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MODELING OF VIBRATIONAL PROCESSES
IN DISCRETE MATRIX STRUCTURES APPROACH

In the article are presented general principles of modeling vibrations in discrete structures formed in the form
of special matrix forms of the Latin square (Sudoku type) are presented. The signs of structural and functional
self-similarity for the matrix structures of standard Sudoku grids are formulated. It is shown that the structural
principle can be interpreted as the implementation of the second iteration in the scale scaling algorithm char-
acteristic of fractal objects. The signs of functional self-similarity of structures include the property of additive
conservation of grid shapes to the requirements of Sudoku, which is formulated as a theorem. It is proved that
the matrix sums of Sudoku constants and grids of arbitrary sizes, obtained taking into account the introduced
cyclic ranking rule, will satisfy the three required Sudoku requirements. It is determined that by performing a
given sequence of group shift operators, it is possible to establish a specific scenario for dynamically changing
the state of a structure on a discrete time scale. It has been established that the evolution operators of linear-
type group translations lead to matrix transformations of Sudoku grids from the set of equivalent ones (con-
cerning the original ones), and the vortex-type group shifts operators to matrix transformations from many es-
sentially different networks. The modes of harmonic, chaotic, and hybrid vibrations for structures of arbitrary
size are considered. The requirements for transformations of the operators of the evolution of structures that
provide the implementation of the considered modes are formulated. The results of modeling chaotic oscillato-
ry processes by cycles of states of a discrete system that form similarities of attractor paths are analyzed. The
principle of synchronization of chaotic states of matrix structures is established. The possibility of simulating
the modes of beatings of oscillations in discrete cellular structures organized in the form of two-level matrix
forms is substantiated. Specific examples show the results of simulating beatings of oscillations in cycles of
changing states of a discrete system for two types of beats: similar to the result of a superposition of harmonic
vibrations at multiple frequencies in the theory of radio signals, as well as noise-like beats.

Keywords: data discrete structure; Sudoku grid; signs of self-similarity; operators of matrix transformations;
oscillations modes; deterministic chaos; noise-like beats.

Introduction

The dynamic systems are the systems that states
change overtime in accordance with the established
rules of the evolution operator [1]. In traditional there
are share systems with continuous and discrete time of
evolutions (flows and cascades). First type of system in
literature are like continuous systems, and second type
(given the way of describing time) — like discrete. How-
ever, in addition to the discrete time of evolution, a truly
discrete system must also consist of spatially and func-
tionally focused elements, i.e. be a discrete structure.

A dynamic system is also said to be, if we can
point the setoff values, called dynamic values and char-
acterizing the state of the system. Their values in the
next time moment can be determined from the source
using evolution operator rules. If state of the system
defined by a set of N quantities, then the dynamics of its
state change in time can be represented as the move-

ment of a point along a trajectory in an N-dimensional
phase space, which called phase trajectory. Initially,
purely Newtonian content was invested in the concept
of a dynamic system, meaning a set of bodies connected
by force interactions and obeying a system of differen-
tial equations. The modern concept of dynamic system
is fuller and means that we can set the evolution opera-
tors in any way. Particularly, for systems with discrete
time it will be like recurrence mappings or difference
equations (with use different discrete transformations),
and for discrete systems — through the rules of mutual
permutations of structural elements.

Usually, the structure of a discrete dynamic system
can be specified in the form of a special matrix form

Latin square Sudoku type (from Japanese: #{%# — sepa-

rate number). Moreover, the numbers used in its cells
can be considered as indicators of an indicator of some
qualitative factor (color, sound, density, warmth, area,
count of defects or microobjects, probabilities etc.).
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Fig. 1, a rerepresented example of three-dimensional
discrete structure models (Fig. 1, b) and puzzle break-
down of a homogeneous array of objects (Fig. 1, c) in
the Sudoku square fragment (Fig. 1, a).
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Fig. 1. The examples of discrete structure models

The discrete structures are one of dynamic systems
type, for the description may be used the representations
of their specific states. In this case the phase area means
like set of all permissible system states in the dynamics
of their changes over time. Thus, the discrete structure
is characterized by its initial state and the law (specified
by the evolution operator), according to which the sys-
tem goes from the initial state to the subsequent. If evo-
lution operator in the time scale is set so that the struc-
ture after change cycle periodically returns to the same
state, then we can talk about observing the oscillatory
process in the system.

Study of various types of vibrations (own, forced,
self-oscillations, parametric) in different type of systems
always gives a big attention. Note that in nonlinear dy-
namics, nonlinear models are used to study the proper-
ties of dynamical systems, which usually are described
by differential equations for systems with continuous
time and recurrent (or discrete) mappings for discrete
time systems. However, dynamic models of discrete
structures in which evolution operators are specified
like algorithms (not the formula ratios, for example at
[2]), in the modern literature are not represented.

In the [3] the model of the oscillation simulator in-
discrete structures constructed in the form of Sudoku
grids was first proposed, the dynamics of changes in
discrete time is described by specially introduced evolu-
tion operators of group translations of linear and vortex
types. In the modeling base will substantiated the mani-
festations of deterministic chaos regimes in oscillations
of such discrete structures conditions. However, in the
[1] big attention paid for of Sudoku classic matrixes
with 9x9 size. The aim of this paper are generalization
of the principles of modeling vibrations into discrete
structures of Sudoku type of arbitrary sizes and justifi-
cation of the possibility of simulating the modes of beat-

ings of oscillations in discrete cell structures organized
in the form of two-level matrix forms.

The signs self-similarity for matrix
structures of standard Sudoku grids

First of all, it should be indicated that as necessary
conditions for the formation of digital grids of the Su-
doku type [1], signs of both structural and functional
self-similarities. Here «structural» self-similarity must
be understood like local scaling of geometric form of
grids, and «functional» - in sense of manifestation of
scale invariance in numerical sequences, which fill up
these matrix forms.

Most clearly sign of structural self-similarity of
Sudoku type can imagine based on case studies. In the
Fig. 2 consistently represents the grids with different
sizes: 4x4 (Fig. 2,a), 9x9 (Fig. 2,b) and 16x16
(Fig. 2, ¢). As can be seen, in the general case the natu-
ral number n>2 determines the linear size of a small
base square, and number n? — the count of elements in
this square and, at the same time, the count of small
squares in general field n®xn? size. Exploring Sudoku as
a mathematical object usually used the accepted terms
for matrix forms: grid row, grid column, stripe - a block
row of adjacent small squares horizontally and a stack -
a block column of adjacent small squares vertically.
Another word, arbitrarily given natural number n is a
setting for the linear size of the small square of the grid
field, as well as the number of stripes and the number of
stacks of the total field. This structural principle can be
interpreted as the implementation of the second iteration
in a multiple scaling algorithm for fractal objects [4].

a) b) c)
Fig. 2. Structural self-similarity of Sudoku fields

A sign of functional self-similarity refers to the
choice of a discrete algorithm «sowing» of natural num-
bers in the constructed grid fields. Note that it differs
significantly from the possibility of scaling variables in
functional dependencies or equations using proportional
coefficients that is observed in fractal theory [4]. How-
ever this features dont allow rejecting the fact that for
Sudoku matrices functional self-similarity is observed.
Should be reminded, that the Sudoku matrix field (ac-
cording to accepted requirements) is filled with natural
numbers from set {1, 2, 3, ..., n?} and is a Latin Euler’s
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square with an additional property: in the common grid
field each of n? adjacent small squares contains once all
natural numbers from the set from 1 to n? Accord-
ing [3] it is convenient to introduce the standard form of
Sudoku grids into the analysis, for which the rows (from
left to right) are filled with ranked data, taking into ac-
count the closed sequence of digits in the cycle. In the
upper left cell of the upper grid strip is located 1
(Fig. 3, a), in the upper left cell of the second from the
top of the strip is 2, and so on to the lower strip, in the
upper left cell of which the n number. Ranked rows of
natural numbers fill the cells of each row, which taking
into account the limited value n? cycles according an
algorithm similar to discrete clockwork (Fig. 3, b). After
n? follows again 1, 2, 3, ... etc. This operation will be
called cyclic ranking. Small squares of the first left
stack of the grid are filled with ranked rows according
to the specified algorithm with line-by-line continua-
tion. For clarity on Fig. 3, ¢ and Fig. 3, d an example is
given for the standard grid of classic Sudoku with n=3.

As seen from Fig. 3 built standard grids (Lo(n?)),
satisfy all three Sudoku requirements, and their size and
filling format are determined only by the parameter n. It
is the possibility of determining Sudoku nets using one
parameter that is basic for the manifestation of their
functional self-similarity.
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Fig. 3. Sudoku grid standard form

Sudoku requirements, expressed in terminological
form as: «all rows, all columns and all adjacent small
squares of the structure contain exactly once all natural
numbers from 1 to n?», in «digital» modeling can be
written using the well-known formula for the finite sum

of a series of natural numbers in the form of the follow-
ing mathematical relations:
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where aj; — grid matrix elements.

Also, the features of functional self-similarity
include the property of additive conservation of grid
shapes to Sudoku requirements, which can be
formulated as a theorem: the matrix sum of an arbitrary
Sudoku grid and constant Cy for 1<m<n? found
taking into account the cyclic ranking rule, satisfies the
mandatory requirements of Sudoku.

Evidence. Without loss of generality, we prove the
theorem for standard matrix forms (Lo(n?)).

Moreover, understanding the matrix representation

m m m

of the constant Cy,: matrix C,, =|...

m m m

consider

a special case for Lo(n?) at n=2, like easiest to analyze.
Here the matrix summation operation will be applied in
the usual sense when the elements of the final matrix
L™s(4) equal to the algebraic sum of the corresponding
elements of the two terms of the matrixs:

aj =a +a{?, where a;? elements of the first and
second matrices, respectively. However, the result of

each summation a;> in the final matrix provided
aﬁ>n2 must be adjusted according to the cyclical

ranking rule. In turn, we consider all four possible
options for 1<m=<4:

1234 111 2341
2341 111 |4123
Ly (4)=Lo(4)+C, = +[ = ;2
s@=Lo®+Co=l oy 11 Taa1’ @
4123 1111 [1234
1234 1111
3412 1111
2 _ _ _
LZM)—LOM)+C2—2341+ZX1H1_
4123 1111
®3)
3412
1234
= +L4 (4)+Cy;
4109 T EE@ TG
2341



ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

70 PAJIOEJEKTPOHHI I KOMII’FOTEPHI CUCTEMM, 2020, Ne 2(94)
1234 1111
3 3412 1111
LZM):LOM)+C3=2341+SX1”1=
4123 1111
4)
3412
:ii§:+tgm)+cﬁ
2341
1234 1111
3 3412 1111
Ls(4)=Lo(4)+Cy = 2341 +4x 111 =
4123 1111
®)
3412
:ii22+tEM)+C3
2341

It is easy to perform similar operations of sum-
ming constants with matrices Lo(9) and Lo(16), and then
inductively generalize to the case of arbitrary choice
Lo(n?). Of course, the analysis for standard-type grids
has a natural extension to other types of grids. Thus, the
matrix sums of arbitrary (with respect to size and type)
Sudoku nets and constant Cp, for 1 <m<n? obtained
taking into account the rules of cyclic ranking, will sat-
isfy the three mandatory requirements of Sudoku.
Q.E.D.

As can be seen from (2) — (5), the resulting matri-
ces really satisfy the requirements of Sudoku. Moreo-
ver, the addition of odd constants to Lo(4) leads to a
permutation of the rows in the matrix, and adding even
— to rearrange columns. As expected,

LT (4) =Lo(n®)+Cpy 2 = Lo(m) .

Note that the rule of cyclic ranking of natural numbers
used here allows us to consider the summation of matri-
ces with constants m > n?, However, one should keep in
mind that the structures of the resulting matrices will be
repeated with the cycle m = n2,

Evolution operations for harmonic,
G chaotic and hybrid oscillations

Before turning to the analysis of vibration process-
es in matrix structures, we present several general com-
binatorial characteristics for the structures under consid-
eration. It is known from the theory of discrete mathe-
matics that Latin square sexist for any N=n?, moreover,
the exact formula for the number of Latin square

L(N)N-th order not yet established. However, from the
monograph [5] bilateral estimates of the quantity are
known as L(N):

(N1)2N <L(N)Sﬁ(k!)le‘ (6)
k1

NV

The exact values of the number L(N) are deter-
mined only for the values N € [1;11]. For example,
from [6] this value for the case N=9 has the value:
L(9)=5524751496156892842531225600~5.525x10%",

Of course, the number of exact values Ls(N) of dif-
ferent Sudoku matrix grids will be less than the total
number for Latin squares L(N), if only because the
number of matrices containing small squares must be
excluded from L(N), which contradicts the third addi-
tional Sudoku rule (1). For example, according the third
rule of (1) number of different Sudoku nets, according
[7], decreases to

Ls(9)=6670903752021072936960~6.671x10%.
But quite often, we can get one Sudoku grid from an-
other using simple transforms. Two Sudoku meshes are
called equivalent if it is possible to transform one of
them into another by applying one (or more than one) of
the symmetries of the set G. If none of the symmetry
sequences transforms one of the grids into another, the
grids are called significantly different. Moreover, it is
believed that the symmetry group G is generated by
transformations of the following types:

1) reassignment of nine digits;

2) permutation of three stacks;

3) rearrangement of three bands;

4) permutation of three columns in any stack;

5) permutation of three lines in any strip;

6) all mirror flections and rotations from the set of
symmetries of the square (0O degree rotation - neutral
element; 90 degree clockwise rotation; 180 degree
clockwise rotation; 270 degree clockwise rotation; hori-
zontal axis reflection, which goes through the square
center; vertical axis reflection, which goes through the
square center; reflection about the square diagonal from
its lower left to upper right; reflection about the square
diagonal from its upper left to lower right).

For example, using the methods of group theory,
taking into account the indicated set of symmetries, the
number Ly(9) of essentially different Sudoku nets was
found in [7], which significantly less than the number
Ls(9) and equals Lp(9)=5472730538~5.473x10°. Esti-
mates Ls(N) and Ly(N) are of fundamental interest in the
analysis of possible transformations of matrix structures
that obey Sudoku rules.

In the previous part in proof the theorem on the
property of additive conservation of grid shapes to Su-
doku requirements, that when summing matrices with
constants m >n? of structures will be repeat with the
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cycle m = n?, Based on this property, an operator of the
evolution of their states can be introduced to describe
vibration processes in matrix structures. That is, it is
possible to formulate a rule of dynamics, according to
which a discrete system in time steps will change the
form of its structural filling to a new form from the set
Ls(N), essentially meaning her different states. In other
words, it is possible to set a specific trajectory of
changes in the original Sudoku grid in discrete time,
which corresponds to the oscillatory process in this
structure. In this case, it is necessary to associate a for-
mal mathematical operation of digital permutations with
a specific type of physical structural changes.

To this end, in [3] models of evolution operators
were introduced, defined as group of (simultaneous for
all digits, which fill the matrix) shift of matrix elements
and the necessary transformation of matrix structures in
the next step of their temporal evolution their time evo-
lution. In this case, two types of such operators can be
realized: linear-type displacements and vortex-type
displacements, which we will consider below with
specific examples.

Without loss of generality, we assume that the
elements of the first row of the original matrix
(Fig. 3, a) shift to the left one cycle position, as shown
in Fig. 4, a top row of arrows. In this case, the number 2
goes to the first cell of the line, the number 3 to the
second, and each subsequent one to the left of it. In
place of item n? (according to the condition of cyclic
ranking) will be 1. We will call such a cyclic
permutation of elements a linear type shift. It is
convenient to describe it in the form of a vector, in
which pairs of numbers will be components. The first
digit will be the one that is subject to change, and the
second — this is a figure that is inserted in place of the
variable. In our case, such a transformation vector will
have the following form: T {(1,2); (2,3); (3,4)...(n%1)}.
We emphasize that the group permutation described by
such a vector is applied to all elements of the matrix
structure, and not just to the elements of the first row.
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Fig. 4. Types of shift operators

For example, when choosing n=3 and the initial
matrix in the form of Fig 3, c. As a result, we obtain a
new matrix form, presented in Fig. 5, a.

2|3|4|5|6|7]|8|9|1 4|516|7(8]9]2|3]1
5(6(7|8|9(1|2(3|4 718191213]|1]4|5]|6
glo|1|2]3[4(5(6(7 2[3]1]a]s]l6|7]8]0
3l4|5|6|7]8]91]|2 5|/6|7(8|9(2]|3|1|4
6|7(8|9|1|2|3]|4|5 8|9]|2|3|1]|4]|5|6|7
9|11(2|3|4|5|6]|7|8 3|/1]4}5|6|7|8|9|2
4|5|6(|7|8|9|11(2(3 6|7|8]9|2(3]1|4|5
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1|2(3]|4|5]|6|7|8]9 1|la|s]e|7]|8]92]3
a) b)

Fig. 5. Type of structure as a result
of linear shifts for n=3

In any case, as expected (according to the property
of additive conservation of grid shapes to Sudoku re-
quirements), the new matrix structure for random N=n?
will be different from the original matrix only by
rearranging the left column of the original matrix on its
right edge. Note that such a transformation is one of the
symmetry transformations from the G group, which
leads to an equivalent grid for the original from the set
Ls(N).

The result of a linear shift of elements in a column
of matrix structures is not entirely obvious. As an
example, we select the first left column in the original
structure and make a cyclic shift of the elements up, as
shown at the Fig. 4, a side arrows. In this case when
choosing n=3 and source matrix like at Fig. 3, ¢ the

transformation vector will be: T {(1,4); (4,7); (7,2);
(2,5); (5,8); (8,3); (3,6); (6,9); (9,1)}, and the form of
the transformed matrix as on Fig. 5, b. Analyzing the
obtained structure here, one can notice, that it differs
from the original permutation of the first left stack of
the original matrix to its right edge and the subsequent
two reassignments of numbers: 2 and 1, 3 and 1. That is,
for the linear shift operator in the column, we obtain a
certain sequence of symmetry transformations from the
group G, which also reduces the original matrix to an
equivalent grid of Lg(9). Of course, this conclusion will
also be valid for matrix structures of arbitrary size N=n?.

The considered principle of constructing a
structure evolution operator in the form of a linear
group shift is equivalent in relation to any choice of the
base row or column number in sourse matrix Ls(N). Of
course, in this case the directions of the slides and
opposite to the analyzed ones can be chosen. However,
as shownin [3], the possibilities of introducing operators
of the evolution of structures in the form of cyclic shifts,
in which the shapes of Sudoku grids are preserved, are
not limited to these options. The second type of evolu-
tion on operators can be defined based on vortex shifts.
In this case, the elements of an arbitrarily selectedsmall
square nxn the original structure is shifted along the
perimeter of the square, for example, clockwise around
its center, as shown in Fig. 4, b internal arrows for a
special case n=4. Note, that here even n is full transfor-
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mation of square elements and for the odd values — the
central cell will pass into itself. When we choose n =3
and central small square as a basis in the matrix Fig. 3, ¢
transformation vector is: T {(1,7); (2,3); (3,4); (4,2);
(5,8); (6,5); (7,6); (8,2); (9,9)} and Fig. 6, a represented
the view of the transformed matrix is shown on
Fig. 6, a. An analysis of the resulting matrix structures
shows, that it what should be attributed for the Ly(N) set
significantly different grids with respect to the original.
Of course, when choosing any direction of contour shift
(clockwise or counterclockwise) in an arbitrary basic
small square, a similar result of matrix transformation
will be provided.

7(314(1|8|5]6/2]|9 4{8(2]13|6|7[1]|5]|9
1|18|5]|6(2(9]7|3|4 3|16[(7|1]|5(9(4]8]2
6/2|9]7]|3|4]1]/8(5 1/5/9]4(8|2|3]6]|7
3|4|1|8|5|6]2|9(7 8|2|3]|6|7]|1|5]|9(4
8|5|6]2(9(7]3]|4|1 6|7(1|5|9]|4|8|2|3
2|9|7]3/4/1|8|5(6 5(9/4[8]2|3]6[7]1
411{8|5(6/2]9/7|3 213|6[7]1|5]|9/|4]|8
5/612(9(7(3]4]1(8 7|11|5|9]/4|8|2]|3|6
9|7]13]4|1|8]|5|6]2 9{4|8]|2|3|6|7]|1|5
a) b)

Fig. 6. Type of structures as a result
of vortex shifts for n=3

Thus, in common case will it can be argued, that:

1) the introduced linear shift group evolution op-
erators lead to matrix transformations of Sudoku nets
from [Ls(N)-Lb(N)] set - equivalent grids with respect
to the original ones and can be defined as linear opera-
tors;

2) the introduced evolution operators of vortex-
type group shifts lead to matrix transformations of Su-
doku nets from Lp(N) set significantly different grids
with respect to the original ones and can be defined as
nonlinear operators.

Requiring the execution of a given sequence of in-
troduced operators, one can establish a specific scenario
for dynamically changing the state of a structure on a
discrete time scale. One of the options for such scenari-
os of fundamental interest is the implementation of a
sequence of cyclic group shifts in the structure. In this
case, it becomes possible to build a model of oscillatory
processes in discrete structures [3]. We will verify this
by analyzing the sequence of linear shifts of the first
line of the original structure, shown at Fig. 3,a. We
assume that the transformation with the vector consid-
ered above T {(1,2); (2,3); (3.4)...(n%1)} will be the
first step in a dynamic scenario, which leads to a simple
permutation of the first (left) column of the original
matrix on its right edge. We perform further sequential-
ly (n-1) transformations, given by the same vector,
which at each step provides the implementation of the

permutation of the left column of the matrix on its right
edge. Finally, such a cycle from n? permutations we
return to the original matrix. Next, execute the loop
from n? consecutive shifts in the opposite direction with

the transformation vector T {(2,1); (3,2); (4.,3)...(n% 1)}
which will provide permutations of the right column of
the original matrix to its left edge. As a result of the full
cycle of 2n? of the above steps, we again return to the
original structure. In the case of repeating the sequence
using the evolution operators on a homogeneous time
grid several times, we obtain a model of periodic oscil-
lations in a discrete structure.

The described approach can be easily generalized
to any of the types of considered group shift operators.
For clarity, at Fig. 7 schematic examples of oscillatory
processes in matrix structures are given with n=3
(Fig. 7, a — fluctuations in the lines of the matrix struc-
ture, Fig. 7, b — fluctuations in the columns of the matrix
structure, Fig. 7, ¢ — swirl type vibrations):
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Fig. 7. Modeling of oscillatory processes
in a discrete structure n = 3

Hovewer, as indicated in [3], the nature of the
transformation of states in vibrations of matrix
structures that are specified by linear and nonlinear type
shift operators turns out to be significantly different.
Moreover, nonlinear-type operators make it possible to
observe manifestations of deterministic chaos in a
temporary change of state of structures.

Here, to observe such chaotic manifestations, it is
impossible to introduce an analog of the phase space
traditionally used in the analysis of continuous-time
systems. Moreover, given the Sudoku rules for uniform
dispersionelements (numbers) in discrete structure,
probabilistic analysis approaches become ineffective
here. Therefore, as in [3], in this paper the principle of
maintaining the cyclic ranking of digital sequences will
be used to indicate the ordering of the structure
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1,2, ...,n? in matrix structure rows, which was provid-
ed when filling in the original standard grid (Fig. 3, a).
Moreover, one or another change in the order of num-
bers in the ranked sequences will be interpreted as a
violation of order in the discrete system as a whole, and
their disordered distribution among the elements of the
matrix structure as a manifestation of deterministic cha-
os [8].

From these positions, returning to the analysis of
the results of transformations as a result of group linear
shifts (Fig. 5), we can indicate that:

- the introduced linear type evolution operators
do not change the general order of the initial standard
structure (Fig. 5, a);

- these changes are local in nature (Fig. 5, b) of
the position of the elements with the number 1.

Summarizing it can be argued that when modeling
oscillatory processes in discrete structures of arbitrary
size N = n? using linear-type group shift operators, cha-
otic manifestations are not observed. These conclusions
were confirmed by a series of selective simulations of
oscillatory processes in matrix structures with different
N = n?, similar to the schemes shown in Fig. 7.

A completely different situation is manifested in
the case of the use of nonlinear group shift operators.
For example, ananusupys B ciydae n=3 (Fig. 3, ¢) kind
of structures at Fig. 6, we no longer observe in the rows
of the matrix the fulfillment of the principle of ranking
of digital values. However, it is clear that if at the first
step we apply the transformation vector and then
(clockwise) continue the sequence of 8 transformations

defined by the same vector T {(1,7); (2,3); (3,4); (4,1);
(5,8); (6,5); (7,6); (8,2); (9,9)}, we will return to the
original ordered matrix form. Moreover, at any step
(except for the original standard grid), the principle of
ranking digital values will not be performed row by row
in matrices. As an example, at Fig. 6, b shows the ma-
trix structure at the 7th (last but one in the cycle) step.
Therefore, it can be argued that when modeling vortex-
type oscillations (Fig. 7, ¢) in a discrete structure, the
relative order is lost and manifestation of deterministic
chaos is observed. Moreover, 9 cyclic sequences of sig-
nificantly different Sudoku nets in this case will be
similar to the trajectories of strange attractors on a dis-
crete time scale. Since these attractors cannot have a
sensitive dependence on the initial conditions, most of
all, they should be classified as strange non-chaotic at-
tractors [9]. It is easy to verify that the results obtained
for n=3 remain valid for an arbitrary size of Sudoku
nets.

Thus, summary, during evolutions on a uniform
time scale, linear group shift operators allow us to simu-
late the process of linear harmonic oscillations in dis-
crete structures of Sudoku type of arbitrary size N=n?,
and vortex shift operators — chaotic nonlinear oscilla-

tions [10]. Of course, both linear and nonlinear opera-
tors can be sequentially used at different time stages of
the evolution of matrix structures. In this case, we will
be able to simulate the structural vibrations of the hy-
brid type. Such modeling is more general and requires a
separate study, however, its application will be based on
the basic principles discussed above. Here we analyze
only one aspect of hybrid oscillations, which is of rather
great fundamental and practical interest.

This aspect concerns the well-known problem of
synchronization of deterministic chaos processes, which
has been most fully investigated in the field of radio
communication technologies (for example, [11-13]).
Without delving into special issues, we note that in or-
der to use chaos as an information carrier, there is a
need for technical solutions that allow you to generate a
chaotic signal and reproduce it with a sufficient degree
of accuracy on the receiving side (that is, synchronize
the processes of signal generation and reception). Here
the wording of the synchronization question will be un-
derstood as follows: «is it possible to establish a con-
nection (at least in a particular case) between a pair of
matrix structures, having different chaotic digital pad-
ding?».

As it turned out, such an opportunity exists. The
justification for this possibility directly follows from the
theorem proved above on the property of additive con-
servation of grid shapes to Sudoku requirements. Real-
ly, according the theorem matrix sum of arbitrary Sudo-
ku grid N = n? size and the constant Cp, for 1 <m<n?,
found taking into account the cyclic ranking rule, com-
plies with Sudoku mandatory requirements. Note, that
the addition of the same constant to each element of the
original matrix in no way changes the difference rela-
tion between adjacent digital values of the elements and
leads the original matrix to the equivalent grid. And this
means that if the original matrix had random digital
filling, then the final one will also be characterized by
random type filling. For example, in the particular case
of choice n =3 and summing the original matrix struc-
ture, at Fig. 6, a, with constant matrix C, we get.

As can be seen from the analysis of identity (7),
the resulting matrix describes a new hybrid structural
vibration and, as the original matrix, is characterized by
chaotic digital filling. Another words, the mathematical
operation of summing the initial matrix structure and the
matrix constant allows you to synchronize two different
chaotic evolutionary states of the structure. The specific
value of the constant appearing in such a summation
should be considered as a synchronization parameter for
a pair of chaotic structural states. We point out that
since any of a number of constants can be used in the
summation: Cr, for 1 < m < n?, then is exist the possibil-
ity of parallel synchronization (n?-1) of the number of
flows of chaotic structural evolutions.
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Modeling of beats of oscillations
in a discrete structure

In the modern informational technologies chaos is
seen as a medium of information, as dynamic process,
which transforming information to a new Kkind, and,
lastly, as a combination of both [12, 13]. Anyway, the
functionality of using controlled chaotic algorithms can
be significantly expanded if any hardware capabilities
for synchronizing them are known (and out of sync). In
contrast to the material discussed in the previous sec-
tion, the principle of synchronization of matrix struc-
tures based on digital processing, for hardware applica-
tions, it is necessary to associate the proposed mathe-
matical models with a specific type of physical structur-
al changes. Therefore, the purpose of this section is to
develop the proposed approach for describing free vi-
brations in Sudoku matrix networks on discrete cellular
structures in the form of two-level matrix forms in
which it is possible to observe the effects of beating
vibrations. Without loss of generality, here we present
an analysis for the matrix structures of classical Sudoku
with dimension n = 3.

Here, as before, we will assume that the initial
structure of the discrete dynamic system is given on the
Sudoku grid in the ranked form shown on Fig. 4, a. The
structure evolution operators will also determine the
transformation of the matrix, in which the permutations
of its elements (digits) obey the scripts of group shifts of
linear or vortex types. Recall, that using the introduced
evolution operators, a simulation of the oscillatory pro-

cess of a given type for a discrete structure can be real-
ized in the form of a chain of cyclic changes in its
states. However, to observe the effect of beating oscilla-
tions, according to the general theory of signals, two
oscillations at different frequencies must be simultane-
ously excited in a dynamic system. In this regard, it
turns out to be necessary to introduce the cellular struc-
ture of a more complex organization.

It is proposed to use a layer of cubic cells enclosed
between two complementary Sudoku nets of the follow-
ing type as a model of such a discrete structure:

ﬂ.@%%@h@ﬁhh?hw@dﬂ@@@dﬂn#
ﬂ123456789?987654321
1Tasa739123 ?654321987
1r7:39123:456 ?321987654
1r23"§"6"7391 oel7]6]3242312T1 7o
ﬂ,567§9.g234 ?5432l_g876
1.1,8912@3«45!57 ?2198«7{:6543
Tr345673912 716[s5f4a[3]2]1]9]8
lel7]8]9l1]2]3]a]5 E432193765
WoTal2]3Talslel7]8] '1lolel7l6lslal3]2
a) b)

Fig. 8. Original complementary matrix structures

Here, we call complementary a pair of Sudoku nets
(Fig. 8), which, when superimposed on each other, pro-
vide in each cell located in the layer between them a
sum of digits (or the number of inclusions) equal to 10,
as shown in Fig. 9. In the initial state, the cell structure
will be characterized by a uniform distribution of inclu-
sions across the cells of the entire layer.

g 7 4 6 3 i
10
8 6 3 7 4 2
10
1 S 2 g8 S a
10
> e A

Fig. 9. Fragment of a two-layer matrix form

In the considered variant of the two-level structure,
the upper grid is selected in the form shown on Fig. 8, a,
and the lower grid (complementary to the upper) - in the
form shown on Fig. 8, b. Then the model will provide
an opportunity to analyze two independent vibrations
(respectively) in each grid structure, in the form of the
result of their superposition according to estimates of
changes in the uniformity of filling of layer cells be-
tween vibrations.

Before proceeding to the analysis of the effect of
beats for different types of oscillations, one should indi-
cate the general characteristic property of the model
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used for the discrete structure. Without resorting to
computer modeling, it is easy to make sure that if the
same type of oscillations is excited in both boundary
grids synchronously in time (that is, described by the
same group shift operators), homogeneity of filling the
cells of the model layer is maintained. Indeed, in this
case, the transformed lower grid remains complemen-
tary to the transformed upper boundary grid at each dis-
crete time step of their cyclic changes.

To observe the beats, we first consider two oscilla-
tions defined on the basis of the linear group shift opera-
tor of the first row of the matrix, as shown at Fig. 8, a
top row of arrows.

To the original top model grid (Fig. 8, a) apply the

evolution operator T° {(1,2); (2,3); (3.4); (4,5); (5,6);
(6,7); (7,8); (8,9); (9,1)}, and to the bottom (Fig. 8, b) —

the operator T! {(9,8); (8,7); (7,6); (6,5); (5,4); (4,3);
3.2); (2.1); (1.9)}.

To ensure the mode of different frequencies of grid
vibrations, we assume that transformations in the upper
grid occur on each discrete interval P of a uniform time
scale, and transformations in the lower grid on each pair
(2P) of such intervals (i.e. twice as slow). Of course, at
the 18th step of evolution (appropriate time 18P) dis-
crete structure will again return to the state of uniform
filling of the model layer.

Deviations from the homogeneous state (for which
exactly 10 objects are located in each cell of the struc-
ture) will be observed cell-by-cell, understanding that in
the cells of a layer of a two-level structure with the
same upper digit at a given moment in time there will be
the same number of inclusions. Therefore, it turns out to
be sufficient to observe changes in the number of ob-
jects only in 9 cells of the layer located under the digital
values M=1, 2, ... 9 on the upper grid. It is convenient to
present the observation results for analysis in a two-way
table. So in Table 1 shows the number of inclusions in
the cells of a two-level structure in time steps
1=1, 2,3, ..., 18 for the considered case of addition of
oscillations.

Table 1
The number of inclusions in the cells of the structure
with a superposition of vibrations

N1 ]2 [3]4]|5]|6]7]8]09
1122 |3|3]4]4]|]5]|]5]6
2 11113 |3 |44 ]|5]|5]6
3 |11]11)12|12| 414|556
4 111111112112 |113|13| 5|5 |6
5 (1111|1212 |13 |13 |14 (14| 6
6 |11 1112121313 ]|14]14]15
7 1111112121313 ]|14]14]15
8 |11 1112 |12]13]|13|14]14]15
9 |11 (111212131314 ]14]15

For clarity, some of the results from table 1 are
shown in Fig. 10 as dotted timelines. As can be clearly
seen from Table 1 and 2, and Fig. 10 it turns out that in
the cell structure under M=1 at the first time step, the
number of inclusions decreases from 10 to 2, and then
gradually increases to 10.

Table 2
The number of inclusions in the cells of the structure
with a superposition of vibrations (continue)

Ne | 10 |11 |12 |13 |14 | 15|16 |17 | 18
1167 ] 7]8]8[9]9]10]10
2|6 | 7] 7|8 ]8]9]9]10]10
3|6 | 7] 7|8 ]8]9]9]10]10
4 |6 | 7] 7|18 ]8]9]9]10]10
5|6 | 7|7 |8|8|]9]|9]10]10
6 |15 7 |7 |8 |89 |9 |10]10
7 11516 16| 8 | 8 | 9 ]9 1010
8 [15]16 |16 |17 |17 9 | 9 |10 ] 10
9 |15]16 16|17 |17 18|18 |10 ] 10

Moreover, the increase in the number of inclusions
is a multiple of the time discrete 2P, and the steps of the
diagram are formed by pairs of identical values of the
observed number of inclusions. A similar type of fluctu-
ation in the number of inclusions is also observed in the
cell under the value M=1, where this number gradually
increases from 10 to 18, and again becomes 10 at the
last two time intervals 17P and 18P. These two kinds of
fluctuations, with common signal theory analogy, can
be defined as the main ones (temporal dependences
forming the envelope for the amplitude of the resulting
signal). In the remaining cells of the structure, hybrid-
type vibrations are observed. For cells under M=2
(Fig. 10, b) in the first three time intervals, the oscilla-
tions correspond to the regime in the cell under M=9,
and on the rest - the mode of oscillations in the cell un-
der M=1. Next for cells under M=3 (Fig. 10, d) in the
first five time discrete oscillations correspond to the
mode in the cell under M=9 and they are synchronized
with the oscillation mode in the cell under M=1.

Modes of vibrations and other hybrid species also
appear, for example, in a cell under M=7 (Fig. 10, c).

As the simulation results showed, the principle of
oscillation formation under the evolution operators un-
der consideration is also preserved under other variants
of the delays in the oscillations of the lower grid relative
to the rate of evolution of vibrations in the upper grid of
a two-level structure. In this case, the diagrams of the
main oscillations are complicated with the manifestation
of periodic fragments in their form. For example, in Fig.
11 shows the diagrams of the main vibrations in the
structure cells for the case when the transformations in
the lower grid occur three times slower than in the upper
grid.
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Fig. 10. Frequency fluctuation diagrams 2P

Based on the above analysis and the results of ad-
ditional modeling, it can be concluded that the fluctua-

tions in the number of inclusions in the structure cells,
given on the basis of various linear group shift opera-
tors, for different delay intervals between transfor-
mations of the upper and lower grids of a two-level
structure, are formed in the form of ordered main and
hybrid fluctuations. Such a beat structure is similar to a
beat process in the form of a superposition of vibrations
at multiple frequencies in the theory of harmonic sig-
nals.

18

16

g\u o I o
14 5.,

12

0 El 13 ar S T - | 4

Fig. 11. Diagrams of the main fluctuations
of the multiplicity 3P

It is appropriate to note here that in the previous
section it was established: as a result of group linear
shifts, the introduced linear type evolution operators do
not make changes to the general order of the initial grid
structures, or these changes are local in nature. In this
regard, it can be argued that since in the considered case
the initial matrices were filled with ranked sequences of
numbers (Fig. 8), then ordered oscillations were ob-
served in the cells of the two-level structure.

When considering the vibrations specified for the
boundary networks by vortex-type evolution operators,
one should expect the implementation of more complex
scenarios for the fluctuations in the number of inclu-
sions in the structure cells, since, in this case, elements
of deterministic chaos may appear. That is, even with
the initial filling of the boundary grids with ranked se-
quences of digits, one should expect disordered (chaot-
ic) forms of beatings of oscillations. These assumptions
were fully confirmed by the results of multiple simula-
tions. As an example, Table 3 and 4 shows the simula-
tion results for the same initial boundary grids (Fig. 8)
in the oscillation mode specified by the two operators of
the vortex-type group shifts. It was assumed that for the
upper grid, the transformation vector has the form:

T {(5.8):(6.5):(7.6):(8.2):(9.9):(1.7):(2.3):(3.4):(4. 1)},

and for the bottom grid: T' {(5,2);(1,5);(3,4);(2,8);
(1.1):(9,3):(8,7):(7.6);(6.9)}-

Note that under the action of both operators, the
elements of the central small squares of the original
grids shift clockwise around the perimeter of the squares
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around the central digits 9 and 1, respectively. It was
also assumed that transformations in the upper grid oc-
cur on each discrete interval P of the time scale, and
transformations in the lower grid on each pair of such
intervals (i.e. twice as slow). Since here the central dig-
its of the small squares of the boundary grids are fixed,
the discrete structure returns to the state of uniform fill-
ing of the model layer at the 16th step of evolution (at
P=16).

Table 3
The number of inclusions in the cells of the structure
with noise-like beats

Ne | 1 ]2 |3 ]4|5]6 |78
7171818919313

4 |4 | 7| 7]6]6]5]5

11| 5|58 |8 |7 |7

11121126 | 6 |9 |9

9 188 |14|]14]|11|11
9 19 |15]15)|12]12|13]13
16 |16 |13 |13 |14 |14 |15 ] 15
1313|1212 |11 |11 17|17
1010/10]10|10]10)10] 10

O[NNI |W(N|-
©

Table 4
The number of inclusions in the cells of the structure
with noise-like beats (continue)

Ne | 9 11011 12|13 |14 1516
1|66 [|5]|]5]4]4]10]10
2 (11118 |8 ]9]9]10]10
3|6 |6 (12|12 9|9 ]10]10
4 188 | 7|7 ]13|]13]10]10
5 (1212|1313 7 | 7 |10] 10
6 {14148 | 8 [11[11]10] 10
7191912121111 ]10]10
8 |14 |14|15|15|16|16]10] 10
9 /10/10|10]10]10]10]10] 10

As can be seen from Table 3 and 4, the fluctua-
tions in the number of inclusions in all cells of the struc-
ture and at all steps of evolution are disordered and their
beats are chaotic. Like the general theory of signals,
such beats of oscillations can be defined as noise-like.
In conclusion, we note that the results obtained remain
valid for matrix structures of arbitrary size.

Conclusion

In this paper the basics of a new theoretical ap-
proach for describing oscillatory processes in discrete
structures of Sudoku type are presented, which expands
the possibilities of modeling methods in modern dis-
crete mathematics. Like as in [3], where the model of a
simulator of oscillations in discrete structures was first
proposed, which build as a classical Sudoku grid 9%9,
the dynamics of evolutionary structural changes on the
timeline are described by specially introduced operators

of group shifts of elements of linear and vortex matrix
types. Unlike from [3], this modeling approach is gener-
alized here for matrix structures of arbitrary size. In this
case, the modes of harmonic, chaotic, and hybrid oscil-
lations are considered. On the basis of the proof of the
theorem on the property of additive conservation of grid
shapes to Sudoku requirements, the features of the ap-
plication of structure evolution operators that provide
the implementation of the considered vibration modes.
Also, using this theorem, the principle of synchroniza-
tion of chaotic matrix evolutions is established, which
can be implemented for stable multi-threaded synchro-
nization. The possibility of mathematical modeling of
the effects of beating vibrations in discrete cellular
structures organized in the form of two-level matrix
forms is substantiated. On specific examples of classic
Sudoku nets 9%9 size are considered the beats of oscilla-
tions in cycles of changing states of a discrete system
for the two types of beating: similar to the result of a
superposition of harmonic vibrations at multiple fre-
quencies in the radio-signals theory, and noise-like
beats.

General characteristics of the possibilities of the
proposed modeling method are formed in the work on
the basis of a comparative analysis of visual images of
matrix structures. On the one side, such visualization is
a qualitative advantage when studying oscillations and
beats in discrete structures, like visual reproduction of
the form of oscillatory processes using oscilloscopes in
radio engineering measurements. On the other side, the
correct comparison of matrix structures requires the use
of quantitative approaches in the form of special numer-
ical algorithms, for example, correlation analysis algo-
rithms. The development of effective matrix comparison
algorithms, including those reflecting the informational
aspect of matrix fillings, should be considered as a fur-
ther development of this work.

You need to understand that the main attention is
paid to innovative and methodological aspects of the
proposed mathematical models. Thus, the goal of most
investigated examples was the rationale for this or that
possibility of such modeling. These examples should
not be construed as already completed studies. However
the results presented here can be directly applied in the
development of new cryptographic protection sys-
tems [14].
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MO/JIEJTFOBAHHSA BIBPAIIIMHUX IMTPOIECIB B JIUCKPETHUX
MATPUYHHUX CTPYKTYPAX

10. M. Ilenkin, I'. 1. Xapa, A. O. @edoceesa
[pencraBneHi 3aranbHi TPUHLIUIIN MOJICIIOBaHHS KOJIMBAaHb B JAUCKPETHHUX CTPYKTypax, chopMmyBaiacs y BU-
TJISIIL CTIelialIbHUX MaTpU4HUX (OpM JIaTHHChKOTO KBajpata (tury Cymoky). ChopMylbOBaHO O3HAKH CTPYKTYP-

HOTO i (DyHKIIOHAJILHOTO CaMOIOAIOHOCTI Ul MaTPpUYHUX CTPYKTYp cTaHmaptHux citok Cynoky. ITokaszaHo, 1o
CTPYKTYPHUH NPUHIOMI MOKE OYTH IHTEpIIPETOBaHMH SK peaizallis Apyroi itepauii B aqropurMi MacimTaOHOTO
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CKEHJTiHTa, XapaKTEePHOMY I (pakTaIbHUX 00'ekTiB. [0 03HaK QYHKIIIOHAILHOTO CaMOTIOAIOHOCTI CTPYKTYp BiJI-
HECEHO BIIACTUBICTH aJUTHBHOTO 30epeskeHHs Gopm citok mo Bumor CynoKy, ke CPOpPMYIbOBAHO Y BHIIIII TE€O-
pemu. JloBeaeHO, 0 MaTPUYHI CYMHU KOHCTAHT i ciTOK CyIOKY HOBUTBHUX PO3MIipiB, OTpUMaHi 3 ypaxyBaHHSIM BBE-
JICHOTO TpaBWJa IMKIIYHOTO paHXUPYBaHHS, OyIyTh 3a/JI0BOJILHITH TPHOM 00OB'si3koBMM BuMoram Cynoky. Bu-
3HAYEHO, 110 33 JJOMOMOT0I0 BUKOHAHHS 33/1aHOT MOCIIIIOBHOCTI ONEPaTOPiB IPYINOBHUX 3pYIIECHb, MOXKHA BCTAHOBH-
TH KOHKPETHHH CIieHapiii ANHAMIYHOTO 3MiHH CTaHiB CTPYKTYpH Ha JUCKpETHiH Maciitadi yacy. BeranoBneHo, mo
OIIepaToOpy €BOJIIOLIT IPYIOBUX 3pYIIEHb JiHIHHOTO THITY NPU3BOJATE A0 MaTpUYHKX TpaHcdopmariit citok Cynoky
3 Oe3midi ekBiBaJCHTHUX (110 BITHOIICHHIO /IO BHUXiAHHX), a ONEPAaTOPH TPYIOBUX 3PYIIEHh BUXPOBOTO THIY - IO
MaTpUYHUX TpaHCopMamiit 3 O6e3Jidi iCTOTHO Pi3HUX CITOK. PO3IIISIHYTO peXWMHU rapMOHIHHUX, XaOTHYHUX 1 Ti0-
PUIHUX KOJNWBaHb IS CTPYKTYP AOBLTBHOTO po3mipy. ChopMyap0BaHO BUMOTH 10 IIEPETBOPEHb OIepaTopa eBO-
IO CTPYKTYP, IO 3a0e3MeUyIOTh peari3amito PO3TIHYTHX peXnuMiB. IIpoaHani3oBaHO pe3ylbTaTH MOJIEIIOBAHHS
Xa0THYHHUX KOJMBAJIBHUX ITPOIIECIB MO LUKJIAM CTaHIB JUCKPETHOI CUCTEMH, 10 YTBOPIOIOTH MOJIOHOCTI aTTpaKTo-
PHHX TpaekTopiil. BcTaHOBIEHO MPUHIMII CHHXPOHI3alii XaOTUYHUX CTaHiB MaTPUYHUX CTPYKTYyp. OOrpyHTOBaHO
MOXIJIMBICTh CUMYJIIOBaHHSI PEXHUMIB OUTTSI KOJIMBaHb B AUCKPETHUX KIIITHHHUX CTPYKTYpax, OpraHi30BaHUX Y BH-
IJIs/11 ABOPIBHEBUX MaTpu4yHUX (opM. Ha KOHKpETHHMX NMpUKIanax MokazaHi pe3y/ibTaTh CUMYJIIOBaHHS OMTTS KO-
JIMBaHb B IIUKJIAX 3MIHIOIOTHCS CTaHiB JUCKPETHOI CUCTEMH ISl ABOX THIIIB OMTTS: MOJIOHMX Pe3yJbTaTy CyNepIio-
3iIii TApMOHIHAUX KOJMBAaHb Ha KPATHUX YacTOTaX B TEOPii palioOCHTHATIB, a TAKOX ITYMOIIONIOHUX OUTTIB.

KurouoBi cioBa: auckperHa cTpykTypa; citka CymoKy; 03HaKH caroMoI00H; OmepaTopy MaTPUIHUX TPaHC-
(opmartiif; pexxiMH KOJTMBaHb; IETEPMIHOBAaHHUIA Xa0C; IIyMOIIOAi0H] OUTTSI.

MOJIEJUMPOBAHUE BUBPAIIMOHHBIX ITPOIIECCOB
B JUCKPETHBIX MATPUYHBIX CTPYKTYPAX

10. M. Ilenkun, I'. H. Xapa, A. A. Peodoceesa

[pencraBneHsl 00IIKE MPUHIUIB MOJCIUPOBAHUS KOJCOaHU B TUCKPETHBIX CTPYKTYpax, chOPMHUPOBAHHBIX
B BUJIC CIICIHAJIBHBIX MAaTPHUUHBIX (popM JaTuHCKOTO KBagpara (tuna Cymoky). ChopMyIrpoBaHBI IPU3HAKA CTPYK-
TYpHOTO W (PYHKIHOHAJIBHOTO CaMOIOIOOMIA IS MaTPUYHBIX CTPYKTYp CTaHOapTHHIX ceTok Cyzmoky. IlokasaHo,
YTO CTPYKTYPHBIH MPUHIUI MOXKET OBITh MHTEPIIPETUPOBAH KaK peau3als BTOPOW UTEPAaI B alTOPUTME Mac-
mTa0HOTO CKEWIIMHTA, XapakTepHOM Iy (ppakTambHbIX 00BekToB. K mpu3HakaM (QYHKIIMOHAIEHOTO CaMOMOIO0HS
CTPYKTYpP OTHECEHO CBOMCTBO aJJIJATUBHOIO COXpaHeHHs GopM ceTok K TpeboBanusM CyaoKy, koTopoe chopMyau-
pOBaHO B BUjE TeopeMbl. JlokazaHo, 4TO MaTpUYHBIE CYMMBI KOHCTAHT U ceToK CyJO0KYy NMPOU3BOJIBHBIX Pa3MEPOB,
MOJIyYCHHBIC C YYE€TOM BBCACHHOTO MPAaBUIIA IUKJINYCCKOTO PAHXUPOBAHHS, OYyAyT yIOBICTBOPSITH TPEM 00s3a-
TenbHbIM TpeboBaHusiM Cymoky. OnmpeesieHo, YTO ¢ MOMOIIBIO BBIIOJTHEHUS 3aJaHHOM MMOCIICIOBATEIIBEHOCTH OIle-
PaTOPOB TPYIIIOBHIX CABHIKEK, MOKHO YCTAHOBUTH KOHKPETHBIHN CIICHApHA THHAMHYCCKOTO M3MEHEHHS COCTOSTHUN
CTPYKTYPHI Ha TUCKPETHOM MacIiTabe BpeMEHH. Y CTaHOBJICHO, YTO OIIEPATOPHI IBOIIONUN TPYIIIOBEIX CIBHKEK
JUHEWHOTO THIA MPHUBOMAT K MAaTPUYHBIM TpaHChopManusiM ceTok CyIoKy U3 MHOXKECTBA SKBUBAJICHTHBIX (TI0 OT-
HOIIICHHIO K UCXOJHBIM), a OTIEPATOPBI TPYIIIOBBIX CABIKCK BUXPEBOTO THIIA - K MATPHYHBIM TpaHC(HOPMAIIHIM K3
MHO>KECTBa CYIIECTBEHHO Pa3JIMYHBIX CETOK. PaCCMOTPEHBI peXUMBbI TAPMOHUUECKHUX, XAOTHYECKUX M THOPUTHBIX
KoJIeOaHui ISl CTPYKTYP MPOU3BOJILHOTO pasmepa. ChopMyaupoBaHsl TpeOOBaHUs K MPeoOpa30OBaHUsIM OMepaTo-
POB IBOJIIOIMU CTPYKTYpP, 00ECIEUNBAIONINX PEATN3AIUI0 PACCMOTPEHHBIX PEKUMOB. [IpoaHanu3npoBaHbl pe3yib-
TaThl MOJICIMPOBAHUS XaO0TUIECKUX KOJIEOATENbHBIX MPOILIECCOB MO IIUKJIAM COCTOSIHUN JAUCKPETHOW CHUCTEMBI, 00-
pasyromux Mog00usS aTTPaKTOPHBIX TPACKTOPUI. Y CTAHOBJICH NMPUHIIMII CHHXPOHHU3AINN Xa0THIECKUX COCTOSTHUN
MaTPUYHBIX CTPYKTYp. OOOCHOBaHa BO3MOXKHOCTh CHMYJIMPOBAHUS PEKAMOB OMEHUI KONEOaHWH B JUCKPETHBIX
KJIETOYHBIX CTPYKTYpaX, OPraHH30BaHHBIX B BHJIE JIBYXYPOBHEBBIX MAaTPHUYHBIX GopMm. Ha KOHKpETHBIX mpuMepax
MTOKa3aHbl Pe3yIbTAaThl CUMYINPOBAHUS OMEHUI KOJIICOAHUH B IIUKJIaX W3MEHSIOMIUXCS COCTOSHUNM AUCKPETHOUW CH-
CTeMBI Ui IBYX TUIIOB OWEHHIA: MOAOOHBIX PE3yJbTaTy CYIEPIIO3UIIMKA FAPMOHUYECKHUX KOJICOAHUI Ha KPATHBIX
4acTOTaX B TEOPUH PaJUOCUTHAIIOB, a TAK)KE IITYMOTIOJOOHBIX OMEHHH.

KuroueBble cj10Ba: AuCKpeTHas CTPYKTypa; ceTka CynoKy; MPU3HAKH CAMOIIOI00UsI; OTIepaTOphl MaTPHUYHBIX
TpanchopMaInii; peKUMbI KOJeOaHH; TeTEPMUHHUPOBAHHBINA Xa0C; IITYMOIO00HbIC OUCHHS.
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