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GENERALIZED ATOMIC WAVELETS

The problem of big data sets processing is considered. Efficiency of algorithms depends mainly on the appro-
priate mathematical tools. Now there exists a wide variety of different constructive tools for information analy-
sis. Atomic functions are one of them. Theory of atomic functions was developed by V. A. Rvachev and mem-
bers of his scientific school. A number of results, which prove that application of atomic functions is reason-
able, were obtained. In particular, atomic functions are infinitely differentiable. This property is quite useful
for smooth data processing (for example, color photos). Also, these functions have a local support, which al-
lows to decrease complexity of numerical algorithms. Besides, it was shown that spaces of atomic functions
have good approximation properties, which can reduce the error of computations. Hence, application of
atomic functions is perspective. There are different ways to use atomic functions and their generalizations in
practice. One such approach is a construction and application of wavelet-like structures. In this paper, gener-
alized atomic wavelets are constructed using generalized Fup-functions and formulas for their evaluation are
obtained. Also, the main properties of generalized atomic wavelets are presented. In addition, it is shown that
these wavelets are smooth functions with a local support and have good approximation properties. Further-
more, the set of generalized atomic wavelets is a wide class of functions with flexible parameters that can be
chosen according to specific needs. This means that the constructive analysis tool, which is introduced in this
paper, gives researches and developers of algorithms flexible possibilities of adapting to the specifics of
various problems. In addition, the problem of representation of data using generalized atomic wavelets is
considered. Generalized atomic wavelets expansion of data is introduced. Such an expansion is a sum of trend
or principal value function and several functions that describe the corresponding frequencies. The remainder
term, which is an error of approximation of data by generalized atomic wavelets, is small. To estimate its value
the inequalities from the previous papers of V. A. Rvachev, V. O. Makarichev and 1. V. Brysina can be used.
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Introduction

The past few decades have been marked by the
rapidly accelerating development of information
technology. A huge number of opportunities, which
seemed to be completely inaccessible earlier, has been
appeared. At the same time new problems have been
arisen. The volume of information has been increased
and total expenses for its processing has been increased
significantly. It is obvious that development of efficient
algorithms is the basis for the successful application of
new technology. We stress that the complexity of the
algorithm and the accuracy of the results are key indica-
tors of quality. These indicators are often highly
dependent on the used mathematical tools.

In the last half of the twentieth century some new
approximation tools such as wavelets and atomic func-
tions were constructed. The reason was the inability to
solve different engineering problems using classic ma-
thematical approaches.

There are many different requirements that can be
imposed on systems of functions. However, the most

important are the order of smoothness, compactness of
the function support (we say that the set

supp f(x) ={x: f(x)= 0}
is called a support of the function f(x)) and good

approximation properties. The first one is important for
the case of smooth data processing (for example, color
photos). Further, if we use the system of locally
supported functions, then it is possible to reduce time
and memory complexity of the numerical algorithm.
Finally, precision of the data representation and
correctness of the results mainly depends on
approximation properties. This implies that combination
of the above features is necessary for the efficient
algorithms of big data sets processing. In this paper we
construct the new system of wavelets that have all these
convenient properties.

There are many different definitions of the term
“wavelet”. In general, wavelet is a function of zero
mean that is defined on the real line and decreases suffi-
ciently rapidly at infinity [1]. Various systems of wave-
let functions are used in computer graphics [2 - 4], digi-
tal data processing and analysis [5 - 9], economic [10,
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11] and so on.

Wavelets can be constructed in different ways.
One of the methods is the application of solutions of so-
called refinement equations

y(x) =Y ¢ -y(a-x—k).
k

Note that the equation of this form is a partial case of
the linear functional differential equation with a con-
stant coefficients and linear transformations of the ar-
gument

y(™ +a, -y +ota,y= ch y(a-x+by). (1)

k
Solutions with a compact support of this equation are
called atomic function [12, 13]. Necessary and suffi-
cient conditions of existence of compactly supported
solutions of the equation (1) were obtained by
V.A. Rvachev in [12]. For this reason, the authors of the
current paper consider it necessary to note that some
fundamental principles of wavelet theory were intro-
duced by V.A. Rvachev (see also [14]).
One of the most famous atomic functions is well-

known V.A. Rvachev function

. 0 s1n(t 2- )
up(x)——j ¢ [[————d
“% k=1 t2

This function is a solution with a support [-1,1] of the
equation

y'(x) =2(y2x +1)-y(2x ~1)).
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Fig. 1. Graphs of the function up(x)
and its derivative

Also, up(x) is infinitely differentiable. Moreover, it has

good approximation properties [12, 13, 15]. Besides,
there is a basis of spaces

={f(x): f(x)= ch -up(x—iJ}
k 2"

that consists of shifts of the locally supported atomic
function

n
17 i sin (tz_“_l ) t
Fupn (X) = % j (& Q‘T F(z—ant ,

where F(t) is the Fourier transform of up(x) .
Atomic functions up(x) and Fup,(x) have a

combination of convenient properties. Hence, they have
a variety of applications to solution of real world prob-
lems [16 - 19]. Also, these functions were used in wave-
let theory [20 - 22].

Some of the results of V.A. Rvachev on the ap-
proximation properties of the function up(x) were gen-
eralized for the case of atomic function mupg(x),

which is a solution of the equation

y'(x) = 2i(y(2sx+2s—2k+1)—y(28x—2k+1)),

k=1
where s =2,3,4,....
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Fig. 2. Graphs of mup,(x) and its derivative

It was shown in [23] that spaces of linear combinations
of mup, -function shifts are asymptotically extremal for
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approximation of some classes of differentiable func-
tions. Furthermore, the locally supported basis, which
consists of shifts of the atomic function

t n

1% Sinzz n t
- ]| 22 (g
0 2(2s)"

where F(t) is the Fourier transform of the function
mup, (X) , was constructed.

There are different ways to use atomic functions in
practice. Application of wavelet systems, which are
constructed using atomic functions, is one of the ap-
proaches to solve real world problems. For this purpose
atomic wavelets were introduced in [24 - 25]. In addi-
tion, it was shown in [27] that these wavelet systems
can be effectively used in lossy image compression.

In [28, 29], a generalized Fup -functions were in-

troduced. The function

17
f - 1tx
N,m (x) . I € (
—o0
where F(t) is the Fourier transform of the mother func-
f(x)e L, (R) that  supp f(x) =[-11],
f(—x)=f(x), f(x)=0 for x e[-1,1]

. m+l1
M) F(t/N)dt,
t/N

tion such

any and

jw f(x)dx =1, N#0 and me N is called a general-
00

ized Fup -function. Approximation properties of gener-
alized Fup-functions were investigated in [28]. It was

shown that spaces of shifts of these functions are as-
ymptotically extremal for approximation of some
classes of smooth functions. So, generalized Fup-

functions have main advantages of the atomic functions
up(x), Fup,(x), mups(x) and Fup,(x). Further-

more, by choosing of the mother function we can get
convenient analysis tool with the required properties.
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Fig. 3. Example of the mother function
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Fig. 4. Example of the mother function

Hence, we stress that generalized Fup -functions can be

used in various applied problems.
In this paper we construct wavelets using general-
ized Fup -functions.

Formulation of the problem

Consider the following functions

1 7
Vi) = j ™.V (Hdt, k=0,1,2,...,
—00

where
: 2kt k-1 i
Sin =— 2.|t t
Vi (t) = N TTcos=— F| —
KO="x Q N (Nj
N =

and F(t) is the Fourier transform of the mother function

f(x) such that supp f(x)=[-11], f(—x)=f(x),
1

f(x)>0 for any x e(-11) and j_] f(x)dx =1. It can

easily be checked that vy (x) is a generalized Fup-

function
The aim of this paper is to construct wavelets us-
ing vy (x) and obtain formulas for their calculation.

Spaces of generalized atomic wavelets

First let us introduce some properties of the func-
tions vy (X) .

For any k e N the following equality holds:

Vk(X)=%'(Vk—1(X+%)+

+2- v (X) + v (x —%)) . )

In other words, the function v, (x) is a linear combina-

tion of shifts of vy _;(x). Indeed, it is clear that
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k-1 k-1
20t 25t k-1 i
N eosT 20t t
N N_ TTcos“—= -F| = |=
2 N

e N
= Vi1 (D)- =

[ 2 L
=Vk_l(t)'z' e N +2+¢ N .

It follows from the properties of Fourier transform that
the equality (2) is satisfied.
Also, it is not hard to prove that

k+1 2k+l
vi (x)=0 forany x ¢| — ; , 3
k(%) y NN 3)

2k+1 2k+l
vi.(x)>0 forany x €| — ; , 4
K (%) y NN “4)

where k=0,1,2,....
Denote by L the space of the functions

2k+1~
f)=Y cj.vk(x— NJJ,

Jel(f)

where I(f) is a finite subset of integers. This means that
Ly is a space of finite linear combinations of the func-
tion vy (x) shifts.

From (2) it follows that L, > L, for any k.

Define the inner product of two functions as the in-
tegral

0

(f,2)= [ £(x)-g(x)dx .
—o0
Let W, be the orthogonal complement to L in
the space L _q:

Wy ={feLy;: (f,g)=0 forany geL,}.
This implies that

Ly=W,eW,®..0W, @L,. (5)
The construction of the generalized atomic wave-

lets is based on the special basis of the spaces Wi .

Theorem 1. For any natural k there exists the
function w; (x) such that

k+1 .
1) the system of functions {Wk (x _2 o JJ} is
JEZ

a basis of the space W ;

k
2) wi(x)=0 for any x ¢ (0;%) :

3) j_wwwk(x)dx =0.

This statement is a generalization of theorem 2
from [25] and theorem 1 from [24] on the existence of
atomic wavelets. Since v (x) generalizes the function

Fup, , (X), which was used for construction of atomic
wavelets, we say that wy (x) is a generalized atomic
wavelet and the linear space W is a space of general-

ized atomic wavelets. Theorem 1 can be proved in the
same way as theorem 1 from [24].

In the next section we obtain formulas for evalua-
tion of the generalized atomic wavelets.

Construction of generalized atomic wavelets

Consider the function
5 K.
2
w(x) = ch Vi1 (x _Tjj
j=1
such that w(x) is orthogonal to the space L, . Equiva-

k+]i
N

lently, w(x) L vy (x -2 ) for any integer i .

It follows from (3) that w(x)=0 for any

B 2k+]i
N

xé(O'Q) and % (x )—O for an
s N k - y

k+1 - k+1 -
X & (*%) . Hence, w L Ly if and only if

) for 1=0,1,2,3. It means that

K+
w(x)J_Vk(x—ZI:;‘

« 2k+1i
Iw(x)~vk N

—00

)dx =0 forany 1=0,1,2,3.

. 5
Hence, coefficients {c j }

] satisfy the system of linear
J:

algebraic equations

A-c=0, (6)
where ¢! =(cl Cy C3 ¢4 05), A :(aij )i:O,...,3'
j=1,...,5

Besides,

o0

K+ ok
e T e
—o0

If we combine this with (3), we get
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B v« 0O 0 O
By ox PBx vk O

A= ,

0 v Bx ox By

0 0 0 vy B

where

oy = I Vi (X) - v (x)dx,

B = | V() Vi (X—W)dxa
< k+1

Yk = I Vk(X)'Vk—l(X_zN )dx

It follows from (2) that oy =(ay_j+by_1)/2
Bk =(ax_1+2-b_1)/4 and y, =by_; /4, where

a1 = | Vi (0dx,
by = I Vi1 (%) Vi (X—W)dx-

We obtain that the general solution of the system
(6) is ¢ =-b -8, cy=(ag+2b)-8,
c3=—2(a_ +b )8, c4=(ay_y+2b; ;)-8 and
c5 =—by_; -8, where 5 € R. Therefore, the function

2k
Wi (X) = =by_y Vi | X =5 |+

(ak 1+2bk ] *Vi— ](X—ZT)

k
-2 (ak l+bk ] Vi ](X %)4—
b k4
+(ay—y +2by) Vi | X = ~ |-
25
—by Vi [ x5 ™)

is a generalized atomic wavelet.

Properties of generalized atomic wavelets
In this section we discuss the main properties of
generalized atomic wavelets.

k
1. supp wi(x)= [0;%] This means that the
function w; (x) has a local support.

2. j_wwwk(x)dx =0. In other words, generalized

atomic wavelets have zero mean value.
3. The function wy (x) is a smooth function. De-

pending on the choice of the mother function, we can

get a generalized atomic wavelet with the desired order
of smoothness. For example, if atomic function up(x)
is a mother function, then wy (x) is infinitely differen-
tiable.

4. The system of generalized atomic wavelets has
good approximation properties. It was shown in terms
of the Kolmogorov width that spaces of linear combina-
tions of generalized Fup-functions have almost the

same approximation properties as trigonometric poly-
nomials [28].

We see that by choosing such parameters as N,
m and f(x) we can obtain generalized atomic wave-

lets with the desired properties.

Practical approach to the application
of generalized atomic wavelets

There are different ways to use wavelets in prac-
tice. In this section we consider the approach that is
related to the construction of special bases in functional
spaces.

Suppose some data are presented by the function
d(x) . Denote by p(x) an orthogonal projection of this
space Ly. And let
r(x) =d(x)—p(x) . In this notation, f(x)=p(x)+r(x).
It follows from (5) and theorem 1 that

n k+1 .
px)=> > (’)kj'wk(x_zN Jj+

k=1 jel} (d)
2n+l‘l
(x-Z¢). )

where I, (d) and J(d) are subsets of integers. We say

function on the linear

+Zov

jel(d)

that p(x) is a generalized atomic wavelet expansion of

the function d(x). Such an expansion can be used for

the detection of the seasonal fluctuations and trend. Let

P(X)= D oWy (x—2k+]j/ N) for k=1,.,n
Jelg(d)

2n+]j .
~ |- In this terms,

and q(x)= Z Uj'Vn(X—

jel(d)
p(x) =p;(X)+...+p, (x)+q(x) . Each function py (x)
corresponds to the certain frequencies and q(x) de-
scribes the principal value of the data function d(x)
(see fig. 5—10, n=3).

The function r(x) is a remainder term. Also, it
represents an error of approximation of the func-
tiond(x) by its generalized atomic wavelet expansion.
It follows that such an error depends on approximation
properties of the space L, and the mother function. An
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upper estimate of the best approximation of some  gpas -

classes

in [28],
accuracy of the results. Let us remark that if up(x) or

mup, (x) is chosen as the mother function, then we can

use results of V. A. Rvachev and V. A. Makarichev Gai JVF - * H
15, 23] for this purpose. B

of differentiable functions, which was obtained ik

can be used in the general case to ensure the 002 -
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Further, to obtain a generalized atomic wavelet ex-

Fig. 7. Graph of p5(x) that corresponds ) o .
pansion of d(x) we get an orthogonal projection of this

to low-level frequencies
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function on Wy,...,W, and L, . It should be mentioned
that the systems of functions

k+1 . n+l -
JEZ JEZ

are not orthogonal. It is clear that we can use some clas-
sic procedure to get orthogonal basis. But in practice it
is more convenient to construct the corresponding bior-
thogonal system of functions. Construction of such a
system will be the object of another paper.

Conclusions

In this paper we have constructed generalized
atomic wavelets, which are locally supported smooth
functions and have good approximation properties, and
obtained convenient formulas for their evaluation. Also,
we have introduced a generalized atomic wavelet ex-
pansion that can be used for data analysis.

Certainly, there are several unsolved problems re-
lating generalized atomic wavelets. For instance, the
problem of biorthogonal system construction is of inter-
est.

Acknowledgement. The authors are grateful to
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V3AT'AJIBHEHI ATOMAPHI BEMBJIETH
I. B. bpucina, B. O. Maxapiueg

Posrisanyro npobiemy o06poOkH Beaukux 00’ emis manux. Kiro4oBy poib v po3poOii eheKTUBHUX aIrOPUTMIB
BiZirpae 3aCTOCYBaHHS BiJITOBIIHOIO MaTeMaTHYHOro anapary. Ha cooroani icHye 6arato KOHCTPYKTHBHHUX 3aC001B
aHaIi3y, cepell AKUX MOXKHA BUALIUTH atoMapHi GyHkii. Teopiro atomapHux GpyHKLIN Oy10 po3podIiieHo Y poboTax
B. O. PeauoBa Ta npeJcTaBHMUKIB HOro HayKoBOI IIKOIH. ByJIo OTpMMaHO HU3KY PE3YyILTATIB, 10 HAJa0Th QyHaa-
MEHTAJIbHE OOIPYHTYBAaHHS JOLUJILHOCTI X HMPaKTUYHOIO 3aCTOCYBaHHA. 30KpeMa, aToMapHi GYHKIIT HECKIHYEHHO
nudepeHiiiioBaHi, 10 € CYTTEBUM IpHA 00poOLi JaHuX 3 eheKTOM IJIaJKUX IepeXodiB (Hampukiaz, KOJL0poBi (ho-
Torpadii). Takox 1i GYHKIT MarOTh JIOKAJILHUI HOCIH, 1[0 J03BOJISIE€ 3HAYHO CKOPOTUTH BUTPATH YHUCEILHHUX PECY-
pciB. OKpiM TOro, JOBEAEHO HASBHICTH Y IPOCTOPIB aTOMapHUX (DYHKIIH rapHUX allpOKCUMALIHUX BJIACTUBOCTEMN,
3aBIAKU SKUM MOYKHA 3MEHIIUTH ITOXHOKY 00uHnciIeds. ToMy 3aCTOCYBaHHS IILOI0 MaTEMATUYHOIO arapary B ajaro-
pHUTMax 0OpOOKHU JaHUX € JOCTATHHLO IEPCIIEKTUBHUM. ICHYE NEKIIbKa OCHOBHHX IIAXOMIB 0 MPAKTUYHOIO BHUKO-
pUCTaHHg aToMapHUX (DYHKLIN Ta 1X y3arajJbHEHb, OJHUM 13 AKHUX € M0oOyI0oBa Ha IX OCHOBI BEHBIIETONOMIOHHX
CTpYKTYp. Y nmaniii poOOTI 32 JOIOMOI'OK y3arajlbHeHuX Fup-(QyHKIiN 100y10BaHO y3arajibHEHI aTOMapHi BEUBIe-
TH Ta OTpUMaHO GOPMYIH I iX oOuucienHs. Tako) HaBeIEeHO X OCHOBHI BJIACTHUBOCTI. 30KpeMa, BCTAHOBJIEHO,
[0 y3arajbHEHI aToOMapHi BEHBIIETH MOEIHYIOTEH Y OOl TakKi SIKOCTI, SIK IJ1aJKiCTh, JOKaJLHICTL HOCIS Ta rapHi all-
poKcHMaIliiini BaactuBocTi. KpiM Toro, y3arajapHeHi aTOMapHi BEMBIIETH — 1€ IIMPOKKUH Ki1ac GYHKINH, mapaMeTpu
SIKAX MOKHA 3MIHIOBAaTH 3 ypaxyBaHHSIM KOHKpeTHHX morpe0b. Ile o3Haudae, 110 3anporOHOBaHMI MaTeMaTHYHUI
amapar Hajae JOCIIiHAKaM Ta PO3POOHHKAM aJrOPUTMIB THYYKI MOXKJIMBOCTI IPUCTOCYBAHHS 10 Clieludiky pi3HO-
MaHiTHUX 1poOsieM. Takok y cTaTTi PO3TJISHYTO IUTAHHS IMOJAHHS JaHHUX 3a JOIIOMOIOI0 y3arajJbHEHHX aTOMapHUX
BeiBieTiB. s nporo y poOOTi 3aIpOIIOHOBAHO y3arajlbHeHe aTOMapHe PO3BUHEHHS JaHUX, SIKE MOJSArae y MoJaHH1
iH(popMarii y BUIIISAI CYMH TpeHI-(pYHKINT Ta JEeKUIBKOX JTOJAHKIB, [I[0 OMUCYIOTh BIAMOBiAHI yacToth. Ilpu oMy
MoXHOKa ILOI0 PO3BMHEHHS OIUCYETHCS 3AJHMIIKOBUM UYJIEHOM, SIKHH, 3TiAHO 3 pe3yabTaTaMH ITONEepEaHiX JOCITi-
JUKCHB, € HE3HAYHUM 1 MOJKHA OLIIHUTH 3a JOIIOMOI'OI0 HEPIBHOCTEH, o Oy/au oTpuMaHi y podorax B. O. Payosa,
B. O. Makapiuesa 1a 1. B. bpucinoi.

Koaroudosi cioBa: 00poOka nanux, BeiiBiern, atomapHi QyHkuii, up-dynkuis B. O. PBayoBa, aromapHi BeiiB-
JICTH, y3araJlbHCHEe aTOMapHEe PO3BUHEHHS TaHHX.

OBOBIIEHHBLIE ATOMAPHBIE BEHBJIETHI
U. B. bpvicuna, B. A. Makapuuee

Paccmorpena npo6iieMa 00paboTKH OOIBIINX 006EMOB JaHHLIX. KiTloueByro posb IIpH pa3paborke >3hdheKTHB-
HBIX aJTOPUTMOB UTPaeT MPUMEHEHHE MOIXOIAIICI0 MaTeMaTHYECKOro anmnapara. B padorax B. A. PraueBa u ero
YUEHHKOB OBLTa Pa3BUTa TEOPHUS aTOMAapHBIX (YHKIMH. B yacTHOCTH, OBUT MOJYYEH DS PE3YILTATOB, MAIOIINX
(dbyHIaMeHTaIpHOEe 000CHOBAHHUE I[EJIECO00PA3HOCTH UX MPAKTHYCCKOr0 MPUMEHEHU. B JJaHHOM cTaThe MOCTPOCHBI
0000IIICHHBIC aTOMAPHBIC BEHBIICTHI, KOTOPBIC 00JIAJAI0T PSIOM MPEUMYVIIECTB 10 CPABHCHUIO C APYTUMH aHAJO-
THYHBIMU HUHCTPYMEHTAMH aHaiu3a. Takxke B paboTe MPEUTOKEH MOIX0A K MPAKTHYSCKOMY IPUMEHEHUIO MTPEIO-
KEHHBIX (PYHKIIHH.

KiroueBnbie ciioBa: 00paboTka MaHHBIX, BEHBIICTHI, aTOMapHbIe QyHKIUH, up-pyHknus B. A. Peauesa, ato-
MapHbIC BEHBJICThI, 0000IIICHHOE aTOMapHOE Pa3JIOKECHHUE JaHHBIX.
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