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MODELS AND METHODS FOR IMPLEMENTING PEDAGOGICAL
INTERVENTIONS IN MODEL-TRACING COGNITIVE TUTORS

This paper presents some models and methods for generating pedagogical interventions in model-tracing
cognitive tutors. They use Bayesian networks for assessment and making decisions, this feature allows
managing uncertainty reasoning based on a formal foundation. This technique combines the rigorous
probabilistic formalisms with a graphical representation and efficient inference mechanisms. It is explained
how Bayesian networks are employed as an inference engine to assess the degree of learning of the relevant
knowledge components in the learning domain and determine the proper pedagogical interventions for

performing a productive learning process.
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Introduction

Model-tracing cognitive tutors (MTCT) have
successfully been applied on different knowledge
domains, and have proved positive results on students
while acquiring skills and knowledge under specific
learning domains [1-4]. Moreover, MTCT can track
students’ actions to provide pedagogical interventions
such as hints and feedbacks in a task-structured
curriculum [2]. This feature, also called cognitive model
needs determining the student’s thinking and the
required skills and knowledge for the learning domain.
Cognitive models (CM) are an integral part of
developing Intelligent Tutoring Systems (ITS) [4].
Thus, a CM requires a proper understanding of the
knowledge involved in student’s actions in a given
learning domain, problem-solving strategies or
principles and it should also be able to interpret
student’s recurrent behavioral patterns and tendencies
that reflect a way of thinking in order to provide
constructive pedagogical interventions. A MTCT is
“interested” on the way the student processes and
assimilates the relevant knowledge components, this can
be tracked by analyzing the behavior when the student
attempts to commit actions to satisfy the requirement(s)
of a task, and it can be recurrent in terms of the way that
knowledge is required, in other words; how tasks are
graphically presented. An approach discussed on this
paper is based on the hypothesis that some students are
less able to seek for help when they needed or get close
to a person to get it, e.g. the teacher or other means of
information, communication or learning support, due to
the lack of meta-cognitive skills for “help-seeking” [3].
This approach gives students support for developing
skills like help-seeking and self-regulatory by means of

adaptive pedagogical interventions. These interventions
may be in the context of an interactive learning
environment that leads them to learn the knowledge and
skills of certain domain.

So according to the hypothesis that a help-seeking
student becomes a better learner [3], the MTCT uses a
task specific pedagogical intervenor. Mainly cognitive
tutors support the base of learning by doing, help-
seeking instructions and self-analyzing. These features
in learning platforms and cognitive tutors have been
tested and they prove to raise student’s scores [3-5]; the
models and methods explained in this work are
developed to perform pedagogical interventions
according to student’s actions and performance. For
implementing and testing them, a MTCT named TITUS
was developed [6]. It employs Bayesian Networks
(BNs) with diagnostic models for assessing students [5,
6, 8]. Therefore, the aim of this work is to present some
models and methods for implementing into the
development of Model-tracing cognitive tutors that
make use of Bayesian networks with diagnostic models
for performing inferences in order to produce adaptive
pedagogical interventions.

1. Generic description of the two loops
pedagogical interventions framework

It is expressed on [5] that tutors behaves similarly
despite of their different structures, thus a common two
loops structural blocks are proposed, the outer and inner
loops. Despite the essence and the main common
features of the two loops structure had been described in
detail in the literature [5], there still exist the absence of
the related models and methods to understand their
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internal functionality and guide designers to build
algorithms or solutions for developing them. A basic
explanation of the common functionalities in the two
loop structure is presented as following,.

In short words, the outer loop has the
responsibility to define the task that the student should
do next. The main challenges this loop presents are
selecting intelligently a task as well as developing a rich
enough set of tasks to select from. On the other hand,
inner loop is focused on the student’s actions while he
attempts to complete a determined task; whereas the
outer loop deals with the tasks, the inner loop deals with
the steps related to complete a task and offers the
students some “services” as they use the tutor. These
services will be deeper explained ahead on the inner
loop related section.

Furthermore, in basis of Bloom’s taxonomy [7]
that is employed on different spheres of pedagogy,
including the computer-oriented training, an ITS can
attain the first three lowest levels: knowledge,
understanding and application. Assessment and
acquirement of new knowledge or skill based on the
trained knowledge components by the students can be
carried out when they attempt to complete different
practical tasks, computing solutions of tasks, fulfillment
of individual laboratory practices, etc. Higher levels
assume creativity moments and ambiguity; thus, these
aspects cannot be realized without the expert assessment
of the teacher. Learning automation under such
circumstances lies beyond this work.

2. Models for implementing the outer loop

Assessment model for determining the degree of
learning of knowledge components in the domain. A
key factor to aid the student to navigate through the
learning domain is to be able to model the prior degree
of learning he has and to keep track of each relevant
knowledge component, and Bayesian networks (BN)
can help to manage this uncertainty [8-10].

The basic structure for the BN that models the
degree of learning in a student is depicted on Fig. 1.

Fig. 1. BN assessment basic structure

This BN consists of four nodes: K;, Si;;, DM and
K1, where K, is the probability of learning of certain
knowledge component or skill at t time; S+ is the step
or student’s action at moment t+1 after he attempts to

complete certain task; DM is a diagnostic model [9] that
is directly linked to the student’s actions and influences
the probability of the degree of learning of the relevant
knowledge component at t+1 moment; and K, is the
probability of learning of the knowledge component at
t+1 moment. —K,, =Sy, DM and —K, are the
respective complementary probabilities.

Probability P(K.) of learning certain knowledge
component at t+1 moment, after a student’s correct
action is obtained with (1), in this situation, evidences in
a student’s action are denoted by P(Si;) = 1 (correct
action) and P(DM) = 0 (deactivated).

P (K. ) =[P (K{[Se;,"DM) - P (K4 1|K{,Sg1,DM) -
“P(Se;) P(DM) J+[P (~K{|S;s1,DM) -

“P (K 1["K(,Se1.DM) P (Sy;;) - P(DM) I+
HP(K(|St+1,"DM)-P(K 11K ,Si1,"DM )-P(S, )
‘P(~DM )]+[P(—K{|St+1,~DM)-P(K 111 |=K,Si+1,~DM)-

‘P(St41 )P(~DM)+HP(K|S11,"DM ) 0
‘P(K+1|K(,7S¢+1,.DM)-P(—Ses; )-P(DM) ]+
HP(—K[Sy1,"DM)-P(K 417K, 7S5, DM )-P(—S, ;)
‘P(DM)]+[P(K|S¢+;,"DM)-P(K ;1 [K(,~S(;;,"DM)-
‘P(—Sy+1)-P(~DM)]+[P(—K|S(;.;,~DM)-

‘P(K 417K, 7S(41,”DM)-P(=S.1 )-P(~DM)].
Conditional probabilities P(K{S;,”)DM) and

P(—K{Si1,"DM) in (1) are obtained with (2) and (3)
respectively,

P(K(|Sii1, DM)=a ¥ P(K,,Se;, DMKy )=
Kt
=a X P(K;)P(Su K )P(-DMK,)- )
K+
P (Ktﬂ IK:Ser1 sﬁDM) ‘

P(K Sy, DM)=a ¥ P(~K.,Sp:;, DMKy, )=
K1
=a X P(~K;)P(Su"K;)P(-DM[K,)- 3)
Kl
P (Ktﬂ K-S sﬁDM) :

where o is a normalization coefficient,
o+ (P (K{[St1,"DM) + P (~K[Ss1,"DM) ) = 1.

This model assumes that each task depends on
individual knowledge components. That is, the set of
relevant knowledge components in a task are individual
cognitive processes, thus when a student attempts to
complete a task, they can be applied independently one
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from another, so their posterior probability must be
assessed separately.

Therefore, a step analyzer assesses each relevant
knowledge component in the actual task and passes it to
the outer and inner loops in order to determine the
proper pedagogical interventions. Thus, outer and inner
loops directly depend on this assessment.

Model for selecting tasks. For implementing this
model, a set of several tasks for the learning domain
must be developed and separated into complexity levels
and sequential modules. Three or five levels of
complexity are commonly instantiated under the
macroadaptation approach as standard for educational
proposes [4-6] (e.g. very easy, easy, average, difficult,
and very difficult). Modules should be created so that in
each of them there were two tasks as minimum from
each level of complexity in order to have alternatives
for a choice. Moreover, all the set of tasks in a module
must cover the complete set of relevant knowledge
components related to it, and they should be trained
more than once in each level of complexity. Set of tasks
in every module should be developed as an interwoven
network over the relevant knowledge components that it
contains. Thus, it is preferable that every knowledge
component should be trained at least by two different
tasks; this relation between a knowledge component and
tasks increases the probability of learning it by
increasing the times of possible situations that students
might employ it, this is well known because it is the
classic approach that is commonly implemented in the
classrooms. Task model (MT) above explained, is
represented by (4) and its boundaries in (5). Fig. 2
depicts and example of the MT.

MT : {Tijk} - {KWkl}, (4)

where T is a task, KW defines a knowledge component,
i is the task identifier, j € [1, 5] represents the levels of
complexity, k is the module of the task T, and 1 is the
identification number for the knowledge component.

PRI N
V¥ T, = MT (KW, ) 0, T,
v UMr(T, ) = {KW,},

where MT" - {KWy} — {Tj}.

The parameters related to the learning domain are
fixed, and the number or tasks included in the MTCT
may be added but this process is performed out-of-
working time, thus the MT is static. On the other hand,
the student model (MS) is constantly updated while the
student is working with the MTCT, for this reason, MS
is a dynamical representation of the student.

This “representation” might include name,
surname, user, password, learning progress, perfor-

>2, (5)

mance, right attempts, and another key information that
outer loop in join with the inner loop may use for
assessing the student’s degree of learning of each
knowledge component in the learning domain. The
above concepts can be represented in (6) and (7), where
S represents the student, q is his identification number,
P < R are real numbers in the interval [0, 1], that
represents the probability of learning certain knowledge

component, N is the attempts of completing a
determined tasks.
MS1 : {Sq} X {Tijk} — N. (6)
MS2 : {Sq}x{KWy} — P. (7)

Fig. 2. Task model structure (example)

The prior information is initialized if a student Sq
uses the tutor for the first time, thus for each Sg:
Vi, Vi, Y MSI(S,, Tj)={0}; ¥, ¥, MS2(Sq, KWy)
={0.5}. After this, first module is selected and
complexity level is set to the middle one: k = min(k), j =
[max(j)/2]. As it was commented above, the outer loop
selects the next tasks (NT) in a certain module
represented by (8), for a determined student, containing
knowledge components with lower degree of learning.

KW,
NT=MT" [ “ (8)

MS2(S, KW, ) - minJ'

Because many knowledge components might have
a lower degree of learning and tasks may contain
several of them, (8) can return more than one choice

(||NT||>1), thus the outer loop searches the next task
based on attempts (NT”), represented by (9).

KW,
NT=NT e )
MSl(Sq,Tijk ) — min

In case that||NT’||>1, the outer loop will
implement (10), and randomly will realize a model
imitation for selecting a task (NT*). This case is
certainly possible at the first time a student uses the
MTCT.

NT* = RAND(NT). (10)
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Processes described by (8)-(10) repeats in
accordance with the situations above explained,
meanwhile the student has not probably learned the
knowledge components in the current module; only
then, the outer loop passes to the closest upper module:
k + 1 and again it repeats the process of choosing the
next task, until k < max(k). In case the complete set of
knowledge components in the domain and the max(k)
have reached, the training program comes to the end.

3. Models and method for implementing
the inner loop

Models for defining complexity level and
assessing degree of learning of knowledge
components. The most common services that an inner
loop may offer, according to (5), are following listed:

— minimal feedback on a step. Thus, the tutor
indicates whether the step is correct or incorrect;

— error specific feedback on incorrect steps. This
information is intended to help the student to focus on
which particular step or knowledge component is wrong
and how to avoid making it again;

— hints on misconceptions or errors on specific
knowledge components;

— assessment of knowledge.

It is important to emphasize that, the main aim of
the services above listed is to assist students in learning
the knowledge components in the learning domain.
Designers may probably learn from the misused
services under classic educational activities. Inner loop
implements a “step analyzer” that is used for other
services and interwoven with the outer loop. However,
many other services could be implemented inside the
inner loop structure. Once the outer loop has chosen a
task, the MTCT waits the student’s action (step). After
the student has committed it, the inner loop mechanism
is triggered; the step analyzer in particular which is one
of the services listed above, and assesses the degree of
learning of the relevant knowledge components in the
task (Sol;):

SolyNT) € {0,1},
NT e {NT, NT', NT*},

then updates the information about the attempt as well.
The complexity level is adjusted according to the
piecewise model in (11).

j+1,if (Sol, (NT)=1) & (j < max(j));
j=1<j-1,if (Sol, (NT)=0) & (j <min(j));  (11)

J, other cases.

A module is completed when the set of knowledge
components that conform it are “learned”, thus a
threshold pKW helps to estimate this. Statements (12)
and (13) are used for determining if certain knowledge
component has been probably learned.

(12)
(13)

MIN[MS2(S,, KW,;)] > pKW.
AVG[MS2(S,, KWy)] > pKW.

According to [5] over a threshold pKW = 0.85, it
can be determined that student probably has learned a
certain knowledge component; besides, this value can
be adjusted. Statement (12) corresponds to a more
“rigid” tracing for all knowledge components, whereas
(13) permits to scatter degree of learning of knowledge
components.

Method for pedagogical feedback support. Inner
loop is also responsible of supplying a “service” for
pedagogical feedback; this service may be offered at the
moment the student makes actions during attempting or
after completing a task. Although, a hint could be
supplied before, during or after attempting to complete
the assigned task to support or assist the student in
completing it as well. Hints are intended to avoid
frustration or remarking repetitive misconceptions or
mistakes. However, in this work, it is only proposed a
general method for supplying pedagogical feedback
after the student has submitted his answer. It can be
used as a base for developing other supporting
pedagogical methods, but this may increase complexity
of the software to make it capable of tracking every
minimal student’s action even over the MTCT’s graphic
users interface for interpreting and “translate” it into a
pedagogical intervention.

¥, Sol; (NT), NT e { NT, NT', NT*}
Start
Analyze: V{KWy} : {Sol; (NT)} — [Tl
{Sol; (NT)} « 1
MS1 : {S¢}x{Tij} —({Nik} +1)
Give: {min(FBy)} : {Sol; (NT)} —1;

{Sol; (NT)} < 0
MSTI : {Se3X{Tij} —({Niw} +1)
({Niw} = 1) = {min(FB)}, {Tiu} — [k]
Give: V| {FB;} =2 : {Niuy} €[2, 3], {Tiu—[k]
Give: V; {FB)} =3 : {Niw} >3, {Tii} — [K]
End

The method for the pedagogical feedback support
is above presented and following explained. When the
student’s step is submitted, the step analyzer assesses
the relevant knowledge components in the current task.
In addition, it computes how many times the student has
correctly employed a specific knowledge component
(Nikr); how many times he has misused it (Ni), and
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accordingly the inner loop returns some classification of
feedback, (FB)) € {1: minimal feedback, 2: hint about
error, 3: specific error feedback}.

For the first time a knowledge component has been
misused the inner loop, after employing the step
analyzer, will return a minimal feedback (FB, — 1),
such as “correct” or “incorrect”. For the second and
third time that the step analyzer determines certain
knowledge component has been misused in the current
task, it will return an error-specific hint or feedback
(FB, — 2). For instance in a fault-tolerant learning
domain, “You should pay more attention on the value of
the transfer coefficient” or “The class of fault you have
chosen is not correct”, “Static characteristics for this
class of fault are depicted on the figure, identify them”,
etc. It has been determined that the inner loop will give
second level feedback twice as a very simple
mechanism to minimize feedback abuse. Nevertheless,
other more advanced mechanisms may be implemented.

On the fourth and over of wrong attempts or
misuse of a relevant knowledge component, the inner
loop will return and error-specific feedback, leading the
student to review and study the corresponding theory or
related information to overcome the deficiencies on the
corresponding knowledge components in order to
prevent this from occurring again and supporting a
constructive learning process. The inner loop gives only
delayed feedbacks and hints in accordance with the
policies explained above and it will only give them right
after the student had submitted his step(s).

4. Experimental results and analysis

A MTCT was developed to implement and test the
performance of the proposed models and methods [6].

The training program has been classified into three
sequential modules, 29 relevant knowledge components
were defined. As it was explained above,
macroadaptation knows which knowledge components
are required for each task.

Thus, for training the complete set of knowledge
components, 43 tasks were developed. Moreover, some
of these tasks have more than one variant; this feature
increases the set of tasks up to 212 different tasks that
the MTCT may present to the student and they are
grouped by level of complexity as well.

Experimental  results for evaluating the
effectiveness of the models and methods were obtained
by means of the analysis of 38 students’ performance,
separated in two groups as follows:

1) 19 students used the MTCT without the
implementation of the outer and inner loops during the
learning process (Group A);

2) 19 students used the MTCT with a fully
implementation of the outer and inner loops (Group B);

Experimental results from the group of students
that used the tutor without implementing the outer and
inner loops mechanism are depicted on Fig. 3.

Average degree of learning of the Group A for
each of the 29 knowledge components in the learning
domain is clearly below the threshold pKW on the
Fig. 3, and it states that the degree of learning of the
knowledge components in the learning domain is less
probably.

On the other hand, when the Group B used the
tutor with the outer and inner loops implemented and
obtaining adaptive pedagogical interventions the
probability of learning every knowledge component
considerably increased, and this result is shown on
Fig. 4.
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Fig. 4. Probability of learning of knowledge components with outer and inner loops mechanisms
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Times that students misused a knowledge

component is shown on Fig. 5, it shows times the DMs
for each KW were activated when it was misused and
states on it that knowledge components 18, 19 were
difficult ones for students. On base of that, adjustments
in the educational role must be done and pay attention
on them in order to compensate these deficiencies.

Attempts of completing a task depicted on Fig. 6
say which tasks resulted problematic for students, but
also demonstrates the adaptability of the outer loop in
accordance to the student’s performance and because of
that, some tasks were not showed at all, however others
were more often required on basis of their relevant
KWs.

The students’ final results from each group are
depicted on Fig. 7. Students’ numbers are just for a
generic identification but there is not any relationship
between the groups.

As Table 1 shows that by implementing the
models and methods for pedagogical interventions
Group B obtained an average ~0.56 higher probability
of learning the knowledge components in the task
domain than the Group A which did not obtained any
pedagogical intervention.

Table 1
Average probability of learning of knowledge
components in the learning domain

Group | Average probability
A 0.4068
B 0.9662

B Group A @Group B

B

Student

- N W A OO N ® ©
S R S ST R R R

o S N N A s S

0 01 02 03 04 05 06 07 08

Average probability of learning

Fig. 7. Students’ average probability of learning
for the learning domain

Conclusions

This paper proposes some models and methods for
implementing into information technologies means for
education, specifically in MTCT. An assessment model
based on Bayesian networks with diagnostic models for
making inferences for generation of pedagogical
interventions was presented as well. A two-loop
structure was described and the content of each
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component in it was in detail explained. This provides
the learners with cognitive pedagogical support, like
hints and feedback. It has the ability to build a student
model from each student and generate individual
pedagogical interventions based on it, in order to
actively adapt the learning process according to the
student’s performance.

The implementation of the proposed models and
methods demonstrates their own effectiveness based on
the increment of the degree of learning of the relevant
knowledge components in the learners. This
effectiveness was obtained by implementing them into a
MTCT that was employed with regular students in a
master degree program of the learning domain. Students
that received pedagogical interventions from the MTCT
obtained a 42% better performance than those ones that
did not receive any kind of assistance from the cognitive
tutor. So students with better performance have a higher
probability of having learned the relevant knowledge
components and it proves the positive educational
impact in students when the proposed approach is
implemented in a MTCT.
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MOJAEJA U METOJbI UIAA BHEAPEHUS NEJAT'OT'MYECKOI'O BJIMAHUSA
B CJIEJAIINX KOTHUTUBHBIX CUCTEMAX

X II. Mapmunec bacmuoa, A. I'. Qyxpai, E. B. I'aepunenko

B nanHO# pabote mpeaiokeHbl (popMaIn30BaHHbIE METOABI M MOJEH Ul BHEIPEHHUS B MH(pOPMAaIIOHHBIC
TEXHOJIOTUH B 00JacTH o0pa3oBaHMs. VX OTIIMUNTENHHOW OCOOEHHOCTBIO SIBJISETCS MUCIIONB30BaHHE 0aieCOBCKHX
cereil s OLIEHKU M TPUHATHS PEIICHUH, YTO ITO3BOJISIET YIIPABIATH HEONPENEISCHHOCThIO Ha (DOPMaIbHONH OCHOBE.
PaccmotpeHo, kakum oOpa3om OaliecOBCKHE CETH IesIecO00pa3HO UCIOIb30BaTh B KAUeCTBE MEXaHU3Ma CO3JaHuUs
JIOTUYECKOr0 BBIBOAA /ISl OUECHKU YPOBHS BIIQJICHUSI 3HAHUSMHU CTYACHTOB M ONpPEIENICHHS COOTBETCTBYIOLIMX
MeJarorMYeCKUX MEPOIIPUSATUH U MPOJYKTUBHOrO mporecca oO0ydeHus. I[IpuBeneHo moiapoOHOe oOBbsICHEHHE
(hopManm3ay IpoIeccoB B 001acTH 00pa30BaHMs, a TAKKE HEKOTOPHIX METO/IOB VISl JIOCTHIKEHUS STOH LEIH.

KnarwueBbie cioBa: nHpopManmoHHAsi TEXHOJIOTHWs, OaliecoBCKas CeTh, MENarorH4eckue MepOIpUsITHS,
MOJIETb TPACCUPOBKH, 00yUaroIie KOMIUIEKCH, OaiiecoBCKas OlleHKa.

MOJEJII TA METOIU JJIA BITPOBAI’KEHHSA ITEJIATOI'TYHOI'O BILJIMBY
HA BIACTEXYBAJIbHUX KOTHITUBHUX CUCTEMAX

X. II. Mapminec bacmioa, A. I. Qyxpaii, O. B. I'aépunenko

B nmaHiii poGoti 3amporoHoBaHO (opMai3oBaHi METOAM 1 MOIENi s BIPOBa/PKECHHA B iH(OpMAIriiiHi
TexHomorii B cdepi ocith. IX 0cOGIUBICTIO € BUKOPHCTAHHS GAECiBCHKUX MEpEsK IS OLHKH i NPHIHATTS pillleHb,
IO JI03BOJISIE YNPABJIATH HEBH3HAYEHICTIO HA (QopManbHiil OCHOBI. PO3riIsiHyTO SKMM YMHOM 0aeciBCBbKiI Mepei
JIOLJIFHO BHUKOPUCTOBYBaTH B SIKOCTI Me€XaHi3My CTBOPEHHsI JIOTIYHOTO BHUCHOBKY ISl OLIHKU PIiBHSI BOJIOJIHHS
3HAHHSMH CTYJICHTIB 1 BU3HAYECHHsI BIAINOBIJHMX MEIArOriYHUX 3aXOJiB Ul MPOIYKTUBHOIO IPOLECY HaBUAHHS.
[MpuBeneno nokiaaHi nosicHeHHs (opmalizallii IpoIECiB y Taay3i OCBITH, a TAKOX JAESKHX METO/IB ISl TOCSITHEHHS
i€l METH.

KurouoBi cioBa: indopmariiitHa TEXHOJOTiS, 0aecoBa Mepeka, IMEAarorivyHi 3axoju, MOACTb TPacyBaHHS,
HaBYaJILHI KOMIUIEKCH, Oa€coBa OLIHKA.
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