20 ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMITI'YOTEPHI CUCTEMM, 2016, Ne 5 (79)

UDC 004.94; 004.75

V. V.KAZYMYR, A. S. POSADSKA, D. M. SYSA

Chernihiv National University of Technology, Faculty of Electronic

and Information Technology, Ukraine

CLOUD SIMULATION ENVIRONMENT BASED ON HLA

This technology of integration of a powerful formal apparatus E-nets and hierarchical aggregate approach
which is used in the system of simulation use of E-net Modeling System (EMS), with High Level Architecture
(HLA) in cloud environment is proposed. Functional features and structure of general purpose architecture
HLA is reviewed. Service-oriented simulation technique of EMS is proposed. Using cloud platform OpenStack
for effective solution of the problem of complex distributed simulation is considered. Architecture of synergy
EMS and Platform as a Service is described in the article.

Key words: cloud computing, high level architecture, distributed modelling, EMS, web-oriented interface.

Introduction

Modern trends in the development of information
technology bring to the fore the task of designing sys-
tems of distributed simulation, capable to implement
additional benefits as a method to investigate complex
systems using new technology. Emphasis should be paid
to modelling under conditions of restriction of time,
workforce, material and energy resources, as well as
under conditions of uncertainty.

The urgent modern task is to investigate modeling
directions in case when several models that should be
combined for further work are required. High Level
Architecture (HLA) [1] - a high level technology of
distributed simulation is proposed to be used for this
purpose. It has been developed at the end of 90s by the
USA Department of Defense and is now supported by
the IEEE 1516 standard [2]. The HLA has been devel-
oped based on processes involving government, acade-
mia and industry.

HLA architecture is a set of methods and standards
for the design of distributed simulation systems. This
technology combines the systems built for different
purposes and in different time periods, products and
platforms of different companies, providing them an
ability to interact in a common synthetic environment.
Run-Time Infrastructure (RTI), based on the XML stan-
dard, is used for a combination of models in HLA.
However, HLA cannot satisfy the modern requirements
appeared as results of the development of large-scale
distributed simulation systems, because of inefficiently
usage of resources, absence of the possibility of load
balancing due to weak capacity of fault tolerance and
complication of process of modeling deployment. Re-
cent studies show that cloud computing [3] is an appro-
priate solution for extended simulation. Particularly, a

new cloud model - Platform as a Service (PaaS) - is a
modern decision for simulation tasks. PaaS is a category
of cloud computing services for data processing, which
provides application development platform as a service.
This model involves the supply of cloud services, such
as programming languages, application development
environments, libraries, services, tools etc. for a user.
Additionally, usage of cloud allows saving resources
and other costs.

Considered the importance of the presented prob-
lem, the distributed simulation system E-net Modeling
System (EMS) [4] has been developed by our research-
ers. The powerful formal apparatus of E-nets [5] and
hierarchical aggregate approach has been applied for
creation of models in proposed EMS. EMS has a con-
venient web-interface that provides the ability for the
geographically remote users to work together at the
same time with one simulation model. E-nets support
display of management data flows and conduction of a
quantitative processing at the network transitions pro-
vide convenient routing mechanisms of development
processes and are significantly better than other network
methods in the implementation of logic functions. At
the same time, the usage of hierarchical aggregation
approach allows conduction of investigation of complex
systems from system analysis position.

Therefore, the aim of this work is a consideration
of synergy HLA with PaaS by integration of EMS into
the cloud environment.

1. High Level Architecture

HLA is a software standard that provides a com-
mon technical architecture for distributed M&S.

HLA is based on a composable «system of sys-
tems» approach (Fig.1):

© V. V. Kazymyr, A. S. Posadska, D. M. Sysa

Tapanmo3zoamuicms ma pe3in’cHmHuicmbs XMapHUx cucmem 21

- no single simulation can satisfy all user needs;

- support interoperability and reuse among De-
partment of Defense (DoD) simulations.

Federations of simulations (federates):

- pure software simulations;

- human-in-the-loop simulations (virtual simula-
tors);

- live components (e.g., reactive systems).

Federation is a set of simulation components (fed-
erates), which co-operate for solving a particular prob-
lem. Run-Time Infrastructure (RTI) [6] provides inter-
operability between all components of modeling.

Live
% Participants

Data Collection . . Interfaces to
" i Simulations s
Passive Viewer Live Players

! i !

Run-Time Infrastructure

Interface

Federation Management
Object Management
Time Management

Fig. 1. Functional View of an HLA Federation

HLA includes the following components:

1. Federate Interface Specification.

2. Framework and Rules.

3. Object Model Template (OMT).

The first component specifies the services that
each federation can use for communication. The second
is a set of rules that ensure appropriate interaction with-
in the federation. In case of the last component, the
HLA technology does not impose restrictions on the
internal structure of federates, but defines a standard for
describing information about the objects of simulation -
object model template. This standard provides interac-
tion of federates and allows their multiple use regardless

) Most Visited @) Getting Started 5/ Latest Headlines

of the internal structure in different federations for
simulation.

Since all communication between federates going
through RTI, the exchange mechanism is implemented
as a «subscription», it means that federate, which is in-
terested in obtaining certain attributes, must subscribe to
them using the RTI service.

2. EMS and HLA

E-net Modeling System (EMS) is a web-
simulation system, which architecture is based on a few
servers which interact with each other and allow creat-
ing, editing, debugging models and conducting experi-
ments in a distributed environment (Fig. 2) [7].

Client I

—

Load
balancing Weh-server
server H

——

Task server

Server of
implementation

of models L

DB of
models

Fig. 2. EMS architecture

User has an opportunity to create, run and get the
results of the modeling using only a browser thanks to
the system web-interface (Fig.3). Possibility of provid-
ing the multiuser mode of the system requires several
web-servers, where the load is distributed evenly be-
tween them via the load balancer server. Creating an
imitation model, downloading and saving model ex-
periment forming and processing of its results are pro-
vided interface subsystem and performed exclusively on
web-servers. Simulation models require a large amount
of computing resources, which can lead to web-server
overload. Thus, it is necessary to use a separate server
of implementation of models to ensure efficient use of
resources and reliable operation of the web-servers,
which performs the task of the immediate processing of
user requests.

B3 Bookm

File Edit View Model Tools Help

B 0 ea B¢

Model components X Model
¥ Model
* Places
¥ Transitions
» Queues
¥ Variables
¥ Aggregates
Heater_0
Valve&Motor_0
Valve&Motor_2
Capsule_0

Instruments =

T-Transilion
F-Transition
[F]J-Transition
[&] Y-Transition
[%] X-Transition
FIFQ

1 Priority FIFO
12 LIFO

| Priority LIFQ

Aggregate

& Place

Heater,

Input
Qutput
Connector
[#]Mark

.. Capsule

Fig. 3. EMS web-interface

22 ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMITI'YOTEPHI CUCTEMM, 2016, Ne 5 (79)

Server problems perform a uniform distribution of
tasks between the individual servers of implementation
of models. Simulation models, created by users, the
results of the simulations, as well as data about users of
the system are stored in a DB of models that is available
for all web-servers of the system [7].

Special graphics editor is designed for creation of
models in the EMS, which makes it possible to develop
easily perceived models and eliminates the need to
study a special programming language, thereby greatly
simplifies the process of simulation of systems with a
complex structure.

Now we consider EMS integration into the HLA
architecture.

Every EMS simulation model is viewed as one of
federates, which, in turn, refers to the federation — it is a
set of models of the system, which is being investigated.
Special modules - Connect Module (CM), which per-
form the function of linking between models and RTI in
the simulation, have been developed to ensure interop-
erability of simulation models, created in EMS under
architecture HLA (Fig. 4) [7].

EMS Federate

EMS
E-net model

Connection
Maodule

7S
7

RTI
Federate Federate Federate

Fig. 4. The interaction of EMS federates
with HLA architecture

CM receives attributes and interactions that come
from other federates, transmits them to federates accord-
ing to the mechanism of subscription and synchronizes
the local time of execution of each federate according to
the global time of work of all federation. Thus, the
model that is developed in the EMS cooperates with the
RTI HLA via CM.

During the distributed simulation task of collecting
statistical data for each imitation model is assigned to a
subsystem of model experiment. The collected statistics
is also transmitted through the CM.

Interaction with the RTI services is provided by
the presence in CM the unique inputs and outputs
(RTIInput, RTIOutput respectively) and based on the
usage of the methods of basic interfaces RTI: RTIAm-

bassador u FederateAmbassador. When the mark goes
into RTI INPUT, settoken method is triggered. It sets
new attribute in the E-net attributes, which is received
from other federate, or updates the attribute. Also, the
values of the input variables (parameters) of the network
may be changed if necessary. The possibility of forming
queues (lists) of messages is implemented in CM. It is
necessary for synchronization of federates. Since each
federate works in its local time, which is certainly not
the same as the local time of the other federate, there is
the need to create list of messages and the time storage
of their receipt and the required implementation, in or-
der not to lose the message with a time mark that ex-
ceeds the federate model time and not skip where time
mark is less. Thus, during the transmission of messages
a time mark indicating the time of the update of attrib-
utes is transmitted and synchronizes the operation of
federates except attribute values and variables. Accord-
ingly, settoken method is overridden for message trans-
fer to the RTI when the mark goes to RTIOutput.

3. EMS in cloud

Considering the complication of the distributed
simulation process in the EMS, the transfer of the sys-
tem into the cloud is proposed.

3.1. Cloud Computing

Cloud Computing [8, 9] is a technology that allows
usage the Internet for placing computing resources and
provision of services to users. Usage of cloud comput-
ing allows to transfer service of applications and data
storage to systems that have a high level of reliability,
almost unlimited resources, and provide ready service
for users.

Cloud computing promises several attractive bene-
fits for industry and end users. Three of the main bene-
fits of cloud computing includes:

—Self-service provisioning: End users can spin up
computing resources for almost any type of workload
on-demand;

—Elasticity: Companies can scale up as computing
needs increase and then scale down again as demands
decrease;

—Pay per use: Computing resources are measured
at a granular level, allowing users to pay only for the
resources and workloads they used.

Cloud computing services can be private, public or
hybrid.

It is divided into three broad service categories:

— SaaS (Software as a Service) — it is ready cloud
software for automatization of business processes:
CRM, ERP, ECM, etc.;

Tapanmo3zoamuicms ma pe3in’cHmHuicmbs XMapHUx cucmem 23

— PaaS (Platform as a Service) — it is ready for
using software, solution or platform in the «cloud»: da-
tabases, data processing systems;

— JaaS (Infrastructure as a Service) — it is a server
with practically unlimited size and speed.

PaaS is proposed to be used for solving our prob-
lem. Platform-as-a-Service is a model, where the ability
to use cloud infrastructure for placing basic software for
subsequent placement new or existing applications is
given to user.

There are several available open source PaaS plat-
forms: Windows Azure, Amazon web services, Google
app engine etc. Cloud technology OpenStack will be
used by us.

3.2. OpenStack

OpenStack [10] is open source cloud computing
software for creating, managing and deploying infra-
structure cloud services. It consists of following compo-
nents (Fig.5):

HORIZON
(Web interface)

NOVA SWIFT GLANCE
(Compute module, net —— (Storage) — (Management
service) virtual machines)

KEYSTONE
(Identification)

Fig. 5. OpenStack structure

OpenStack logical parts: Nova - computing mod-
ule, network service, controller of computing resources,
Swift - object storage, Glance - image management ser-
vice of virtual machines, Keystone - identification ser-
vice, Horizon - Control web-portal. Each module re-
quires installation and configuration of specific compo-
nents and necessary system packages of OS for their
operation. Communication between components is per-
formed by AMPQ protocol through a dedicated connec-
tion broker - computing controller. It is necessary to run
the network and computational agents on each produc-
tion server in order to provide the computing module
operation. These agents interact with the management
controller. System settings are stored in an SQL data-
base (MySQL, PostgreSQL). The system can easily be
decentralized through dividing services on different
physical servers.

OpenStack functions:

1. Implementation of computing subsystems, inter-
action with hypervisors.

Computing Module nova-compute is installed on
each working server and controls an operation of hyper-
visors and virtual machines through a local execution of
system commands supported by the hypervisor. Com-
puting module communicates with the computing con-
troller (nova-api), the authentication service (keystone),
the network service (nova-network), the task manager
(nova-scheduler) and the other services of OpenStack.
Management of block devices and their connection to
the virtual machines in the Essex release is also per-
formed by this module (nova-volume package). Imple-
mentation of the block devices is performed by a func-
tionality of Linux LVM system software or by connec-
tion of external block of storage systems iSCSI.

2. The implementation of the storage subsystem
for centralized storage and management of images and
template settings of virtual machines.

Glance module, which by default works in con-
junction with the Swift object repository, manages the
storage and usage of virtual machine images. Ordinary
file system also can be used as a repository for images.
Swift Object Store allows converting the servers in the
scalable data repository with built-in features to ensure
fault tolerance. The system automatically makes several
redundant replicas of data between servers and in case
of failure of one of the servers, data integrity is not vio-
lated. It is not a file system, and works badly with
OLTP data. It is also intended for long-term storage of
large objects (virtual machine images, multimedia con-
tent) and is an analogue of Amazon S3 service.

3. Implementation of the virtual machines migra-
tion between cluster nodes without interruption of run-
ning services.

Migration of running virtual machines is per-
formed exclusively by the functionality of the hypervi-
sor is possible only between the nodes with installed
same type hypervisors.

4. Implementation of the network subsystem.

Network settings are implemented through the us-
age of embedded OS Linux mechanisms for network
management: the creation of bridges or VLAN-s. Nova-
Network module manages the network.

5. Implementation of graphical user interface.

The graphical user and administrator interface is
realized through a modular web-server written in Py-
thon using the Django framework. It is a graphical inter-
face to all major OpenStack services.

It’s definitely more mature product than other. Fur-
thermore, there are more than 150 companies (AMD,
Brocade, Dell, HP, IBM, VMware, and Yahoo), who are
contributing to development. It’s the leader in the cloud
platform management and the momentum around its
growth continues.

24 ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMITI'YOTEPHI CUCTEMM, 2016, Ne 5 (79)

3.3. System architecture

EMS extends HLA with cloud computing technol-
ogy to realize the service-oriented simulation support
environment. Figure 6 shows the system architecture of
Cloud EMS (CEMS).

Simulation application layer includes E-net the
model system and the connect module. Simulation layer
provides cloud RTI and federates. In this way, simula-
tion models do not need to be placed on the local. Users
can invoke them on demand through service access over
the wide area network. And multi-users can access dif-
ferent instances of the same model service simultane-
ously. Services can communicate with each other in
spite of the diversity of programming languages and
platforms. Cloud infrastructure layer exploits cloud plat-
form to integrate and operate various resources, and
supports the implementation of simulation layer.

Simulation EMS
Application Layer [+ E-Net Model Connection Module
‘ Cloud RTI ‘ o Simulation
f f f f
Federate Federate Federate Federate :
1 2 3 4
Y
Cloud NOVA SWIFT GLANCE KEY- HORIZON BD
infrastructure (Storage) STONE (web, MySQL
layer interface)

Fig. 6. CEMS architecture

The Cloud-RTI component encapsulates the func-
tions of the traditional RTI as cloud services to support
large-scale simulations on CEMS. CEMS can also sup-
port simulations on traditional RTIs by connecting tradi-
tional federates to the traditional RTI. Thus CEMS has
good compatibility, which makes it practical.

Thus, self-organized simulation environment via
adaptive platform is proposed: CEMS configures appro-
priate simulation environment on the virtual machines
(VMs) for federation execution. Each federates of the
federation and dedicated RTI instances are deployed on
each VMs. Deployed federation is launched and moni-
tored on each VM automatically.

Conclusion

Cloud computing can enhance the capability of
HLA and provide an effective solution for complicated
distributed simulation systems. In this paper, an effi-
cient and cloud-based E-net Modeling System has been
proposed and its architecture has been described.

The technology of integration of a formal appara-

tus E-nets and hierarchical aggregate approach with
HLA architecture allows using distributed scheme of
using EMS in cloud with all the benefits of this scheme.

OpenStack is proposed to use as PaaS because it is
an open source platform with wide functionality.

Further work will be aimed at modifying CEMS
for solving tasks of network planning in real time mode
using formal apparatus of temporal logic.

References (GOST 7.1:2006)

1. Fujimoto, R. M. Distributed Simulation Systems
[Text] / R. M. Fujimoto. — NY : A Wiley-Interscience
publication, 2000. — 303 p.

2. 1516-2010 - IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA) -
Framework and Rules [Text] // IEEE Standard. — New
York : IEEE, 2010. — 26 p.

3. Buyya, R. Cloud computing: The next revolution
in information technology [Text] / R. Buyya // In Proc.
of the Ist International Conference on Parallel Distrib-
uted and Grid Computing. — Los Alamitos : IEEE, 2010.
- P 2-3

4. Kasumup, B. B. Posnodinena cucmema imima-
yiunoeo mooemosanus EMS [Text] / B. B. Kasumup,
I A. Cipa, I I. Mywxemux // Bichux Yepmiciecvkozo
deparcasnozo mexnono2iunozo yuisepcumemy. — 2011.
—Me 3. —C. 144 153.

5. Nutt, G. Evaluation Nets for Computer Systems
Performance Analysis [Text] / G. Nutt // FJCC, AFIPS
PRESS. — 1972. — P. 279 — 286.

6. 3amamuna, E. b. Coepemennvie meopuu umu-
mayuonno2o moodeauposanusi: [lpocpamma cneyuanvno-
2o xypca [Text] / E. b. 3amamuna. — Ilepmo : IIT'Y,
2007. - 119 c.

7. Kasumup, B. B. Posnodinene mooentosants 6
EMS na ocnosi apximexmypu HLA [Text] / B. B. Kasu-
mup, I. A. Cipa // Mamemamuuni mawunu i cucmemu.
—2011.—Ne 4. — C. 125-135.

8. Chu-Carroll, Mark C. Code in the Cloud
[Text] / Mark C. Chu-Carroll. — Texas. : The Pragmatic
Bookshelf, 2011. — 292 p.

9. Kazymyr, V. Grid workflow design and man-
agement system [Text] / V. Kazymyr., O. Prila, V. Rudyi
// International Journal «Information Technologies &
Knowledgey. — 2013. — Vol. 7, No. 3. — P. 241-255.

10. Open source software for creating private and
public clouds [Electronic resource]. — Access mode:
https://'www.openstack.org/. — 12.02.2016.

References (BSI)

1. Fujimoto, R. M. Distributed Simulation Systems.
New York, A Wiley-Interscience publication Publ.,
2000. 303 p.

Tapanmo3zoamuicms ma pe3in’cHmHuicmbs XMapHUx cucmem 25

2. 1516-2010 - IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA) -
Framework and Rules. IEEE Standard. New York,
IEEE Publ., 2010. 26 p.

3. Buyya, R. Cloud computing: The next revolu-
tion in information technology. In Proc. of the Ist Inter-
national Conference on Parallel Distributed and Grid
Computing. Los Alamitos, IEEE Publ., 2010, pp. 2-3.

4. Kazymyr, V. V., Sira, H. A., Mushketyk, I. 1.
Rozpodilena systema imitatsiynoho modelyuvannya
EMS [Distributed simulation system EMS]. Visnyk of
Chernihiv State Technological University, 2011, no.3,
pp. 144 — 153.

5. Nutt, G. Evaluation Nets for Computer Systems
Performance Analysis. FJCC, AFIPS PRESS, 1972.
pp. 279 — 286.

6. Zamjatina, E. B. Sovremennye teorii
imitacionnogo modelirovanija [Modern simulation
theory: Program for special course]. Perm, PHU Publ.,
2007. 119 p.

7. Kazymyr, V. V. Sira, H. A. Rozpodilene
modelyuvannya v . EMS na osnovi arkhitektury HLA
[Distributed modeling in EMS based on HLA]. Journal
«Mathematical Machines and Systems», 2011, no. 4, pp.
125 - 135.

8. Chu-Carroll, Mark C. Code in the Cloud. Tex-
as, The Pragmatic Bookshelf, 2011. 292 p.

9. Kazymyr, V., Prila, O., Rudyi, V. Grid work-
flow design and management system. International
Journal «Information Technologies & Knowledgey,
2013, vol. 7, no. 3, pp. 241 - 255.

10. Open source software for creating private and
public clouds. Available at: www.openstack.org/ (ac-
cessed at 12.02.2016).

Tocmynuna 6 pedaxyuro 25.02.2016, paccmompena na peoxoanecuu 14.04.2016

MOJEJIUPOBAHHUE B OBJIAYHOM CPEJIE HA OCHOBE HLA
B. B. Kazumup, A. C. Ilocaockasa, /. H. Ceica

B cratbe mpezsaraeTcsi TEXHOJIOTUSI MHTETpaliy MolHoro opmanbsHoro annapata E-cereli u nepapxudecko-
IO arperaTHoro MojAXoja, IPUMEHEHHOr0 B CHUCTEME MMHUTAIMOHHOro MonenupoBanus E-net Modeling System
(EMS), B apxurektypy Boicokoro ypoBHst HLA B 06nauHoit cpene. PaccMoTpens! (pyHKIMOHAIBHBIE OCOOEHHOCTH U
CTPYKTypa apXuTeKTypsl obmero nmpumenenns HLA. IIpemioxeHna cepBUCHO-OpHEHTHPOBAHHAS TEXHOJOTHS MO-
nenpoBanusi EMS. OpenStack paccmaTtpuBaercs kak obnauHas ruiatdopma uist 3pQeKkTHBHOrO pemieHus 3aa4u
KOMIUIEKCHOTO PacIpeeieHHOT0 MoJenupoBaHus. Taxke B cTaTbe OMNKMCaHa apxXuTekrypa cuHeprud EMS u
Platform as a Service.

KnarwueBble cioBa: o0iauHble BBIYUCICHUS,
OpPHEHTHUPOBAHHBIN HHTEpDEIiC.

HLA, pacnpenenenHoe wmopenupoBanue, EMS, BeO-

MOJEJIOBAHHS B XMAPHOMY CEPEJOBHUIII HA OCHOBI HLA
B. B. Kazumup, A. C. Ilocaocvka, /1. M. Cuca

VY crarTi MpOMOHYETHCS TEXHOIIOTISI IHTerpalii HOTYKHOro (opMabHOro anapary E-Mepex Ta iepapXiq4HOro
arperaTHoro Iiaxojy, 3aCTOCOBAaHOrO B CUCTEMI iMiTaniiiHoro moaemoBans E-net Modeling System (EMS), B ap-
XiTekTypy BHcokoro piBHsi HLA B xmapHOMY cepenoBulii. Po3risiHyTo (yHKIIOHAIBEHI OCOOIMBOCTI Ta CTPYKTYpa
apxiTeKkTypu 3arainbHOro 3actocyBanHs HLA. 3amponoHoBaHa CepBiCHO-OpIEHTOBAHA TEXHOJIOTIS MOJIEIIOBAHHS
EMS. OpenStack po3risnaerses sik XMapHa miatdopma s epeKTUBHOTO BUPIIICHHS 3a/1a4 KOMIUIEKCHOT'O PO3IIO-
JIJICHOr0 MOJIEITIOBaHHs. TakoX B CTATTI omMcaHa apXiTekTypa cuHeprii EMS Tta Platform as a Service.

Karwudosi cioBa: xmapHi oduncnenns, HLA, posmnoninene mozpemtoBanus, EMS, BeO-opieHTOBaHUMiA iHTEp-
Geiic.

Kazumup Bosogumup BikTopoBu4 — 1-p TexH. Hayk, UepHITIBCbKUIA HAlliOHAIBHUHA TEXHOIOTIYHUI YHIBEp-
curert, YepHirie, Ykpaina, e-mail: vwkazymyr@gmail.com.

IMocancbka Anina CepriiBHa — acnipaHT, UepHIriBChbKHMI HalllOHAJLHAN TEXHOJNOTIYHUIA yHiBepcHuTeT, Yep-
HiriB, YKpaina, e-mail: alinka.posadskaya@gmail.com

Cuca /Imutpo MukonaiioBu4 — Marictp, YepHiriBcbkuil HalliOHAJILHUI TEXHOJIOTIYHUI yHIBepcuTeT, YepHi-
riB, Ykpaina, e-mail: dmitriy.sysa@gmail.com.

Kazymyr Volodymyr - Doctor of Technical Sciences, Chernihiv National University of Technology, Cherni-
hiv, Ukraine, e-mail: vvkazymyr@gmail.com.

Posadska Alina — PhD student, Chernihiv National University of Technology, Chernihiv, Ukraine,
e-mail: alinka.posadskaya@gmail.com.

Sysa Dmytro — MSc student, Chernihiv National University of Technology, Chernihiv, Ukraine,
e-mail: dmitriy.sysa@gmail.com.

