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SIMULATION AND FORECASTING OF THE INFLUENZA EPIDEMIC
PROCESS USING SEASONAL AUTOREGRESSIVE INTEGRATED
MOVING AVERAGE MODEL

Today's global COVID-19 pandemic has affected the spread of influenza. COVID-19 and influenza are respira-
tory infections and have several similar symptoms. They are, however, caused by various viruses; there are also
some differences in the categories of people most at risk of severe forms of these diseases. The strategies for their
treatment are also different. Mathematical modeling is an effective tool for controlling the epidemic process of
influenza in specified territories. The results of modeling and forecasts obtained with the help of simulation mod-
els make it possible to develop timely justified anti-epidemic measures to reduce the dynamics of the incidence
of influenza. The study aims to develop a seasonal autoregressive integrated moving average (SARIMA) model
for influenza epidemic process simulation and to investigate the experimental results of the simulation. The work
is targeted at the influenza epidemic process and its dynamic in the territory of Ukraine. The subjects of the
research are methods and models of epidemic process simulation, which include machine learning methods, in
particular the SARIMA model. To achieve the aim of the research, we have used methods of forecasting and have
built the influenza epidemic process SARIMA model. Because of experiments with the developed model, the pre-
dictive dynamics of the epidemic process of influenza for 10 weeks were obtained. Such a forecast can be used
by persons making decisions on the implementation of anti-epidemic and deterrent measures if the forecast ex-
ceeds the epidemic thresholds of morbidity. Conclusions. The paper describes experimental research on the ap-
plication of the SARIMA model to the epidemic process of influenza simulation. Models have been verified by
influenza morbidity in the Kharkiv region (Ukraine) in epidemic seasons for the time ranges as follows: 2017-
18, 2018-19, 2019-20, and 2020-21. Data were provided by the Kharkiv Regional Centers for Disease Control
and Prevention of the Ministry of Health of Ukraine. The forecasting results show a downward trend in the
dynamics of the epidemic process of influenza in the Kharkiv region. It is due to the introduction of anti-epidemic
measures aimed at combating COVID-19. Activities such as wearing masks, social distancing, and lockdown
also contribute to reducing seasonal influenza epidemics.

Keywords: epidemic model; epidemic process; epidemic simulation; simulation; SARIMA model; influenza.

Introduction

Influenza is an acute viral infection that spreads eas-
ily from person to person. The flu circulates around the
world, causing epidemics and affecting people of all
ages. In addition to seasonal epidemics, the emergence of
a new subtype of influenza virus can provoke influenza
pandemics. Influenza affects primarily the upper respira-
tory tract, including the nose and throat, as well as the
bronchi, less often the lungs. The disease occurs all over
the world and spreads very quickly among the popula-
tion, especially in crowded places. Influenza epidemics
occur annually in the Northern Hemisphere in autumn
and winter, during which the infection affects approxi-
mately 5...15 % of the population [1].

Influenza is characterized by the acute development
of symptoms such as a sharp increase in body tempera-
ture, cough, headache, muscle and joint pain, malaise,

runny nose, and lasts from 2 to 7 days. Influenza usually
manifests itself in mild, uncomplicated form, and in most
cases, infected people recover without any specific treat-
ment. However, influenza infection can sometimes cause
serious illness and death, especially among the elderly,
pregnhant women, young children, and people with certain
health conditions (including chronic diseases of the heart,
lungs, kidneys, liver, blood, with metabolic disorders,
with a weakened immune system) [2].

Influenza epidemics, be they mild, moderate, or se-
vere, affect a large portion of the population, placing sig-
nificant strain on the health care system and other essen-
tial services, and can lead to significant economic losses.
Because an influenza epidemic can last for months or
even years, the health sector, as well as other sectors
providing basic services such as energy and food produc-
tion, must respond systematically [3]. For this reason,
countries create multi-sectoral preparedness plans that
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describe the strategy and operational plans for respond-
ing to an epidemic.

Today's global COVID-19 pandemic has affected
the spread of influenza [4]. COVID-19 and influenza are
respiratory infections and have many similar symptoms.
They are, however, caused by various viruses; there are
also some differences in the categories of people most at
risk of severe forms of these diseases. The strategies for
their treatment are also different.

Both infections, COVID-19 and influenza, are
transmitted by droplets or aerosols released by an in-
fected person when they cough, sneeze, speak, sing, or
breathe. Drops and aerosols can get into the eyes, naso-
pharynx, or mouth of people around, usually, if they are
less than 1 m from the infected person, but sometimes
even further. You can also get COVID-19 and influenza
by touching contaminated surfaces and then touching
your eyes, nose, or mouth with unwashed hands. This
means that the measures to counter the increase in the in-
cidence are similar for influenza and COVID-19. The ac-
tive fight against the COVID-19 pandemic has led to a
decrease in the incidence of illness and influenza [5],
however, on the other hand, all forces today are concen-
trated on the fight against the coronavirus, and the fight
against the spread of influenza has receded into the back-
ground [6].

Also, the importance of introducing measures
against the incidence of influenza is dictated by the in-
creased likelihood of death with the simultaneous illness
of influenza and COVID-19 [7].

In Ukraine, the incidence of influenza and acute res-
piratory viral infections is seasonal. The epidemic season
is counted from 41 to 13 weeks [8]. Morbidity data are
recorded only during epidemic seasons. Even though
1.25 million doses of influenza vaccines are planned for
the epidemic season 2021-22, the level of immunization
of the population is low and insufficient to prevent an ep-
idemic from emerging [9]. During the epidemic season
2020-2021, 13.1 % of the country's population fell ill
with influenza and acute respiratory viral infections,
147,232 people were hospitalized, of which 24.1 % were
children under 17 years old, no deaths due to influenza
were recorded [10].

The paper aims to develop a seasonal autoregressive
integrated moving average (SARIMA) model for influ-
enza epidemic process simulation and to investigate the
experimental results of the simulation. The research is
targeted at the influenza epidemic process. The subjects
of research are methods and models of epidemic process
simulation, which includes machine learning methods, in
particular the SARIMA model.

To achieve the aim of the research following tasks
have been formulated:

1. Methods and models of the influenza epidemic
process should be analyzed.

2. SARIMA model of influenza epidemic process
based on linear regression method should be developed.

3. Data on influenza morbidity in Ukraine should be
prepared for model application.

4. Experimental evaluation of the SARIMA model
of the influenza epidemic process should be provided.

5. Results obtained during the experimental studies
should be analyzed.

The respective contribution of this study is two-
fold. Firstly, the development of models based on the
SARIMA approach will allow estimating the accuracy of
simple machine learning methods applied to the simula-
tion of the epidemic process. Secondly, the application of
the SARIMA maodel to the influenza epidemic process in
Ukraine will allow estimating its dynamics.

In this paper, section 1, namely the current research
analysis provides the current state of influenza simulation
methods and models. Section 2, namely materials and
methods, provides a brief overview of moving average,
autoregressive, autoregressive integrated moving aver-
age, seasonal autoregressive integrated moving average
approaches, and developed methods of data prepro-
cessing and preparation. Section 3 provides the results of
data preparation, preprocessing, and stationing. Also, the
forecasting of influenza morbidity dynamics in the
Kharkiv region (Ukraine) is done. Conclusions describe
the outcomes of the proposed methodology.

Given research is part of a complex intelligent in-
formation system for epidemiological diagnostics, the
concept of which is discussed in [11].

1. Current Research Analysis

Methods of mathematical modeling have been de-
veloped for over 100 years. Among the models of influ-
enza and acute respiratory viral diseases, one can single
out the study of Rvachev [12], who, using classical com-
partment models, simulated the spread of influenza in the
USSR in the middle of the XX century.

Other scientists have also used the apparatus of sys-
tems of differential equations to model the incidence of
influenza. In paper [13] classical Susceptible—Infected—
Recovered (SIR) model has been extended with assump-
tions that the magnitude of transmission does not vary
between influenza A and B. The model has been applied
to Israel dataset regarding influenza morbidity. Authors
of [14] proposed to extend the SIR model to higher di-
mensions, allowing the modeling of a population infected
by multiple viruses. The proposed model was applied to
a five-year seasonal influenza-like illness rate, estimated
from Twitter data. Paper [15] proposes a multi-strain SIR
epidemic model with selective immunity by vaccination.
Authors assume that the newer strain does not exhibit
cross-immunity with the original strain, hence those who
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are vaccinated and recovered from the original strain be-
come susceptible to the newer strain. Paper [16] proposes
an extended SIR model for analysis of the transmission
dynamics of influenza A virus having incorporated the
aspect of drug resistance. Numerical simulations reveal
that despite vaccination reducing the reproduction num-
ber below unity, influenza persists in the population. Pa-
per [17] describes a parametric bootstrap approach to
generate simulated data from dynamical systems to quan-
tify parameter uncertainty and identifiability with appli-
cation to low-complexity SEIR model of influenza,
Ebola, and Zika pandemics.

The main disadvantage of classical compartment
models based on systems of differential equations is the
complexity of making changes to the model. When the
virulence of the virus changes, the infectivity index in-
creases, and the population groups most susceptible to in-
fection change. Also, the introduction of preventive
measures to reduce the dynamics of morbidity affects the
rules for the spread of the virus. To take into account the
dynamically changing parameters of the system of differ-
ential equations, it is necessary to build anew, which
leads to untimely decision-making regarding control anti-
epidemic measures. These drawbacks can be eliminated
by using statistical and machine learning methods of ep-
idemic process simulation.

The authors of [18] applied a 3-weeks moving av-
erage model to investigate the seasonal dynamics of in-
fluenza in the WHO European Region. The authors of the
paper [19] applied an exponentially weighted moving av-
erage method to detect the start of influence outbreak in
Viktoria, Australia. Paper [20] investigates the effective-
ness of the application of the exponentially weighted
moving average method to timely detection of influenza
outbreaks in Iran. Paper [21] describes the regressive in-
tegrated moving average model based on surveillance
data from Google Trends on influenza morbidity to fore-
cast type-specific seasonal influenza. In [22, 23] the auto-
regressive moving average model has been proposed to
investigate the dynamics of influenza.

The disadvantage of the proposed methods is that
they do not take into account the seasonal dynamics of
the epidemic process. The application of artificial intelli-
gence-based methods and models are popular approaches
to analysis the dynamical systems, in particular in
healthcare: for prediction tasks [24], small data analy-
sis [25], data openness estimation [26], simulation mod-
eling [27], healthcare information systems integra-
tion [28], medical diagnostics [29], development of intel-
ligent systems [30], etc. But due to the representation of
morbidity data in Ukraine as a time-series that methods
are hard to implement in the current task. This study pro-
poses the development of a SARIMA model for predict-
ing the dynamics of influenza in Ukraine.

2. Models and Methods

2.1. Simple Moving Average

Moving average belongs to the class of trend-fol-
lowing indicators, it helps to determine the beginning of
a new trend and its end, its slope angle can be used to
determine the strength (speed of movement), it is also
used as a basis (or a smoothing factor) in a large number
of other technical indicators [31]. Sometimes a moving
average is called a trend line.

n
>R

SMA:HT, 1)

where P;is the value of time series, n is the smoothing
length or moving average period.

Moving averages will not predict changes in the
trend, but will only signal an already emerging trend.
Since moving averages are trend-following indicators, it
is better to use them during trend periods, and when the
trend is not present in the process under study, they be-
come completely ineffective. Therefore, before using
these indicators, it is necessary to conduct a separate
analysis of the trend properties of specific values of the
time series.

2.2. Autoregressive Model

An autoregressive model is a time series model in
which its current value linearly depends on the previous
values of the same series [32]. Linear relationship means
that the current value is equal to the weighted sum of sev-
eral previous values in the series

Y(t)=C+ % biYi_n +&t, (2)
i=1

where C is a constant, which for simplicity is often as-
sumed to be 0; n is the number of retrospective values of
the series taken into account in the model (the order of
the model); b; are coefficients (parameters) of the model
that need to be estimated when building it; & is a random
component reflecting the probabilistic nature of the
model.

Thus, knowing the parameters of the model and the
corresponding retrospective values of the time series, we
can predict its future values.

2.3. Autoregressive Integrated
Moving Average Model

The Autoregressive Integrated Moving Average
Model (ARIMA) is a time series forecasting method cre-
ated by regressing the dependent variable only on its lag
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value and the current value and lag value of the random
error term in the process of converting non-stationary
time series to stationary time series [33].

The model treats the sequence of data generated by
the predicted object over time as a random sequence and
uses a mathematical model to describe this sequence.
Once the model is identified, the future values of the time
series can be predicted from the past and current values
of the time series.

The autoregressive model with integration and
moving average of orders (p, d, q) is the sum of the auto-
regressive model from the past values of p periods and
the moving average model of the previous g periods, and
can be represented as

p q
i=1 =1

where & is stationary time series; c, aj, bj are parameters
of the model; AY is the operator of the difference of the
time series of order d (sequential taking of d times of the
differences of the first order - first from the time series,
then from the obtained differences of the first order, then
from the second order, etc.)

ARIMA's approach to time series is that the station-
arity of the series is assessed first. Various tests reveal the
presence of unit roots and the order of integration of the
time series. Further, if necessary, the series is trans-
formed by taking the difference of the corresponding or-
der, and already for the transformed model, a certain
ARIMA model is constructed, since it is assumed that the
resulting process is stationary, in contrast to the original
non-stationary process.

The problem with ARIMA is that it doesn't support
seasonal data. This is a time series with a repeating cycle.

2.4. Seasonal Autoregressive Integrated
Moving Average Model

Seasonal Autoregressive Integrated Moving Aver-
age (SARIMA) method for forecasting time series with
univariate data containing trends and seasonality is an
ARIMA extension that supports direct modeling of the
seasonal component of the series [34].

It adds three new hyperparameters for specifying
autoregressive (AR), integrated (1), and moving average
(MA) for the seasonal component of the series, as well as
an additional parameter for the seasonality period. The
SARIMA model is generated by including additional sea-
sonal parameters in ARIMA. The seasonal part of the
model consists of parameters that include reverse shifts
of the seasonal period.

SARIMA model can be represented as:

Pp (LML) Vly, =00 (L™)0(L)ey, (@)

where the autoregression and moving average parameters
are represented by polynomials ¢(L) and 6(L) of orders p
and g, and the seasonal autoregressive and moving aver-

age parameters ¢, (L™) and 6 (L™) are of orders P and

Q. V,?] and V9 are the parameters of differentiation of

regular and seasonal data; L is the lag operator; m is sea-
sonality.

Pp(L™) =1y L™ — LM —.—gplP", (5)

o(L) =1-¢ (L) -goL* —..—pL°,  (6)
B(L™) = 1+ 8; (L™ + 0, (L*™)+... +6(12™), (7)

Vi =@-LM°, (8)
vl =@-1), ©)
LAYy =Yik- (10)

Thus, in addition to the three parameters of the
ARIMA model: p (trend autoregressive order), d (trend
change order), and q (moving average trend), there are
four seasonal elements in the SARIMA model: P (sea-
sonal autoregressive order), D (order of seasonal differ-
ences), Q (seasonal moving average order) and m (num-
ber of time steps in one seasonal period).

2.5. Methods of Data Preprocessing
and Preparation

Methods of formal verification and means of soft-
ware implementation of their main stages have been de-
veloped, including the following main parts: compilation
semantic-numerical verification, decompilation seman-
tic-numerical verification, and verification of satisfaction
of requirements/constraints.

Compilation semantic-numerical verification pro-
vides a check of the syntactic and temporal correctness
of the formal synthesis of the structures of the semantic-
digital specification of verification objects in the dynam-
ics of the design of these objects.

Decompilation semantic-numerical verification
verifies the logical equivalence of synthesized multi-par-
allel programs and/or digital hardware and source codes
of C-program tasks after all stages of synthesis are com-
pleted (by decompilation of the synthesis result and com-
parison with the source text). Semantic verification con-
sists in checking (in dynamics or after the completion of
all stages of synthesis) the coincidence of units of meas-
urement of physical quantities obtained in the formal syn-
thesis of multi-parallel programs and/or digital hardware,
as well as units of measurement of input and input data
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of tasks set by users.

Verification of the fulfillment of requirements/re-
strictions consists in checking the degree of compliance
of the requirements/restrictions and is provided by a syn-
thesized software and/or hardware verification object and
requirements/restrictions that were specified by the user.
The initial data for all types of verification and the basis
for maintaining the automatic nature of verification is
that at all stages of synthesis, structures of the semantic-
numerical specification are formed (including C-pro-
grams of tasks; temporal parallel task models; time-pa-
rameterized parallel programs; functional, logical and
gate circuits parallel hardware, communication topolo-
gies of computer networks, etc.). Methods of semantic-
numerical formal verification and means of software im-
plementation of the main stages have been developed,
which provide an explicit reflection in the designs of par-
allel programs and digital devices of the units of meas-
urement (semantics) of the processed data, which has a
significant impact on the efficiency of software and hard-
ware of parallel computing systems.

Specific examples of formal verification of clock-
parameterized semantic-numerical specifications of C-
programs of tasks, multi-parallel process models, time-
parameterized multi-parallel programs, and digital de-
vices, and software implementations of the main stages

import
import

pandas as pd

numpy as np

import matplotlib.pyplot as plt

import statsmodels as sm

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.seasonal import seasonal_decompose

from statsmodels.tsa.statespace.sarimax import SARIMAX

# from statsmodels.tsa.stattools import adfuller

df = pd.read_excel( 'mergedl7-20.xlsx')
df.head()

confirm the operability and efficiency of the methods de-
veloped and implementing these methods. It should be
noted that the authors did not find similar results in the
available scientific and technical literature.

3. Results
3.1. Data Preparation

For the study, data on influenza morbidity in the
Kharkiv region (Ukraine) for 2017-18, 2018-19,

2019-20, and 2020-21 epidemic seasons were used.
Data was provided by the Kharkiv Regional Center for
Disease Control and Prevention of the Ministry of Health
of Ukraine.

The view of the initial data frame after data import
is shown in Figure 1.

After preprocessing and data preparation, it is pre-
sented in a form that is convenient for understanding and
building a model (Fig. 2).

The next step involves a visual analysis of the data
concerning epidemic thresholds (Fig. 3) and an analysis
of the distribution of the incidence rate by age group and
the general population (Fig. 4).

Hepens Bcboro y T.u.4itv go 17 18 - 30 - 65Ta Focnitanizauin MokaaHnk Enianopir MepeBULEHHA
3axsopino pokis 29 64 cTapuwi 3axsoptoBaHocTi enignopory (%)
0| NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1|41.0 7891.0 5836.0 639.0 |1147.0|269.0 142.0 291.94 527.44 -44.65
2(42.0 6736.0 4928.0 517.0 |1029.0|262.0 160.0 249.21 541.73 -54.00
3(43.0 6835.0 4392.0 796.0 |1307.0|340.0 147.0 252.87 634.05 -60.12
4(44.0 7595.0 4965.0 870.0 |1377.0|383.0 160.0 280.99 568.92 -50.61

Fig. 1. Initial dataframe

df = df.iloc[1l:]
dic = list(df.columns)

col_dict = dict(zip(dic, ['week', 'total','uptol7', '18-29', '30-64', '65+', 'hospital’, 'indicator', ‘'epid’', 'epid excess']))
df2 = df.rename(columns = col dict, inplace = False)
df2[['week', 'total', 'uptol?7',6 '18-29', '30-64', '65+', 'hospital']] \
= df2[[ 'week', 'total', 'uptol7', '18-29', '30-64', '65+', 'hospital']].astype(int)
# df2.set_index('week', inplace=True, drop=True)
df2.head()
week | total | upto17| 18-29 ( 30-64 | 65+ | hospital | indicator |epid | epid excess
1|41 7891|5836 |639 |1147 (269|142 291.94 |527.44|-44.65
2|42 6736|4928 |517 |1029 (262|160 249.21 541.73|-54.00
3|43 68354392 |796 |1307 (340|147 252.87 |634.05|-60.12
4|44 7595|4965 |870 |1377 |383|160 280.99 |568.92|-50.61
5|45 8209 | 5511 894 (1448 |356 (168 303.70 |572.42|-46.94

Fig. 2. Modified dataframe
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Fig. 3. Incidence rate with epidemic thresholds
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Fig. 4. distribution of the incidence rate by age group and the general population

3.2. Data Preprocessing

To view the seasonality of the data, we have used a
seasonal decomposition to better see the trend of the sam-
ple (Fig. 5).

Plots before decomposition into seasonal, trend,
seasonality, and residuals are shown in Figures 6-9.
decomposition = seasonal_decompose(df2.total, period=7)
fig = plt.figure()

fig = decomposition.plot()
fig.set_size_inches(10, 20)

Fig. 5. Seasonal decomposition
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Fig. 6. Data before the decomposition into seasonality
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Fig. 7. Trend plot
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Fig. 9. Residuals plot
3.3. Data Stationing

When using linear regression, it is assumed that all
cases are independent of each other. However, in time se-
ries, we know that observations are time-dependent. It
turns out that many good results that are the result of in-
dependent random variables (the law of large numbers
and the central limit theorem, for example) adhere to sta-
tionary random variables. Thus, by making the data sta-
tionary, we can apply regression methods to this time-
dependent variable.

The easiest way to check data for stationarity is vis-
ual. But for a more accurate assessment, there is the
Dickey-Fuller test [35]. If the test statistic is greater than
the Critical Value, then the time series are stationary. The
result of checking the data for stationarity is shown in
Figure 10.

Our task is to make the Test Statistic parameter less
than the Critical Value (1 %). Even though we have al-
ready achieved this, it is better to achieve a larger finite
difference, so we will also find the first difference for our
data.

The first time series difference is a series of changes
from one period to the next. If Y; denotes the value of
time series Y over period t, then the first difference Y
over period t is equal to Yy - Y. If the first difference Y
is stationary and also completely random (not autocorre-
lated), then Y is described by a random walk model: each
value is a random step from the previous value. If the first
difference Y is stationary but not completely random —

forecasting model such as exponential smoothing or
ARIMA, as in our case, may be appropriate (Fig. 11).

Rolling Mean & Standard Deviation

15000

12500

10000

7500

5000

2500

0

0 20 40 60 80 100

Results of Dickey-Fuller Test:
Test Statistic

p-value

#Lags Used

Number of Observations Used

-3.560385
0.086565
1.000000

94, 000000

-3.501912

-2.892815

—-2.583454

Critical Value (1%)
Critical Value (5%)
Critical Value (10%)
dtype: float64d

Fig. 10. Results of Dickey-Fuller Test:
1 — Original, 2 — Rolling Mean, 3 — Rolling Std
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Results of Dickey-Fuller Test:
Test Statistic

p-value

#Lags Used

Number of Observations Used
Critical Value (1%)

Critical Value (5%)

Critical Value (10%)

dtype: float64

-6.405543e+00
1.947434e-08
2.000000e+00
9.200000e+01

-3.503515e+00

-2.893508e+00

-2.583824e+00

Fig. 11. Data stationarity plot for the first difference:
1 - Original, 2 — Rolling Mean, 3 — Rolling Std

The next step is to find the optimal model parame-
ters using the computational capabilities of the Python
language. All parameters of the constructed model are
shown in Figure 12.

3.4. Forecasting

On the basis of statistics on the incidence of influ-
enza in the Kharkiv region, a short-term forecast of the
dynamics of the incidence for 10 weeks was built
(Fig. 13). Such a forecast can be used by persons making
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Dep. Variable: total No. Observations: 96
Model: SARIMAX(2, 1, 2)x(2, 1, 2, 32) Log Likelihood -521.940
Date: Sat, 03 Jul 2021 AIC 1061.879
Time: 17:32:10 BIC 1081.167
Sample: 0 HQIC 1069.465
- 96
Covariance Type: opg
coef std err z P>|z| [0.025 0.975]
ar.L1 1.1559 0.303 3.816 9.000 0.562 1.750
ar.L2 -0.4266 0.264 -1.613 0.107 -0.945 0.092
ma.L1 -0.9006 0.401 -2.247 9.025 -1.686 -0.115
ma.L2 -0.0872 0.393 -0.222 0.824 -0.858 0.684
ar.S.L32 -0.7589 3.700 -0.205 9.837 -8.010 6.493
ar.S5.L64 -0.7793 0.436 -1.787 0.074 -1.634 0.075
ma.S.L32 -1.7092 17.578 -0.097 0.923 -36.161 32.742
ma.S.L64 0.9264 47.716 0.019 9.985 -92.596 94.449
sigma2 6.853e+04 0.000 1.78e+08 0.000 6.85e+04 6.85e+04
Ljung-Box (L1) (Q): 2.82 Jarque-Bera (JB): 27.86
Prob(Q): 0.09 Prob(JB): 0.00
Heteroskedasticity (H): 0.47  Skew: 0.99
Prob(H) (two-sided): 0.09 Kurtosis: 5.59
Fig. 12. Parameters of the model
1 — total
16000 2 predict_total
14000
12000
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B000
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Fig. 13. Forecast of influenza epidemic process

decisions on the implementation of anti-epidemic and de-
terrent measures in the event that the forecast exceeds the
epidemic thresholds of morbidity.

Conclusions

The paper describes experimental research on the
implementation of the SARIMA model to the epidemic
process of influenza simulation. Models were verified by
influenza morbidity in the Kharkiv region (Ukraine) for
the 2017-18, 2018-19, 2019-20, and 2020-21 epidemic

seasons. Data was provided by the Kharkiv Regional
Center for Disease Control and Prevention of the Minis-
try of Health of Ukraine.

The novelty of the research is the development of
an epidemic process model based on state-of-art methods
and approaches applied to the influenza epidemic process
in a certain territory. The distinctive point about the pro-
posed study is that the model includes the seasonality of
the influenza epidemic process. It allows increasing the
accuracy of the developed forecast.
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The obtained forecasting result has sufficient accu-
racy for planning prophylactic and control measures for
the next epidemic season of influenza and influenza-like
diseases in Ukraine. These activities include planning the
provision of hospitals and health facilities with influenza
drugs, planning the provision of beds and redesigning
hospitals, and strengthening the information campaign on
the need for annual influenza vaccination. In the context
of the current COVID-19 pandemic, it is extremely im-
portant to plan material resources that can be reallocated
from the influenza campaign to activities related to the
provision and support of patients with the new version of
coronavirus.

The forecasting results show a downward trend in
the dynamics of the epidemic process of influenza in the
Kharkiv region. This is due to the introduction of anti-
epidemic measures aimed at combating COVID-19. Ac-
tivities such as wearing masks, social distancing, and
lockdowns also contribute to reducing seasonal influenza
epidemics. The main carriers of the influenza virus are
children and young people who have the most active life-
style, characterized by a high chance to contact. There-
fore, distance learning in schools, and higher education
institutions, the closure of public places, restrictions on
public transport, and the prohibition of mass events are
affecting the reduction of the spread of the virus. The de-
crease in the diagnosis of influenza due to the high inci-
dence of COVID-19 also has an impact on reducing the
incidence of influenza and influenza-like infections in
Ukraine. According to the low level of annual vaccina-
tion against influenza in Ukraine, it is not a decisive fac-
tor in reducing the intensification of the epidemic pro-
cess. Nevertheless, vaccination is an effective tool to re-
duce the dynamics of the incidence of influenza and in-
fluenza-like infections in Ukraine.

Future research development. The constructed
model showed sufficient forecast accuracy for adjusting
anti-epidemic measures planned to reduce the incidence
of influenza and influenza-like infections in Ukraine.
However, statistical methods prohibit identifying factors
influencing the dynamics of the epidemic process. Thus,
it is planned to build an intelligent multiagent model that
takes into account the peculiarities of the behavior of the
population and the circulation of the virus in it. The mul-
tiagent model will make it possible to conduct an experi-
mental study of the informativeness and significance of
the model parameters, which will make it possible to
evaluate the effectiveness of specific measures aimed at
reducing the epidemic incidence. At the same time, to im-
prove the accuracy of the multiagent model, it is sup-
posed to be calibrated on the SARIMA model proposed
in this paper, which will improve the accuracy of the ob-
tained forecast

Acknowledgment. The study was funded by the
National Research Foundation of Ukraine in the frame-
work of the research project 2020.02/0404 on the topic
“Development of intelligent technologies for assessing
the epidemic situation to support decision-making within
the population biosafety management”.

References (GOST 7.1:2006)

1. Paget, J. Preventing seasonal influenza world-
wide through vaccination, education, and international
cooperation: research, findings, and recommendations
from the Global Influenza Initiative [Text] / J. Paget //
Influenza and Other Respiratory Viruses. — 2015. —
vol. 9, suppl. 1. — P. 1-2. DOI: 10.1111/irv.12327.

2. Hay, A.J. The WHO global influenza surveil-
lance and response system (GISRS)-A future perspective
[Text] / A.J. Hay, J.W. McCauley // Influenza and Other
Respiratory Viruses. — 2018. — vol. 12, iss. 5. — P. 551-
557. DOI: 10.1111/irv.12565.

3. Bresee, J. Epidemic influenza--responding to the
expected but unpredictable [Text] / J. Bresee, F.G. Hay-
den // The New England Journal of Medicine. — 2013. —
vol. 368, iss. 7. - P. 589-92. DOl
10.1056/NEJMp1300375.

4. Solomon, D. A. Influenza in the COVID-19 Era
[Text] / D. A.Solomon, A. C. Sherman, S. Kanjilal //
Journal of American Medical Association. — 2020. —
vol. 324, iss. 13. - P. 1342-1343. DOI:
10.1001/jama.2020.14661.

5. Expanding the pandemic influenza preparedness
framework to the epidemic of COVID-19 [Text] / B. Z. Li,
M. S. Li, J. Y. Huang, Y. Y. Chen, Y. H. Lu // Zhonghua
Yu Fang Yi Xue Za Zhi. —2020. — vol. 54, iss. 6. — P. 597-
601. DOI: 10.3760/cma.j.cn112150-20200316-00357.

6. Wormser, G. P. COVID-19 versus seasonal influ-
enza 2019-2020: USA [Text] / G. P. Wormser // Wiener
Klinische Wochenschrift. — 2020. — vol. 132, iss. 13-14. —
P. 387-389. DOI: 10.1007/s00508-020-01685-y.

7. A Case Series of Patients Coinfected With Influ-
enza and COVID-19 [Text] / V. M. Konala, et. al. // Jour-
nal of Investigative Medicine High Impact Case Reports.
—2020. —vol. 8. DOI: 10.1177/2324709620934674.

8. Nutritional practices as an obesogenic predictor
in school-age children from eastern and western regions
of Ukraine [Text] / T. Chaychenko, et. al. // Problemi En-
dokrinnoi Patologii. — 2021. — vol. 1. — P.75-83.
DOI: 10.21856/j-PEP.2021.1.10.

9. Bagcchi, S. Ukraine struggles to implement flu
vaccination [Text] / S. Bagcchi // The Lancet. Respira-
tory Medicine. —2016. —vol. 4, iss. 7. — P. 541-542. DOI:
10.1016/S2213-2600(16)30141-2.

10. Very little influenza in the WHO European Re-
gion during the 2020/21 season, weeks 40 2020 to 8 2021
[Text] / C.Adlhoch, P.Mook, F.Lamb, L. Ferland,
A. Melidou, A. J. Amato-Gauci, R. Pebody // Euro Sur-
veillance. — 2021. — vol. 26, iss. 11, pii: 2100221.
DOI: 10.2807/1560-7917.ES.2021.26.11.2100221.



Modelling and digitalization

31

11. The concept of developing a decision support
system for the epidemic morbidity control [Text] / S. Ya-
kovlev, K. Bazilevych, D.Chumachenko, T. Chu-
machenko, L. Hulianytskyi, I. Meniailov, A. Tkachenko //
CEUR Workshop Proceedings. — 2020. — vol. 2753. —
P. 265-274.

12. Rvachev, L. A. A mathematical model for the
global spread of influenza [Text] / L. A. Rvachev,
I. M. Longini Jr. // Mathematical Biosciences. — 1985. —
vol. 75, iss. 1. — P.3-22. DOI: 10.1016/0025-
5564(85)90064-1.

13. Comparing three basic models for seasonal in-
fluenza [Text] / S. Edlund, et. al. // Epidemics. — 2011. —
vol. 3, iss. 3-4. — P.135-142. DOI: 10.1016/j.epi-
dem.2011.04.002.

14. Levy, N. Modeling influenza-like illnesses
through composite compartmental models [Text] /
N. Levy, M. Lv, E. Yom-Tov // Physica A: Statistical Me-
chanical and its Applications. — 2018. — vol. 494. — P.
288-293. DOI: 10.1016/j.physa.2017.12.052.

15. Fudolig, M. The local stability of a modified
multi-strain SIR model for emerging viral strains [Text]
/ M. Fudolig, R. Howard // PLoS ONE. — 2020. — vol. 15,
iss. 12. DOI: 10.1371/journal.pone.0243408.

16. Kanyiri, C.W. Mathematical Analysis of Influ-
enza A Dynamics in the Emergence of Drug Resistance
[Text] / C.W. Kanyiri, M. Kimathi, L. Livingstone //
Computational and Mathematical Methods in Medicine.
—2018. —vol. 2018. DOI: 10.1155/2018/2434560.

17. Roosa, K. Assessing parameter identifiability in
compartmental dynamic models using a computational
approach: application to infectious disease transmission
models [Text] / K. Roosa, G. Chowell // Theoretical Bi-
ology and Medical Modelling. — 2019. — vol. 16, iss. 1.
DOI: 10.1186/s12976-018-0097-6.

18. Caini, S. Important changes in the timing of in-
fluenza epidemics in the WHO European Region over the
past 20 years: virological surveillance 1996 to 2016
[Text] /S. Caini, F. Schellevis, S.C. EI-Guerche, J. Paget
/I Euro Surveillance. — 2018. — vol. 23, iss. 1.
DOI: 10.2807/1560-7917.ES.2018.23.1.17-00302.

19. Steiner, S. H. Detecting the start of an influenza
outbreak using exponentially weighted moving average
charts [Text] / S. H. Steiner, K. Grant, M. Coory, H.
A. Kelly // BMC Medical Informatics and Decision Mak-
ing. — 2010. — vol. 10, 37. DOI: 10.1186/1472-6947-10-
37.

20. Solgi, M. Timely detection of influenza out-
breaks in Iran: evaluation the performance of the expo-
nentially weighted moving average [Text] / M. Solgi,
M. Karami, J. Poorolajal // Journal of Infection and Pub-
lic Health. — 2018. — vol. 11, iss. 3. — P.389-392.
DOI: 10.1016/j.jiph.2017.09.011.

21. Choi, S. B. Forecasting type-specific seasonal
influenza after 26 weeks in the United States using influ-
enza activities in other countries [Text] / S. B. Choi,
J. Kim, I. Ahn // PLoS ONE. — 2019. — vol. 14, iss. 11.
DOI: 10.1371/journal.pone.0220423.

22. He, Z. Epidemiology and ARIMA model of pos-
itive-rate of influenza viruses among children in Wuhan,

China: a nine-year retrospective study [Text] / Z. He,
H. Tao // International Journal of Infectious Diseases. —
2018. — vol. 74. — P. 61-70. DOI: 10.1016/.ijid.2018.
07.003.

23. Zhu, G. Forecasting influenza based on auto-
regressive moving average and holt-winters exponential
smoothing models [Text] / G. Zhu, L. Li, Y. Zheng,
X. Zhang, H. Zou // Journal of Advanced Computational
Intelligence and Intelligent Informatics. — 2021. —
vol. 25, iss.1. — P.138-144. DOI: 10.20965/JACIII.
2021.P0138.

24. Kushnir, M. Artificial intelligence systems in the
financial market predictions: literature review [Text] /
M. Kushnir, K. Tokareva // Radioelectronic and Com-
puter Systems. — 2020. — No. 3(95). — P. 108-117. DOI:
10.32620/reks.2020.3.11.

25. Predictive modeling based on small data in clin-
ical medicine: RBF-based additive input-doubling
method [Text] / I.lzonin, R. Tkachenko, I. Dronyuk,
P. Tkachenko, M. Gregus, M. Rashkevych // Mathemati-
cal Biosciences and Engineering. — 2021. — vol. 18, iss.
3. —P. 2599-2613. DOI: 10.3934/mbe.2021132.

26. Method of Data Openness Estimation Based on
User-Experience in Infocommunication Systems of Mu-
nicipal Enterprises [Text] / V. Yesina, N.Matveeva,
I. Chumachenko, N. Manakova // 2018 International Sci-
entific-Practical Conference on Problems of Infocommu-
nications Science and Technology, PIC S and T 2018 —
Proceedings. - 2019. - P.171-176.
DOI: 10.1109/INFOCOMMST.2018.8631897.

27. Fedorov, E. Approaches to the creation of a
software agent based on meta-heuristic and artificial
neural networks [Text] / E. Fedorov, M. Chychuzhko,
V. Chychuzhko // Radioelectronic and Computer Sys-
tems. - 2019. - No. 1(89). - P.58-65.
DOI: 10.32620/reks.2019.1.06.

28. Fedushko, S. Operational Intelligence Software
Concepts for Continuous Healthcare Monitoring and
Consolidated Data Storage Ecosystem [Text] / S. Fe-
dushko, T. Ustyianovych // Advances in Intelligent Sys-
tems and Computing. — 2021. — Vol. 1247. — P. 545-557.
DOI: 10.1007/978-3-030-55506-1_49.

29. Assessment of measurement uncertainty of the
uncinated process and middle nasal concha in spiral
computed tomography data [Text] / A. Nechyporenko,
V. Reshetnik, V. Alekseeva, N. Yurevych, R. Nazaryan,
V. Gargin // 2019 IEEE International Scientific-Practi-
cal Conference: Problems of Infocommunications Sci-
ence and Technology, PIC S and T 2019 — Proceedings.
— 2019. - P.585-588. DOI: 10.1109/PICST47496.
2019.9061557.

30. Dotsenko, S. Intellectual systems: principles of
the heuristic self-organization of the processes of sense
thinking and sense activity [Text] / S. Dotsenko // Radio-
electronic and Computer Systems. — 2020. — No. 2(94). —
P. 4-21. DOI: 10.32620/reks.2020.2.01.

31. Prediction of filtering efficiency for DCT-based
image denoising [Text] / S. Abramov, S. Krivenko,
A. Roenko, V. Lukin, I. Djurovic, M. Chobanu // Pro-



32

Radioelectronic and Computer Systems, 2021, no. 4(100)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

ceedings — 2013, 2nd Mediterranean Conference on Em-
bedded Computing, MECO 2013. — 2013. — P.97.
DOI: 10.1109/MECO0.2013.6601327.

32. Tea Quality Prediction by Autoregressive Mod-
eling of Electronic Tongue Signals [Text] / P. Saha,
S. Ghorai, B. Tudu, R. Bandyopadhyay,
N. Bhattacharyya // IEEE Sensors Journal. —2016. — vol.
16, no. 11. — P. 4470-4477. DOI: 10.1109/JSEN.2016.
2544979.

33. Wang, Y. Forecasting method of stock market
volatility in time series data based on mixed model of
ARIMA and XGBoost [Text] / Y. Wang, Y. Guo // China
Communications. — 2020. — vol. 17, no. 3. — P. 205-221.
DOI: 10.23919/JCC.2020.03.017.

34. Ogino, Y. Forecasting Bowel Sound Occur-
rence Frequency by SARIMA Model [Text] / Y. Ogino,
Y. Satoh, O. Sakata // 2019 23rd International Computer
Science and Engineering Conference (ICSEC). — 2019. —
P. 219-223, DOI: 10.1109/ICSEC47112.2019.8974803.

35. Tayeb, H. F. Time Series Database Prepro-
cessing for Data Mining Using Python [Text] /
H. F. Tayeb, M. Karabatak, C. Varol // 2020 8th Interna-
tional Symposium on Digital Forensics and Security

(ISDFS). -  2020. -  P.1-4, DOI:
10.1109/ISDFS49300.2020.9116260.
References (BSI)

1. Paget J. Preventing seasonal influenza worldwide
through vaccination, education, and international cooper-
ation: research, findings, and recommendations from the
Global Influenza Initiative. Influenza and Other Respir-
atory Viruses, 2015, vol. 9, suppl.1, pp.1-2. DOI:
10.1111/irv.12327.

2. Hay, A. J., McCauley, J. W. The WHO global in-
fluenza surveillance and response system (GISRS)-A fu-
ture perspective. Influenza and Other Respiratory Vi-
ruses, 2018, wvol. 12, iss.5, pp.551-557. DOI:
10.1111/irv.12565.

3. Bresee, J., Hayden, F.G. Epidemic influenza--re-
sponding to the expected but unpredictable. The New
England Journal of Medicine, 2013, vol. 368, iss. 7,
pp. 589-92. DOI: 10.1056/NEJMp1300375.

4. Solomon, D. A., Sherman, A. C., Kanjilal, S. In-
fluenza in the COVID-19 Era. Journal of American Med-
ical Association, 2020, vol. 324, iss. 13, pp. 1342-1343.
DOI: 10.1001/jama.2020.14661.

5. Li, B. Z, Li, M. S,, Huang, J. Y., Chen, Y. Y.,
Lu, Y. H. Expanding the pandemic influenza prepared-
ness framework to the epidemic of COVID-19. Zhong-
hua Yu Fang Yi Xue Za Zhi, 2020, vol. 54, iss. 6, pp. 597-
601. DOI: 10.3760/cma.j.cn112150-20200316-00357.

6. Wormser, G. P. COVID-19 versus seasonal influ-
enza 2019-2020: USA. Wiener Klinische Wochenschrift,
2020, vol. 132, iss.13-14, pp.387-389. DOI:
10.1007/s00508-020-01685-y.

7. Konala, V. M., et. al. A Case Series of Patients
Coinfected With Influenza and COVID-19. Journal of
Investigative Medicine High Impact Case Reports, 2020,
vol. 8. DOI: 10.1177/2324709620934674.

8. Chaychenko, T., et. al. Nutritional practices as an
obesogenic predictor in school-age children from eastern
and western regions of Ukraine. Problemi Endokrinnoi
Patologii, 2021, vol. 1, pp. 75-83. DOI: 10.21856/j-
PEP.2021.1.10.

9. Bagcchi, S. Ukraine struggles to implement flu
vaccination. The Lancet. Respiratory Medicine, 2016,
vol. 4, iss.7, pp.541-542. DOIl: 10.1016/S2213-
2600(16)30141-2.

10. Adlhoch, C., Mook, P., Lamb, F., Ferland, L.,
Melidou, A., Amato-Gauci, A. J., Pebody, R. Very little
influenza in the WHO European Region during the
2020/21 season, weeks 40 2020 to 8 2021. Euro Surveil-
lance, 2021, vol.26, iss.11,  pii: 2100221.
DOI: 10.2807/1560-7917.ES.2021.26.11.2100221.

11. Yakovlev, S., Bazilevych, K., Chu-
machenko, D., Chumachenko, T., Hulianytskyi, L., Me-
niailov, ., Tkachenko, A. The concept of developing a
decision support system for the epidemic morbidity con-
trol. CEUR Workshop Proceedings, 2020, vol. 2753,
pp. 265-274.

12. Rvachev, L. A., Longini Jr., I. M. A mathemat-
ical model for the global spread of influenza. Mathemat-
ical Biosciences, 1985, vol. 75, iss. 1, pp. 3-22.
DOI: 10.1016/0025-5564(85)90064-1.

13. Edlund, S., et. al. Comparing three basic models
for seasonal influenza. Epidemics, 2011, vol. 3, iss. 3-4,
pp. 135-142. DOI: 10.1016/j.epidem.2011.04.002.

14. Levy, N,, Lv, M., Yom-Tov, E. Modeling influ-
enza-like illnesses through composite compartmental
models. Physica A: Statistical Mechanical and its Appli-
cations, 2018, vol. 494, pp. 288-293.
DOI: 10.1016/j.physa.2017.12.052.

15. Fudolig, M., Howard, R. The local stability of a
modified multi-strain SIR model for emerging viral
strains. PLoS ONE, 2020, wvol. 15, iss. 12.
DOI: 10.1371/journal.pone.0243408.

16. Kanyiri, C.W., Kimathi, M., Livingstone, L.
Mathematical Analysis of Influenza A Dynamics in the
Emergence of Drug Resistance. Computational and
Mathematical Methods in Medicine, 2018, vol. 2018.
DOI: 10.1155/2018/2434560.

17. Roosa, K., Chowell, G. Assessing parameter
identifiability in compartmental dynamic models using a
computational approach: application to infectious disease
transmission models. Theoretical Biology and Medical
Modelling, 2019, vol. 16, iss. 1. DOI: 10.1186/s12976-
018-0097-6.

18. Caini, S., Schellevis, F., EI-Guerche, S.C., Pa-
get, J. Important changes in the timing of influenza epi-
demics in the WHO European Region over the past 20
years: virological surveillance 1996 to 2016. Euro Sur-
veillance, 2018, vol. 23, iss. 1. DOI: 10.2807/1560-
7917.ES.2018.23.1.17-00302.

19. Steiner, S. H., Grant, K., Coory, M., Kelly, H.
A. Detecting the start of an influenza outbreak using ex-
ponentially weighted moving average charts. BMC Med-
ical Informatics and Decision Making, 2010, vol. 10, 37.
DOI: 10.1186/1472-6947-10-37.



Modelling and digitalization

33

20. Solgi, M., Karami, M., Poorolajal, J. Timely de-
tection of influenza outbreaks in Iran: evaluation the per-
formance of the exponentially weighted moving average.
Journal of Infection and Public Health, 2018, vol. 11, iss.
3, pp. 389-392. DOI: 10.1016/j.jiph.2017.09.011.

21. Choi, S. B., Kim, J., Ahn, I. Forecasting type-
specific seasonal influenza after 26 weeks in the United
States using influenza activities in other countries. PLoS
ONE, 2019, wvol. 14, iss. 11, DOI:10.1371/
journal.pone.0220423.

22.He, Z., Tao, H. Epidemiology and ARIMA
model of positive-rate of influenza viruses among chil-
dren in Wuhan, China: a nine-year retrospective study.
International Journal of Infectious Diseases, 2018, vol.
74, pp. 61-70. DOI: 10.1016/j.ijid.2018.07.003.

23. Zhu, G., Li, L., Zheng, Y., Zhang, X., Zou, H.
Forecasting influenza based on autoregressive moving
average and holt-winters exponential smoothing models.
Journal of Advanced Computational Intelligence and In-
telligent Informatics, 2021, vol. 25, iss. 1, pp. 138-144.
DOI: 10.20965/JACI11.2021.P0138.

24, Kushnir, M., Tokareva, K. Artificial intelli-
gence systems in the financial market predictions: litera-
ture review. Radioelectronic and Computer Systems,

2020, no. 3(95), pp. 108-117. DOI:
10.32620/reks.2020.3.11.
25. 1zonin, 1., Tkachenko, R., Dronyuk, I.,

Tkachenko, P., Gregus, M., Rashkevych, M. Predictive
modeling based on small data in clinical medicine: RBF-
based additive input-doubling method. Mathematical Bi-

osciences and Engineering, 2021, vol. 18, iss. 3,
pp. 2599-2613. DOI: 10.3934/mbe.2021132.
26. Yesina, V., Matveeva, N., Chumachenko, I.,

Manakova, N. Method of Data Openness Estimation
Based on User-Experience in Infocommunication Sys-
tems of Municipal Enterprises. 2018 International Scien-
tific-Practical Conference on Problems of Infocommuni-
cations Science and Technology, PIC S and T 2018 —
Proceedings, 2019, pp. 171-176.
DOI: 10.1109/INFOCOMMST.2018.8631897.

27. Fedorov, E., Chychuzhko, M., Chychuzhko, V.
Approaches to the creation of a software agent based on
meta-heuristic and artificial neural networks. Radioelec-
tronic and Computer Systems, 2019, no. 1(89), pp. 58-65.
DOI: 10.32620/reks.2019.1.06.

28. Fedushko, S., Ustyianovych, T. Operational In-
telligence Software Concepts for Continuous Healthcare
Monitoring and Consolidated Data Storage Ecosystem.
Advances in Intelligent Systems and Computing, 2021,
vol. 1247, pp. 545-557. DOI: 10.1007/978-3-030-
55506-1_49.

29. Nechyporenko, A., Reshetnik, V., Alekseeva,
V., Yurevych, N., Nazaryan, R., Gargin, V. Assessment
of measurement uncertainty of the uncinated process and
middle nasal concha in spiral computed tomography data.
2019 IEEE International Scientific-Practical Confer-
ence: Problems of Infocommunications Science and
Technology, PIC S and T 2019 - Proceedings, 2019,
pp. 585-588. DOI: 10.1109/PICST47496.2019.9061557.

30. Dotsenko, S. Intellectual systems: principles of
the heuristic self-organization of the processes of sense
thinking and sense activity. Radioelectronic and Com-
puter Systems, 2020, no. 2(94), pp. 4-21. DOI:
10.32620/reks.2020.2.01.

31. Abramov, S., Krivenko, S., Roenko, A., Lukin,
V., Djurovic, I., Chobanu, M. Prediction of filtering effi-
ciency for DCT-based image denoising, Proceedings —
2013, 2nd Mediterranean Conference on Embedded
Computing, MECO 2013, 2013, pp. 97.
DOI: 10.1109/MECO0.2013.6601327.

32. Saha, P., Ghorai, S., Tudu, B., Bandyopadhyay,
R., Bhattacharyya, N. Tea Quality Prediction by Auto-
regressive Modeling of Electronic Tongue Signals. IEEE
Sensors Journal, 2016, vol. 16, no. 11, pp. 4470-4477.
DOI: 10.1109/JSEN.2016.2544979.

33. Wang, Y., Guo, Y. Forecasting method of stock
market volatility in time series data based on mixed
model of ARIMA and XGBoost, China Communica-
tions, 2020, vol. 17, no. 3, pp. 205-221. DOI:
10.23919/JCC.2020.03.017.

34. Ogino, Y., Satoh, Y., Sakata, O. Forecasting
Bowel Sound Occurrence Frequency by SARIMA
Model. 2019 23rd International Computer Science and
Engineering Conference (ICSEC), 2019, pp. 219-223,
DOI: 10.1109/ICSEC47112.2019.8974803.

35. Tayeb, H. F., Karabatak, M., Varol, C. Time Se-
ries Database Preprocessing for Data Mining Using Py-
thon. 2020 8th International Symposium on Digital Fo-
rensics and Security (ISDFS), 2020, pp. 1-4, DOI:
10.1109/1SDFS49300.2020.9116260.

Haoitiwna 0o pedaxyii 4.10.2021, posersnyma na peoxoneeii 26.11.2021

MOJEJFOBAHHS I IPOTHO3YBAHHS
ENIIAEMIYHOI'O IMPOLIECY I'PAITY 3A JOIIOMOI'OXO MOJIEJII
CE30HHOi ABTOPEI'PECIMHOI IHTEI' POBAHOI KOB3HOI CEPEJIHbOI

. 1. Yymauenxo, €. C. Mensniinos, A. A. I'pimos, B. B. J/lonamka,
0. IO. Mopos3, O. I'. Toacmonysvka

CroronuimHs riobansHa naggemis COVID-19 Bmmnyna Ha nommpenss rpuny. COVID-19 ta rpun € pecri-
paTOpHUMH 1H(EKIISIMHA Ta MAIOTh PSAA CXOKUX CUMITOMIB. Alle BOHH BUKIMKAIOTHCS PI3HUMHE Bipycamu. € TaKkox
JesIKi BIIMIHHOCTI B KaTeTopisix Jro/iei, HaHOIIbII CXIIIBHUX 0 PU3UKY BaXKUX (OPM KX 3aXBOproBaHb. CTpaTerii
IXHBOTO JTIKyBaHHS TaKOX pi3Hi. MaTemMaTn4He MOJENIOBaHHS — e()eKTUBHUM IHCTPYMEHT KOHTPOJIIIO eITiAeMiTHOTO
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MPOIIECY TPUITY HA BU3HAYCHUX TEPUTOPIsAX. Pe3ynbraTi MOAEIIOBaHHS Ta MPOTHO3HU, OTPUMAHI 3a JOMOMOTOK0 iMi-
TaI[iHUX MOJIENIEH, TO3BOJISIOTH CBOEYACHO PO3POOUTH OOIPYHTOBAHI POTHUEIIIEMIYHI 3aX0/I1 II[OJI0 3HUKCHHS JTU-
HaMIKH{ 3aXBOPIOBAHOCTI Ha TpUIl. MeToI0 cTaTTi € po3poOKa MOJIEN CE30HHOTO aBTOPETPECIHHOTO iHTErpPOBAHOTO
KOB3HOTO cepeaHboro (SARIMA) s MoaemoBaHHsI eIliIeMidYHOTO MPOIECY TPHITY Ta JOCTIHKSHHS eKCIIePIMEHTA-
JTBHHUX pe3yNbTaTiB MoaemoBaHHA. O0'€KT q0caiIKeHHs — eITiIeMiTHAN TIpoIiec TPHUITY Ta HOTO IWHAMiKa Ha TepH-
Topii Ykpainu. [IpeaMeToM AOCTiIZKeHHS € MOZEIIi Ta METOAX IMITallifHOTO MOJICIIOBAaHHS EITiIEMITHHX MPOIIECiB,
Yy TOMY YHCIIi METOIHM MAIIMHHOTO HaBYaHHS, 30kpeMa moaeinb SARIMA. JIng HOoCSTHEHHS METH TOCTIHKCHHS MH
BHKOPHCTOBYBAJIM METOAH IIPOTHO3yBaHHS Ta moOynyBamu monens SARIMA emigeMigroro mporiecy rpuimy. Y pe-
3yJbTATi SKCIICPUMECHTIB 3 PO3POOIICHOI0 MOJCIUTIO OyJI0 OTPUMAHO MPOTHO3HY JAWHAMIKY CHiJIEMIYHOTO MPOIECY
rpuny Ha 10 TrxHiB. Takuii NporHo3 Moxe OyTH BUKOPUCTAHHA 0CO0aMHU, 110 MPUIMAIOTh PIIICHHS PO Peati3allito
MIPOTHUEMIIEMIYHUX 1 CTPUMYIOUYHX 3aXOMIB Y pa3i MepeBUILEHHS MPOTHO30M €ITiJeMIYHUX MOPOTiB 3aXBOPIOBAHOCTI.
BucHoBKH. Y CTaTTi ONMKCcaHi eKCIIEPUMEHTAIBHI JOCIIKCHHS 1010 3acTocyBaHHsA Mojeni SARIMA miist Moneto-
BaHHJ €IiIeMIYHOTO TIpoliecy rpuiy. Moseni BeprgikoBaHi Ha 3aXBOPIOBAHOCTI Ha I'pUIl y XapKiBCchKiii obxacTi (Y-
paina) 3a eminemiuni cezonu 2017-18, 2018-19, 2019-20 ta 2020-21 pp. [ani HamaHi XapKiBCbKUM 0OJACHUM IICHT-
POM 3 KOHTPOITIO Ta MPO(DITaKTHKH 3aXBOPIOBaHh MiHICTEPCTBa OXOPOHU 30POB's YKpaiHu. Pe3ynpraTi mporao3y-
BaHHS MOKa3yIOTh TCHICHINIO O 3HIKEHHS JAWHAMIKH €IiIeMIYHOTO TpoIecy rpuily y XapkiBchkiit obmacTi. Lle
TIOB’s13aHO 3 BBEACHHSIM IPOTHEIIIEMIYHUX 3aX0/iB, BKIaeHHX y 60poTeOy 3 COVID-19. Taxki xii, sk HOCiHHS Ma-
COK, COIliaJTbHE TUCTAHIIIIOBAHHS Ta 130JIAIIisI TAKOXK CIIPHUSIOTH 3HIDKCHHIO €ITiIeMigHOT 3aXBOPIOBAHOCTI HA CE30HHHI
TpHIL.

Kuro4oBi cjioBa: Mofens emigeMii; emigeMigHui mporec; MOJICIIOBaHHS eIiieMil; iMiTalliifHe MOJICITIOBaHHS;
mozaens SARIMA; rpum.

MOAEJIUPOBAHUE U NTPOI'HO3UPOBAHUE
SINIAEMHUYECKOI'O ITPOLUECCA I'PHAIIIIA C ITIOMOIIBIO MOJAEJIN
CE30HHOI'O ABTOPETPECCHOHHOI'O HUHTETPUPOBAHHOI'O CKOJIB3AILIEI'O CPEAHEI'O

. H. Yymauenxo, E. C. Menaiinos, A. A. I pumoes, B. B. /lonamka,
0. I0. Mopo3, E. I. Toncmonyacckan

Ceropnsmass riiobanpHas naagemus COVID-19 noenusina Ha pactpoctpanenue rpumma. COVID-19 u rpunm
SIBIISIFOTCS] PECTIMPATOPHBIMH HHPEKINSIMH U UMEIOT P/ CXOXKUX CUMITTOMOB. OJTHAKO OHH BBI3BIBAIOTCS PA3INIHBIMHU
Bupycamu. ECTb Takke HEKOTOpBIE pa3IyMs B KATETOPUSX JIIOEH, HanOoIee MoABEP>KEHHBIX PUCKY TKEIbIX Gopm
9THX 3a00seBaHuid. CTpaTeruu ux JjedeHus Takke pasHbie. Maremarnueckoe MojienupoBanue — 3(GeKTUBHbBIN UH-
CTPYMEHT KOHTPOJIS AMHMAEMHYECKOT0 Ipoliecca TPUIIa Ha OIPeeICHHbIX TePPUTOPHSIX. Pe3yIpTaTsl MogenupoBa-
HUS U IPOTHO36I, OJTYYEHHBIE C TOMOIIBI0 UMHUTAI[HOHHBIX MO/IeJIel, TO3BOJISIIOT CBOEBPEMEHHO pa3paboTaTs 060c-
HOBaHHBIE IPOTHBOAIIHUIEMHUYIECKHE MEPHI 110 CHIKCHUIO TUHAMUKHU 3a0oneBaeMocTH rpumnioM. Ilenbio cTaTbu sB-
nseTcs pa3paboTka MOJIENN CE30HHOTO aBTOPErPECCHOHHOTO HHTETPUPOBAHHOTO CKOJIB3sMIero cpeanero (SARIMA)
JUTS MOJIEITMPOBAHUS SMUIEMUYECKOT0 MIpoIiecca IPUIIa U UCCIIEJOBaHUE 3KCIIEPUMEHTAIIBHBIX PE3yIbTaTOB MO/Je-
npoBaHus. O0BeKT HCCTAeA0BAHUS — STUIEMUYECKUH MPOLIeCcC TPUIIIIA U €r0 JMHAMHKa Ha TEPPUTOPHH Y KPauHBI.
IIpeameTom mcciief0BaHUS SIBISIFOTCS MOJICNTM W METOABI MMHTAIMOHHOTO MOJICTIMPOBAHMS SMUJIEMUYECKUX TIPO-
[IECCOB, B TOM YHCJIE METOIBI MAITMHHOTO 00y4YeHHsI, B YacTHOCTH Moaeb SARIMA. I TOCTIKEHHS LENU Hccie-
JIOBaHMS MBI HCIIOJIb30BaJI MeTOABI TIPOrHO3UPOBaHNUs U nocTponnu Mozaens SARIMA snmuaeMudeckoro mnporecca
rpumnma. B pe3yabrare SKCIIepuMEHTOB ¢ pa3paboTaHHONH MOJENbI0 OblIa MOJy4eHa IPOrHO3HAS AWHAMUKA JIIHjie-
MHU4YecKoro mporiecca rpummna Ha 10 Henens. Takoil mporHo3 MoXkeT OBITH MCHOJIB30BAH JIMIIAMH, IPHHUMAIOIIUMU
peIIeHHs 0 peanu3aluy MPOTUBOIMUAEMHUYECKIX U CACPKUBAIOIINX MEp B CIIydae MPEBHIIMICHHUS IIPOTHO30M 3ITHAe-
MHUECKHX TIOPOroB 3a00seBacMOcTH. BbIBoBI. B cTaThe onmcaHbl SKCepUMEHTAIbHbIE UCCIIEA0BaHUS IO IPUMe-
HeHuto Mojaen SARIMA k MoeIrpoBaHHUIO MHIEMHUIECKOTO MpoIiiecca rpunmna. Mojaenu BepudunupoBaHsl Ha 3a-
00J1eBaeMOCTH I'pUMIIOM B XapbKoBCKO# obmactu (YkpauHa) 3a snuaemuueckue ce3oubr 2017-18, 2018-19, 2019-20
u 2020-21 rr. JlanHbIe TIpeAOCTaBICHBI XaphbKOBCKUM OOJACTHBIM IIEHTPOM 10 KOHTPOJIO M MPOQIIIAKTHKE 3a00J1e-
BaHUI MuHMCTEpCTBA 3ApaBOOXPAHEHUs Y KpauHbl. Pe3ynpTaTsl IPOrHO3UPOBaHUS MOKA3bIBAIOT TEHICHIUIO K CHU-
KEHUIO JIMHAMUKH 3ITUIEMHYECKOTO MTPOIlecca IrpuMma B XapbKOBCKOH 0071aCTH. DTO CBA3aHO C BBEIEHHEM NPOTH-
BOSMHMIEMUYECKUX MEPOINPHATHI, HanpaBieHHbIX Ha 00pp0y ¢ COVID-19. Takue neiicTBus, KaK HOIIEHHE MAcoK,
COLMAIBHOE JUCTaHLMPOBAHUE U MU3OJIALMS TaKXKe CIIOCOOCTBYIOT CHIDKEHHIO SITUIEMHYECKOH 3a001eBaeMOCTH ce-
30HHOI'O pHUIINA.

KuroueBblie cjioBa: MOeIb SIMUAEMUN; STUAEMUUECKUI IPOLECC; MOAEIUPOBAHUE YHIEMUH; UMUTALIUOHHOE
MozenupoBanue; Moaenb SARIMA; rpum.
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