of a general impedance concept are valid for
thin infinite and finite cylinders, located in free space. If
the vibrator is located in a material medium with pa-

rameters g and py, a multiplier ,}ul/sl should be

included in the formulas. If the medium parameters ¢
and p can be smoothly varied by a static electric or

magnetic field, then the radiation characteristics of the
system with fixed geometry can be controlled by these
fields. As can be seen from formulas (48) and (49) the
characteristics of the vibrators with the purely inductive



Radioelectronic systems

153

surface impedance can be described by using a concept
of effective vibrator length, defined by the formula

uin(r/r,) }ZL

2L =1+
eff { 2In(2L /1)

ctg’y

+4In(2L/r)} L (50)

2L o :{1

Thus, the electrodynamic characteristics of the im-
pedance vibrator with the length 2L is equivalent to a
perfectly conducting vibrator with a length 2L, so
that 2L >2L.

Separately, it is necessary to emphasize the possi-
bility of calculating the surface resistance of a carbon
nanotube [57-59]. For example, if the nanotube is locat-
ed entirely in a dielectric with permittivity ¢ and per-
meability p=1, the surface resistance can be deter-
mined using the following relation

ps = im*an?(w—iv)/ (2e%vg), (51)

where a is nanotube radius, vi is Fermi velocity,
Vg =9.71-10°m/s, @ is cyclic frequency, v is relaxa-

tion frequency, v=3.33-10*Hz, e is electron charge,
h is Planck constant.

2.6. Surface Impedance of a Magnetodielectric Layer
on a Metal Substrate Surface

In this subsection, we present formulas determin-
ing the impedance Zg for some specific examples of

the physical implementation of impedance surfaces,
First, we consider an auxiliary problem concerning a
normal incidence of a plane electromagnetic wave on a
dielectric layer that separates two half-spaces. The layer
thickness is hy, complex permittivity and permeability

are g, and py, and the wave number k; =K,Je;p, . The

incidence wave propagates in the free upper half-space
(e=pn=1), while the lower half space is characterized

by material parameters &,,p, .

The boundary value problem solution can be easily
obtained by taking into account the boundary conditions
for the electric and magnetic fields on both surfaces of
the dielectric layer. Comparing this solution with the
requirements of the Shchukin-Leontovich impedance
boundary condition (1) on the upper boundary of the
dielectric layer, we obtain the rigorous expression for
the distributed surface impedance

5 -7 iZ,tg(khy) +Z,
S 121+i22tg(k1hd),

where Z, =\Ju, /e, and Z, =\Ju, /¢, .

If the layer of magnetodielectric is on the perfectly
metal surface, the formula (52) after substitution Z, =0
is reduced to the relation similar to (36)

Zs = iy / etg(kihg),

where hy is magnetodielectric thickness. In the case of
an arbitrary incident field, formula (53) is approximate
and becomes more accurate if the inequality |e;p, |>>1

(52)

(83)

better inequality holds (approximation of geometrical
optics [4]).

As shown in the references [60 — 62], real parts of
permittivity and/or permeability of magnetodielectric
metamaterials can become negative. Therefore, the for-
mula (53) can be written as [63] (first received by the
authors):

Zs =+ /& tg(k;hyg)

where the sign plus or minus correspond to the cases
Reg; >0 or Reg,; <0.

If a layer is electrically thin (]k;hy|<<1), when
the quasi-stationary approximation [4, 64]), the relations
(53) and (54) allow to obtain that Zg ~ikuyhy [64—
66], i.e. the normalized surface impedance does not
depend on the material permittivity, as is the case for
thin impedance vibrators (see formula (48)).

If a thin conductive film with a thickness hg

(54)

((hg / A®)<<1), is deposited on a layer of a magnetodi-

electric metamaterial located on a metal plane, the sur-
face impedance defined by the formula (52) is equal to

R T14Rz 1Zs° R

= , 55

where Zg is defined by formulas (53) and (54).

Conclusion

The purpose of the paper was to systematize the
results of using the concept of approximate impedance
boundary conditions for electromagnetic fields in
electrodynamics problems based on an analytical review
of literature sources. The limits and conditions for their
correct application are analyzed, including the
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requirements for the geometry of the boundary surfaces
on which it is performed. The types of metal-dielectric
structures are presented, for which methods of
theoretical determination of the values of surface
impedances are currently known. For most of the
considered cases, the article contains formula
expressions for calculating the values of surface
impedances (except for those where the formulas are too
cumbersome and contain a large number of different
structural parameters that require a separate
description). At the same time, attention is paid to the
structures of the film type, which are the most
promising for the creation of technological control
elements on their basis in devices of the centimeter and
millimeter wavelength ranges. The results for surface
impedances, which can characterize electrically thin
vibrators, are also presented quite fully, and used in the
publication of monographs [53 — 55]. Of course, the
materials of the paper do not claim to be a complete
reference book covering all the results and aspects of
the development of the concept of approximate
boundary conditions of the impedance type in problems
of electrodynamics over the last 80 years. At the same
time, the authors hope that the information given in the
paper will be useful for specialists in the field of
theoretical and applied electrodynamics, as well as for
graduate students, young scientists and students who are
just mastering radio physical and radio engineering
specialties.
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tions impedance boundary conditions and the limits of
their correct application and real metals — Sergey
Berdnik; development of subsectionsrough and corru-
gated metal screens and layered dielectric structures —
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todielectric layer on a metal substrate surface and sur-
face impedance of electrically thin vibrators — Viktor
Kartich; analysis of the literature, setting and substanti-
ation of the purpose and objectives of the study, devel-
opment of conceptual provisions, research methodology
and presentation of results. Section development intro-
duction and conclusion — Mikhail Nesterenko.
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HABJIM’)KEHI TPAHMYHI YMOBHU
JJIS1 EJNIEKTPOMATHITHHUX ITIOJIIB B EJIEKTPOMATHETHU3MI

C. JI. Beponux, A. B. I'omo30e, /1. B. I peybkux,
B. O. Kampuu, M. B. Hecmepenko

HaBeneHo pe3ynbpTaTé aHAIITHYHOTO OIJISY JITEpaTypHUX JKEpell 00 BUKOPHCTAHHS HAOMIKEHUX TPaHH-
YHUX YMOB JUIS €JIEKTPOMATHITHHX IOJIB IMIIETAHCHOTO THITY TIPY BHPIIIEHHI KPaliOBHUX 3aBlIaHb €JICKTPOMAarHeTH-
3My 3a OinbIn Hix 80 ocTaHHIX POKIB. Y Ie mepion iMIeTaHCHHH Tiaxia OyB y3aradpbHEHH HA MIHPOKE KOJIO eeK-
TPOJAMHAMIYHUX 3aBJaHb, ¥ IKUX HOr0 BUKOPUCTAHHS JO3BOJMIO CYTTEBO POSIIMPHUTH MEXi MaTEMaTHYHOIO MOJIe-
JIIOBaHHS, IO a/ICKBaTHO BPaxoBYe (Di3MUHI BIACTHBOCTI PeaTbHUX TPAHUIHUX ITOBEPXOHb. MUHYIIO TIOHA BiciMe-
CAT POKiB 3 MOMEHTY ITyOJTiKaIlii HaOMMKEHNX TPaHNIHUX YMOB JUIS €JIeKTPOMarHiTHUX nomiB. CeHe i MiHHICTh IHX
YMOB TIOJISITA€ B TOMY, II[O BOHH JTO3BOJISIFOTH BHPIITYBATH 3aBIaHHSA AU(MPAKINI IO IO 1032 TiJIoM, IO J00pe
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TIPOBO/ISATH, 0€3 ypaxyBaHHs HOMNIB yCepeIrHI HUX, 10 3HAYHO CIIPOIIYE pillleHHS. 3 TOrO 4acy 3acTOCYBAaHHIO 1M-
TIeTAHCHUX TPAaHWYHUX YMOB IIPHUCBSYCHO BENUKY KiJIbKICTh MyOiKaliid, OCHOBHI 3 SIKMX (Ha JyMKY aBTOpiB) Ipea-
cTaBieHi y mii crarti. OcoOMUBY yBary NpuaijIeHO XapaKTepUCTUKaM €IEKTPUYHO TOHKHX IMIIeJaHCHHUX BiOpaTopiB
Ta TIOBEPXHEBHUX CTPYKTYp IUTIBKOBOTO THILY, SIK OCOOMCTOMY BHECKY aBTODIB Yy TEODIIO iMITEaHCHUX TPaHUYIHUX
YMOB B enekTpomaraeTi3mi. IlpeaMeTom OCIIIKEHHS y CTATTi € aHaJli3 MEX Ta YMOB KOPEKTHOT'O 3aCTOCYBaHHS
IMIIEZJTaHCHUX TPaHUYHHUX YMOB. MeTOI0 € crcTeMaTH3allisl pe3yabTaTiB BUKOPUCTAHHS KOHIEMIIT HaOIMKEHUX 1M-
TIeTAHCHUX TPAHUYHHUX YMOB €JIEKTPOMArHiTHHUX TOJIB Y 3aBJaHHIX ENEKTPOANHAMIKH 3 YpaxyBaHHSM aHaJiTHIHO-
TO OIVISAY JIiTepaTypHHX JpKepen. OTpuMaHo Taki pe3yasTaTth. [IpencTaBieHi TUIIM MeTaIoMieeKTPHYHUX CTPYK-
TYyp, Ul IKUX B J@HUH Yac BiJIOMi METOAW TEOPETUYHOrO BU3HAUCHHS 3HAUCHb MOBEPXHEBHUX IMITEIAHCIB ISl KOHC-
TPYKUI{ IUTIBKOBOTO THITY, SIKi € HAWOUIBII MEPCIIEKTUBHIUMH JUISI CTBOPEHHS Ha TX OCHOBI TEXHOJIOT'IYHHX €JIEMEH-
TiB yNpaBIiHHS B IIpHJIaaX CAHTHMETPOBOI'O Ta MUTIMETPOBOT'O /lialia30HIB JIOBXKHH XBHIb. BucHOBKH. MaTepianu
CTaTTi HE PETEHYIOTh HA 3BaHHS MOBHOT'O JIOBIHUKA, III0 OXOILIIOE BCl PE3YNIBTATH Ta aCIIEKTH PO3BUTKY KOHIIETI-
il HaOJMV)KEHNX TPAaHUYHHUX YMOB IMIIEAHCHOTO THITY Y 3aBJaHHSX €JIEKTPOMAarHETH3MY 3a OCTaHHI JIECATHIITTS.
BomHouac aBTopH CIOAIBaOTHCS, 0 iH(GOPMAIlisl, BUKJIAJCHA y CTAaTTi, OyJe KOPUCHOI (haxXiBILIM y rairysi Teope-
TUYHOI Ta MPHUKJIAIHOI eNEKTPOAMHAMIKH, a TAaKOXK aclipaHTaM, MOJIOIUM BUEHHM Ta CTY/AEHTaM, SKi TiJIbKH OCBO-
IOIOTh Paioi3uuHi Ta paaiOTEeXHIUHI CEIiaTbHOCTI.
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