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APPLICATION OF DYNAMIC PROGRAMMING APPROACH
TO COMPUTATION OF ATOMIC FUNCTIONS

The special class of atomic functions is considered. The atomic function is a solution with compact support of
linear differential functional equation with constant coefficients and linear transformations of the argument.
The functions considered are used in discrete atomic compression (DAC) of digital images. The algorithm
DAC is lossy and provides better compression than JPEG, which is de facto a standard for compression of dig-
ital photos, with the same quality of the result. Application of high precision values of atomic functions can
improve the efficiency of DAC, as well as provide the development of new technologies for data processing and
analysis. This paper aims to develop a low complexity algorithm for computing precise values of the atomic
functions considered. Precise values of atomic functions at the point of dense grids are the subject matter of
this paper. Formulas of V. O. Rvachev and their generalizations are used. Direct application of them to the
computation of atomic functions on dense grids leads to multiple calculations of a great humber of similar ex-
pressions that should be reduced. In this research, the reduction required is provided. The goal is to develop
an algorithm based on V. O. Rvachev’s formulas and their generalizations. The following tasks are solved: to
convert these formulas to reduce the number of arithmetic operations and to develop a verification procedure
that can be used to check results. In the current research, methods of atomic function theory and dynamic pro-
gramming algorithms development principles are applied. A numerical scheme for computation of atomic
functions at the points of the grid with the step, which is less than each predetermined positive real number, is
obtained and a dynamic algorithm based on it is developed. Also, a verification procedure, which is based on
the properties of atomic functions, is introduced. The following results are obtained: 1) the algorithm devel-
oped provides faster computation than direct application of the corresponding formulas; 2) the algorithm pro-
posed provides precise computation of atomic functions values; 3) procedure of verification has linear com-
plexity in the number of values to be checked. Moreover, the algorithms proposed are implemented using Py-
thon programming language and a set of tables of atomic functions values are obtained. Conclusions: results
of this research are expected to improve existing data processing technologies based on atomic functions, es-
pecially the algorithm DAC, and accelerate the development of new ones.

Keywords: atomic functions; up-function; dynamic programming; verification; discrete atomic compression.

polynomials, as well as splines. At that time, the theory
of atomic functions was developed taking into account

Introduction

The rapid development of computational technolo-
gies provides the possibility to solve different tasks of
such branches, as data processing and artificial intelli-
gence. At the same time, it has led to a set of new prob-
lems concerning big data, as well as challenges due to
cybercrime. Therefore, the development and implemen-
tation of new technologies for solving these problems
are relevant. For this purpose, different approaches, in
particular, the application of non-classic mathematical
tools can be used.

In the 1970-s, V. O. Rvachev and V. L. Rvachev
introduced atomic function theory [1]. Various features
of these functions including approximation properties
were studied in [2 — 4]. A function is called atomic if it
is a compactly supported solution of linear functional
differential equation with constant coefficients and
linear transformations of the argument [4]. Atomic
functions were designed to eliminate limitations of such
classic constructive tools, as trigonometric and algebraic

the rather low computational capabilities. A set of
fundamental results, which were obtained by
V. O. Rvachev and representatives of his scientific
school, provided the successful application of atomic
functions to different processes and phenomena
modeling [5, 6], as well as lossy compression of digital
images [7, 8]. Also, it was shown in [9, 10] that lossless
and near-lossless image compression can be obtained.
A combination of convenient properties makes it
promising to apply atomic functions to the development
of high-performance data analysis and processing
algorithms.

This paper is devoted to atomic functions compu-
tation issue. We consider the functions

ups (x) = i .[ eitXH (2s) dt,
2Tkt g2 sin( L j
(25)% (25)%

wheres=1,2,3, ....
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For the cases=1, upg(x)

function of V. O. Rvachev [4]. For the case s> 2, these
functions were presented by V. O. Rvachev and
G. O. Starets [11]. In [7, 8], V. V. Lukin, I. V. Brysina
and V. O. Makarichev introduced and investigated effi-
ciency of discrete atomic compression (DAC) that is
image compression algorithm based on application of
atomic functions upg(x). A combination of such fea-

tures of these functions as smoothness, finiteness and
good approximation properties [4, 12] provides an ad-
vantage of the algorithm DAC over analogues, in par-
ticular, JPEG that is de facto a standard for compression
of digital photos.

In the current research, we solve the problem of
ups (x) computation and verification of the results. The

aim of this paper is to develop an algorithm, which has
low complexity and provides computation of upg(x) at
the points of grid with a step that is less than any prede-
termined small number. In future, it will improve the
algorithm DAC and make it easier to apply atomic func-
tions upg ().

The paper structure is the following. Section 1 dis-
cusses existing methods of upg(x) computation. Sec-
tions 2 and 3 describe atomic function computation al-
gorithm based on dynamic programming principle and
rules of the verification. Numerical experiments are
discusses in sections 4 and 5. The last section concludes
research and describes future steps.

is well-known up-

1. Formulation of the problem

Consider the case s=1. We get the function
; -k
2n 0 k=1 tz_k
which is a solution with a compact support of the equa-
tion
y'(X) =2y(2x+1) —2y(2x 1) .

Graph of this function and its derivative are shown in
Fig.1.

Development of atomic functions theory started in
1971 from the research of up(x). Further, other atomic
functions were constructed and investigated.

To compute values of up-function, V. O. Rvachev
obtained the following series [3]:

up(x—-1) = 3" (-1)%*p, x
k=1

K 2112 bk,jfl (x-0, pl...pk)j (1)

x . .
i 20 DR=D2 (1)1

where (0,p;...pi) is binary form of x and

K 1
Sk = Pj, by =1, by =jxkup(x)dx.
i3 0
Fast convergence of the series (1) is provided by
the following estimate of the remainder R, (X) :
C

IRa(X) I on(0-D72+ 200172117210 (1 gy,

where C is some positive constant and [z] is an integer
part of the number z.

P— up(x) 2—up' (x){

Fig. 1. Graphs of the function up(x) and its derivative:
similarity of the function and its derivative can be seen

Using (1), values of atomic function up(x) can be
calculated with any predetermined accuracy. Neverthe-
less, computational errors tend to accumulate and impair
results. Hence, possibility to minimize errors is desired.
For instance, in lossy image compression algorithms,
quantization procedure and arithmetic errors, which are
obtained due to application of some discrete data trans-
form, provide loss of quality. Efficiency of such algo-
rithms can be improved by usage of more accurate val-
ues of mathematical functions applied. So, it is reasona-
ble to consider another approach to computation of
atomic functions.

In [3], V. A. Rvachev obtained the following for-
mulas:

TR IO S
P on _n!zn(n—l)/Z 5 J

[n/2] n 1 n-2i .
K—j+= 272 2
ZO(ZJ( J+2) 2 d @

2n+l

where n is positive integer, k=0,1,.. , coefficients

{85} satisfies recursive formulas:
6]_ Z:L 82i—l =6i, 62i+l :—8i for k =12,...,
and, finally,

l .
Hoi = [ xPup(x)ax.
-1



38

Radioelectronic and Computer Systems, 2021, no. 4(100)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Moments p,; of the function up(x) satisfy

1 (20 gk
—_ =< 3
22 _1£[2kj 2k +1 ®)

Mo =1 ppi =

fori=12,...

It follows from (2) in combination with (3) that
up(x) can be computed precisely at the points of grid
with a step, which is less than any predetermined small
number (for this purpose, n should be chosen large
enough).

Formulas (2), (3) were generalized by G. Starets
for atomic functions ups(x), s=2,3,4,....

Let Xgpj=-1+ ,j=01...(25)™. In [13]

J
s(2s)"
and further in [14], the following expressions were ob-
tained:
2n+1

i
ups (Xs,n,j) = WESSJJ x

/2l _ o
<2 (ij<21—2p+1)“‘ b (4)
k=0

where pgo =1 and for any positive integer p the fol-
lowing recursive formulas hold:

1 P {ij Hs 2p—2k

Hs.2p = 2 X
=L
S
<" (2i -1 (5)
i=1

Also, coefficients {83’1-} can be found recursively:
85,i =1, 83,3+i =-1 for i=1,...,S, (6)
6s,25(p—1)+j = 6s,p 'Ss,j O

foreach i=2,3,...,n, p:2,3,...,(25)i_l and j=1,..,2s.

Some reduction of computation complexity is pro-
vided by properties of upg(x) [13 — 15]. This implies
that each of these functions is even. Therefore,

upg (Xs,n,j ) =Ups (_XSJ"J ) =

~ (25)n+1_j ~
= up; (_HW _Ups(xs,n,(zs)”*l—j)' (8)

Furthermore,

k
Ups(Xs,n,k(Zs)”+j):E+Up5(xsln'j) ©)

forany k=0,1,...s-1and j=0,1,...,(25)" .
Whence, to obtain values of the function upg(x) at

the points Xs ; for any j=0,1,...,(25)”+1, it is suffi-

cient to apply (4) — (7) just for j=0,1,...,(25)"; and

then values of upg(x) can be found at all other points
Xs,n,j using (8), (9),
Denote by X, the set of points
{snj =01, (29"}

It can be easily shown that if we apply formulas
(4) — (7) directly for any point x of the set X ,, we get

an algorithm with lower complexity estimate of
2, 2
O(|Xs,n| IOng |Xs,n D )

where | X | is number of elements of this set. Besides,

(10)

calculation of similar or even identical expressions is
present. Hence, the direct application considered is un-
reasonable.

To get complexity reduction, dynamic program-
ming approach can be applied. Its main idea can be de-
scribed as follows [16]: if process of some problem
solving contains many identical subproblems, then
complexity can be reduced by storing their solutions in
memory to avoid solving them multiple times. It is this
approach that can be applied to development of ups-

values computation algorithm with complexity, which is
less than (10).

The main task of this paper is to develop algo-
rithm for computation of values of the function up(x)

on the set X, using dynamic programming princi-

ples. We construct verification rules and illustrate re-
sults of checking as well.

2. Dynamic algorithm for computation
of atomic functions ups(x)

In this subsection, we develop atomic functions
ups(X) computation algorithm based on dynamic pro-
gramming approach. For this purpose, we suggest appli-
cation of formulas (4) — (7) in combination with some
modifications.

Let s be fixed positive integer. Also, we consider
the case n = 2m, where m = 1, 2, ... . We stress that the
following approach also can be extended for the case
n=2m-1.

First, it follows from (4) that computation of

ups(Xs2m,j) requires values {Ss,p} and {Ms,zk}- Hence,

these values should be calculated before computation of
ups-values and stored in arrays. Moreover, in both for-

k
mulas (4) and (5), a set of binomial coefficients [J is

used. So, it is reasonable to obtain them before the
whole computation process in order to reduce computa-
tion complexity. To calculate binomial coefficients re-
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quired, one can apply dynamic programming algorithm,
which is based on the following well-known formulas:

k k k k-1 k-1
ol (5 e
0 k j j—1 j
Second, consider recursive formula (5). Here, we

S
see that sums S, (k) = (2i ~1)2** are used. It is
i=1
suggested to compute them and after that to obtain val-
ues g ok -
Now, we modify formula (4) in order to decrease a
number of operations.
If we put n = 2m, we get

Zss,p x

- (Zm) !(25)(2m+1)(m+1) o1

S (2™ (9i _9p 4 1y2(M—K)
2| oy |@i=20+ DT g
k=0

If we apply the change of index q = m — k, we ob-
tain

ups (XS,Zm,j)

22m+1

ups (Xs,Zm,j):

j
O X

D (2m) _. 2
X ok (2]=2p+) ™ ps om_oq -
g=0

Here, we note that the identity

2m 3 2m
2m-2q) | 2q
is applied as well.

This implies that
22m+1

UPs (XS,Zm,j) = (Zm)!(zs)(2m+l)(m+l) x

M (2m )
Xz Syp(20, 1) Hsom—2q »  (12)
q:() 2q

where

j
Sup (r,))= 2(21—2p+1)r Bsp -
p:
Further, for the case j > 1 we get
-1
Sup(r. ) = Z(Zj—2p+l)r B p+0sj=
p=1
i1 ;
=2 ((2(-D—-2p+1)+2) -85, +38 j =
p=1
" (r
i

-1 . .
= ZSS’pZ( Jz“ ((j-)-2p+1)" +355 =
p=1 i=0

r 1 .
- ;}mz“ S 8 p (21— 2p+1)' +5 =

i p=1

r r N
= 218, (i, j-1) +8 ; .
.:Zc:)(') up( -+ S, j
So,
o Nardie
Sup(r,n=2[ij2r 'Sup (-0 +35;  (13)
i=0
foranyr=0,1,...,2m and j=2,3, ..., (2s)’™
Since 857 =1 (see (6)), we get
Sup(r,l) =1 (14)

foreachr=0,1, ..., 2m.
Whence, a numerical scheme for computation of
ups(Xs2m,j) is

1) compute and store binomial coefficients (;j
((11) can be applied for this purpose);
2) compute moments i 5 of the function ups(x):
2.1) calculate sums Su(k) :
2.2) calculate pg oy , using (5);
3) compute coefficients 85,]- , using (6), (7);

4) compute values ups(Xs2m;):
4.1) calculate sums Syy(r, j), using (13), (14);
4.2) calculate ups(Xs2m,), using (12).
In more detail, dynamic algorithm for computa-
tion of values of the function ups(x) on the set Xs2m can
be represented as follows:

a
1) compute [b] for any a = 0, 1, ..., 2m and

b=0,1,...,a:
1.1) foreacha=0, 1, ...,2m

a a
HEN
1.2)foranyb=1,2,...,2mand a=b+1,...,2m
a a-1 a-1
D)
2) compute pg o forp=0,1, ..., m:

2.1) foreachk=1, 2,

8,00 =Y, @i~
i=1

..., m calculate

2.2) psp =1;
23)foranyp=1,2,...,m
1 .(2p) Hs2p-2k
= P— -S, (K);
Hs 2p (ij 2k +1 n(k)

2
s ((23)2p —1) k=1
3) calculate 8 j foranyj=0,1, ..., (2s)>™:

3.1) foreachi=1,...,s
8s,,i =1, 6s,s+i =-1;
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32)foranyi=2,3,...,2m, p=2,3, ..., 2s)"
andj=1,2,...,2s
0s,25(p-1)+j = Os,p *Os,j s
4) for each j = 0, 1, ..., (25)>™ compute values
UPs(Xs.2m,):
4.1) foranyr=0,1,...2mandj=0, 1,..., (25)>"
compute Su(r, J):
4.1.1) Syp(r, 1) =1 foreachr=0, 1, ..., 2m;
4.12) for any j = 2, 3,..., (25)®™ and any
r=0,1,...,2m
r
Supr. D) = Z[[jzf"supa,j—lwss,,-;
i=0
4.2) ups(Xs,2mo) = 0;
4.3) compute the constant
22m+1

Cs,m

- (Zm)!(zs)(2m+1)(m+l) 7
4.4)foreachj=1,2, ..., (2s)>"

m . 2m )
Ups (Xs,Zm,j) =Csm Z ( 2 ]'Sup (29, J)‘Hs,Zm—Zq :
g=0

The proposed algorithm provides computation of
values of the function ups(x) at the points of grid with

h he g =———
the step hg 5297
s this step quickly converges to 0 as m—oo. This
means that by fixing an appropriate value of m one can
get hsm, Which is less than any predetermined positive
real number.

In other words, values of atomic function ups(x)
can be obtained on an arbitrarily dense grid. Moreover,
these values can be computed precisely.

Finally, it follows that complexity T(s, m) of the
proposed algorithm can be expressed as follows:

T@mn:o@ﬂ%%fmy

. It is obvious that for any fixed

since |Xs om| = (25)°™ +1, we get

T(s,m) = O(|Xs,2m | : IOg%s |Xs,2m |) . (15)

It is clear that for any s the function T(s, m) grows
exponentially. However, the step hsm of the grid Xsom
decreases exponentially. This means that if m is too
large, then X;.m is too thick, which is rarely required.

Comparing (10) with (15), we conclude that the
algorithm, which is developed above, has much less
time complexity. In other words, the proposed algorithm
provides faster computation of ups-function values.
Nevertheless, it is clear that such acceleration requires
additional memory expenses, especially, for storing of
sums Syp(r, j).

This feature is common for algorithms that are de-
veloped using dynamic programming principles.

3. Verification of the algorithm

The algorithm proposed in the previous subsection
provides computation of atomic function ups(x) at the
points of the fixed grid. Its output is an array of values
of this function. Numerous features of ups(x) can be
applied to verify the results obtained. Here, we consider
the most appropriate one. An approach to verification is
based on specifying algorithm invariants simi-
lar to [19, 20].

V. O. Rvachev proved the following [3]:

o0

> up(x—k)=1.
k=—c0
Further, this identity was generalized in [11]:
> ups(x—k)=1,5=123,....
k=—o0
In other words, sum of shifts of ups-function with
the step 1 equals 1 (see Figures 2 and 3).

Now, we apply (16) to obtain verification rule.
Since upg(x) =0 forany x ¢ (-1,1), we get

(16)

ups (X) +ups (x+1) =1 a7
forany x e[-1,0].
. . j
Consider the point x i =-1+————, where
s.am] 5(25)%™
j=0,1,...,(25)°™. We get
] ups (x) is
ups ( X +1)=u = =
Ps ( 5,2n,j ) Ps (S(ZS)Zm ] even

. m -
s(2s)°™ s(2s)°™

. [—1+ (s-1)(25)*™ +(25)°™ - j] _

5(25)%™
_ 2m _ ) (9) o_
= Upg 1+ E + L = E +
s 5(25)°™M s

(25" —j} s-1

+Upq [—1+ 5(25)2”‘ S +ups(x5’2m'(25)2m_j).

Hence,

s—1
ups (Xs,2n,j +1) P (XS,Zm,(Zs)zm—j) '

Combining this with (17), we obtain

S
ups (Xs,Zm,j ) + T +UpPs (Xs,Zm,(ZS)Zm*J' ) =1

that provides the following:

(Ups (Xs,2m,j)+Ups (Xs,Zm,(Zs)zm—j ))'521 (18)

forany j=0,1,...,(25)°".
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X
-1 0 1 2
—up(x+2)  —up(x+1) — up(x) — up(x-1) —up(x-2)
Fig. 2. Graphs of up(x) and its shifts
YA 1
| | \ |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | X
-2 -1 0 ] 2
— up (x+2) —up,(x+1) —up(x) — up,(x-1) — up,(x-2)

Fig. 3. Graphs of upz(x) and its shifts

To verify all values ups(xs,Zm’j), we suggest to

apply maximum absolute deviation (MAD):

MAD = max ‘(upS (Xs,zm,j)+

j=01,...,(25)2™

+Upg (Xs,2m,(25)2m—j )) -S —1‘.

Notice that this metric is very sensitive to any mi-
nor errors. If it is equal or close to 0, then validation can
be considered successful.

Complexity of the MAD-metric computation is
linear over the number of values to be checked. Moreo-
ver, this procedure can be reduced, since each term ex-

cept j=(23)2m /2 is considered twice. So, maximum

should be evaluated over j=0,1,..., (23)2m /2.

4. Numerical experiments

In the current research, we’ve implement the algo-
rithm, which was proposed above, using Python 3.9
(https://www.python.org). It provides long arithmetic,
contains rational fractions manipulation tools and is
freely usable. We’ve applied built-in type float for float-
ing point values of ups(x), as well as Fraction from the
fractions module for precise values of these functions.

Using the software developed, we’ve obtained sets
of values of ups(x) on Xsom for parameters that are pre-

sented in Table 1. Files with floating point and fraction-
al values are available at the link to Google Drive:
https://drive.google.com/drive/folders/ImgM4uKRIKG
5cjPRgbRfX_hZSAOIuKvQY ?usp=sharing.

Also, we’ve compared floating point values of
ups(Xs2m;) with the corresponding fractional ones. In
Table 2, results of comparison are shown. Here, we note
that maximum absolute deviation of floating point val-
ues from fractional ones is applied as a metric of differ-
ence.

Table 1
Parameters of the values obtained

S m step of the grid X om

1 8 1,52588E-05

2 4 7,62939E-06

4 3 9,53674E-07

8 2 1,90735E-06

16 2 5,96046E-08

32 1 7,62939E-06

64 1 9,53674E-07
128 1 1,19209E-07
256 1 1,49012E-08
512 1 1,86265E-09
1024 1 2,32831E-10
2048 1 2,91038E-11
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Table 2
Results of comparison of floating point and fractional
ups-values computed

S m maximum absolute deviation
1 8 2,22044E-16
2 4 1,11022E-16
4 3 5,55111E-17
8 2 2,77555E-17
16 2 1,38777E-17
32 1 1,22311E-25
64 1 2,01948E-26
128 1 1,43211E-27
256 1 1,56672E-28
512 1 1,11022E-28
1024 1 1,08421E-19
2048 1 5,42101E-20

Finally, in Table 3, results of verification are giv-
en. Approach, which is introduced in the previous sub-
section, is applied. It can be concluded that maximum

deviation is less than 2,22044 x1071%

Table 3
Results of verification of ups-values computed

s m tvpe of values maximum absolute
yp deviation
floating point 2,22044E-16

1 8 -

fractional 0

5 floating point 1,11022E-16
fractional 0

4 floating point 5,55111E-17
fractional 0

8 floating point 2,77555E-17
fractional 0

floating point 1,38777E-17

16 ;

fractional 0
32 floating point 1,22311E-25
fractional 0
64 floating point 2,01948E-26
fractional 0
floating point 1,43211E-27
128 =
fractional 0
floating point 1,56672E-28
256 :
fractional 0
512 floating point 1,11022E-28
fractional 0
floating point 1,08421E-19
1024 -
fractional 0
2048 floatlng point 5,42101E-20
fractional 0

5. Discussion of the results

Analyzing the results of numerical experiments,
we see that fractional values of ups(xs2mj) have been
computed precisely, and the floating point ones have

been obtained with errors, which do not exceed 1071,
Moreover, maximum absolute deviation between the

corresponding values is not greater than 10715 Hence,
the difference is insignificant.

Nevertheless, fractional values of ups-function
should be used especially in those cases, when accumu-
lated errors significantly impair efficiency of the algo-
rithms applied. At the same time, storing of fractional
values requires a lot more memory than floating point
ones.

Furthermore, computation of ups(xslzm’j) can be

accelerated by applying of (18). Indeed, it follows from
this formula that

1
UPs (Xs,Zm.<2s)2m—j ) =<~ Ups (Xs.2m,)

foranyj=0, 1, ..., s(2s)>™*-1.

Also, we get

up (x _ ):i.
s\ %s,2m,5(25)2M 1 ) T og

Hence, values of the function ups(x) on the grid Xsam
can be found two times faster. But (18) cannot be used
to verify computed values in this case.

For this purpose, other properties of ups-functions
can be applied. For instance, it was shown in [3, 12] that
foranys=1,2, ... and eachn =0, 1, 2, ... there exists

coefficients {cs,} , such that

i Csnk "UPs| X— R
- (25)"

k=—00

In other words, spaces of linear combinations of
ups-functions’ shifts contain algebraic polynomials. This
feature provides development of numerous different
verification rules.

Their choice allows increasing trustworthiness of
verification. Nevertheless, their implementation is more
complicated.

Finally, it is obvious that some steps of the pro-
posed dynamic algorithm can be easily parallelized [17,
18], which provides faster computing of ups(x).

Conclusions

In this paper, we have developed an algorithm for
calculation of values of atomic functions ups(x) on
dense grids. The algorithm proposed is based on dynam-
ic programming principles that provide low complexity
computing.
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Moreover, values of ups-functions can be obtained
precisely, which allow reducing accumulated errors that
occur, especially, when processing big data. Also, veri-
fication procedure, which has linear complexity, has
been proposed.

It is expected that the results of the current re-
search will improve existing data processing technolo-
gies based on atomic functions ups(x), especially dis-
crete atomic compression of digital images, and acceler-
ate development of the new ones for real time applica-
tions [21, 22], cloud based [23] and mobile [24] compu-
ting.

Future research and development steps can be ded-
icated to computation of parameters of discrete atomic
transform, which is a core of the algorithm DAC, as
well as construction of verification rules.
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3ACTOCYBAHHA IMHAMIYHOI'O NIPOI'PAMYBAHHS
TP OBYUCJIEHHI 3HAYEHb ATOMAPHUX ®YHKIIU

B. O. Makapiues, B. C. Xapuenko

PosrnsgayTro crnemianbHui Kiac aroMapHuX (GyHKIIH (AD), SKUMH Ha3UBalOTh PO3B’SI3KH 3 KOMIIAKTHUM HOCI-
€M JHIHHUX (QYHKI[IOHAIBHO AM(EPEeHIliadbHUX PIBHIHB 3 MOCTIHHUMH Koe(dillieHTaMu Ta JIHIHHUMH TIEPETBOPEH-
HAMH apryMeHTy. Lli ¢pyHKuii BUKOPHUCTOBYIOTECS y JUCKpeTHOMY aTtomMapHoMmy ctucHeHHI (JAC) undposux 30-
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opaxenb. Anroput™m JJAC € aaropuTMoM CTHCHEHHS 3 BTpaTaMU SIKOCTI Ta 3a0e3mnedye Kpalll pe3ynabTaTh, HiX ajl-
roput™m JPEG, skuii ne-hakTo € craHgapToM s CTHCHeHHs nudpoBux dortorpadiii. Bukopucranus 3HaueHr AD
BHCOKOI TOYHOCTI JO3BOJIMTH IMOKPAIIUTH LIEH aJrOpHTM 1 3a0€3IeYnTH MOKIHMBICTh PO3POOKH HOBHUX TEXHOJIOTIH
aHajizy Ta 00poOKHU JaHUX. BaKIMBHM € pO3pOOJIEHHS aIrOPUTMY 3 HU3BKOIO CKIAMHICTIO JUIs OOYUCIEHHS TOUHUX
3Hauenp AD. [x TouHi 3HAYECHHS V TOUKAX I'YCTUX CITOK € MPeAMETOM IOCITiIKSHHS. Be3nocepenHe BUKOPHCTAHHS
3a3HaYeHUX (HOPMYI IPHU3BOJUTE O IOBTOPHOIO OOUYUCIEHHS OJHUX 1 THX CaMMX BUPa3iB. 3alIPOIOHOBAHO ITiAXIJI,
IO yCYBae el Hexoiik. MeTor ITOCIiMHKEHHS € po3pOo0IeHHS aIrOpUTMY, OCHOBaHOTO Ha (hopmyiax B. O. PBauo-
Ba Ta IX y3arajibHEHHSX. PO3B’SI3YIOTHCS Taki 3aBAAHHSA. IIEPETBOPUTH BiAHIOBigHI (HOPMYIIH 3 METOK 3MEHIIEHHS
KIJTBKOCTI omepariii Ta po3pooutu npouenypy Bepudikaiii sHauens AD. BukopuctoByroTecs MeToau Teopii AD y
MOEAHAHHI 3 MPUHLIUIIAMY JUHAMIYHOIO MPOrPaMyBaHHS. 3alpOIOHOBAHO OOYHMCIIIOBAILHY CXEMY, a TAKOX JIHHA-
MIYHUHA aaroputM oO4nciieHHs 3HadeHb AD y ToYkax CITOK 3 KPOKOM, MEHIIHUM OYIb-SKOI'0 MaJIOro JOJATHOT'O
HaIepe]] 3aJaH0r0 YKciia. 3anponoHOBaHO IpoLenypy Bepudikailii, mo 06a3yeTsest Ha BracTuBocTsIX AD. Orpuma-
HO Taki pe3yJbTaTH. 1) po3po0ieHni aaropuTM 3ade3neyye OUIBII IIBUAKE O0YHCIEHHS, HIXK 0e3ImocepeIHE BUKO-
PUCTaHHS BIAIIOBIAHUX (HOpMYIT; 2) aIfOPUTM HAJA€ MOKIMUBICTH TOYHOrO oOuucineHus 3HaueHsr AD; 3) po3polie-
Ha mporenaypa Bepudikamii oOUNCIEHNX 3HAaYeHb Mae€ JIHINHY 3a KUIBKICTIO €JIEMEHTIB CKIIAAHICTE. P0o3po0iaeHui
aJITOPUTM PealizoBaHO MOBOIO nporpamysanHs Python. Takox orpumano Ha6ip Tabnuup 3HaueHs AD. BHCHOBKM:
Pe3yIBTATH OCTIHKCHHS TO3BOJISATH MOKPAIIATH AITOPUTMU 00pOOKH MaHMX 3 BUKopHcTaHHAIM A®D, 30kpema, an-
roput™ JJAC, a Tako MPUCKOPSATH PO3POOKY HOBUX TEXHOJIOTIH.

KurouoBi cioBa: aromapra QpyHKIiS; UP-QyHKISA; AMHAMIYHE TIPOTPaMyBaHHS; BepU]iKallis; TUCKPETHE aTo-
MapHE CTUCHCHHSI.

INPUMEHEHUE TMHAMHUYECKOI'O ITIPOTPAMMMPOBAHUSI
ITPU BBIYUCJIEHUN 3BHAYEHUU ATOMAPHbBIX ®YHKIINU

B. A. Makapuues, B. C. Xapuenko

PaccmoTpeH cnenuanbHeIi Kitace aToMapHbix GyHKIuA (AD), KOTOPEIMU HA3LIBAIOT PEIMIEHUS ¢ KOMITAKTHLIM
HOCHUTEJIEM JIMHEHHBIX (hYHKIIMOHAIBLHO AU depeHIHaIbHbIX YPAaBHEHHH ¢ MOCTOSHHBIMH KO3 (OHUIIMEHTAMU U JIH-
HEWHBIMH peoOpasoBaHusIMH apryMmenTa. AD Haum cBoe NPUMEHEHHE B TUCKPETHOM aToMapHoM cxkatuu (JJAC)
nudpoBeix uzobpakenuii. Aaroputm JJAC sABISeTCS aJrOPUTMOM CXKATHSA C IOTEPSIMH KauyecTBa M 00eCIeuHMBacT
JIy4iive pe3ynbTartsl, yeM anroput™ JPEG, koTopslii ne-GpakTo ABISIETCA CTaHAAPTOM Ul CKaThs LU(pPOBLIX (GOTO-
rpaduii. Mcnons3oBanue 3HaueHnit AD BBICOKOW TOYHOCTH IO3BOJUT YIYUIIMTH 3TOT aICOPUTM, OOCCICUUT BO3-
MOKHOCTE Pa3pa00TKH HOBBLIX TEXHOJIOIMI aHaiu3a U 00paboTku gaHHeIX. I{ens nccieqoBanuii — pa3paboTKa ajaro-
pHUTMa HU3KOH CJIIOKHOCTH JJIsS BEIYUCICHHS TOYHBIX 3HaueHH A®D. Tounble 3HadueHNsI AD B TOUKaX I'YCTBIX CETOK
SIBIISTFOTCS. MIPEAMETOM HcciaenoBanus. Mcmons3yrores Gpopmyisl B. A. PBaueBa u ux 0006menus. HemocpeacTeen-
HOE IpHMEHEHHUE 3TUX (HOPMYJ IPUBOAMT K MOBTOPHOMY BBIYUCIIEHHIO OJHHMX M TeX e 3HaueHui. IIpemmoskeH
MOJXO0J, YCTPAHSIOINK 3TOT HemocTaToK. Ileiblo sIBIIIETCS YCOBEPIICHCTBOBAHUE AJITOPUTMa, OCHOBAHHOI'O Ha
dbopmynax B. A. PaueBa u ux 00001ieHuAX. Perarorcs 3agaun. BHIIOIHATE IPE0OPa30BaAHUS COOTBETCTBYOIINX
BBIPAXXEHUI C IENBI0 YMEHBLIIEHHS YWCIa ONEpaluii, a Takke pa3paboTaTh NpOLEAYyPY BepUDHMKALMKA 3HAYEHHI
A®. Hcnomp3yrorcs Meroabl Teopuu AD B coueTaHHU ¢ MPUHIMIAMHU JUHAMHYECKOro ImporpamMmMmupoBanus. Ilo-
JIydeHa BBIYMCIHUTENbHAS CXeMa, pa3padoTaH JUHAMUYECKUM aJrOPUTM BhIUMCIIeHUs 3HaueHni AD B ToOUKkax CETOK
C IIaroM, KOTOPBI He MPEBOCXOAUT Jr000e Halepen 3aJaHHOE IMOJOKHUTENIbHOE YKciio. [IpennokeHa mpoleaypa
Bepu(UKaLUK, OCHOBaHHAA Ha cBoiicTBax A®d. [TonydeHsl Takue pe3yabTaThl: 1) NpeaIoKeHHbIi anroputM odec-
rmeunBaeT 00Jiee BHICOKYH) CKOPOCTh BBEIYHCIICHHMS; 2) STOT aJITOPHTM MO3BOJISET TOUYHO BBIYUCIATH 3HaueHUsS AD;
3) pa3spaboranHas mnporeaypa BepuuKanuy HaliAeHHBIX 3HAUEHUN MMEET JIMHEUHYIO CIIOKHOCTbL. AJITOPUTM pea-
JIN30BaH Ha sA3bIKe MporpaMMuposanus Python. TTomyuen naGop Tadmui 3Hauennii AD. BuIBOABI: pe3yabTaThl JaH-
HOTO HCCJIEIOBaHUS MO3BOJISIIOT YIYUIIUTH aJrOPUTMbI 00pabOTKM JAaHHBIX, KOTOPhIE OCHOBaHBI Ha MPUMEHEHUHU
A®, B vactHOCTH, asroputM JJAC, a Takke yCKOPST pa3pad0TKy HOBBIX TEXHOJIOTHH.

KaroueBble cioBa: atomapHas GyHKuusi; up-QyHKIus; JUHAMHYECKOE IPOrpaMMHUpPOBaHKe; BeprdUKarus;
JUCKPETHOE aTOMapHOE CHKaTHe.
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