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MODELING OF VIBRATIONAL PROCESSES  

IN DISCRETE MATRIX STRUCTURES APPROACH 
 

In the article are presented general principles of modeling vibrations in discrete structures formed in the form 

of special matrix forms of the Latin square (Sudoku type) are presented. The signs of structural and functional 

self-similarity for the matrix structures of standard Sudoku grids are formulated. It is shown that the structural 

principle can be interpreted as the implementation of the second iteration in the scale scaling algorithm char-

acteristic of fractal objects. The signs of functional self-similarity of structures include the property of additive 

conservation of grid shapes to the requirements of Sudoku, which is formulated as a theorem. It is proved that 

the matrix sums of Sudoku constants and grids of arbitrary sizes, obtained taking into account the introduced 

cyclic ranking rule, will satisfy the three required Sudoku requirements. It is determined that by performing a 

given sequence of group shift operators, it is possible to establish a specific scenario for dynamically changing 

the state of a structure on a discrete time scale. It has been established that the evolution operators of linear-

type group translations lead to matrix transformations of Sudoku grids from the set of equivalent ones (con-

cerning the original ones), and the vortex-type group shifts operators to matrix transformations from many es-

sentially different networks. The modes of harmonic, chaotic, and hybrid vibrations for structures of arbitrary 

size are considered. The requirements for transformations of the operators of the evolution of structures that 

provide the implementation of the considered modes are formulated. The results of modeling chaotic oscillato-

ry processes by cycles of states of a discrete system that form similarities of attractor paths are analyzed. The 

principle of synchronization of chaotic states of matrix structures is established. The possibility of simulating 

the modes of beatings of oscillations in discrete cellular structures organized in the form of two-level matrix 

forms is substantiated. Specific examples show the results of simulating beatings of oscillations in cycles of 

changing states of a discrete system for two types of beats: similar to the result of a superposition of harmonic 

vibrations at multiple frequencies in the theory of radio signals, as well as noise-like beats. 

 

Keywords: data discrete structure; Sudoku grid; signs of self-similarity; operators of matrix transformations; 

oscillations modes; deterministic chaos; noise-like beats. 

 

Introduction 

 
The dynamic systems are the systems that states 

change overtime in accordance with the established 

rules of the evolution operator [1]. In traditional there 

are share systems with continuous and discrete time of 

evolutions (flows and cascades). First type of system in 

literature are like continuous systems, and second type 

(given the way of describing time) – like discrete. How-

ever, in addition to the discrete time of evolution, a truly 

discrete system must also consist of spatially and func-

tionally focused elements, i.e. be a discrete structure. 

A dynamic system is also said to be, if we can 

point the setoff values, called dynamic values and char-

acterizing the state of the system. Their values in the 

next time moment can be determined from the source 

using evolution operator rules. If state of the system 

defined by a set of N quantities, then the dynamics of its 

state change in time can be represented as the move-

ment of a point along a trajectory in an N-dimensional 

phase space, which called phase trajectory. Initially, 

purely Newtonian content was invested in the concept 

of a dynamic system, meaning a set of bodies connected 

by force interactions and obeying a system of differen-

tial equations. The modern concept of dynamic system 

is fuller and means that we can set the evolution opera-

tors in any way. Particularly, for systems with discrete 

time it will be like recurrence mappings or difference 

equations (with use different discrete transformations), 

and for discrete systems – through the rules of mutual 

permutations of structural elements. 

Usually, the structure of a discrete dynamic system 

can be specified in the form of a special matrix form 

Latin square Sudoku type (from Japanese: 数独 – sepa-

rate number). Moreover, the numbers used in its cells 

can be considered as indicators of an indicator of some 

qualitative factor (color, sound, density, warmth, area, 

count of defects or microobjects, probabilities etc.). 
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Fig. 1, a rerepresented example of three-dimensional 

discrete structure models (Fig. 1, b) and puzzle break-

down of a homogeneous array of objects (Fig. 1, c) in 

the Sudoku square fragment (Fig. 1, а). 

 

 

 
 

а) b) c) 

 

Fig. 1. The examples of discrete structure models 

 

The discrete structures are one of dynamic systems 

type, for the description may be used the representations 

of their specific states. In this case the phase area means 

like set of all permissible system states in the dynamics 

of their changes over time. Thus, the discrete structure 

is characterized by its initial state and the law (specified 

by the evolution operator), according to which the sys-

tem goes from the initial state to the subsequent. If evo-

lution operator in the time scale is set so that the struc-

ture after change cycle periodically returns to the same 

state, then we can talk about observing the oscillatory 

process in the system. 

Study of various types of vibrations (own, forced, 

self-oscillations, parametric) in different type of systems 

always gives a big attention. Note that in nonlinear dy-

namics, nonlinear models are used to study the proper-

ties of dynamical systems, which usually are described 

by differential equations for systems with continuous 

time and recurrent (or discrete) mappings for discrete 

time systems. However, dynamic models of discrete 

structures in which evolution operators are specified 

like algorithms (not the formula ratios, for example at 

[2]), in the modern literature are not represented. 

In the [3] the model of the oscillation simulator in-

discrete structures constructed in the form of Sudoku 

grids was first proposed, the dynamics of changes in 

discrete time is described by specially introduced evolu-

tion operators of group translations of linear and vortex 

types. In the modeling base will substantiated the mani-

festations of deterministic chaos regimes in oscillations 

of such discrete structures conditions. However, in the 

[1] big attention paid for of Sudoku classic matrixes 

with 9x9 size. The aim of this paper are generalization 

of the principles of modeling vibrations into discrete 

structures of Sudoku type of arbitrary sizes and justifi-

cation of the possibility of simulating the modes of beat-

ings of oscillations in discrete cell structures organized 

in the form of two-level matrix forms. 

 

The signs self-similarity for matrix  

structures of standard Sudoku grids 
 

First of all, it should be indicated that as necessary 

conditions for the formation of digital grids of the Su-

doku type [1], signs of both structural and functional 

self-similarities. Here «structural» self-similarity must 

be understood like local scaling of geometric form of 

grids, and «functional» - in sense of manifestation of 

scale invariance in numerical sequences, which fill up 

these matrix forms. 

Most clearly sign of structural self-similarity of 

Sudoku type can imagine based on case studies. In the 

Fig. 2 consistently represents the grids with different 

sizes: 4x4 (Fig. 2, a), 9x9 (Fig. 2, b) and 16x16 

(Fig. 2, с). As can be seen, in the general case the natu-

ral number n ≥ 2 determines the linear size of a small 

base square, and number n2 – the count of elements in 

this square and, at the same time, the count of small 

squares in general field n2xn2 size. Exploring Sudoku as 

a mathematical object usually used the accepted terms 

for matrix forms: grid row, grid column, stripe - a block 

row of adjacent small squares horizontally and a stack - 

a block column of adjacent small squares vertically. 

Another word, arbitrarily given natural number n is a 

setting for the linear size of the small square of the grid 

field, as well as the number of stripes and the number of 

stacks of the total field. This structural principle can be 

interpreted as the implementation of the second iteration 

in a multiple scaling algorithm for fractal objects [4]. 

 

  
 

a) b) c) 

Fig. 2. Structural self-similarity of Sudoku fields 

 

A sign of functional self-similarity refers to the 

choice of a discrete algorithm «sowing» of natural num-

bers in the constructed grid fields. Note that it differs 

significantly from the possibility of scaling variables in 

functional dependencies or equations using proportional 

coefficients that is observed in fractal theory [4]. How-

ever this features don`t allow rejecting the fact that for 

Sudoku matrices functional self-similarity is observed. 

Should be reminded, that the Sudoku matrix field (ac-

cording to accepted requirements) is filled with natural 

numbers from set {1, 2, 3, …, n2} and is a Latin Euler`s 
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square with an additional property: in the common grid 

field each of n2 adjacent small squares contains once all 

natural numbers from the set from 1 to n2. Accord-

ing [3] it is convenient to introduce the standard form of 

Sudoku grids into the analysis, for which the rows (from 

left to right) are filled with ranked data, taking into ac-

count the closed sequence of digits in the cycle. In the 

upper left cell of the upper grid strip is located 1 

(Fig. 3, а), in the upper left cell of the second from the 

top of the strip is 2, and so on to the lower strip, in the 

upper left cell of which the n number. Ranked rows of 

natural numbers fill the cells of each row, which taking 

into account the limited value n2 cycles according an 

algorithm similar to discrete clockwork (Fig. 3, b). After 

n2 follows again 1, 2, 3, … etc. This operation will be 

called cyclic ranking. Small squares of the first left 

stack of the grid are filled with ranked rows according 

to the specified algorithm with line-by-line continua-

tion. For clarity on Fig. 3, c and Fig. 3, d an example is 

given for the standard grid of classic Sudoku with n=3. 

As seen from Fig. 3 built standard grids (L0(n2)), 

satisfy all three Sudoku requirements, and their size and 

filling format are determined only by the parameter n. It 

is the possibility of determining Sudoku nets using one 

parameter that is basic for the manifestation of their 

functional self-similarity. 

 

  
a) b) 

  

c) d) 

 

Fig. 3. Sudoku grid standard form 

 

Sudoku requirements, expressed in terminological 

form as: «all rows, all columns and all adjacent small 

squares of the structure contain exactly once all natural 

numbers from 1 to n2», in «digital» modeling can be 

written using the well-known formula for the finite sum 

of a series of natural numbers in the form of the follow-

ing mathematical relations: 
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where aij – grid matrix elements. 

Also, the features of functional self-similarity 

include the property of additive conservation of grid 

shapes to Sudoku requirements, which can be 

formulated as a theorem: the matrix sum of an arbitrary 

Sudoku grid and constant Cm for 1 ≤ m ≤ n2 found 

taking into account the cyclic ranking rule, satisfies the 

mandatory requirements of Sudoku. 

Evidence. Without loss of generality, we prove the 

theorem for standard matrix forms (L0(n2)). 

Moreover, understanding the matrix representation 

of the constant Cm: matrix 

mmm

.........

mmm

Сm  .. 

 

consider 

a special case for L0(n2) at n=2, like easiest to analyze. 

Here the matrix summation operation will be applied in 

the usual sense when the elements of the final matrix 

Lm
∑(4) equal to the algebraic sum of the corresponding 

elements of the two terms of the matrixs: 
)2(

ij
)1(

ijij aaa  , where aij
(1,2) elements of the first and 

second matrices, respectively. However, the result of 

each summation aij
∑ in the final matrix provided 

2
ij na   must be adjusted according to the cyclical 

ranking rule. In turn, we consider all four possible 

options for 1≤m≤4: 
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It is easy to perform similar operations of sum-

ming constants with matrices L0(9) and L0(16), and then 

inductively generalize to the case of arbitrary choice 

L0(n2). Of course, the analysis for standard-type grids 

has a natural extension to other types of grids. Thus, the 

matrix sums of arbitrary (with respect to size and type) 

Sudoku nets and constant Cm for 1 ≤ m ≤n2, obtained 

taking into account the rules of cyclic ranking, will sat-

isfy the three mandatory requirements of Sudoku. 

Q.E.D. 

As can be seen from (2) – (5), the resulting matri-

ces really satisfy the requirements of Sudoku. Moreo-

ver, the addition of odd constants to L0(4) leads to a 

permutation of the rows in the matrix, and adding even 

– to rearrange columns. As expected,  

 

)m(LC)n(L)4(L 0nmm
2

0
m

2 
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Note that the rule of cyclic ranking of natural numbers 

used here allows us to consider the summation of matri-

ces with constants m > n2. However, one should keep in 

mind that the structures of the resulting matrices will be 

repeated with the cycle m = n2. 

 

Evolution operations for harmonic,  

G chaotic and hybrid oscillations 

 
Before turning to the analysis of vibration process-

es in matrix structures, we present several general com-

binatorial characteristics for the structures under consid-

eration. It is known from the theory of discrete mathe-

matics that Latin square sexist for any N=n2, moreover, 

the exact formula for the number of Latin square 

L(N)N-th order not yet established. However, from the 

monograph [5] bilateral estimates of the quantity are 

known as L(N): 

 

.)!k()N(L
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The exact values of the number L(N) are deter-

mined only for the values N  [1;11]. For example, 

from [6] this value for the case N=9 has the value: 

L(9)=5524751496156892842531225600≈5.525×1027. 

Of course, the number of exact values Ls(N) of dif-

ferent Sudoku matrix grids will be less than the total 

number for Latin squares L(N), if only because the 

number of matrices containing small squares must be 

excluded from L(N), which contradicts the third addi-

tional Sudoku rule (1). For example, according the third 

rule of (1) number of different Sudoku nets, according 

[7], decreases to  

Ls(9)=6670903752021072936960≈6.671×1021. 

But quite often, we can get one Sudoku grid from an-

other using simple transforms. Two Sudoku meshes are 

called equivalent if it is possible to transform one of 

them into another by applying one (or more than one) of 

the symmetries of the set G. If none of the symmetry 

sequences transforms one of the grids into another, the 

grids are called significantly different. Moreover, it is 

believed that the symmetry group G is generated by 

transformations of the following types: 

1) reassignment of nine digits; 

2) permutation of three stacks; 

3) rearrangement of three bands; 

4) permutation of three columns in any stack; 

5) permutation of three lines in any strip; 

6) all mirror flections and rotations from the set of 

symmetries of the square (0 degree rotation - neutral 

element; 90 degree clockwise rotation; 180 degree 

clockwise rotation; 270 degree clockwise rotation; hori-

zontal axis reflection, which goes through the square 

center; vertical axis reflection, which goes through the 

square center; reflection about the square diagonal from 

its lower left to upper right; reflection about the square 

diagonal from its upper left to lower right). 

For example, using the methods of group theory, 

taking into account the indicated set of symmetries, the 

number Lb(9) of essentially different Sudoku nets was 

found in [7], which significantly less than the number 

Ls(9) and equals Lb(9)=5472730538≈5.473×109. Esti-

mates Ls(N) and Lb(N) are of fundamental interest in the 

analysis of possible transformations of matrix structures 

that obey Sudoku rules. 

In the previous part in proof the theorem on the 

property of additive conservation of grid shapes to Su-

doku requirements, that when summing matrices with 

constants m > n2 of structures will be repeat with the 
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cycle m = n2. Based on this property, an operator of the 

evolution of their states can be introduced to describe 

vibration processes in matrix structures. That is, it is 

possible to formulate a rule of dynamics, according to 

which a discrete system in time steps will change the 

form of its structural filling to a new form from the set 

Ls(N), essentially meaning her different states. In other 

words, it is possible to set a specific trajectory of 

changes in the original Sudoku grid in discrete time, 

which corresponds to the oscillatory process in this 

structure. In this case, it is necessary to associate a for-

mal mathematical operation of digital permutations with 

a specific type of physical structural changes. 

To this end, in [3] models of evolution operators 

were introduced, defined as group of (simultaneous for 

all digits, which fill the matrix) shift of matrix elements 

and the necessary transformation of matrix structures in 

the next step of their temporal evolution their time evo-

lution. In this case, two types of such operators can be 

realized: linear-type displacements and vortex-type 

displacements, which we will consider below with 

specific examples. 

Without loss of generality, we assume that the 

elements of the first row of the original matrix 

(Fig. 3, а) shift to the left one cycle position, as shown 

in Fig. 4, а top row of arrows. In this case, the number 2 

goes to the first cell of the line, the number 3 to the 

second, and each subsequent one to the left of it. In 

place of item n2 (according to the condition of cyclic 

ranking) will be 1. We will call such a cyclic 

permutation of elements a linear type shift. It is 

convenient to describe it in the form of a vector, in 

which pairs of numbers will be components. The first 

digit will be the one that is subject to change, and the 

second – this is a figure that is inserted in place of the 

variable. In our case, such a transformation vector will 

have the following form: T


{(1,2); (2,3); (3,4)…(n2,1)}. 

We emphasize that the group permutation described by 

such a vector is applied to all elements of the matrix 

structure, and not just to the elements of the first row. 

  

a) b) 

Fig. 4. Types of shift operators 

 

For example, when choosing n=3 and the initial 

matrix in the form of Fig 3, с. As a result, we obtain a 

new matrix form, presented in Fig. 5, a. 

  
a) b) 

Fig. 5. Type of structure as a result  

of linear shifts for n=3 

 

In any case, as expected (according to the property 

of additive conservation of grid shapes to Sudoku re-

quirements), the new matrix structure for random N=n2 

will be different from the original matrix only by 

rearranging the left column of the original matrix on its 

right edge. Note that such a transformation is one of the 

symmetry transformations from the G group, which 

leads to an equivalent grid for the original from the set 

Ls(N). 

The result of a linear shift of elements in a column 

of matrix structures is not entirely obvious. As an 

example, we select the first left column in the original 

structure and make a cyclic shift of the elements up, as 

shown at the Fig. 4, а side arrows. In this case when 

choosing n = 3 and source matrix like at Fig. 3, с the 

transformation vector will be: T


{(1,4); (4,7); (7,2); 

(2,5); (5,8); (8,3); (3,6); (6,9); (9,1)}, and the form of 

the transformed matrix as on Fig. 5, b. Analyzing the 

obtained structure here, one can notice, that it differs 

from the original permutation of the first left stack of 

the original matrix to its right edge and the subsequent 

two reassignments of numbers: 2 and 1, 3 and 1. That is, 

for the linear shift operator in the column, we obtain a 

certain sequence of symmetry transformations from the 

group G, which also reduces the original matrix to an 

equivalent grid of Ls(9). Of course, this conclusion will 

also be valid for matrix structures of arbitrary size N=n2. 

The considered principle of constructing a 

structure evolution operator in the form of a linear 

group shift is equivalent in relation to any choice of the 

base row or column number in sourse matrix Ls(N). Of 

course, in this case the directions of the slides and 

opposite to the analyzed ones can be chosen. However, 

as shownin [3], the possibilities of introducing operators 

of the evolution of structures in the form of cyclic shifts, 

in which the shapes of Sudoku grids are preserved, are 

not limited to these options. The second type of evolu-

tion on operators can be defined based on vortex shifts. 

In this case, the elements of an arbitrarily selectedsmall 

square n×n the original structure is shifted along the 

perimeter of the square, for example, clockwise around 

its center, as shown in Fig. 4, b internal arrows for a 

special case n=4. Note, that here even n is full transfor-



ISSN 1814-4225 (print) 

РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2020, № 2(94)               ISSN 2663-2012 (online) 
72 

mation of square elements and for the odd values – the 

central cell will pass into itself. When we choose n = 3 

and central small square as a basis in the matrix Fig. 3, c 

transformation vector is: T


{(1,7); (2,3); (3,4); (4,1); 

(5,8); (6,5); (7,6); (8,2); (9,9)} and Fig. 6, a represented 

the view of the transformed matrix is shown on 

Fig. 6, а. An analysis of the resulting matrix structures 

shows, that it what should be attributed for the Lb(N) set 

significantly different grids with respect to the original. 

Of course, when choosing any direction of contour shift 

(clockwise or counterclockwise) in an arbitrary basic 

small square, a similar result of matrix transformation 

will be provided. 

 

  
a) b) 

Fig. 6. Type of structures as a result  

of vortex shifts for n=3 

 

Thus, in common case will it can be argued, that: 

1) the introduced linear shift group evolution op-

erators lead to matrix transformations of Sudoku nets 

from [Ls(N)-Lb(N)] set - equivalent grids with respect 

to the original ones and can be defined as linear opera-

tors; 

2) the introduced evolution operators of vortex-

type group shifts lead to matrix transformations of Su-

doku nets from Lb(N) set significantly different grids 

with respect to the original ones and can be defined as 

nonlinear operators. 

Requiring the execution of a given sequence of in-

troduced operators, one can establish a specific scenario 

for dynamically changing the state of a structure on a 

discrete time scale. One of the options for such scenari-

os of fundamental interest is the implementation of a 

sequence of cyclic group shifts in the structure. In this 

case, it becomes possible to build a model of oscillatory 

processes in discrete structures [3]. We will verify this 

by analyzing the sequence of linear shifts of the first 

line of the original structure, shown at Fig. 3, а. We 

assume that the transformation with the vector consid-

ered above T


{(1,2); (2,3); (3,4)…(n2,1)} will be the 

first step in a dynamic scenario, which leads to a simple 

permutation of the first (left) column of the original 

matrix on its right edge. We perform further sequential-

ly (n2-1) transformations, given by the same vector, 

which at each step provides the implementation of the 

permutation of the left column of the matrix on its right 

edge. Finally, such a cycle from n2 permutations we 

return to the original matrix. Next, execute the loop 

from n2 consecutive shifts in the opposite direction with 

the transformation vector T


{(2,1); (3,2); (4,3)…(n2,1)} 

which will provide permutations of the right column of 

the original matrix to its left edge. As a result of the full 

cycle of 2n2 of the above steps, we again return to the 

original structure. In the case of repeating the sequence 

using the evolution operators on a homogeneous time 

grid several times, we obtain a model of periodic oscil-

lations in a discrete structure. 

The described approach can be easily generalized 

to any of the types of considered group shift operators. 

For clarity, at Fig. 7 schematic examples of oscillatory 

processes in matrix structures are given with n=3 

(Fig. 7, а – fluctuations in the lines of the matrix struc-

ture, Fig. 7, b – fluctuations in the columns of the matrix 

structure, Fig. 7, с – swirl type vibrations): 
 

  
a) b) 

 
c) 

Fig. 7. Modeling of oscillatory processes  

in a discrete structure n = 3 

 

Hovewer, as indicated in [3], the nature of the 

transformation of states in vibrations of matrix 

structures that are specified by linear and nonlinear type 

shift operators turns out to be significantly different. 

Moreover, nonlinear-type operators make it possible to 

observe manifestations of deterministic chaos in a 

temporary change of state of structures. 

Here, to observe such chaotic manifestations, it is 

impossible to introduce an analog of the phase space 

traditionally used in the analysis of continuous-time 

systems. Moreover, given the Sudoku rules for uniform 

dispersionelements (numbers) in discrete structure, 

probabilistic analysis approaches become ineffective 

here. Therefore, as in [3], in this paper the principle of 

maintaining the cyclic ranking of digital sequences will 

be used to indicate the ordering of the structure 
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1, 2, …, n2 in matrix structure rows, which was provid-

ed when filling in the original standard grid (Fig. 3, а). 

Moreover, one or another change in the order of num-

bers in the ranked sequences will be interpreted as a 

violation of order in the discrete system as a whole, and 

their disordered distribution among the elements of the 

matrix structure as a manifestation of deterministic cha-

os [8]. 

From these positions, returning to the analysis of 

the results of transformations as a result of group linear 

shifts (Fig. 5), we can indicate that: 

- the introduced linear type evolution operators 

do not change the general order of the initial standard 

structure (Fig. 5, а); 

- these changes are local in nature (Fig. 5, b) of 

the position of the elements with the number 1. 

Summarizing it can be argued that when modeling 

oscillatory processes in discrete structures of arbitrary 

size N = n2 using linear-type group shift operators, cha-

otic manifestations are not observed. These conclusions 

were confirmed by a series of selective simulations of 

oscillatory processes in matrix structures with different 

N = n2, similar to the schemes shown in Fig. 7. 

A completely different situation is manifested in 

the case of the use of nonlinear group shift operators. 

For example, анализируя в случае n=3 (Fig. 3, с) kind 

of structures at Fig. 6, we no longer observe in the rows 

of the matrix the fulfillment of the principle of ranking 

of digital values. However, it is clear that if at the first 

step we apply the transformation vector and then 

(clockwise) continue the sequence of 8 transformations 

defined by the same vector T


{(1,7); (2,3); (3,4); (4,1); 

(5,8); (6,5); (7,6); (8,2); (9,9)}, we will return to the 

original ordered matrix form. Moreover, at any step 

(except for the original standard grid), the principle of 

ranking digital values will not be performed row by row 

in matrices. As an example, at Fig. 6, b shows the ma-

trix structure at the 7th (last but one in the cycle) step. 

Therefore, it can be argued that when modeling vortex-

type oscillations (Fig. 7, c) in a discrete structure, the 

relative order is lost and manifestation of deterministic 

chaos is observed. Moreover, 9 cyclic sequences of sig-

nificantly different Sudoku nets in this case will be 

similar to the trajectories of strange attractors on a dis-

crete time scale. Since these attractors cannot have a 

sensitive dependence on the initial conditions, most of 

all, they should be classified as strange non-chaotic at-

tractors [9]. It is easy to verify that the results obtained 

for n=3 remain valid for an arbitrary size of Sudoku 

nets. 

Thus, summary, during evolutions on a uniform 

time scale, linear group shift operators allow us to simu-

late the process of linear harmonic oscillations in dis-

crete structures of Sudoku type of arbitrary size N=n2, 

and vortex shift operators – chaotic nonlinear oscilla-

tions [10]. Of course, both linear and nonlinear opera-

tors can be sequentially used at different time stages of 

the evolution of matrix structures. In this case, we will 

be able to simulate the structural vibrations of the hy-

brid type. Such modeling is more general and requires a 

separate study, however, its application will be based on 

the basic principles discussed above. Here we analyze 

only one aspect of hybrid oscillations, which is of rather 

great fundamental and practical interest. 

This aspect concerns the well-known problem of 

synchronization of deterministic chaos processes, which 

has been most fully investigated in the field of radio 

communication technologies (for example, [11-13]). 

Without delving into special issues, we note that in or-

der to use chaos as an information carrier, there is a 

need for technical solutions that allow you to generate a 

chaotic signal and reproduce it with a sufficient degree 

of accuracy on the receiving side (that is, synchronize 

the processes of signal generation and reception). Here 

the wording of the synchronization question will be un-

derstood as follows: «is it possible to establish a con-

nection (at least in a particular case) between a pair of 

matrix structures, having different chaotic digital pad-

ding?». 

As it turned out, such an opportunity exists. The 

justification for this possibility directly follows from the 

theorem proved above on the property of additive con-

servation of grid shapes to Sudoku requirements. Real-

ly, according the theorem matrix sum of arbitrary Sudo-

ku grid N = n2 size and the constant Cm for 1 ≤ m ≤ n2, 

found taking into account the cyclic ranking rule, com-

plies with Sudoku mandatory requirements. Note, that 

the addition of the same constant to each element of the 

original matrix in no way changes the difference rela-

tion between adjacent digital values of the elements and 

leads the original matrix to the equivalent grid. And this 

means that if the original matrix had random digital 

filling, then the final one will also be characterized by 

random type filling. For example, in the particular case 

of choice n = 3 and summing the original matrix struc-

ture, at Fig. 6, а, with constant matrix C2 we get. 

As can be seen from the analysis of identity (7), 

the resulting matrix describes a new hybrid structural 

vibration and, as the original matrix, is characterized by 

chaotic digital filling. Another words, the mathematical 

operation of summing the initial matrix structure and the 

matrix constant allows you to synchronize two different 

chaotic evolutionary states of the structure. The specific 

value of the constant appearing in such a summation 

should be considered as a synchronization parameter for 

a pair of chaotic structural states. We point out that 

since any of a number of constants can be used in the 

summation: Cm for 1 ≤ m ≤ n2, then is exist the possibil-

ity of parallel synchronization (n2-1) of the number of 

flows of chaotic structural evolutions. 
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7 3 4 1 8 5 6 2 9 1 1 1 1 1 1 1 1 1

1 8 5 6 2 9 7 3 4 1 1 1 1 1 1 1 1 1

6 2 9 7 3 4 1 8 5 1 1 1 1 1 1 1 1 1

3 4 1 8 5 6 2 9 7 1 1 1 1 1 1 1 1 1

8 5 6 2 9 7 3 4 1 2 1 1 1 1 1 1 1 1 1

2 9 7 3 4 1 8 5 6 1 1 1 1 1 1 1 1 1

4 1 8 5 6 2 9 7 3 1 1 1 1 1 1 1 1 1

5 6 2 9 7 3 4 1 8 1 1 1 1 1 1 1 1 1

9 7 3 4 1 8 5 6 2 1 1 1 1 1 1 1 1 1

  

9 5 6 3 1 7 8 4 2

3 1 7 8 4 2 9 5 6

8 4 2 9 5 6 3 1 7

5 6 3 1 7 8 4 2 9

1 7 8 4 2 9 5 6 3 .

4 2 9 5 6 3 1 7 8

6 3 1 7 8 4 2 9 5

7 8 4 2 9 5 6 3 1

2 9 5 6 3 1 7 8 4



 

(7) 

 

Modeling of beats of oscillations  

in a discrete structure 
 

In the modern informational technologies chaos is 

seen as a medium of information, as dynamic process, 

which transforming information to a new kind, and, 

lastly, as a combination of both [12, 13]. Anyway, the 

functionality of using controlled chaotic algorithms can 

be significantly expanded if any hardware capabilities 

for synchronizing them are known (and out of sync). In 

contrast to the material discussed in the previous sec-

tion, the principle of synchronization of matrix struc-

tures based on digital processing, for hardware applica-

tions, it is necessary to associate the proposed mathe-

matical models with a specific type of physical structur-

al changes. Therefore, the purpose of this section is to 

develop the proposed approach for describing free vi-

brations in Sudoku matrix networks on discrete cellular 

structures in the form of two-level matrix forms in 

which it is possible to observe the effects of beating 

vibrations. Without loss of generality, here we present 

an analysis for the matrix structures of classical Sudoku 

with dimension n = 3. 

Here, as before, we will assume that the initial 

structure of the discrete dynamic system is given on the 

Sudoku grid in the ranked form shown on Fig. 4, a. The 

structure evolution operators will also determine the 

transformation of the matrix, in which the permutations 

of its elements (digits) obey the scripts of group shifts of 

linear or vortex types. Recall, that using the introduced 

evolution operators, a simulation of the oscillatory pro-

cess of a given type for a discrete structure can be real-

ized in the form of a chain of cyclic changes in its 

states. However, to observe the effect of beating oscilla-

tions, according to the general theory of signals, two 

oscillations at different frequencies must be simultane-

ously excited in a dynamic system. In this regard, it 

turns out to be necessary to introduce the cellular struc-

ture of a more complex organization. 

It is proposed to use a layer of cubic cells enclosed 

between two complementary Sudoku nets of the follow-

ing type as a model of such a discrete structure: 

 

  

a) b) 

Fig. 8. Original complementary matrix structures 

 

Here, we call complementary a pair of Sudoku nets 

(Fig. 8), which, when superimposed on each other, pro-

vide in each cell located in the layer between them a 

sum of digits (or the number of inclusions) equal to 10, 

as shown in Fig. 9. In the initial state, the cell structure 

will be characterized by a uniform distribution of inclu-

sions across the cells of the entire layer. 

 

 

Fig. 9. Fragment of a two-layer matrix form 

 

In the considered variant of the two-level structure, 

the upper grid is selected in the form shown on Fig. 8, a, 

and the lower grid (complementary to the upper) - in the 

form shown on Fig. 8, b. Then the model will provide 

an opportunity to analyze two independent vibrations 

(respectively) in each grid structure, in the form of the 

result of their superposition according to estimates of 

changes in the uniformity of filling of layer cells be-

tween vibrations. 

Before proceeding to the analysis of the effect of 

beats for different types of oscillations, one should indi-

cate the general characteristic property of the model 
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used for the discrete structure. Without resorting to 

computer modeling, it is easy to make sure that if the 

same type of oscillations is excited in both boundary 

grids synchronously in time (that is, described by the 

same group shift operators), homogeneity of filling the 

cells of the model layer is maintained. Indeed, in this 

case, the transformed lower grid remains complemen-

tary to the transformed upper boundary grid at each dis-

crete time step of their cyclic changes. 

To observe the beats, we first consider two oscilla-

tions defined on the basis of the linear group shift opera-

tor of the first row of the matrix, as shown at Fig. 8, а 

top row of arrows.  

To the original top model grid (Fig. 8, а) apply the 

evolution operator 
eT {(1,2); (2,3); (3,4); (4,5); (5,6); 

(6,7); (7,8); (8,9); (9,1)}, and to the bottom (Fig. 8, b) – 

the operator 
iT {(9,8); (8,7); (7,6); (6,5); (5,4); (4,3); 

(3,2); (2,1); (1,9)}.  

To ensure the mode of different frequencies of grid 

vibrations, we assume that transformations in the upper 

grid occur on each discrete interval P of a uniform time 

scale, and transformations in the lower grid on each pair 

(2P) of such intervals (i.e. twice as slow). Of course, at 

the 18th step of evolution (appropriate time 18P) dis-

crete structure will again return to the state of uniform 

filling of the model layer. 

Deviations from the homogeneous state (for which 

exactly 10 objects are located in each cell of the struc-

ture) will be observed cell-by-cell, understanding that in 

the cells of a layer of a two-level structure with the 

same upper digit at a given moment in time there will be 

the same number of inclusions. Therefore, it turns out to 

be sufficient to observe changes in the number of ob-

jects only in 9 cells of the layer located under the digital 

values M=1, 2, ... 9 on the upper grid. It is convenient to 

present the observation results for analysis in a two-way 

table. So in Table 1 shows the number of inclusions in 

the cells of a two-level structure in time steps 

I=1, 2, 3, …, 18 for the considered case of addition of 

oscillations. 

 

Table 1 

The number of inclusions in the cells of the structure 

with a superposition of vibrations 

№ 1 2 3 4 5 6 7 8 9 

1 2 2 3 3 4 4 5 5 6 

2 11 11 3 3 4 4 5 5 6 

3 11 11 12 12 4 4 5 5 6 

4 11 11 12 12 13 13 5 5 6 

5 11 11 12 12 13 13 14 14 6 

6 11 11 12 12 13 13 14 14 15 

7 11 11 12 12 13 13 14 14 15 

8 11 11 12 12 13 13 14 14 15 

9 11 11 12 12 13 13 14 14 15 

For clarity, some of the results from table 1 are 

shown in Fig. 10 as dotted timelines. As can be clearly 

seen from Table 1 and 2, and Fig. 10 it turns out that in 

the cell structure under M=1 at the first time step, the 

number of inclusions decreases from 10 to 2, and then 

gradually increases to 10. 

 

Table 2 

The number of inclusions in the cells of the structure 

with a superposition of vibrations (continue) 

№ 10 11 12 13 14 15 16 17 18 

1 6 7 7 8 8 9 9 10 10 

2 6 7 7 8 8 9 9 10 10 

3 6 7 7 8 8 9 9 10 10 

4 6 7 7 8 8 9 9 10 10 

5 6 7 7 8 8 9 9 10 10 

6 15 7 7 8 8 9 9 10 10 

7 15 16 16 8 8 9 9 10 10 

8 15 16 16 17 17 9 9 10 10 

9 15 16 16 17 17 18 18 10 10 

 

Moreover, the increase in the number of inclusions 

is a multiple of the time discrete 2P, and the steps of the 

diagram are formed by pairs of identical values of the 

observed number of inclusions. A similar type of fluctu-

ation in the number of inclusions is also observed in the 

cell under the value M=1, where this number gradually 

increases from 10 to 18, and again becomes 10 at the 

last two time intervals 17P and 18P. These two kinds of 

fluctuations, with common signal theory analogy, can 

be defined as the main ones (temporal dependences 

forming the envelope for the amplitude of the resulting 

signal). In the remaining cells of the structure, hybrid-

type vibrations are observed. For cells under M=2 

(Fig. 10, b) in the first three time intervals, the oscilla-

tions correspond to the regime in the cell under М=9, 

and on the rest - the mode of oscillations in the cell un-

der M=1. Next for cells under M=3 (Fig. 10, d) in the 

first five time discrete oscillations correspond to the 

mode in the cell under M=9 and they are synchronized 

with the oscillation mode in the cell under M=1.  

Modes of vibrations and other hybrid species also 

appear, for example, in a cell under M=7 (Fig. 10, c). 

As the simulation results showed, the principle of 

oscillation formation under the evolution operators un-

der consideration is also preserved under other variants 

of the delays in the oscillations of the lower grid relative 

to the rate of evolution of vibrations in the upper grid of 

a two-level structure. In this case, the diagrams of the 

main oscillations are complicated with the manifestation 

of periodic fragments in their form. For example, in Fig. 

11 shows the diagrams of the main vibrations in the 

structure cells for the case when the transformations in 

the lower grid occur three times slower than in the upper 

grid. 
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a) 

 
b) 

 
c) 

 
d) 

 

Fig. 10. Frequency fluctuation diagrams 2P 

 

Based on the above analysis and the results of ad-

ditional modeling, it can be concluded that the fluctua-

tions in the number of inclusions in the structure cells, 

given on the basis of various linear group shift opera-

tors, for different delay intervals between transfor-

mations of the upper and lower grids of a two-level 

structure, are formed in the form of ordered main and 

hybrid fluctuations. Such a beat structure is similar to a 

beat process in the form of a superposition of vibrations 

at multiple frequencies in the theory of harmonic sig-

nals. 

 

 
Fig. 11. Diagrams of the main fluctuations  

of the multiplicity 3P 

 

It is appropriate to note here that in the previous 

section it was established: as a result of group linear 

shifts, the introduced linear type evolution operators do 

not make changes to the general order of the initial grid 

structures, or these changes are local in nature. In this 

regard, it can be argued that since in the considered case 

the initial matrices were filled with ranked sequences of 

numbers (Fig. 8), then ordered oscillations were ob-

served in the cells of the two-level structure. 

When considering the vibrations specified for the 

boundary networks by vortex-type evolution operators, 

one should expect the implementation of more complex 

scenarios for the fluctuations in the number of inclu-

sions in the structure cells, since, in this case, elements 

of deterministic chaos may appear. That is, even with 

the initial filling of the boundary grids with ranked se-

quences of digits, one should expect disordered (chaot-

ic) forms of beatings of oscillations. These assumptions 

were fully confirmed by the results of multiple simula-

tions. As an example, Table 3 and 4 shows the simula-

tion results for the same initial boundary grids (Fig. 8) 

in the oscillation mode specified by the two operators of 

the vortex-type group shifts. It was assumed that for the 

upper grid, the transformation vector has the form: 

eT {(5,8);(6,5);(7,6);(8,2);(9,9);(1,7);(2,3);(3,4);(4,1)}, 

and for the bottom grid: 
iT {(5,2);(1,5);(3,4);(2,8); 

(1,1);(9,3);(8,7);(7,6);(6,9)}. 

Note that under the action of both operators, the 

elements of the central small squares of the original 

grids shift clockwise around the perimeter of the squares 
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around the central digits 9 and 1, respectively. It was 

also assumed that transformations in the upper grid oc-

cur on each discrete interval P of the time scale, and 

transformations in the lower grid on each pair of such 

intervals (i.e. twice as slow). Since here the central dig-

its of the small squares of the boundary grids are fixed, 

the discrete structure returns to the state of uniform fill-

ing of the model layer at the 16th step of evolution (at 

P=16).  

 

Table 3  

The number of inclusions in the cells of the structure 

with noise-like beats 

№ 1 2 3 4 5 6 7 8 

1 7 7 8 8 9 9 3 3 

2 4 4 7 7 6 6 5 5 

3 11 11 5 5 8 8 7 7 

4 11 11 12 12 6 6 9 9 

5 9 9 8 8 14 14 11 11 

6 9 9 15 15 12 12 13 13 

7 16 16 13 13 14 14 15 15 

8 13 13 12 12 11 11 17 17 

9 10 10 10 10 10 10 10 10 

 

Table 4  

The number of inclusions in the cells of the structure 

with noise-like beats (continue) 

№ 9 10 11 12 13 14 15 16 

1 6 6 5 5 4 4 10 10 

2 11 11 8 8 9 9 10 10 

3 6 6 12 12 9 9 10 10 

4 8 8 7 7 13 13 10 10 

5 12 12 13 13 7 7 10 10 

6 14 14 8 8 11 11 10 10 

7 9 9 12 12 11 11 10 10 

8 14 14 15 15 16 16 10 10 

9 10 10 10 10 10 10 10 10 

 

As can be seen from Table 3 and 4, the fluctua-

tions in the number of inclusions in all cells of the struc-

ture and at all steps of evolution are disordered and their 

beats are chaotic. Like the general theory of signals, 

such beats of oscillations can be defined as noise-like. 

In conclusion, we note that the results obtained remain 

valid for matrix structures of arbitrary size. 

 

Conclusion 
 

In this paper the basics of a new theoretical ap-

proach for describing oscillatory processes in discrete 

structures of Sudoku type are presented, which expands 

the possibilities of modeling methods in modern dis-

crete mathematics. Like as in [3], where the model of a 

simulator of oscillations in discrete structures was first 

proposed, which build as a classical Sudoku grid 9×9, 

the dynamics of evolutionary structural changes on the 

timeline are described by specially introduced operators 

of group shifts of elements of linear and vortex matrix 

types. Unlike from [3], this modeling approach is gener-

alized here for matrix structures of arbitrary size. In this 

case, the modes of harmonic, chaotic, and hybrid oscil-

lations are considered. On the basis of the proof of the 

theorem on the property of additive conservation of grid 

shapes to Sudoku requirements, the features of the ap-

plication of structure evolution operators that provide 

the implementation of the considered vibration modes. 

Also, using this theorem, the principle of synchroniza-

tion of chaotic matrix evolutions is established, which 

can be implemented for stable multi-threaded synchro-

nization. The possibility of mathematical modeling of 

the effects of beating vibrations in discrete cellular 

structures organized in the form of two-level matrix 

forms is substantiated. On specific examples of classic 

Sudoku nets 9×9 size are considered the beats of oscilla-

tions in cycles of changing states of a discrete system 

for the two types of beating: similar to the result of a 

superposition of harmonic vibrations at multiple fre-

quencies in the radio-signals theory, and noise-like 

beats. 

General characteristics of the possibilities of the 

proposed modeling method are formed in the work on 

the basis of a comparative analysis of visual images of 

matrix structures. On the one side, such visualization is 

a qualitative advantage when studying oscillations and 

beats in discrete structures, like visual reproduction of 

the form of oscillatory processes using oscilloscopes in 

radio engineering measurements. On the other side, the 

correct comparison of matrix structures requires the use 

of quantitative approaches in the form of special numer-

ical algorithms, for example, correlation analysis algo-

rithms. The development of effective matrix comparison 

algorithms, including those reflecting the informational 

aspect of matrix fillings, should be considered as a fur-

ther development of this work. 

You need to understand that the main attention is 

paid to innovative and methodological aspects of the 

proposed mathematical models. Thus, the goal of most 

investigated examples was the rationale for this or that 

possibility of such modeling. These examples should 

not be construed as already completed studies. However 

the results presented here can be directly applied in the 

development of new cryptographic protection sys-

tems [14]. 
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МАТРИЧНИХ СТРУКТУРАХ 

Ю. М. Пєнкін, Г. І. Хара, А. О. Федосєєва 

Представлені загальні принципи моделювання коливань в дискретних структурах, сформувалася у ви-
гляді спеціальних матричних форм латинського квадрата (типу Судоку). Сформульовано ознаки структур-
ного і функціонального самоподібності для матричних структур стандартних сіток Судоку. Показано, що 
структурний принцип може бути інтерпретований як реалізація другої ітерації в алгоритмі масштабного 
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скейлінга, характерному для фрактальних об'єктів. До ознак функціонального самоподібності структур від-
несено властивість адитивного збереження форм сіток до вимог Судоку, яке сформульовано у вигляді тео-
реми. Доведено, що матричні суми констант і сіток Судоку довільних розмірів, отримані з урахуванням вве-
деного правила циклічного ранжирування, будуть задовольняти трьом обов'язковим вимогам Судоку. Ви-
значено, що за допомогою виконання заданої послідовності операторів групових зрушень, можна встанови-
ти конкретний сценарій динамічного зміни станів структури на дискретній масштабі часу. Встановлено, що 
оператори еволюції групових зрушень лінійного типу призводять до матричних трансформацій сіток Судоку 
з безлічі еквівалентних (по відношенню до вихідних), а оператори групових зрушень вихрового типу - до 
матричних трансформацій з безлічі істотно різних сіток. Розглянуто режими гармонійних, хаотичних і гіб-
ридних коливань для структур довільного розміру. Сформульовано вимоги до перетворень оператора ево-
люції структур, що забезпечують реалізацію розглянутих режимів. Проаналізовано результати моделювання 
хаотичних коливальних процесів по циклам станів дискретної системи, що утворюють подібності аттракто-
рних траєкторій. Встановлено принцип синхронізації хаотичних станів матричних структур. Обґрунтовано 
можливість симулювання режимів биття коливань в дискретних клітинних структурах, організованих у ви-
гляді дворівневих матричних форм. На конкретних прикладах показані результати симулювання биття ко-
ливань в циклах змінюються станів дискретної системи для двох типів биття: подібних результату суперпо-
зіціі гармонійних коливань на кратних частотах в теорії радіосигналів, а також шумоподібних биттів. 

Ключові слова: дискретна структура; сітка Судоку; ознаки сапомодоби; оператори матричних транс-
формацій; режими коливань; детермінований хаос; шумоподібні биття. 

 
МОДЕЛИРОВАНИЕ ВИБРАЦИОННЫХ ПРОЦЕССОВ  

В ДИСКРЕТНЫХ МАТРИЧНЫХ СТРУКТУРАХ 

Ю. М. Пенкин, Г. И. Хара, А. А. Федосеева 

Представлены общие принципы моделирования колебаний в дискретных структурах, сформированных 
в виде специальных матричных форм латинского квадрата (типа Судоку). Сформулированы признаки струк-
турного и функционального самоподобий для матричных структур стандартных сеток Судоку. Показано, 
что структурный принцип может быть интерпретирован как реализация второй итерации в алгоритме мас-
штабного скейлинга, характерном для фрактальных объектов. К признакам функционального самоподобия 
структур отнесено свойство аддитивного сохранения форм сеток к требованиям Судоку, которое сформули-
ровано в виде теоремы. Доказано, что матричные суммы констант и сеток Судоку произвольных размеров, 
полученные с учетом введенного правила циклического ранжирования, будут удовлетворять трем обяза-
тельным требованиям Судоку. Определено, что с помощью выполнения заданной последовательности опе-
раторов групповых сдвижек, можно установить конкретный сценарий динамического изменения состояний 
структуры на дискретном масштабе времени. Установлено, что операторы эволюции групповых сдвижек 
линейного типа приводят к матричным трансформациям сеток Судоку из множества эквивалентных (по от-
ношению к исходным), а операторы групповых сдвижек вихревого типа - к матричным трансформациям из 
множества существенно различных сеток. Рассмотрены режимы гармонических, хаотических и гибридных 
колебаний для структур произвольного размера. Сформулированы требования к преобразованиям операто-
ров эволюции структур, обеспечивающих реализацию рассмотренных режимов. Проанализированы резуль-
таты моделирования хаотических колебательных процессов по циклам состояний дискретной системы, об-
разующих подобия аттракторных траекторий. Установлен принцип синхронизации хаотических состояний 
матричных структур. Обоснована возможность симулирования режимов биений колебаний в дискретных 
клеточных структурах, организованных в виде двухуровневых матричных форм. На конкретных примерах 
показаны результаты симулирования биений колебаний в циклах изменяющихся состояний дискретной си-
стемы для двух типов биений: подобных результату суперпозиции гармонических колебаний на кратных 
частотах в теории радиосигналов, а также шумоподобных биений. 

Ключевые слова: дискретная структура; сетка Судоку; признаки самоподобия; операторы матричных 
трансформаций; режимы колебаний; детерминированный хаос; шумоподобные биения. 
 

 
Пенкин Юрий Михайлович – д-р физ.-мат. наук, доцент, профессор кафедры фармакоинформатики, 

Национальный фармацевтический университет, Харьков, Украина. 
Хара Георгий Иванович – канд. техн. наук, доцент кафедры фармакоинформатики, Национальный 

фармацевтический университет, Харьков, Украина. 
Федосеева Алина Александровна – канд. техн. наук, Харьковский радиотехнический колледж; Наци-

ональный аэрокосмический университет им. Н. Е. Жуковского «Харьковский авиационный институт», 
Харьков, Украина. 

 
 
Yuriy Penkin – Doctor of Science degree, Full professor, National Pharmaceutical University, Kharkov, 

Ukraine, e-mail: penkin_@gmail.com, ORCID Author ID: 0000-0002-7265-0227. 
Georgi Hara – PhD, National Pharmaceutical University,  

e-mail: geoivn11@gmail.com, ORCID Author ID: 0000-0002-1430-0069. 
Alina Fedoseeva – PhD in Computer Science, Kharkov Radiotechnical College, National Aerospace Universi-

ty “Kharkiv Aviation Institute”, Kharkov, Ukraine,  
e-mail: fedoseeva439@gmail.com, ORCID Author ID: 0000-0002-6684-5802. 

mailto:geoivn11@gmail.com

