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HYBRID QUANTUM RANDOM NUMBER GENERATOR
FOR CRYPTOGRAPHIC ALGORITHMS

The subject matter of the article is pseudo-random number generators. Random numbers play the important
role in cryptography. Using not secure pseudo-random number generators is a very common weakness. It is al-
so a fundamental resource in science and engineering. There are algorithmically generated numbers that are
similar to random distributions but are not random, called pseudo-random number generators. In many cases
the tasks to be solved are based on the unpredictability of random numbers, which cannot be guaranteed in the
case of pseudo-random number generators, true randomness is required. In such situations, we use real ran-
dom number generators whose source of randomness is unpredictable random events. Quantum Random Num-
ber Generators (QRNGS) generate real random numbers based on the inherent randomness of quantum meas-
urements. The goal is to develop a mathematical model of the generator, which generates fast random numbers
at a lower cost. At the same time, a high level of randomness is essential. Through quantum mechanics, we can
obtain true numbers using the unpredictable behavior of a photon, which is the basis of many modern crypto-
graphic protocols. It is essential to trust cryptographic random number generators to generate only true ran-
dom numbers. This is why certification methods are needed which will check both the operation of the device
and the quality of the random bits generated. The goal of the research is also to develop the model of a hybrid
semi self-testing certification method for quantum random number generators (QRNG). The tasks to be solved
are to create the mathematical model of a random number generator, which generates the fast random num-
bers at a lower cost. To create the mathematical model of a hybrid semi self-testing certification method for
quantum random number generators. To integrate a hybrid semi self-testing certification method to the hybrid
random number generator. the methods used are mathematical optimization and simulation. The follow-
ing results were obtained: we present the improved hybrid quantum random number generator, which is based
on QRNG, which uses the time of arrival of photons. The model of a hybrid semi self-testing certification meth-
od for quantum random number generators (QRNG) is offered in the paper. This method combines different
types of certification approaches and is rather secure and efficient. Finally, the hybrid certification method is
integrated into the model of the new quantum random number generator. Conclusions. The scientific novelty of
the results obtained is as follows: 1. The hybrid quantum random number generator is offered, which is based
on QRNG, which uses the time of the arrival of photons. It uses the simple version of the detectors with few re-
quirements. The hybrid QRNG produces more than one random bit per the detection of each photon. It is rather
efficient and has a high level of randomness. 2. The hybrid semi self-testing certification method for quantum
random number generators (QRNG) is offered. The Self-testing, as well as device-independent quantum ran-
dom number generation methods, are analyzed. The advantages and disadvantages of both methods are identi-
fied. Based on the result the hybrid method is offered. 3. The hybrid semi self-testing certification method for
quantum random number generators is integrated into the offered model of the quantum random number gen-
erator. The paper analyzes its security and efficiency. The paper offers to use the new random number genera-
tor in the crypto-schemes.

Keywords: cryptography; quantum; quantum cryptography; random number generator; quantum random
number generator; hybrid quantum random number generator; certification; hybrid certification method.

rithms, which use mathematical formulas to generate
random number sequences, which are called pseudo-

Introduction

Random numbers are widely used in various
fields, for example, simulation, encryption, cryptog-
raphy, and fundamental science [1, 2]. Algorithmically
generated numbers look like random numbers but are
not truly random; they are called pseudo-random num-
bers. These numbers are generated by computer algo-

random number generators [3-5]. Because, we cannot
use pseudo-random generators in situations, where true
randomness is necessary, we use true random number
generators. In this case, we use unpredictable random
events as a random source. In situations where it is pos-
sible to use pseudo-randomness a pseudo-random num-
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ber generator, a deterministic method which mimics the
expected behavior of a truly random source, is often
used due to the large speed advantage [6].

In some applications, such as quantum cryptog-
raphy, not all true random number generators are cryp-
tographically secured, the unpredictability of random
numbers generally cannot be guaranteed in classical
processes. We single out a specific Quantum Random
Number Generator (QRNG) of the True Random Num-
ber Generator (TRNG) that uses innate randomness in
quantum processes as a random source.

Nowadays most of the existing QRNGs are based
on quantum optics. Light from lasers, luminous diodes,
or various photon sources, is more affordable and more
common than radioactive material. Many light quantum
state parameters have inherent randomness, which al-
lows us to implement many variants. Light particles are
used as a source of quantum randomness and are availa-
ble to many detectors. As a result, optical quantum ran-
dom generators are faster and more efficient [7].

Cryptographic random number generators have a
trust problem. Users must fully trust the algorithms of
pseudo-random number generators or the device that
implements the method of generating truly random
numbers. Creating new random number generators from
scratch is undesirable when many reliable algorithms
and devices have endured years of cryptanalysis and
attack attempts, proven to be sturdy. This means that the
user must trust at some point the device or algorithm. A
problem that may seem simple may not be so easy to
fix. For example, RNGs are a tempting target for covert
attacks. Pseudorandom number generation algorithm
DUAL_EC DBRG, proposed as the NIST standard,
allows an attacker to retrieve an entirely random se-
quence with minimal information, with practical conse-
quences during a Juniper network attack [8-10].

We have examples in the event of a device-level
attack on how a dishonest manufacturer or any attacker
was able to cause errors when accessing the device. In
such a technically advanced attack, an attacker could
make mistakes that are difficult to detect in real-world
RNGs.

There are also problems with physical random
number generators such as possible spontaneous termi-
nation. If a device component stops working or de-
grades, it may cause the output bits to change in quality.
Also, if the device creates values, it is especially diffi-
cult to detect hidden flaws in the device. Therefore,
safety recommendations are essential for some sort of
self-testing in real quantum number generators. The
subsystem should monitor the condition of the device at
all times so as not to miss any faults.

The goal is to generate fast random numbers at a
lower cost. A high level of randomness is obligatory.
We offer the model of the improved hybrid quantum

random number generator, which is based on the time of
arrival QRNG. This QRNG is very efficient because it
uses the simple version of the detectors with rather few
requirements. The offered Optical Quantum Random
Number Generator (OQRNG) produces more than one
random bit per detection of each photon.

We review quantum ways to work with unreliable
devices. The first method uses the properties of some
quantum event to observe the quality of the bits pro-
duced. This certification method is known as a self-
testing method, in which the device is checked after it
produces the random number. Second, it collects propo-
sitions collectively known as device-independent quan-
tum random number generators based on the assumption
that there are quantum correlations that provide some
statistical independence unless reliable physical princi-
ples are incorrect.

The third method describes quantum certification
methods that are inspired by device-independent genera-
tors but use less rigorous experimental tests of various
aspects of quantum theory, resulting in more limited
certification with more relaxed safety assumptions [11].

We combine different types of certification meth-
ods, practical, device-independent quantum random
number generators, and self-testing QRNG. We get a
semi self-testing generator.

The third category of generators is the hybrid of
the self-testing certification method and the device-
independent quantum random number generator certifi-
cation method. It is partly based on the properties of our
first, self-testing method, therefore it is called a semi
self-testing certification method. The papers offer the
security and efficiency proof of the offered scheme.

State of the Art

The authors of paper [2] are working on the crea-
tion of quantum computers, which can easily solve the
problem of factoring large numbers and they can crack
the crypto RSA system. In [3-5], several pseudo-random
number generators are considered which use different
methods to ensure the randomness of the sequences and
a higher level of security. Based on the digitized time
interval between random photon arrivals, paper [6] sug-
gests more efficient and secure optical quantum random
generators. Random numbers are widely used in differ-
ent applications; the paper [7] presents the different
technologies in quantum random number generation and
the multiple ways to use this to gather entropy from a
quantum origin.

In [8-10] several self-test and device-independent
QRNG are described. The pros and cons of different
types of certification are discussed. The papers also de-
scribe different quantum random generators. The au-
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thors analyze their security and efficiency. Paper [11]
describes the measurement of quantum randomness.

The authors of the paper [12] describe a funda-
mentally different approach using the trit generation
method and software tool TriGen v.2.0 PRNG, which
has significant advantages over traditional cryptography
methods. In [13, 14], the authors present a study of
high-speed and secure pseudo-random number (PRN)
generation techniques. In the article [15], a new simple
and fast algorithm for entropy extraction and pseudo-
random numbers generation from a robust chaotic map
is offered. The authors offer to use this method as an
entropy source in some cryptographic applications. Ad-
ditionally, paper [16] introduces the first provable-
security analysis of the Intel Secure Key hardware
RNG.

The authors divide QRNG-s into different groups.
The authors of the paper [17] are working on the im-
provement of self-testing optical quantum random num-
ber generators and the ways to implement it as a com-
pact integrated photonic circuit. The paper [18] presents
self-testing quantum random number generation, in
which the user can monitor the entropy in real-time, and
the authors offer the protocol which guarantees the con-
tinuous generation of high-quality randomness, without
the need for a detailed characterization of the devices.
Based on generating nonlinear dimension witnesses for
systems of arbitrary dimension, the paper [19] presents
a simple method, where witnesses are highly robust to
technical imperfections and can certify the use of qubits
in the presence of arbitrary noise and arbitrarily low
detection efficiency. By repeating the measurements of
a quantum system and by swapping between two mutu-
ally unbiased bases, a lower bound of the achievable
true randomness can be evaluated. This efficient method
is proposed in [20] to extract true randomness.

Randomness generation is possible in quantum
systems only if certified by a Bell inequality violation
typically used on device-independent QRNG, which is
proposed in [21].

Different protocol for device-independent QRNG
is introduced in [22]. Additionally, paper [23] introduc-
es Kochen-Specker theorem, which can be used in other
experimental tests of the basic characteristics of quan-
tum theory.

Different protocols are introduced in [24-26] to se-
cure quantum channels to ensure confidentiality and
security. The authors of [27] demonstrate that different
quantum algorithms feasible on concrete devices can
address a challenge central to the field of quantum me-
trology. They introduce a general framework that allows
for sequential updates of variational parameters to im-
prove the measurements and probe states. They also
demonstrate the practical functioning of this approach
using numerical simulations. In [28] and [29] are de-

scribed different software implementations which can
use random number generators.

Optical Quantum Random
Number Generators

Randomness is the basis for cryptography. Most
PRNGs cannot generate cryptographically secure ran-
dom numbers [12-14]. For example, the internal state of
Mersenne Twister can be guessed if we have sufficient
output values. However, there are established ways to
use pseudo-random number generators in cryptography.
Algorithmic generators that meet additional criteria are
called cryptographically secure pseudo-random genera-
tors, CSPRNGs.

The design of secure random number generators is
a complicated task. Physical RNGs, including QRNGs,
can be used as seeds for CSPRNGs [15, 16]. But we
must take precautions. Some attacks are specifically
targeted at TRNGs and are sensitive to variables derived
from environmental conditions. True randomness can
only be obtained through processes that have innate
randomness. Such a source is a quantum random num-
ber generator.

True randomness can be generated from any quan-
tum process that breaks the coherent superposition of
states. Nowadays, high-quality optical components are
available, so most practical QRNGs are implemented in
photosystems.

At the quantum level, the optical field can be de-
scribed by photons. From many variants of quantum
state, Fock and coherent states give us the most appro-
priate description of light quantum states in random
number generators. Fock condition, or numerical condi-
tion, is |n> in which n photons share a mode (have the
same frequency, polarization, transition profile, and
common path). Coherent condition, shared by many
properties of classical light, can be written in a superpo-
sition of numerical state

2
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where o is a complex number, n is the photon number.
The amplitude |a|2 corresponds to the average number
of photons in the state. The light of the weak laser is
close to the coherent state. We can use a coherent state
from a laser to get the state of one photon if we choose a
sufficiently low intensity.

In many cases, we are only interested in generating
uncorrelated photons. Many different technologies can
generate and detect single photons, such as photomulti-
plier tubes (PMTs), single-photon avalanche photodi-
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odes (SPADs), and superconducting nanowire detectors.
These are examples of popular detectors.

Traditionally, single-photon detectors have limited
ability to count photons. We can also generate random-
ness from quantum states containing multiple photons.
There are improved detectors, but they have a high cost.
Most apps take a binary approach to detecting photons.
The next limitation for single-photon detectors is the
time required to recover after the detection of photons,
which is called dead time.

Time of Arrival Quantum Random
Number Generators

Many methods can be used to generate random
bits from photon detection times. In most cases, QRNG
that uses time has a weak source of photons, also a de-
tector and time schemes that record either the exact time
of each discovery or the amount of time it takes to click.
Within a short period of time, for an average we have
one or few photons. The detector receives photons from
LED incoherent. The consistent state from the laser
goes to the detector at an exponentially distributed time,
the average number of photons per second. The time of
the detection of two photons is the difference between
two exponential random variables, which is also expo-
nential. We can compare the time difference between to
and t1. Assign 1 if t;> to and 0 if to> t1. This gives us a
uniform random bit.

In time of arrival generators, the accurate time is
the most important. Measurements will always be lim-
ited and these differences are noticeable when digitizing
time intervals. Instead of real-time to and t;, we can use
integers ny and ny, which are counted clock periods. The
probability to=t;, with a negligible probability of meas-
uring an ideal continuous time, must be taken into ac-
count. We have two consecutive sequences where the
same time is read, ng = n1. In a basic scheme that gener-
ates 0 or 1. The value depends on whether the second
interval is shorter than the first, if not, the output value
is not defined and we must exclude these results. If we
consider an equation as a valid result, it requires analy-
sis of each output value and assigning a binary bit.

One of the first quantum random number genera-
tors which use time detection takes the photons from a
LED arriving at a PMT after it compares the arrival
times in the chart, which is similar to comparing the
arrival times of two particles in a Geiger counter. The
random time of arrival can be used as a signal that se-
lects the time bins from the clock. We can use a varia-
tion of the even-odd generation method. If a photon is
detected in the even clock cycle, assign 1 and O if it is
discovered in an odd cycle. An interesting alternative is
where time bins are grouped into pairs. We can assign
the output value 0 to the empty bin when no discovery

is made and 1 if the empty bin is followed by the dis-
covery. It is equivalent to using the time bins where we
found the photon, throwing away some consistent
counts.

There are many ways we can generate random
numbers using time measurements. The time difference
ti is a real number and, we can withhold an infinite
number of entropies from only two impulses. However,
all of the extracted bits are not usable. If our timing in-
formation has a precision p bit, the time bin where we
can find the photon is a random variable, N=2P possible
values. After this, we can calculate the probability of a
photon coming into each time bin. Some OQRNGs use
digital time differences for n bits and divide available
entropy into random bits string with a mathematical
function. All of these processed algorithms attempt to
transform the exponential distribution into equal bit
sequences, requiring additional equipment and effort to
process.

There are ways to generate photons that will give
us a more uniform arrival time. We can use counting
statistics. For an irregular flow laser diode, we have an
inhomogeneous Poisson process, we can adjust the
standby time. For a variable photon flow, wy(t) is the
distribution of the arrival time

—[Yat)dt

y(t)e )

Ideal is uniform distribution, which can be ap-
proached using a laser current, which periodically re-
peats the final approach of the function

1
_—, 3
- 3
where R is the reset parameter that determines when the
pulse cycle in the source will be loaded.

The current returns to the initial value when R is
completed or when the pulse is detected.

Photon Counting Quantum Random
Number Generators

There is one group of generators that use time
measurements. In this case, we need the number of
fixed time detections T to generate random numbers.
For a random time, exponential variable, the amount of
photons that go in a fixed T time follows the Poisson
distribution. With this formula, we can find the proba-
bility of finding n photons at this interval.

Pr(n) = _(wr;l")” e VT, "
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For example, the generator H. Fiirst et al. [30] pro-
duces bits equal to the total amount of counts, registered
in the fixed period. LED is a light source, used for the
rapid detection of PMTSs. In this case, the generator uses
the dead time of the detector.

The random variable of the parity method, esti-
mates the number of photocounts, has a small bias if we
compare it to a pure Poisson process.

Some generators use a similar approach, discussed
in the previous section, to compare time differences. If
the first measurement has n; photons, and the second
one ny, we can generate 1 when ng> n; and 0 if ng <ns.
Using the methods, we generate one bit for one meas-
urement. But, given yT, measurements may have a
higher entropy. There are ways to make the most of the
information available. When a photon is detected, some
generators assign more than one bit, depending on the
number of photons. Possible outcomes are divided into
groups that have equal probability. For this, it is neces-
sary to manage all sources.

The frequency of yT photons in the T period de-
pends on whether the second, third, or other counted
least significant bits of photon will be equal. S. Tisa et
al. [32], generator, which has an integrated CMOS
SPAD array of detectors, receives light from an LED
and generates random numbers in a 32 x 32 detector
matrix in parallel. This is the principle of the design of a
micro photon device generator. In this approach it is
important to properly characterize the dead time, be-
cause the dead time affects the speed of the detector g
counter. Improved rate

Y
Ve = ———— )
¢ Yt

1+y—
Yor

help us make choices about how many bits to use from
the counted number of photons.

Attenuated Pulse Quantum Random
Number Generators

In some cases, the generator doesn't need to meet
all requirements and it is possible to get the desired re-
sult with fewer requirements for detectors. It is suffi-
cient to use simplified versions of the methods already
discussed.

In such cases, we use Attenuated Pulse Quantum
Random Number Generators. Most current single-
photon detectors have a limited number of photon num-
ber counting capabilities and have a binary response to
clicking or no clicking. Methods for counting photons

are usually based on many clicks over a long period,
which is divided by the detector into smaller periods.
OQRNG is called an attenuated pulse generator if
it has a weak source of light and the probability of pho-
ton generation and not generation is the same. Superpo-
sition of an empty and one photon state in the same spa-
tio-temporal model, so that the state of one photon is

|0>1+|1>1

72 (6)

We can assign 0 if detection does not happen and 1, if a
click is made. We do not care how many photons are
used. Any superposition can be written as following:

1 ©
$|0>1 +ZC:1(XC |C>1, (7)

. 1. .
where the equation Y~ | o |2=E is valid.

We can only take it from the first click and it
doesn't matter if it is caused by one photon or many.

Given the coherent state, it is easy to form such
superpowers. For a coherent state with a amplitude, the
probability of finding a photon is 0

pr(n=0) =’ ®)

probability of finding one or more photons

pr(n>1) = @—e 1), ©)

The simplest idea is to find o for which pr(n =0) =
= pr(n > 1), which in this formula is a=VIn2. The proba-
bility of the desired discovery is given by the Poissonian
source, where yT = In2 = 0.693.

In practice, the generator operates on a detector
with an effective average photon number nyT, where
the efficiency is 1. OQRNG can be managed by adjust-
ing variables. The generator can also operate as a light
source. OQRNG can manage the LED flow to achieve
the desired balance, which will give us a 50 % chance of
detection.

However, even after the adjustment, the bias may
remain. To solve this problem, von Neumann extraction
can be used. For two detections, the output value is 1, if
no>0and ny =0and 0 if no = 0 and n1> 1, where n0 and
nl are the photon numbers.

The results are ignored if two consecutive blank
periods or two clicks are generated. For the Poissonian
source, this wvalues are equal with probably
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pr(n >0)pr(n=0)=e™T(1—e™™T). The resulting
bit rate is at least four times slower but free of all bias.

Self-testing in Quantum
Random Number Generators

Most quantum random number generators do not
fully describe their random source. For example, when a
photon is on a beam splitter, problems can occur detec-
tor inefficiency, imbalance in the splitting process,
source imperfection, and multiple unknown sources of
correlation. Theoretically, detectors can generate an
ideal random bit because a photon has a 50% probabil-
ity that the beam will split and a 50% probability that
the beam will reflect. This happens only in theory be-
cause, in practice, there are always problems with detec-
tors, lasers, beam splitters, and their characteristics de-
pend to some extent on environmental conditions as
well. Therefore the different methods were offered to
check the quality of the random numbers produced in
physical random number generators. The self-testing
approaches are directly related to the quantum proper-
ties of the random number generator. There are device-
specific approaches to testing, but typically random use
of the program afterward and processing is done to cor-
rect the uneven distribution of probability [17].

This is why various methods have emerged to test
the quality of random numbers generated in physical
random number generators. This is not just for quantum
random number generators. In the case of classics, there
are various ways to verify the data obtained, such as the
NIST and Diehard random tests.

A QRNG can be created so that its output random-
ness does not rely on any physical implementations.
True randomness can be generated through self-testing
even without perfectly characterizing the realization
instruments. The structure of a self-testing QRNG is
based on device-independently witnessing quantum
entanglement or non-locality by observing a violation of
the Bell inequality. Even if the output randomness is
mixed with uncharacterized classical noise, we can still
get a lower bound on the amount of genuine random-
ness based on the amount of non-locality observed. The
advantage of this type of QRNG is the property of the
randomness self-testing. However, its production rate is
usually very low, as the self-testing QRNG must
demonstrate non-locality.

We can distinguish self-testing methods that can
work with both classical noise and quantum sources of
entropy. The pulse can be obtained from both thermal
noise and radioactive decay received by the Geiger
counter. We then check the obtained distribution to see
if Poisson's arrival time is expected. We convert such
random numbers into output values that successfully

pass the tests. Through this process, we filter out obvi-
ous irregularities.

Of course, there is still a risk that the attacker will
change the outcome and create a predictable sequence
that will pass the test, but these self-testing systems can
detect spontaneous disturbances and less sophisticated
attacks. These systems provide good additional protec-
tion. Tests can also detect operation errors.

Testing is an important component to get good
quality random numbers, so it must be done carefully.
To obtain random numbers, it is necessary to accurately
estimate the entropy, which is a complicated procedure.
If the system that evaluates the existing entropy is poor-
ly implemented, it may be vulnerable to attacks.

The first example of a self-testing in a quantum
environment is an optical QRNG of Fiorentino, de-
signed to work in a single-photon polarization superpo-
sition

_IH>+]V> (10)
J2
Or in an entangled state
W:|H>1|V>2+|V>1|H>2. (11)

NA

The quantum random number generator uses the
principles of path branching.

[H> and |V> indicate the state of a single vertical-
ly or horizontally polarized photon. Polarizers let pho-
ton pass through with 50 % probability. In theory, the
coincidence counter in this case registers perfect anti-
correlation. Perpendicular orientation of polarizing axes
gives 100% correlated photon detections. This happens
only in theory, because in practice, there are always
problems with detectors, lasers, beam splitters, and their
characteristics depend to some extent on environmental
conditions as well. Quantum correlations disappear if
relative angle has been chosen to be 45 degrees. The
device has a testing phase where a complete tomogra-
phy of the input state is performed from a set of meas-
urements to determine a 2 X 2 matrix. For a single pho-
ton, we get a two-level photon system, while for a pho-
ton pair the two-dimensional Hilbert space is efficient.
Based on the measurement results, the generator deter-

mines H,, (pr) which is the minimum possible entropy

for the overall condition of the user and listener, and pr

is the worst of all possible cases. The bits are then trans-
ferred to a random extractor, which generates a shorter,
unbiased random string for available entropy. This
method protects us from attacks where the opponent can
control the quantum state from which we get the entro-
py. We are protected from cases where we make repeat-
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ed measurements on one state. To perform conditional
tomography correctly, we must assume that the meas-
ured condition is maintained throughout the process.
Such self-testing offers limited protection, however, it is
an effective way to detect accidental errors in devices.
Tomography provides a reasonable estimate of the en-
tropy of such models, where errors are expected during
implementation or irregularities may occur during oper-
ation. We imply that errors do not occur due to an unre-
liable manufacturer. One such model is presented in the
self-testing QRNG of Lunghi, where a quantum source
of randomness is separated from the technical noise
using dimension witness.

pr(L]0,0)~pr(t|1,0) pr@|2,0)-pr@[3,0)| .,
“loralon-pray  prazn-praiay| "

The self-testing quantum random number genera-
tor protocol consists of these steps. First, an experiment
is carried out in which the user selects a prepared state s
and a measurement m, after which an outcome o is col-
lected. Following that, we can calculate the distribution
pr(o | s, m) from the input and estimate the value of the
witness WT, from which we can measure the entropy of
the raw data. In order to obtain the final random bit
string, sufficient post processing of the raw data is per-
formed based on the entropy bound [18, 19].

pr(o | s, m) gives the conditional probability of
finding the result of o (from + 1) for a condition that is
one of the defined probabilities s = 0, 1, 2, 3. The meas-
urement parameter m can be 0 or 1. In the generator
under consideration, the four states correspond to the
circular right and left polarization or the diagonal and
anti-diagonal polarization of the second photon from the
tangled pair, measured on the basis of diagonal or circu-
lar polarization. The first photon acts as a messenger.

WT refers to the extent to which preparation and
calculations are integrated. Any WT greater than zero
indicates that some of the measurements are incompati-
ble and there is some quantum randomness that allows a
predictable probability to be assigned. In a random ex-
tractor, the result can be used to calculate the compres-
sion rate. For small quantities of WT, the input bits pro-
duce a small number of pure random bits. An experi-
mental test of this method shows a final bit rate of tens
of bits per second and also responded correctly to
changes in the environment, such as turning off the air
cooling in the laboratory.

An alternative approach is to apply the principle of
uncertainty. This principle allows any opponent to ac-
cess a limited amount of information. Our goal is not
just to generate random bits, but to make sure these bits
are confidential. For example, if we use formula (11) we
get random numbers, but the opponent can learn the

exact sequence because he has access to the second half
of the bits. Our sequence can be obtained from the same
measurements because the bits are just uniform and are
not confidential. This may be acceptable for applica-
tions such as simulation, but any information leakage in
cryptography should be avoided. We can use the certifi-
cation method in quantum random number generators to
protect confidentiality without complete tomography by
switching two mutually unbiased bases. Instead of a
complete tomographic measurement, two bases are suf-
ficient [20].
Device Independent Quantum Random
Number Generators

We can also ignore the details inside the quantum
random number generator and evaluate the results based
solely on the output. Especially, if we want to prove that
outputs must be accidental or some physical law will be
violated. This is the second approach of the random
number certification. The basic model for processing
device-independent quantum information was started by
Mayers and Yao in 1998 and Barrett in 2005.

During random number generation, we imagine the
worst-case scenario when an opponent can generate real
random numbers using a quantum random number gen-
erator, and then hide them inside a manipulated device.
If the devices are manipulated by opponents, the output
may not be random. The manufacturer can predict the
output of the QRNG device. During the check of the
output values of this device, the sequence will pass all
randomness tests and we will trust the results because
the opponent can generate the real random numbers.
This problem is difficult to avoid, but there is a quantum
solution. That's why it is important to use the device-
independent certification method.

Device-independent quantum random number
generators solve the problem of device reliability by
trusting the device with schemes based on Bell tests.
The ideas of Bell's violation stem from a discussion of
quantum theory and the apparent inconsistency of rela-
tivity known as the Einstein-Podolsky-Rosen paradox.
In the entangled state, the measurement of one particle
immediately determines the state of the other particle as
well. This seems to go against the no-signal principle,
then prohibits faster communication than light. John
Bell showed that resistance can be solved experimental-
ly.

The Clauser-Horne-Shimony-Holt (CHSH) con-
figuration of Bell inequalities was chosen for the func-
tional quantum random number generator. Using the
measurements of two devices we will look at the esti-
mation of correlations and create two variables for each
module, s and m. These variables may have two values:
0 and 1, which correspond to binary measurement val-
ues. Both measurement instruments are the same. In the
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s configuration, the measurements give a binary value
of a and the measurement defined by m gives the result
b. We are particularly interested in the correlation func-
tion, which is defined as follows:

1= (-)*"[Pr(a=b|sm)-
s,znlw (13)

—Pr(a #b|sm)],

where Pr(a =b | sm) and Pr(a # b | sm) are the probabili-
ties of a =Db or a # b when s and m are parameters. For a
realistic local theory we must always find | < 2, because
any value greater than 2 indicates non-locality. To eval-
uate the bell’s inequality, this experiment must be per-
formed n times. The choice of each (s, m) measurement
is defined by a probability distribution that is identical
and independent of Pr(sm). The final output string of n
is r = (a1, ba;...; an, by), and the input s = (S, M1; ...; Sn,
my). T is the estimator of CHSH formula (13), which is
defined as follows

71 s,m _ _
I_Hszm(—l) [N(a=b]|sm) 1)

—N(a = b|sm)/Pr(sm)],

where N (a = b, sm) is a number, how many times (s, m)
have been measured. Results a and b were found to be
equal to n after realization. N (a # B, sm) is defined sim-
ilarly [21].

This correlation function can be calculated by es-
timating the probabilities after a series of measurements.
As long as the systems are separated and do not interact
with each other, the laws of quantum mechanics apply.
We can generate s; and m; through independent random
processes at any stage of operation. The evaluation of I,

T, after some work gives us the lower limit of the min-
imum entropy of the results

If the system has a classical description, T<2, the
restriction is zero and the system can be deterministic. If
we take measurements on states that show any entan-
glement, the random bits generated are guaranteed to
have some kind of randomness. The resulting sequence
of bits is not necessarily uniformly random but is
bounded by its minimal entropy, which means that us-
ing the appropriate randomness extractor, the sequence
can be converted to a randomly uniform string.

Consider quantum devices that have spacelike sep-
arate parts. If they have access to independent random
sources, there are no additional restrictions on devices

or input states until 1> 2. The only additional require-
ment is that the selected measurement parameters s; and
m; have any randomness at each stage of the protocol
and should not be completely predictable.

In this respect, the generator described in the ran-
dom expansion scheme is similar to the quantum key
distribution. Starting from a random seed, the protocol
gives us a larger string of random output values whose
randomness is certified by quantum mechanics.

In 2010 QRNG was implemented with trapped ion
qubits to eliminate detection gaps. lonic systems gener-
ate more slowly than optical implementations but offer
almost perfect performances. Each atom first emits a
photon that is entangled, and then ions are trapped by
interfering with the photons. This is a heralded process.
Experimental violation of Bell's inequality is a precari-
ous task, and the generation process is very slow, giving
us only 42 certified random bits, but with a good, 99 %
confidence level, over about a month of continuous run-
ning.

In later implementations, some of the requirements
were lessened, allowing optical implementations and
faster generation rates. Most optical detectors have low
efficiencies, transition-edge-sensor detectors offer suffi-
ciently high efficiencies to eliminate gaps in some ver-
sions of bell's inequality. Also, use it to generate certi-
fied quantum random numbers at a speed of about half a
bit per second.

Device-independent quantum random number
generators can be developed as a more general model
where the principles of quantum mechanics may not be
true. This principle prohibits the transmission of infor-
mation faster than the speed of light. A communication
device faster than the speed of light will allow it to send
messages to the past and create a conflict with causality,
reflecting the grandfather paradox. The no-signaling
principle is definite. In entangled states, as long as there
is non-localization and there are correlations that appear
to move faster than the speed of light, it is virtually im-
possible to use them to send information.

The limit in device-independent quantum random
number generators is also a no-signaling constraint. The
exact limit varies on conditional minimum entropy, but
general results remain. In the new model, the protocols
still work as random amplification schemes that require
uniform random seeding [22].

All of the described device-independent random
number generators, both quantum and non-signal, are in
fact implementations of protocols that use the results of
physical experiments to extend randomness. They start
from small random seeds and form a larger number of
bits that will surely be random.

Other Forms
of Quantum Certification

Instead of using the Bell equation, we can try to
create certified quantum random number generators
based on other experimental tests of the basic features
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of quantum theory. The Kochen-Specker theorem shows
that there are states for which no non-contextual hidden
variable model fulfills the predictions of quantum me-
chanics. Contextuality in quantum mechanics is related
to the existence of non-commutative observations where
the measurement sequence is important and there is no
pre-defined model that can give us the results of two
truly incompatible measurements. Contextuality implies
non-locality [23].

Quantum random number generators based on the
contextuality test give us access to quantum randomness
rather than classical noise. In this model, we still work
with unreliable devices, but in less aggressive environ-
ments. We believe that the manufacturer of the random
number generator is not actively trying to fool us, but
we admit the device can be faulty or poorly designed.
The contextuality test shows whether the bits are really
from a quantum source.

One of the advantages of quantum random number
generators is that we can trace the origin of our random
bits to a defined quantum phenomenon. These certified
generators can help to detect the randomness due to
classical noise, imperfections, or failures in the device
and take only the randomness from quantum origin.
Contextual tests can work without spacelike separation
of the devices. This is both the advantage and the disad-
vantage of this method. These tests do not require com-
plex nonlocal entangled states, but we cannot rely solely
on the premise that the bits will be random. Unlike de-
vice-independent protocols, a fraudulent manufacturer
can supply pre-generated bits so that we cannot even
understand them.

Physical exercise can also be optical, with a pho-
ton-encoded qutrit whose superposition is in three pos-
sible ways, or three-level trapped ions are used. This
allows us to detect efficiency gaps and avoid the prob-
lems of detecting a single photon. In ionic systems, ran-
dom bits come to be recorded during a period of reflec-
tion measurements that takes about 10 milliseconds. In
both cases, under the tested experimental conditions, the
devices give us only a net gain of randomness, i.e., gen-
erate more random bits than are consumed when using
unequal measurement parameters.

Hybrid Quantum Random
Number Generator

Our goal is to generate fast random numbers at a
lower cost. At the same time, a high level of random-
ness is essential. The breaking of any quantum process
leads to true randomness, but the frequency of genera-
tion depends on the detector output [24].

We offer an improved quantum random number
generator based on the time of arrival QRNG. At best,
we get only one random bit from each detected photon,

this probability is reduced by detector inefficiency or
dead time. In most cases, the frequency of random
number generators is measured in Mbps, which is not
enough for fast applications such as QKD. If we use
multiple detectors to generate more random bits, we will
have a bias that results from the different efficiencies of
the detectors. By using one detector and comparing the
three successful events of detection time, we can rule
out this bias. It is quite convenient to use the simple
version of the detectors, which has relatively small re-
quirements. We propose to use the technology used in
attenuated pulse quantum random number generators.

We offer to use OQRNG with a weak source of
light and the probability of photon generation or not
generation is the same. So that the state of one photon
can be calculated using (6).

The superposition of the photon can be written us-
ing the formula (7).

We take it from the first click and we do not care if
it is caused by one photon or many. For a coherent state
with a amplitude, the probability of finding a photon
can be calculated by (8).

The probability of finding one or more photons
can be calculated by (9).

After that we find o for which pr(n = 0) =
=pr(n>1).

The detector must have an effective average pho-
ton number ny T, where the efficiency is n. Von Neu-

mann extraction must be used not to have bias during
the operation. It must be mentioned, that the received bit
rate does not have a bias, but it is rather slow.

To improve efficiency, we suggest using a genera-
tor that generates more than one random bit after detect-
ing a photon. These types of generators are called pho-
ton counting quantum random number generators. The
results obtained will be divided into groups that have
equal probability. In this case, we can use a single de-
tector for data generation. We can take the time of arri-
val of photons as a quantum random variable. Success-
ful photon time can be divided into time flats, created
by a meter that works in parallel with the detector. The
given discovery time interval gives us a few bits per
discovery. In this process the events develop inde-
pendently, it is a Poissonian process [25].

To increase the frequency of random number gen-
eration, we suggest taking measurements in high-
dimensional quantum space, such as photon temporal
and spatial mode. By measuring the time of arrival of a
photon, we obtain random bits by detecting two events
in the time interval At. In the case of temporal mode, we
can get more than one random bit by detecting one pho-
ton. Using the spatial mode of the photon, we can assign
random numbers to the detector matrix in parallel.
When using this method, it is best to pay attention to
dead time, as this affects the speed of the detector coun-
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ter [26, 27]. The improved rate helps us to choose how
many bits to use from the counted number of photons
and get a high level of randomness.

The offered generator uses the aspects of Time of
arrival generators, as the authors of [30] mention its
speed is 128-Mb/s, which is rather low. In the paper, we
offer to use the properties of Photon Counting Quantum
Random Number Generators, which perform the num-
ber of bits in parallel. The authors of [31] illustrate that
in this case the speed can be improved up to 5 Gb/s.
Which is already a good result. Attenuated pulse Quan-
tum Random Number Generators give us the possibility
to use more affordable devices. We offer to use the
XOR operation between the received values, which al-
most does not affect the speed. Finally, the speed of our
generator will be up to 5 Gb/s.

We claim that we have created the QRNG, which
generates fast random numbers at a rather lower cost.
For the proof, we begin from the contrary.

Our claim is based on three assumptions:

1. Time of arrival generators are secure guantum
random number generators, which offer the random
seed.

2. Photon Counting Quantum Random Number
Generators can assign more than one bit during each
measurement.

3. Attenuated pulse Quantum Random Number
Generators are based on a simplified version of the pre-
vious methods that have fewer requirements for detec-
tors.

Let us say that the offered QRNG’s seed can be
predicted, but it can not be because it is based on time
of arrival generators, and based on the first assumption
the output is random. Let us say that our random num-
ber generator can assign only one bit per measurement
so it can not work in parallel mode. Therefore it will
work with a low speed. It can not be true, because it is
based on Photon Counting Quantum Random Number
Generators, and based on our assumption it can work in
parallel mode. Let us say that the offered QRNG needs
expensive hardware, but as it is based on the approaches
of Attenuated pulse Quantum Random Number Genera-
tors it has much fewer requirements for detectors. So it
contradicts the third assumption. All these proved that
the offered QRNG generates fast random numbers at a
rather lower cost.

Hybrid Semi Self-testing Method

True randomness is impossible only with classical
mechanics procedures, so we use cryptographic proto-
cols. Quantum random generators can be divided into
several categories according to the reliability of the de-
vice. We first discussed self-testing QRNG, which is not
device-dependent. The advantage of this type of QRNG

is the self-testing randomness feature. But, because the
QRNG of the self-test must show non-locality, its gen-
eration rate is usually very low. The second category is
device-independent quantum random number genera-
tors. It is designed with completely reliable devices and
can achieve high generation speeds if the device is
modeled correctly. Otherwise, when the device is con-
trolled by opponents, the result will not be accidental.

These two approaches have their pros and cons. In
a realistic implementation, it is more acceptable to take
certain features and use some intermediate certification
method. Combining practical, device-independent quan-
tum random number generators and self-testing QRNG,
we get a semi self-testing generator. In this case, we will
not be completely dependent on the devices. Device-
independent QRNG is characterized by high productivi-
ty and efficiency, while the self-testing QRNG has
greater security of certification randomness.

We offer a semi self-testing QRNG that combines
the acceptable features of self-testing and device-
independent QRNG.

We can use self-testing in the QRNG, which is de-
signed to work in a single-photon polarization superpo-
sition, which can be calculated by (10). It also can be
calculated by (11), if it is in an entangled state.

The quantum random number generator uses the
principles of path branching. Theoretically, detectors
can generate an ideal random bit because a photon has a
50 % probability that the beam will split and a 50 %
probability that the beam will reflect. This happens only
in theory because, in practice, there are always problems
with detectors, lasers, beam splitters, and their charac-
teristics depend to some extent on environmental condi-
tions as well. When a photon is on a beam splitter, prob-
lems can occur detector inefficiency, imbalance in the
splitting process, source imperfection, and multiple un-
known sources of correlation. There are device-specific
approaches to testing, but typically random use of the
program afterward and processing is done to correct the
uneven distribution of probability.

Polarizers let photons pass through with 50 %
probability. There is a testing phase in the device where
a complete tomography of the input state is performed
from a set of measurements to determine a 2 X 2 matrix
that describes a two-level photon system for one photon
or if we have a photon pair, an effective two-
dimensional Hilbert space. Based on the measurement

results, the generator determines H_, (pr), which is the
minimum possible entropy for the overall condition of
the user and listener, and pr is the worst of all possible

cases. The bits are then transferred to a random extrac-
tor, which generates a shorter, unbiased random string
for available entropy. This method protects us from at-
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tacks where the opponent can control the quantum state
from which we get the entropy.

Tomography offers entropy estimation in models
where errors are expected during implementation or
irregularities may occur during operation. We imply that
errors do not occur due to an unreliable manufacturer.
This model is presented in the self-testing QRNG,
where a quantum source of randomness is separated
from the technical noise using dimension witness.
Where WT can be calculated by (12).

We can use an alternative approach, where we ap-
ply the principle of uncertainty. This allows any oppo-
nent to access a limited amount of information. Our goal
is not just to generate random bits, but to make sure
these bits are confidential. For example, if we measure
the photon polarization in an entangled state on a hori-
zontal vertical base, we get absolutely random numbers,
but the opponent can learn the exact sequence because
he has access to the second half of the bits. Our se-
quence can be obtained from the same measurements
because the bits are just uniform and are not confiden-
tial.

For a good result we combine self-testing QRNG
with device independent quantum random number gen-
erators in order to get the self-testing generator. A de-
vice independent quantum random number generator is
designed with completely reliable devices and can
achieve high generation speeds if the device is modeled
correctly. Otherwise, when the device is controlled by
opponents, the result will not be accidental. That’s why
we use Bell inequalities, Clauser-Horne-Shimony-Holt
(CHSH) formulation.

We will study the correlation, by means of (13). In
order to evaluate the bell inequality, we will run the
process n times. After this, the final output string of n
must be defined. The estimator of CHSH is defined
by (14).

Conclusion and Future Plans

The offered hybrid quantum random number gen-
erator can be securely used in crypto algorithms. By
means of the generator it is possible to generate megabit
or gigabit rates rather efficiently. The offered generator
is based on the time of arrival of QRNG.

It is efficient, as it uses the simple version of the
detectors with rather few requirements. The hybrid
QRNG produces more than one random bits per photon
detection.

In this paper quantum ways of working with unre-
liable devices are explored. First self-testing method for
QRNG-s is analyzed, which is not device dependent, it
uses the properties of some quantum event to observe
the quality of the bits produced. Then device independ-
ent quantum random number generators are discussed,

they are based on the assumption that there are quantum
correlations that provide some statistical independence
unless reliable physical principles are incorrect. Based
on the described approaches the new quantum certifica-
tion method is offered.

This method is inspired by device independent
generators but uses less rigorous experimental tests of
various aspects of quantum theory, resulting in more
limited certification with more relaxed safety assump-
tions.

Combining practical, device independent quantum
random number generators and self-testing QRNG, we
got a semi self-testing generator. The generator can be
used both in classical and post-quantum crypto schemes.

The plans of the research are to check the results
on the real quantum random number generators. We
plan to use XOR operation, in order to combine the dif-
ferent approaches. Are plans are to integrate the hybrid
random number generator into the post-quantum digital
signature schemes.
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I'BPUIHUI KBAHTOBUI TEHEPATOP BUIIAJIKOBUX UACEJI
JJIA KPUIITOT'PA®TYHUX AJITOPUTMIB

M. Agiu, T. Kyuyxiose, I'. lawegini, C. ' namiox

IIpeamer crarTi — reHepaTopH ICEBIOBUIAKOBUX YHCeN. BHmajakoBi 4mcia BiAirparoTh BaKJIMBY pOJIb B
kpunrorpadii. Bukopructansas Hebe3MeUHNX reHepaTopiB MCEBIOBUIIAIKOBUX YHCENT JTy’Ke PO3MOBCIOHKEHA BPa3IIH-
BicThb. BumankoBi uncia Takox MaroTh (QpyHIaMEHTaIbHE 3HAYCHHsI IJIsl HAYKW 1 TeXHIKH. [CHYIOTH alropUTMidHO
3TeHepOBaHi YKcia, AKi CXOXKI Ha BUIAJKOBI PO3IOJICHHS, ajleé HacIpaB/li HE SBILSIFOTHCS BUIIAJIKOBUMM, TA Ha3M-
BAaIOTHCS] TEHEPATOPaMH TICEBIOBHUITAKOBHUX YHced. Y 0araTboX BHUIIAJKaxX BUPINTyBaHi 3a/1adi 0a3yl0ThCsS Ha HeETe-
pendadyBaHOCTI BHIIAJKOBHX YHCEN, [0 HE MOXe OyTH TapaHTOBAHO Yy BUIAJKY T€HEpaTOPiB ICEBJOBHUIAJAKOBUX
YHCe, /I BUMAra€ThCsl iCTHHHA BUITAJIKOBICTh. Y TaKUX CHUTYaIliTX MH BUKOPHCTOBYEMO CIIPABXKHI T€HEPAaTOPH BU-
MaJIKOBHUX YHUCEJ, [PKEPEJIOM BHIAIKOBOCTI SKHX € HerependadyBaHi BUMaaAkoBi noxii. KBaHTOBI reHepaTopu Bumna-
nxosux gnced (QRNG) reHepyroTs peanbHi BUIIAAKOBI YHCIIa HA OCHOBI IPUTAaMaHHOI KBAaHTOBUM BHMipaM BHITAJ-
KOBOCTi. MeTa AOCHiIKEHHsI - PO3pOOUTH MaTeMaTHYHy MOJIeTh T€HEPaTopa, sIKa TeHepy€e MIBUIKI BUTIAIKOBI YrcIa
3 HAWMCHIITMMH BUTpaTaMH. Y TOH ke Yac, Ty)Ke BaXKJIMBHU BUCOKHU PIBEHb BUIAJKOBOCTI. 3a JOMOMOTOI0 KBAaHTO-
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BOT MEXaHIKM MM MOKEMO OTPUMATH iCTUHHI YMCJIa, BAKOPUCTOBYIOUN HerepeadadyBaHy NOBEAiHKY (GoToHA, KUt
SIBIISIETBCS. OCHOBOIO 0araThOX CYYacHHX KPHUNTOrpadidHUX MPOTOKOMIB. [[yke BaKiIMBO HOBIpATH KpunTorpadid-
HUM TeHepaTopaM BUIAIKOBUX YHCEN Ui OTPHMAHHS TUTBKM ICTHHHHUX BHMAAKOBUX drced. Ock YoMy HEOoOXimHi
MeTonu cepTudikarii, siki OyayTh NepeBipiaTH K poOOTy MPHUCTPOIO, TAK 1 AKICTh TEHEPOBAHUX BUIAJAKOBUX OITiB.
MeTo10 TOCTIHKEHHS TaKOXK € PO3poOKa MOIEIl HOBOTO METOY HalliBaBTOMATHYHOI CepTU(IKAII] 11 TeHepaTopiB
kBaHTOBHX BHmankoBux uncen (QRNG). BupimyBani 3aBIaHHsl TONATalOTh y CTBOPEHHI MaTEeMaTHYHOI MOJEINI
reHepaTopa BHIAJKOBUX YWCEN, SIKMH TeHepye IIBUAKI BUIAAKOBI 4YKcia 3 HaMEHIIMMH BUTpaTamu. CTBOPHTH
MaTeMaTu4Hy MOEJIb HOBOTO METoay cepTH(iKalil HalmiBcaMOTECTyBaHHS Uil TeHEPAaTOPiB KBAHTOBUX BHIAIKO-
BUX YHCEJ. |HTerpyBaTH HOBHMH METOJ HANiBaBTOMAaTHYHOI cepTU(]iKalii y HOBHH T€HepaTop BUMAJAKOBHX YHCEIL.
MeToau — 11e MaTeMaTHYHa ONTUMI3allisl Ta MOJEIIOBaHHA. by oTpuMaHi HACTYIHI pe3yJIbTaTH: MH IPEICTABIIA-
€MO BJIOCKOHAJICHHI HOBUI KBaHTOBHI I'€HEpaTop BHUIIAJKOBHX YHCElN, KU 0a3yeThcs Ha yaci npuodytTst QRNG. B
CTaTTi MPONOHYETHCS MOJETh HOBOTO HAIIBCAMOTECTYIOUOTO METOAY CepTHdIKaIil Aisi TeHepaTopiB KBaHTOBUX
BumnaakoBux gucen (QRNG). Lleit meTon moenHye B coli pi3Hi THITN MiAXOAIB K0 cepTHdikamii, € JOCTaTHRO Oe3me-
yHuM Ta epexTuBHUM. HoBuit Meron ceprudikanii O6yB iHTerpoBaHHII B MOJIENIb HOBOI'O KBaHTOBOT'O I'eHeparopa
BUIAJIKOBUX unces. BucHoBkH. HaykoBa HOBHM3HA OTPUMAHHX PE3YJIbTATiB MOJSATa€ B HACTYMHOMY: 1. 3ampomnoHo-
BaHWI1 HOBII KBAaHTOBHI T€HEPATOP BUIAIKOBHX YHCEI, KUt 0azyeTscs Ha gaci mpuOyTTst QRNG. Bin Bukopucro-
BYE CIPOIIEHY BEPCIIO AeTEKTOPIB 3 HeBeauKiMu BuMoramu. Hosuit QRNG Bupo0OI1si€ O61ibIe 0THOTO BUIIaIKOBOTO
Oita Ipy KO)KHOMY BHsIBJICHHI (oTOHA. BiH 10oCTaTHRO €)EeKTUBHHI Ta Ma€ BUCOKHH piBeHb BHIAAKOBOCTI. 2. [Ipo-
TIOHYETHCS HOBHH MeTOZ cepTH(ikarii HamiBcaMOTECTYBAaHHS JUIS T'€HEpaTopiB KBAHTOBUX BHUITAIKOBUX YHCEIN
(QRNG). AHami3yl0ThCsI METOIM CaMOTECTYBaHHS, a TAKOXK METOJM T'eHepallii KBaHTOBHX BHITIAJKOBHX UHCEII, SIKi
HE 3aJieXarh BiJl NPUCTPor0. BusiBieH] mepeBaru Ta HemoONiKM 000X MeToniB. Ha OCHOBI OTpHUMaHHX pe3yJbTaTiB
MIPOTIOHY€EThCs HOBHH MeTof. 3. HoBuit MeTos HamiBcaMoTeCTyBaHHS I KBAHTOBUX F€HEPATOPIB BUIAIKOBHX UH-
cell IHTerpoBaHMi B 3alPONIOHOBAHY MOJIENIb KBAHTOBOTO I'€HEpAaTOpa BHIIAJKOBHX 4YHced. B craTTi aHamisyeThcs
Horo Oe3Mne4HiCTh Ta ePEeKTUBHICTh. B CcTaTTI MPOMOHYETHCS BUKOPUCTOBYBATH HOBHI I€HEPATOP BUIAIKOBUX YH-
cell B KPUITOCXEMaX.

KarouoBsi ciioBa: xpunrorpadis; KBaHTOBAa; KBAHTOBa KPUITOTpadisl; TeHEpaToOp BHIAIKOBHX YHCEN; KBAHTO-
BUIl TeHEpaTop BUIAKOBUX YMCEN; HOBHH KBAaHTOBUII T'€HEpaTOp BUIAJKOBUX YUCENT; cepTU(IKallis; HOBUHA METOA
ceprudikarii.

T'MBPUIHBIN KBAHTOBBIIA TEHEPATOP CJIYYAWHBIX YACE.T
JIUISI KPUIITOIPAOUYECKHUX AJITOPUTMOB

M. Hsuu, T. Kyuyxuoze, I. Haweunu, C. ' namiok

IIpeaMeT cTaThU - TeHEPATOPHI NICEBIOCTYIalHBIX yHcen. CiydaifHble YHcIa UTPal0T BaXKHYIO POJIb B KPHII-
torpaguu. Mcnons3oBaHne HeOE30MAaCHBIX I'€HEPATOPOB ICEBIOCTYYalHBIX YHCENI OUYEHb PACIpPOCTPaHEHHAs ys3-
BUMOCTBb. DTO TakXke sBIseTCs (yHIaMEHTAIbHBIM PECypcoM B HayKe M TexHHMKE. CyIIECTBYIOT aJlTOPUTMHUYECKH
CTeHEPHUPOBAHHBIE YUCIIA, KOTOPBIE MOXO0KU Ha CIlydallHbIE PACIpPENENIEHUs], HO HA CaMOM [IENle He SIBISIOTCS CIIy-
YailHBIMU, U HA3bIBAIOTCS T€HEPATOPaMU IICEBIOCIIYYalHbIX uucesl. Bo MHOTHX cilydasx peluacMble 3a1a4yl OCHOBA-
HBI Ha HEMPEICKA3yeMOCTH CIIyYaiHBIX YHCEN, YTO HE MOXKET OBITh rapaHTHPOBAHO B CIIydae T€HEPaTOPOB IICEBIO-
CIly4alHBIX YUCEJN, JUIS 3TOr0 TpeOyeTcs UCTHHHAs CITy4alHOCTh. B Takmx cuTyanmsx MbI MCIOJIb3YeM HACTOSIIHE
TeHepaTOphl CIyYalHBIX YUCEN, HCTOYHUKOM CIy4aifHOCTH KOTOPBIX SBJISIOTCS HEIpeAcKa3yeMble ClydaifHble co-
oniTusi. KBaHTOBBIC TeHepaTophl ciydaiHbix unced (QRNG) reHepupyroT peanbHble ClydaliHbIe YHCIIa Ha OCHOBE
NIPUCYIEH KBaHTOBBIM M3MepeHusiM ciydaiiHoct. Lleab coctouT B TOM, 4TOOBI pa3paboTaTb MaTeMaTHYECKYIO
MOJIeNb TeHepaTopa, KOTOPBIH TeHepUpyeT OBICTPHIC CITyJaifHbIE YMClIa ¢ HANMEHBIIUMH 3aTpaTaMu. B To ke Bpems
BaXXCH BBICOKUH ypOBeHb cirydaifHOCTH. C IOMOIIBI0 KBAaHTOBOM MEXaHMKH MBI MOYKEM ITOJIyIUTh HCTHHHBIC YHCTIA,
UCTIONB3Ysl HETpecKa3yeMoe MoBeJeHre (OoToHa, KOTOpPOe SIBISETCS OCHOBOW MHOTHX COBPEMEHHBIX KPHIITOTpa-
(ryecKuX MPOTOKONOB. BakHO JOBEpsATH KpUNTOrpaduuecKuM reHeparopaM CIIydaiHBIX 4HCeN JJIsI TeHepaluu
TOJIKO MCTHHHBIX CIIy49aiHBIX Yucel. BoT modemy HEOOXOOMMBI METOMBI cepTU(HUKAINH, KOTOpbIe OyIyT MpoBe-
PATH Kak paboTy yCTpOMCTBa, TaK W Ka4eCTBO IT'€HEPHPYEMBIX CilydalHbIX OUTOB. LlesIbIo HcciieoBaHusl TaKxKe sB-
nsietcst pa3paboTKa MOJENM HOBOTO METOZAA IMOJIyaBTOMATHYECKOW CepTH(UKAIWHU JUIS TeHEPaTOPOB KBAaHTOBBIX
ciayqaitapix gucen (QRNG). Pernraemble 3amaun 3aKkiIi04aloTCs B CO3JaHUM MaTeMaTHYECKOW MOJENN TeHepaTtopa
CITydalHBIX YHCeN, KOTOPHIA TeHepupyeT OBICTpBIC CydaiHbIe YHCIa ¢ HAMMEHBIINMH 3aTpaTtamu. Co3laTh MaTe-
MaTHYECKYl0 MOJIENIb HOBOTO METO/a CepTH(UKAIMU MOJyCaMOTECTUPOBAHUS ISl T€HEPAaTOPOB KBAaHTOBBIX CIIy-
JaHBIX Ynces. MHTerpupoBaTh HOBBIH METOJ ITOyaBTOMAaTHYECKOW cepTU(UKALMU B HOBBIM TeHEpaTop Cirydai-
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HBIX uyMcel. Vcrmosb3yemble METOIBI — 3TO MaTeMaTH4ecKas ONTHMH3alus U MOAEIMpOBaHUE. Bbuin mosydeHsl
CIIEAYIONINE PE3YNbTAaThl: MBI NPEICTABIISIEM YCOBEPIICHCTBOBAHHBIM HOBBIM KBAHTOBBIH I'€HEPATOp CITyYalHBIX
grcen, KoTopeiid ocHoBaH Ha QRNG 1o Bpemenn npuObITHsA. B craThe mpemaraeTcs MOJels HOBOTO METO/a cep-
TU(QUKALNH OIYCaMOTECTUPOBAHUS 1JIsl TEHEPATOPOB KBAHTOBBIX ciryyaiHbIX yncen (QRNG). Otot meron couera-
eT B cebe pa3Hble TUIBI TIOAXO00B K CePTU(HUKAIINH, SBISCTCS TOCTATOYHO Oe30macHbIM u 3¢ dexTinBHEIM. Hakoretr,
HOBBIA METOZ CepTU(UKANNN MHTETPUPOBAH B MOJEIh HOBOTO KBAHTOBOTO T€HEPATOPA CIyYalHBIX 4Kces. BbiBo-
apl. Hay4yHass HOBU3HA MOJIYYEHHBIX Pe3yJbTaToOB 3akirouaercs B cienyromem: 1. IIpeanoxkeH HOBBIA KBaHTOBBII
TeHepaTop CiIydYaiHbIX YHCell, OCHOBAaHHBIH Ha BpeMeHH npuobTHsi QRNG. OH ucnoib3yeT ynpouieHHYIO BEPCHI0
IeTeKTOpoB ¢ HeOompmmmu TpeboBanmsMu. Hosrerit QRNG mpousBoauT 6oiee 0HOTO CIyYaliHOTO OMTa TP Kax-
oM obOHapykeHnH (potoHa. OH HOCTaTOYHO FPPEKTHBEH U UMEET BBICOKHI YpOBeHb ciydaitHocTu. 2. [Ipeanmaraer-
sl HOBBIM METO/ cepTH(UKAIMN TOJIyCaMOTECTUPOBAHMS JJIsl TEHEPAaTOPOB KBAaHTOBBIX ciaydaitHeix yucen (QRNG).
AHAJIM3UPYIOTCSl MEeTO/IbI CAMOTECTHPOBAHNS, a TAK)KE METOMBI TeHEPALM KBAaHTOBBIX CIyYailHBIX UYHCEN, HE 3a-
BHUCSIIIINIE OT YCTPOHCTBA. BBIABIEHBI JOCTOMHCTBA M HEAOCTATKH 000MX MeTO0B. Ha OCHOBaHMH MOIyYEHHBIX pe-
3yJIBTAaTOB HpeiaraeTcss HOBBIM MeToa. 3. HOBBIM MeToJ moiycaMOTECTUPOBAHUS Ul KBAaHTOBBIX T'€HEPATOPOB
CIIy4alHBIX YKCEN WHTEIPHPOBAH B Mpe/UlaracMyr0 MOJIeNIb KBAaHTOBOTO I'€HEpaTopa CiydalHBIX 4yucel. B crarbe
aHanu3upyercst 6e3omacHOCTh M 3(h(HeKTUBHOCTH. B cTaThe mpemnaraeTcs NCIOIB30BaTh HOBBII T€HEPATOp CIIydaii-
HbIX YHCECJI B KPUIITOCXEMAX.

KaioueBble cioBa: kpunrorpadus; KBaHTOBAas; KBaHTOBAas KpHUITOrpadus; reHepaTrop CIydailHBIX YHCEl;
KBaHTOBBII T€HEPATOP CIIyYaiHBIX YMCEN; HOBBIM KBAHTOBBIN T€HEPATOpP CIyYaHBIX YHCEN; cepTU(HHUKANNS; HOBBII
METOJI CepTU(HUKAIHH.

SABuy MakcuM — O-p HayK, Ipod., pyKOBOIUTEIh HAMIPpaBIeHNU KuOepOe3omacHocTH, KaBka3ckuil yHUBEpCH-
tet, TOunucu, I'py3ust.

Kyuyxunze Tamap — kaH. TexXH. HayK, JJOKTOPaHT, [ py3HMHCKUI TeXHUUecKHi yHUBepcuteT, Towtncu, ['py-
3Usl.

HNamBusn I'nopruii — nextop, uccienosarens, KaBkaszckuii yausepcuteT, Tounucu, ['py3us.

I'natiok Cepreii — raBHbIi uccnenosatesis R&D Lab; n-p Hayk, npod., mpod. kad. 6e3omacHoCTH UHPOP-
MalLMOHHBIX TeXHOJOrui, HanmonaneHelil aBualinoHHbI yHUBEepcuTeT, Kue, Ykpauna.

Maksim lavich — D.Sc., Professor, head of cyber security direction, Caucasus University, Thilisi, Georgia,
e-mail: miavich@cu.edu.ge, ORCID: 0000-0002-3109-7971.

Tamari Kuchukhidze — PhD candidate, Georgian technical university, Thilisi, Georgia,
e-mail: tamari.kuchukhidze@gmail.com, ORCID: 0000-0003-1997-465X.

Giorgi lashvili — Lecturer, researcher, Caucasus university, Thilisi, Georgia,
e-mail: giiashvili@cu.edu.ge, ORCID: 0000-0002-1855-2669.

Sergiy Gnatyuk — Lead Researcher in Cybersecurity R&D Lab; Doctor of Sciences (Cybersecurity), Professor
in IT-Security Academic Dept at National Aviation University, Kyiv, Ukraine,
e-mail: s.gnatyuk@nau.edu.ua, ORCID: 0000-0003-4992-0564.



