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PERFORMANCE EVALUATION OF VARIOUS DEPLOYMENT SCENARIOS
OF THE 3-REPLICATED CASSANDRA NOSQL CLUSTER ON AWS

A concept of distributed replicated NoSQL data storages Cassandra-like, HBase, MongoDB has been pro-
posed to effectively manage Big Data set whose volume, velocity and variability are difficult to deal with by us-
ing the traditional Relational Database Management Systems. Tradeoffs between consistency, availability,
partition tolerance and latency is intrinsic to such systems. Although relations between these properties have
been previously identified by the well-known CAP and PACELC theorems in qualitative terms, it is still neces-
sary to quantify how different consistency settings, deployment patterns and other properties affect system per-
formance. This experience report analysis performance of the Cassandra NoSQL database cluster and studies
the tradeoff between data consistency guaranties and performance in distributed data storages. The primary
focus is on investigating the quantitative interplay between Cassandra response time, throughput and its con-
sistency settings considering different single- and multi-region deployment scenarios. The study uses the YCSB
benchmarking framework and reports the results of the read and write performance tests of the three-
replicated Cassandra cluster deployed in the Amazon AWS. In this paper, we also put forward a notation
which can be used to formally describe distributed deployment of Cassandra cluster and its nodes relative to
each other and to a client application. We present quantitative results showing how different consistency set-
tings and deployment patterns affect Cassandra performance under different workloads. In particular, our ex-
periments show that strong consistency costs up to 22 % of performance in case of the centralized Cassandra
cluster deployment and can cause a 600 % increase in the read/write requests if Cassandra replicas and its
clients are globally distributed across different AWS Regions.
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Introduction

NoSQL (or Not Only SQL) databases are a new
generation of distributed data storage that has been re-
cently designed to efficiently deal with rapid data
growth [1]. They adhere to the schema-less philosophy
and employ horizontal scalability (sharding), Internet-
scale replication, and relaxed consistency model to store
extremely large datasets and guaranty high throughput,
availability and low read/write latency.

NoSQL databases are now widely used in different
application domains which generate, store and process
BigData. This includes social networks and media,
business-critical systems, critical infrastructures, smart
industrial applications. For example, Cassandra NoSQL
is widely adopted by Uber, Facebook, Instagram, and
Netflix. Apple, eBay, GitHub, and the European Organ-
ization for Nuclear Research (CERN) use Cassandra
either as the main data store or for specific tasks [2].

Attempting to guarantee the atomicity, consisten-
cy, isolation, and durability (ACID) of database transac-
tions when storing large distributed datasets results in
dramatically increased latency and degraded availabil-
ity. Thus, NoSQL databases have to sacrifice the ACID

concept in favor of the BASE (basically available, soft
state, eventually consistent) model [3], which is the
price to pay for distributed data handling and horizontal
scalability.

The NoSQL ecosystem includes several dozen da-
tabases, for instance, Cassandra, HBase, MongoDB,
BigTable, Riak, BigTable, Redis, CosmoDB, Neo4J,
etc. They cover different application niches by offering
various data model categories (e.g. key-value, docu-
ment, wide-column or graph stores), consistency mod-
els, replication strategies and other features [4].

Apache Cassandra is one of the top three in use
NoSQL database management systems together with
MongoDB and HBase [5]. It is a highly scalable col-
umn-oriented database NoSQL database which can store
data across many commodity servers in multiple dis-
tributed locations [6]. It has a ring-type architecture
where data is sharded across all nodes like a logical
ring. Cassandra is ‘master-less’ data storage with no
single point of failure, meaning that all nodes are the
same and any can receive and process read/write re-
quests. It offers linear scalability, tuneable consistency
model and data replication to guaranty high availability
and fault-tolerance.
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Performance evaluation of different NoSQL data-
bases is an active area of research having important
practical implication. The primary focus of [7, 8, 9] and
other studies is to compare different NoSQL databases
based on performance measures. Other works, e.g. [10,
11, 12], use benchmarking results to model and predict
databases performance. Despite useful results showing
general performance limitations of different distributed
data storages existing publications do not examine in
details how different factors and settings (deployment
pattern, consistency level, replication factor, etc.) affect
database latency and throughput. Besides, there has
been little efforts (e.g. [13]) made on evaluating scala-
bility and performance of distributed storages consider-
ing the impact of distance between nodes or replicas.

Thus, more in-depth analysis studying how differ-
ent settings and deployment scenarios affect perfor-
mance of the certain NoSQL database is of a great im-
portance. This work continues a series of related publi-
cations evaluating performance of fault-tolerant distrib-
uted data storages [14, 15]. It aims at examining the
impact of different consistency settings on scalability,
latency, throughput of the 3-replicated Cassandra cluster
depending on the used single- and multi-region deploy-
ment scenario.

1. Cassandra Consistency Model
and Deployment Scenarios

1.1. Cassandra tunable consistency model

One of the main features of the Cassandra NoSQL
is the tuneable consistency model ranging from weak
consistency at one extreme to strong consistency on the
other, with varying levels of eventual consistency in
between.

It defines a discrete set of consistency settings for
every request specifying:

— for READ operations: many replicas that are
queried and must respond before the most recent (based
on timestamp comparison) read result is returned to the
client;

— for WRITE (i.e. INSERT/UPDATE) operations:
many replicas that must acknowledge the write opera-
tion before it is considered successful (write operations
are always sent to all replicas).

The main Cassandra consistency settings include
ONE, TWO, THREE, QUORUM, ALL. Additional
consistency settings (EACH_QUORUM,
LOCAL_QUORUM, LOCAL_ONE) become available
if the Cassandra cluster runs across multiple data cen-
tres.

Cassandra also employs additional mechanisms to
reduce the duration of data inconsistency [6]: hinting,
read repair, anti-entropy node repair, NodeSync.

1.2. A notation for describing Cassandra
deployment scenarios

The largest unit of Cassandra deployment is a clus-
ter. Each cluster consists of nodes from one or more
distributed locations. In AWS terms these locations
could be composed of separate geographic areas called
Regions (e.g. Canada: ca-central-1, Africa: af-south-1,
US East: us-east-1, etc.) and/or Availability Zones (iso-
lated locations/datacentres within each Region, e.g. ca-
central-1a, ca-central-1b).

There are currently 25 AWS Regions and 69
Availability Zones (AZ) around the world. Accessibility
zones are usually located within 60 miles of each other
within a Region and connected with low-latency net-
work links.

In this section we put forward a notation describ-
ing distributed deployment of Cassandra cluster and its
nodes relatively to each other and to a client (a client
could be an application running on the end user devise
or some middleware application proxying end-user re-
quests):

— round brackets () to define Cassandra cluster;

— curly brackets {} to group Cassandra client (C)
and nodes (N;) in the same AWS Region;

— square brackets [] to group nodes in the same
Auvailability zone.

For instance, {[C, (N1]}, {[Nz], {[Ns]}) deploy-
ment record can be read as the three-node Cassandra
cluster which nodes are deployed as following: N1 node
is located together with the client app (C) in the same
Availability Zone in the same Region; the rest two nodes
N2 and N3 are deployed in a different Region, each in a
separate Availability zone.

In case of a completely replicated Cassandra clus-
ter, e.g. when the replication factor is equal to the num-
ber of nodes, node symbols (N;) can be replaced with
replica symbols (R;). For simplicity {} or [] brackets can
be omitted in the deployment record if a client and Cas-
sandra nodes are deployed in the same Re-
gion/Availability zone, or when there is only one cli-
ent/node in a Region.

We consider the following four deployment sce-
narios of the three-node Cassandra cluster with a repli-
cation factor of 3:

a) {[C], ([R1], [R2], [Rs])} — a client and all Cas-
sandra replicas are deployed in the same Region, each in
a separate AZ;

b) {C}, ({[R1l, [R2], [R3]}) — a client (end user ap-
plication) is located in one geographic region while the
Cassandra cluster is in another region with each replica
is in a separate Availability zone for better fault-
tolerance;
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Fig. 1. Deployment scenarios of the three-node Cassandra NoSQL cluster with a replication factor of 3

©) {IC], ([Ri]}, {R2}, {Rs}) — multi-region de-
ployment pattern; a client (a proxy client applica-
tion/middleware) and one of Cassandra nodes are de-
ployed in the same region, while the rest nodes are
globally distributed across the Internet;

d) {C}, {Ri}, {R2}, {Rs}) — multi-region deploy-
ment pattern; a client (end user application) and Cassan-
dra nodes are deployed across different geographic re-
gions.

A single region deployment pattern is the most
common setup for centralized corporate storage systems
which data storage nodes and client application(s) gen-
erating and consuming data are in the same geographic
location. For better fault-tolerance they could be de-
ployed in different AZ within the same region. Multi-
region deployment scenarios offer failover and disaster
tolerance/recovery. They allow to meet very high availa-
bility requirements by deploying nodes/replicas in different
geographic regions and can reduce latency by placing data
nodes near globally distributed customers. However, re-
quests involving replicas from different regions could be
processed much longer due to high inter-region network
delay (see Table 1).

Table 1
AWS inter-region latency, ms
N, _ N ‘—'l
AWS 3 £ 3 E
Region = S 2 g
3 o 3 =
us_west 2 2.42 66.71 135.22 221.57
ca_central_1 66.93 3.5 79.87 189.02
eu_west 2 135.56 80.14 3.95 111.69
ap_south 1 221.82 188.88 111.89 3.15

2. Cassandra Performance Benchmarking

2.1. Experimental setup and benchmarking
methodology

Performance evaluation methodology used in the
paper is similar to one described in [14]. It employs
YCSB (Yahoo! Cloud Serving Benchmark) framework
widely used to benchmark performance of various rela-
tional and non-relational data base management
systems [16].

Four Cassandra clusters have been created and de-
ployed on Amazon AWS implementing deployment
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patterns presented in Fig. 1. Each cluster node was build
using the compute-optimized instance type c3.xlarge
(vCPUs — 4, RAM - 7.5 GB, SSD - 2x40 GB,
OS — Ubuntu Server 16.04 LTS).

Unlike other researches analysing performance of
distributed data storages (e.g. of [7, 8, 9]) we put the
primary focus on analysing Cassandra scalability and
examining the impact of data consistency on read/write
latency and throughput. For this purpose, the number of
threads in our experiments was linearly scaled from 100
to 1000 (until Cassandra performance began to saturate,
as it is shown in our previous study [14]). The operation
count within each thread was set to 1000.

The above scenario was repeated for consistency
settings ONE (the weakest consistency), QUORUM,
and ALL (the strongest consistency).

2.2. Cassandra read/write throughput

Fig. 2 and 3 show Cassandra read/write throughput
for different deployment scenarios and consistency set-
tings. For example, when a client and all Cassandra
nodes are deployed in the same AWS Region is saturat-
ed with around 800 threads on average. When Cassan-
dra operates close to its maximal throughput. delays
become highly volatile and begin to increase in expo-
nential progression. The presented graphs clearly show
that the stronger consistency setting, the lower the
throughput. Moreover, the throughput drops dramatical-
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ly when QUORUM and ALL consistency settings are
applied in multi-region deployment scenarios (see
Fig. 1, c and Fig. 1, d).

It is also worth noting that we were not able to sat-
urate Cassandra cluster even with 1000 threads in case
of (b: all consistency settings) and (d: ONE) deployment
scenarios. Thus, Cassandra cluster were not able to
achieve its maximum throughput due to overwhelming
contribution of the network delay into the overall re-
sponse time (see Table 1). In all other scenarios the
highest Cassandra throughput achieved at peak work-
load (see Table 2) was close to its maximum/asymptotic
throughput.

Table 2
The highest Cassandra throughput, ops/s

ONE QUORUM ALL
Read | Write | Read | Write | Read | Write

Deployment scenarios

a:{[C], (R, [R2], [Ra)} |16830]18338]16074|17384] 13735 | 15434

b: {C}, ({[Rd, [Re], [RaI}) |3450* [3357* |3424%|3340*| 3320* | 3310*

¢ {IC], (R}, {R:}, {R:D)[15160]15906] 517 | 478 | 355 | 312

d:{C}, R.}, {R.}, {R=}) [3381*[3313*| 518 | 491 | 390 | 357

* The maximum (asymptotic) throughput was not achieved due
to significant network delays

For the single-region Cassandra deployment (a: all
consistency settings) and (b: ONE) write throughput
overperforms read performance by 9 % on average. This
confirm the claim that Cassandra was specially designed
as a distributed storage system capable of very high
write throughput.
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Another interesting observation is the fact that
read/write throughput in the deployment scenario
(a: ONE) overperforms (c: ONE) by 13 % despite the
apparent similarity.

This can be explained by the fact that in the case of
(c: ONE) deployment all client requests are always sent
to the same nearest coordination node in accordance to
Cassandra’s load balancing policy which takes ‘network
distance’ into account. In scenario (a: ONE) the client
workload is equally distributed among all replicas in the
same region, which increases the overall throughput.

2.3. Cassandra read/write latency

Cassandra read/write latency statistics is summa-
rized in Tables 3-4. It is shown that the average delay
for both read and write requests increases almost linear-
ly as the number of threads increases apart from (d:
ONE) and (b: all consistency settings) deployment sce-
narios for which response latency is almost flat inde-
pendently on the number of threads. This is due to sig-
nificant contribution of network delay into the overall
response time and inability of a single YCSB client to
saturate Cassandra cluster over the Internet.

For the single-region Cassandra cluster deploy-
ment (a) latency of read/write performed under the
strongest consistency level ALL is higher (by 36 % and
22 % respectively) than the average response time of the
weakest consistency setting ONE. For the multi-region

deployment (b) these values are 47 and 53 times higher
() while (b: ONE) deployment is almost as quick as
(a: ONE).

When a client and all Cassandra replicas are glob-
ally distributed across the Internet (Fig. 1, d), AWS in-
ter-region network delay is the main contributor to
read/write latency performed under the ONE consisten-
cy setting independently of a number of threads. How-
ever, scenario (d: ALL) latency is higher than scenario
(d: ONE) latency by an average of 560 % for reads and
600 % for writes.

Because Internet downlinks are generally faster
than uplinks in all deployment scenarios except for (a)
and partly (c: ONE) write operations were performed
slightly longer that reads even despite higher write
throughput of the Cassandra NoSQL database.

Conclusions and Lessons Learnt

Availability, consistency and performance of dis-
tributed database systems are tightly connected. Alt-
hough these relations have been identified by the CAP
and PACELC theorems in qualitative terms [17, 18], it
is still necessary to quantify how different consistency
settings, database architectures and deployment scenari-
os affect system performance and user experience.

In the paper we report results of Cassandra per-
formance benchmarking and examine the impact of dif-
ferent consistency settings on scalability, latency and
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Table 3
Cassandra READ latency (ms)
ONE QUORUM ALL
I D - P B I = D - P B B - DA = IS
T EAR| 2T | | £8 E8| 27| 25| €8 £8 | £ | £%
LS| SE | S 22| S| S8 | =2 | L =¢| 22 | =2 | =L
Ol 0| 8% 0%| 8| o= 8% 05| Cs| o= | 8% | 0%
Threads %'§ o8 > 9"’9,3 Sg| & xE 8"93 Sgl & gt 8"25
<= o G he) < o G k=) < o 5
100 5.45|126.68| 6.01|126.41| 7.00|127.23|128.13|237.82| 8.37| 127.96| 166.09| 299.33
200 6.52|126.90| 8.87|126.50| 8.37|127.62|174.07|246.77| 9.83| 128.51| 263.51| 310.45
300 8.141126.81| 12.33|126.77| 10.76|127.44|259.84|262.58| 11.72| 128.22| 376.88| 374.32
400 | 11.67[127.00| 11.71|126.74| 13.67|127.84|336.05|314.23| 15.74| 128.75| 514.46 | 446.18
500 13.00|127.00| 12.93|126.97| 15.70|127.77|432.97|425.84| 19.21| 128.35| 635.51| 578.24
600 14.57|126.98| 14.32|126.87| 16.64|127.81|510.57|500.34| 20.53| 128.47| 790.23| 775.99
700 | 16.36/126.96| 18.50|127.31| 18.40|127.66|609.47|595.30| 21.39| 128.83| 893.57 | 902.33
800 18.08|127.08| 19.15|127.03| 19.54|128.23|689.63|698.66| 22.91| 129.021043.841007.11
900 | 19.81|126.78| 20.99|127.38| 22.19|127.76|791.19|754.92| 25.74| 128.60[1131.83 1159.05
1000 | 23.80|127.26| 25.54|128.03[ 27.59|127.96|859.50|857.24| 32.34| 129.19 [1224.20 1299.01
Table 4
Cassandra WRITE latency (ms)
ONE QUORUM ALL
I D P I e S = I g - P S I D I P -y
TR ER| 2T | 2B LB | 27| 2| 28| 28 | £F | £%
S| L SR 2R S g SR =L =g =g | 2R =28
o= S| O S| O 5= O | 55 O S | O | &S
BT [ —_ [@ ) = O —_y O o =T O ' O "o
Threads| 77 & Z‘D—:' =& ;‘EE, pas ZE' =& ;’93 P ;‘D—:‘ fe:"‘ 5%
(&S] (&S]
100 4.40]127.01| 3.99|126.65| 4.73|127.70|123.94|245.55( 4.98| 128.34| 204.11| 320.86
200 6.26|126.83| 5.68|126.60| 6.91|127.67|177.01|252.07| 7.71| 128.44|271.30| 322.85
300 8.46|127.00| 9.15|126.91| 9.50|127.43|269.54|270.24| 10.10| 128.09| 422.13| 381.10
400 9.58(126.78| 10.49|126.96| 11.25|127.64|366.57|359.27| 12.05| 128.25| 560.22 | 544.99
500 | 11.46|127.14| 14.82|126.95| 13.09|127.77|451.66|447.26| 13.91| 128.57| 713.36| 648.06
600 | 12.94|127.12| 15.47|126.97| 14.89|127.52|542.01|531.85| 15.66| 128.08| 829.90 | 728.44
700 | 15.76|127.29| 18.46|127.07| 16.80|128.02|627.42|614.31| 18.24| 128.71[1004.69 | 893.94
800 | 17.40|126.93| 18.86|127.58| 18.64|127.72|722.41|706.08| 20.51| 128.54[1140.98 [1099.53
900 | 18.96|127.54| 20.51|127.67| 20.70|128.05|816.88|798.30| 23.40| 129.12[1281.37 [1285.33
1000 | 21.05|127.47| 31.07|127.67| 23.36)128.25|896.61|875.72| 27.38| 129.03[1390.68 [1492.45

throughput of the 3-replicated Cassandra cluster de-
pending on the used deployment scenario.

Our experiments confirm a general expectation
that stronger data consistency guaranties reduce data-
base throughput and increase latency of read/write oper-
ations. However, the single datacentre/region Cassandra
deployment offers the best performance for all con-
sistency settings. At the same time, Cassandra can hard-
ly achieve the maximum throughput if its clients are
located in other geographic regions. Deployment of a
middleware application in the same region as a Cassan-
dra cluster that aggregates and proxies read/write re-
quests from numerous distributed clients can mitigate
the dominant impact of high network delays. Another
solution which can improve performance of the de-
ployment scenario (b) is implementing asynchronous
database requests instead of synchronous ones which
block the client until the current operation completes.

Distributing Cassandra nodes across geographic
zones close to the database clients also helps to reduce
database latency in case of weak consistency settings
(ONE, LOCAL_ONE or LOCAL_QUORUM). Howev-
er, strengthening data consistency by querying replicas
from other geographic regions dramatically degrades
Cassandra performance and can cause timeout excep-
tions.

It is worth to remember that timeout settings play
an important role of major failure detection mechanism
in distributed computer systems [19] and affect efficien-
cy of many Cassandra mechanisms (e.g. speculative
retries, hinting, read repairs). Our previous experiments
[20] show that the optimal timeout settings should be
application specific and need to be adjusted dynamically
at run-time taking into account current system work-
load, consistency settings, deployment scenario and
other factors. Setting timeouts dynamically at runtime
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can help effectively balance performance, availability,
and fault-tolerance of distributed data storages.
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JOCJIJKEHHSA MTPOJYKTUBHOCTI PI3BHUX CIIEHAPIIB
PO3IOPTAHHA KJIACTEPA CASSANDRA NOSQL 3 TPbOMA PEIIVIIKAMH
Y XMAPHOMY CEPEJJOBHIII AWS

A. B. I'opoenxo, A. C. Kapnenko, O. M. Tapaciok

KoHuenuisi po3nojiieHnX perulikoBaHUX HepeNsIiMHUX CXOBHII AaHux, Takux sk Cassandra, HBase,
MongoDB 0yna 3anpornoHoBaHa Juisi €EeKTHBHOTO YIIPABJIiHHS BEJIMKUMH JJAHUMH, 00CAT SKUX HNEPEBHILYE MOXK-
JUBOCTI TPAIMIIHUX peNALiiHIX CHCTEM KepyBaHHSA 0a3aMM JaHWX IO iX eeKTHMBHOMY 30epiranHio i oOpooii.
Taxki cucTeMn xapakTepu3yIOThCS HASIBHICTIO KOMIIPOMICY MiX y3TOJDKEHICTIO, JOCTYITHICTIO, CTIHKICTIO 710 TIOMITY
Ta YaCOBUMH 3aTpUMKaMHU. X04a SKICHI BIIHOCUHH MiX ITMMHU BIACTUBOCTSAMHU OyJIM paHille BU3HAYECHI B TeOpeMax
CAP ta PACELC, npote, akTyaJbHOIO 3aJIMIIAETHCS KUIbKICHA OLIHKA CTYIEHS Ta XapakTepy BIUIMBY Pi3HHX Ha-
JAITyBaHb Y3TOJUKEHOCTI JaHUX, CIEHApiiB PO3TOPTAHHS Ta IHIIMX BIACTHBOCTEH Ha MPOJYKTHUBHICTH TAKHX CHC-
TeM. Y CTaTTi aHaNli3yeThCs MPOAYKTUBHICTD Kiactepa gaHux Cassandra NoSQL Ta mociiukyeTbess KOMIIpOMic MK
TapaHTisIMH Y3rOoJDKEHOCTI iH(popMalii Ta NPOJYKTUBHICTIO B PO3MOAUICHUX CXOBHIIAX AaHuX. OCHOBHA yBara 30-
cepe/PKeHa Ha JIOCIIDKEHHI KiJIbKiCHOTO B3a€MO3B’s3Ky Mik yacoM obcimyroByBaHHs Cassandra, ii mpomyckHOO
3[IATHICTIO Ta HAJIAIITYBaHHSAMH Y3TOKEHOCTI 3 YpaxyBaHHSIM Pi3HUX CLEHapiiB pO3ropTaHHS KIAacTepy B OJHOMY
Ta KiJIBKOX XMapHHX perioHax. Y CTaTTi HaBEICHO pe3yabTaTH BUKOHAHHS TECTiB NMPOIYKTUBHOCTI KiacTepa
Cassandra 3 TppoMa perulikaMi po3rOPHYTOro y XMapHoOMy cepemosuini Amazon AWS, mo otpuMani 3a J0IMOMO-
roro Habopy TecTiB YCSB. Takoxx aBTOpamMu 3amporoOHOBAHO HOTAIIIO M7 (POPMAIEHOTO OMUCY CIEHApiiB po3Mo-
JieHoro po3ropTanHsa kiactepa Cassandra Ta oro By3iiB BiIHOCHO OJMH OJHOTO Ta KJIi€HTiB 0a3zu manux. [Ipen-
CTaBJIEHO KUIBKICHI pPe3yibTaTH, SKi MOKa3yIOTh, SIK Pi3HI HAJAIITYBaHHS y3TOJDKEHOCTI Ta CIEHApil pO3ropTaHHA
BIUIMBAIOTh Ha MPOAYKTHUBHICTH Cassandra mis pi3HEX poO0oYnX HaBaHTAKEHb. 30KpeMa, Hallli eKCIIEPHIMEHTH Jie-
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MOHCTPYIOTb, 1110 CTPOTa y3ro/DKEHICTh JaHUX KOLITYE B CEPEeAHbOMY 110 22 % NPOAYKTHBHOCTI Y pasi LEHTpai3o-
BaHOTO PO3TOPTAaHHS KJacTepa, a TaKOX MOXE IPHU3BECTH IO 30UIbIIEHHS 4acy BHKOHAHHS OIepaliil 4uTaH-
H/3amucy go 600 % y pasi, SKIIo perutiku 0a3u JaHUX Ta i KIE€HTH I00aIbHO PO3MOIiICHI MK Pi3SHAMHU perioHa-
mu AWS.

Kuarouosi cioBa: Cassandra; NoSQL; posmoziseni 6asu qaHux; perIiKaliis; BUTPOOYBaHHS TPOTyKTHBHOCTI;
YCSB; y3romkeHiCTh JaHUX; TPOIYCKHA 3/IaTHICTH; 3aTpUMKa OOCITyrOBYBaHHS; CIICHapii posropTaHHs; Amazon
AWS.

HCCJIEJOBAHUE ITPOU3BOJIUTEJIbHOCTH PA3JIMYHBIX CIIEHAPUEB
PA3BEPTBIBAHUS KJIACTEPA CASSANDRA NOSQL C TPEMS PEIIJIMKAMU
B OBJIAYHOM CPEJIE AWS

A. B. I'opéenko, A. C. Kapnenko, O. M. Tapacrok

KoHnrienius pacmpeeieHHbIX PEIUTMIIUPOBAHHBIX HEPEISIIMOHHBIX XPAHWINIL JaHHBIX, Takux kak Cassandra,
HBase, MongoDB u np. 6bu1a nipeaiioxkeHa it 3G (GEKTHBHOTO YIIPaBICHUs OOJBITUMH JaHHBIMH, 00hEM KOTOPBIX
MIPEBHIIACT BO3MOXKHOCTH TPAAUIHOHHBIX PEIIIHOHHBIX CHCTEM YIIPABICHUS PEILIIHOHHBIMHA 0a3aMy ITaHHBIX IO
X 3QPEKTHBHOMY XpaHEHHIO W 00paboTke. Takume CHCTEMBI XapaKTEPH3YIOTCS HAIMYHEM KOMIIPOMHCCA MEXKIY
COTJIACOBAHHOCTBIO, MTOCTYIMHOCTBHIO, YCTOHYMBOCTBIO K PA3NICICHUIO W BPEMCHHBIMH 3aJepKKaMH. XOTS Kade-
CTBEHHBIC OTHOIICHUS MEXTy STHMH CBOWCTBaMHU M ObUTH paHee omnpeneiacHbl B Teopemax CAP u PACELC, tem He
MeHee, aKTyallbHOH OCcTaeTcs KOJMYSCTBeHHAs OIICHKA CTETICHN U XapaKTepa BIMSHUS Pa3IMIHBIX HACTPOEK COTJIA-
COBaHHOCTH JIaHHBIX, IATTEPHOB Pa3BEPTHIBAHUS M JPYTHX XapaKTEPUCTHK Ha MPOU3BOAMTEIHLHOCTh TAKHX CHCTEM.
B crarbe aHanM3upyerTcsi MpOU3BOIAMTENLHOCTh KiacTepa AaHHbX Cassandra NoSQL u uccenyercs KOMIIpOMECC
MEXAY T'apaHTHSIMHU COIVIACOBAHHOCTH MH(GOPMAIMM M TMPOU3BOJUTENHFHOCTBIO paclpeeeHHbIX XPaHUIIHI JaH-
HbIX. OCHOBHOE BHUMaHHE YZEJICHO MCCIIEJAOBAHUIO KOJIMUECTBEHHOW B3aMMOCBS3HM MEXKIY BpEMEHEM O0CIyXKHBa-
nust Cassandra, ee IpOIYCKHOM CIOCOOHOCTBIO M HACTPOMKAMHU COTJIACOBAHHOCTH C YYETOM Pa3JIMYHBIX CIIEHApHEB
pa3BepTHIBaHUS KIIaCcTepa B OJHOM M HECKOJNBKHX OOJaYHBIX PETHOHAaX. B craThe MpuBENEHBI pe3ynbTaThl U3MeEpe-
HUS TPOM3BOIUTENBHOCTH KiacTepa Cassandra ¢ Tpems peIuIMKaMu Pa3BEpHYTOrO B OOJIAa4HOW cpeme Amazon
AWS, momydennsie ¢ momorpo Habopa tectoB YCSB. Kpome Toro, aBTOpaMu mpemiokeHa HOTamwst A Gop-
MaJIFHOTO OTIMCAHUS CLIEHapHeB pa3BepThIBaHMU KiacTepa Cassandra v ero y37I0B OTHOCHTEIBHO IPYT Ipyra U KITH-
eHTOB 0a3bl MaHHEIX. [IpencTaBIeHBI KOMMYeCTBEHHBIE PE3YIbTaThl, KOTOPHIC TTOKA3BIBAIOT, KaK Pa3HbIe HACTPOHKH
COTJIACOBAHHOCTH W CIEHAPHH Pa3BEPTHIBAHUS BIUSIIOT Ha MPOU3BOIUTENHHOCTh Cassandra mis pa3mudHBIX pado-
YUX Harpy3ok. B 4acTHOCTH, HalIM SKCHEPUMEHTHI IEMOHCTPUPYIOT TOT (aKT, 4YTO CTPOTrasi COrjacoBaHHOCTh JIaH-
HBIX YXYJILIAeT MPOU3BOANTEIBHOCTh KiIacTepa B cpeHeM Ha 22 % B cily4ae ero IeHTPaJIM30BaHHOTO pa3BepThIBa-
HUS, a TaK)Ke PUBOIUT K YBEIHMUEHHIO BPEMEHH BBITIOJTHEHUS orneparuii ureHus/3anucu 1o 600 % B cirydae, koraa
perutiku 6a3p1 qanHbIx Cassandra i eé KIHEeHTHI TII00aIbHO paCpeIeNICHbBI MEXKTy Pa3HbIMU pernoHaMu AWS.

KaroueBnie ciioBa: Cassandra; NoSQL; pacnipenenennbie 6a3bl JaHHBIX; PEMIMKAIHS, TECTUPOBAHUE MPOMU3-
BonurenbHOcTH; YCSB; cornacoBaHHOCTh JIaHHBIX; MPOIYCKHAsi CIIOCOOHOCTD; 3aJepiKKa OOCITy)KHBaHHsI; ClieHa-
pum pa3BepTeiBaHusA; Amazon AWS.
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