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DYNAMIC BALANCING OF COMPUTING LOAD IN HIGHLY PARALLEL
PROBLEM SOLVING

Optimizing the algorithms for parallel computing systems requires effective dynamic load balancing. OpenMP
and MPI technologies allow for software development for the most of modern parallel computing architectures
but MPI does not provide standard facilities for dynamic load balancing. In this paper, we propose MPI-MAP
parallel programming pattern, which solves that problem by implementing MAP stage of well-known MAP-
REDUCE pattern with standard facilities of MPI. The efficiency of dynamic load balancing with OpenMP and
MPI-MAP is shown on symmetric multiprocessing systems with shared memory, massive parallel processing
clusters with distributed memory and computing systems with Intel Xeon Phi co-processors. As an example, the
problem of numerical modeling the influence of typical nonlinearities on output vector functions of nonlinear
stabilization system of mobile control object is solved.
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Introduction

The number of methods [1] and corresponding
metrics for estimating the energy efficiency of modern
parallel computing system’s hardware is known but
these are not versatile. Finding metrics for estimating
the energy efficiency of software is even more compli-
cated [2]. Despite this, the acceleration factor of parallel
program [3] can be used as an analog of power metric
when developing green software for modern parallel
computer architectures, which is classically provided
that the asymptotic complexity of initial algorithms is
minimal. Minimizing the asymptotic complexity of al-
gorithms may involve using adaptive techniques so that
dynamic load balancing based on “manager-workers”
strategy [3] is required. Parallel programming technolo-
gies such as OpenMP and MPI can be used for develop-
ing the software for most modern parallel computer ar-
chitectures. “Manager-workers” strategy is part of
OpenMP standard in versions 3.x and 4.x [4] but it is
limited to multiple threads within one process in an op-
erating system (OS) running on a single node of mas-
sive parallel processing (MPP) cluster. That strategy is
not implemented within modern MPI standard [5],
which is traditionally used on MPP clusters, but it can
be substituted with the MPI-MAP pattern [6] proposed
by the authors of this paper. MPI-MAP implements the
MAP stage of the MAP-REDUCE pattern [7] with stan-
dard MPI process interchange operations to balance the
computational load dynamically according to “manager-
workers” strategy. MPI-MAP is very efficient when
time that program runs in single worker is much more

than time needed for data interchange within MPI proc-
esses. For example, MPI-MAP can be used in parallel
algorithms of mathematical modeling of controlled dy-
namic systems containing interacting objects with pa-
rameters concentrated in space as well as objects with
parameters distributed in space, based on a body of hy-
brid dynamical systems (HDS) [8]. HDS is a mathe-
matical model in form of system of ordinary differential
equations (ODE) and partial differential equations
(PDE) combined with boundary and relation conditions
in presence of given initial conditions. The primary
theorems on the stability of linear and linearizeable
HDS are formulated and proven in [8]. Various modifi-
cations of parametric synthesis (the algorithm of picking
feedback parameters to sustain required quality of tran-
sient processes) are shown in [9-11]. Nevertheless, the
question of comparing the efficiency of dynamic load
balancing based on OpenMP and MPI-MAP stays open,
in case of running those mathematical models on SMP
systems as well as MPP clusters and energy efficient co-
processors such as Intel Xeon Phi.

1. Formulation of the study

The numeric modeling of output vector functions
of initial nonlinear HDS should be held after parametric
synthesis on the linearized model. This numeric model-
ing includes non-dimensional parameters which charac-
terize the impact of typical nonlinearities and change
discretely within specified ranges. That problem is
highly parallel but it requires dynamic balancing of
computing load. We here formulate the problem of

© D. K. Andreichenko, D. V. Melnichuk, A. A. Eroftiev



180

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMII'IOTEPHI CUCTEMMU, 2016, Ne 5 (79)

comparing the efficiency of dynamic load balancing
based on OpenMP and MPI-MAP when modeling the
impact of typical nonlinearities on output vector func-
tions of the HDS on SMP systems, MPP clusters and
Intel Xeon Phi co-processors. The test model is the
mathematical model of the nonlinear stabilization sys-
tem of steerable control object [6] (e.g. the missile
granting the deformation of its structure). The paramet-
ric synthesis had been held earlier in [11].

2. MPI-MAP pattern

The well-known MAP-REDUCE pattern of paral-
lel programming allows for parallelization of various
data-processing algorithms. It consists of 2 stages. On a
first stage called MAP some sufficiently long finite se-
quence is being transformed into another finite sequence
element-wise:

{Xn }nN=l - {yn }nN=1a Yn = f(xn); (1)
Xp €X, ¥, €Y, f: X>Y.

On a second stage called REDUCE the result se-

quence is being reduced to one value:

Yy=y10py;0p..Opyn, yEY, )
so that Op operation is associative. The MAP stage is
effectively parallel since the sequence is processed ele-
ment-wise. The REDUCE stage is also effectively paral-
lel because Op is associative. The dynamic parallel load
balancing is required if time needed for operations f and
Op can change heavily depending on input.

In the MPI standard, the REDUCE stage is imple-
mented with MPI Reduce operation. The MAP stage
can be implemented with another standard MPI func-
tions. However, MPI doesn’t offer the dynamic load
balancing by itself. The proposed MPI-MAP pattern
implementation [6] with dynamic load balancing im-
plies that some MPI process (e.g. process with rank 0)

acts as a manager and all other processes j=1,N, ,

Ny <N are workers. MPI-MAP pattern pseudocode

goes below.

L For j= m :

1) Process j: start blocking receive (MPI_Recv) x i

2) Process 0: a) start buffered transfer (MPI_Bsend)
X; to process j; b) start non-blocking receive
(MPI_Irecv) y i from process j;

3) Process j: a) finish blocking receive (MPI_Recv)
X;; b) start calculation of y; =f(x;).

IL For k=N, +1,N:

1) Process 0: start blocking wait for receive
(MPI_Waitany) y,, 1<v<N from any process

i, 1<j< N,

2) Process j, 1<j< Ny, : a) finish calculation of
yy =f(xy), 1<v<N; b) start buffered send
(MPI_Bsend) y,,, 1<v <N, to process 0; ¢) start
blocking receive (MPI_Recv) x; from process 0;

3) Process 0: a) finish blocking wait for receive
(MPI_Waitany) y,, 1<v<N from some process

j» 1< j< Ny, ; b) start buffered send (MPI_Bsend)
X) toprocess j, 1<j< N, ; ¢ start non-blocking
receive (MPI_Irecv) y, from process j,
1<j<Ny;

4) Process j, 1<j< Ny, : a) finish blocking receive

(MPI_Recv) x ; b) start calculation of y; =f(xy)

III. N, times run:

1) Process 0: start blocking wait for receive
(MPI_Waitany) y,, 1<v<N from any process
j, ISjJSN,,

2) Process j, 1<j< Ny, : a) finish calculation of
yy =f(xy), 1<v<N; b) start buffered send
(MPI_Bsend) y,, to process 0; ¢) go to stand-by
mode after start of blocking receive of input data
(MPI_Recv);

3) Process 0: finish blocking wait for receive
(MPI_Waitany) y,, 1<v<N from some process
j, ISjJ<N,,.

Intercommunications between tasks run by work-
ers are supposed to be minimal or absent at all. It is also

supposed that run time of calculation y, =f(x,) is

much more than time needed to send data x, and y,, .

3. Modeling the influence of typical
nonlinearities in the HDS

The block diagram of an HDS with piecewise con-
tinuous input vector function x(t) and continuous out-

put vector function y(t) of time t, x:R—)RNX,

y:R—)RNY (fig. 1) fits model equations similar to
[6]:
y=f(x,y,hp); a=F(ux,y,y,p), rel
Guy.wlg =0 h=[ Hup)ds; (3)
¥(0) =y, u(r,0) = ug (r).
Here r e RNt is a set of independent space coor-
dinates assigned to some individual point of the object

with space-distributed parameters, 2 RNr s an area
occupied by objects with space-distributed parameters,
S=0Q is a domain  boundary, u(r,t),
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Fig. 1. The block diagram of the HDS

u:RNr xR —» RN s a distributed output vector func-

. N N N .
tion, f: RNx xRY xRNh . xRH S RY , differen-
tial operators F, G, H containing partial derivatives

d/or, 0%/ 61‘2,..., fit equations in partial derivatives,

boundary and relation conditions; p € R are parame-
ters characterizing the influence of typical nonlineari-
ties; dot on top of the symbol means differentiation by
time t. The linearization of model equations (3) corre-
sponds to the situation when p=0. Here the parallel
algorithm of the parametric synthesis [11] actually uses
MPI-MAP pattern to transform the set of frequency
range boundaries to integrals over frequency ranges.
After performing the parametric synthesis on lin-
earized model of controlled HDS (p =0) the numeric
modeling of output vector functions of the initial nonlin-
ear controlled HDS (p #0) should be held to study the
influence of typical nonlinearities. The numerical solu-
tion of initial boundary value problem (3) is found with

fixed input vector function x(t) and variable p e RN® .

At the same time, the components of the vector p vary
with fixed pitch within some parallelepiped, i.e.

szkAMjikzoiNj’jzlin,' (4)

For any fixed value of p i j=1,2,... the numerical

solution of the initial boundary value problem (3) can be
found independently, i.e. in parallel using adaptive
methods of numerical integration. Therefore, the MPI-
MAP pattern could be used to hold the transformation

B>y =y(tp;) ®)
having other structural parameters and input vector
function fixed. The REDUCE stage is not of interest
here. For small and moderate [p;| the function

y(t ;) will be just slightly different from the func-
tion y(t;0) . Here the MPI-MAP pattern could be used to

transform the sequence of B, j=12,3,... to the se-

quence of values which characterize maximum and
standard deviation of function y(t;p;) from function

y(t;0) when te[0,t,, ], tyax =1, unlike (5).

T
Rj—=> (v, v2) vy = max |y(tpg)-y(t0) ],
0<t<tmax

et , |2 (6)
- max
Vz:(tmax o 1Y(ER)-Y(E0)] dt) :

Based on the Galerkin projection method using
representation

ur, )~ Y M (W), ©)

where the system of functions W (r), W, :Q — RNu

k=1,2,... is complete in Q similarly to [6], the solu-

tion of the initial boundary value problem QcRNr
reduces to the numerical solution of the Cauchy prob-
lem for the system of ordinary differential equations

9 T
YzF(tsYsu‘)s Y=(YI3---SYNy9ul"“’uNQ) (8)

using rigidly stable adaptive implicit BDF method [12]
with variable pitch and order. Here (8) is numerically
integrated independently, i.e. in parallel for various val-
ues of p. BDF method implementation requires the
computation of Jacobian OF(t,Y,pn)/dY of right sides

of ODE system (8). In paper [6] we propose the fast
algorithm for such a computation based on quantization
of disturbed movement equations of HDS using a vari-
ant of Galerkin projection method analogous to a variant
of that method used for the quantization of initial
nonlinear mathematical model of the HDS. The infini-
tesimals can be thrown away here in order to reduce
computation complexity greatly.

4. Testing the efficiency of parallel
computing on symmetric
multiprocessor system

Consider the efficiency of parallel computing in
modeling the influence of typical nonlinearities on out-
put vector functions of the nonlinear system intended to
stabilize the mobile control object (e.g. the missile sub-
ject to deformation of its body, see fig. 2). The input
vector function includes the components of outer dis-

turbing force x(t)= (FeyO (1), Fezo (t))T. Vertical deflec-

tion angles of body 1 and missile header (body 2) are
components of the output vector function

T .
y(t) = (61’3 (t),62’3(t),B1’2(t),B2,2(t)) . The influence
of typical nonlinearities is modeled with set of parame-
tersp = (g, Ly, U3 )T . Nonlinear model equations for

movement of the mobile control object, particularly the
explicit expressions for function f and operatorsF,G,
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Fig. 2. The design model of mobile control object

H (3) are represented in [6] and are not included here.
As follows from the results represented on fig. 3 for
components of output vector functions of nonlinear and
linearized models of the stabilization system, the
nonlinear controlled HDS is stabilized successfully with
prior parametric synthesis [11] held on the linearized
model.

The components of the input vector function are
set as FeyO (=1, F_ () =1(t)-1(t—-1), where 1(t)

is a Heaviside step function. Two sets of constructive
parameters was used (see [6], p. 110).

In a qualitative sense, the behavior of output vector
function of the nonlinear controlled HDS is similar to

0.8
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-0.4 }, FCZn (= { 0.t &[0.1]
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the behavior of output vector function of the linearized
model. At the same time, the analysis of values of
maximum and standard deviation (6) shows that the
parameter L3 [6] characterizing the nonlinearity of
saturation type makes the largest impact on output vec-
tor functions of the nonlinear stabilization system.

The data represented on fig. 4 characterizes the ef-
ficiency of parallel computing using MPI-MAP pattern
with 8 worker processes and standard facilities of
OpenMP technology in finding the maximum and stan-
dard deviations (6) when p; €[0,0.05], p, €[0,0.1],
usz €[0,0.08] the first
yy €[0,0.05], p, €[0,0.1], p; €[0,0.065] for the sec-

ond parameter set, respectively. The spatial grids of
parameters p consisted of 5 nodes for variables p; and

for parameter set and

K, and 9 nodes for variable py. The calculations were
performed on a PC with 4-core Intel Core i7 3610 QM
CPU with Hyper-threading enabled.

As seen from the results above, MPI-MAP suc-
cessfully competes with OpenMP standard library in
managing the task sets and dynamic balancing of com-
puting load at small number of workers. The superlinear
acceleration of a parallel program may be explained
with better utilization of CPU cache.

5. Testing the efficiency of MPI-M AP
pattern on SMP cluster

Fig. 5 represents data which characterizes the ac-
celeration of MPI-MAP based computing depending on
the number of the workers. The calculation of maximum

0.48

0.32 'i(\ Secand set pf parameters
\
\
C\{).16 “\
E%) 16 :
03 L p, =0.05 p, =0.1
) i I I ]
-0.48 I w, = 0.065
-0.64 L .
0 5 10 ¢+ 15 20 25
1 N
075 / \ Second set pf parameters
0.5 l"\\ By = 0'05. by, = 0.1_
g8 / ‘\.‘\ n, = 0.065
D
-0.25 \ \/
-0.5
5 15 20 25

10
e==Nonlinear HDS e =linearized HDS

Fig. 3. Output vector functions of linear and nonlinear systems
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Fig. 5. Computing acceleration depending on the number of the workers

and standard deviations (6) in variation ranges of
nonlinearity parameters p examined above was held
using the same spatial grids on the high-performance
computing cluster of VRCNIT, Saratov State Univer-
sity. Each computing node of the cluster has two 4-core
Intel Xeon E5405 CPUs. As seen from the results repre-
sented on fig. 5, on a small number of workers the com-
putational process also accelerates superlinearly by us-
ing CPU caches more effectively. Further increasing the
number of worker processes gives semi-linear accelera-
tion ratio comparable to the number of workers.

As seen from the results above, using the MPI-
MAP pattern is effective when time that program runs
in single worker is much more than time needed for data
interchange, regardless of the number of workers.

6. Testing the efficiency of parallel
computing on Intel Xeon Phi co-processors

Table 1 below shows the representative time of
computation of maximum and standard deviations (6) of
output vector function of the nonlinear HDS (3) from
output vector function of the linearized HDS for the
stabilization system using first set of constructive pa-
rameters ([6], p. 110) with u; €[0,0.05], p, €[0,0.1] u

uz €[0,0.08]. Here the spatial grid of parameters p
consisted of 9 nodes for each variable, t,,,, =200 . The

calculation was held on a node (high-performance com-
puting cluster of CSIT department, Saratov State Uni-
versity) having two 4-core Intel Xeon E5-2603 v2 CPUs
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and three Intel Xeon Phi 5110P co-processors (60 cores,
1.053 GHz clock rate). Parallel algorithm was imple-
mented using OpenMP technology with default thread
mapping as well as using MPI-MAP pattern with dy-
namic load balancing on 120 worker processes. It is
worth noting that running more than 120 worker proc-
esses with MPI decreased efficiency. The parallel pro-
grams were built for running entirely on Intel Xeon Phi
co-processors using —mmic command line key of Intel
C++/Fortran compilers.

Table 1
Modeling time for the first set of parameters, sec.

Processor, Test | Test | Test | Test | Test
seq./par. 1 2 3 4 5
Intel Xeon E5-
2603 v2, seq. 4092 | 4085 | 4099 | 4097 | 4095
2 x Intel Xeon
E5-2603 v2, 537 | 539 | 537 | 536 | 536
OpenMP
Intel Xeon Phi
5110P coproces- | 373 | 384 | 376 | 372 | 374
sor, OpenMP
Intel Xeon Phi
5110P co- 526 | 531 | 536 | 519 | 533
processor, MPI

Table 2 represents analogous results for calculation
time of values (6) for stabilization system using second
set of constructive parameters ([7], p. 110) with
uy €[0,0.05], p, €[0,0.1], pz €[0,0.065]. The spatial
grid of parameters p also consisted of 9 nodes for each

variable, t. .. =200 . In both cases using only one Intel

max
Xeon Phi co-processor with OpenMP threaded model is
more effective than using two 4-core Intel Xeon CPUs.

Table 2
Modeling time for the second set of parameters, sec.

Processor, Test | Test | Test | Test | Test
seq./par. 1 ) 3 4 5

Intel Xeon E5-
2603 v2, seq. 5175 | 5180 | 5169 | 5182 | 5178

2 x Intel Xeon
E5-2603 v2,
OpenMP

673 | 677 | 674 | 670 | 673

Intel Xeon Phi
5110P co-

processor,
OpenMP

448 | 445 | 446 | 452 | 442

Intel Xeon Phi
5110P co-
processor, MPI

653 | 636 | 669 | 642 | 663

As seen from the results above, one Intel Xeon Phi
co-processor is 1.5 times more effective than two 4-core
Intel Xeon CPUs and 11 times faster compared to se-
quential version of the program for tasks with signifi-

cant parallel potential due to its massive-parallel archi-
tecture. At the same time, Intel Xeon phi co-processors
have lower clock rate and power consumption. When
using Intel Xeon Phi co-processors, parallel execution
with OpenMP technology gives the most advantage.
Running many MPI processes on a co-processor is less
efficient.

It is worth noting that nodes of the modern cluster
systems allow using multiple (e.g. three or four) Intel
Xeon Phi co-processors at once. This allows to achieve
significant acceleration ratio at low power consumption.
Data represented in tables 1 and 2 allow supposing that
the following strategies are effective on such cluster
systems.

The first strategy provides for using mixed parallel
program (offloading model) which runs on both CPUs
and co-processors. Using OpenMP parallel technology
is advisable within host CPUs as well as within co-
processors because it provides standard facilities for
dynamic balancing of computing load. At the node
level, the dynamic load balancing between host CPUs
and co-processors can be implemented based on MPI-
REDUCE pattern and “manager-workers” strategy simi-
lar to MPI-MAP behavior. At the cluster level, the dy-
namic load balancing can be implemented with MPI-
MAP.

Second strategy provides for using co-processors
as a virtual node of the cluster running multiple parallel
OpenMP threads within single MPI worker process.
Single or multiple worker processes with multiple
OpenMP threads can be run on CPUs within single
node. Dynamic load balancing between multiple MPI
processes running on the same or different cluster nodes
can be implemented with MPI-MAP pattern.

Conclusion

MPI-MAP pattern as well as standard facilities of
OpenMP parallel programming technology successfully
solve the problem of dynamic balancing of computing
load on symmetric multiprocessor systems with shared
memory.

Parallel facilities of thread-based OpenMP tech-
nology is preferred within Intel Xeon Phi co-processors.

The advantages of MPI-MAP pattern uncover fully
on massive parallel processing clusters with large num-
ber of nodes. On such systems, MPI-MAP provides for
high acceleration ratio close to the number of worker
processes, even on a large scale, for massive parallel
tasks. The dynamic load balancing between separate
MPI processes running on the same or different cluster
nodes can be implemented using MPI-MAP pattern
when Xeon Phi co-processors act as virtual nodes.
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Tocmynuna 6 peoarxyuio 3.02.2016, paccmompena na peoxonneeuu 14.04.2016

JANHAMIYHE BAJIAHCYBAHHSA OBUYNCJIIOBAJIBHOTI'O HABAHTAKEHHSA
TP BUPIINEHHI 3ABJJAHb 3 BUCOKHUM CTYIIEHEM ITAPAJIEJII3MY

. K. Andpeiiuenxo, /I. B. Menvniuyk, A. O. Epodpmics

Onrtumisaliist aIrOpUTMIB U1 apalieIbHUX O0YHMCITIOBAJIbHUX CUCTEM BUMarae e(eKTHBHOI TUHAMI4HOTO Oa-
JIAHCYBaHHsI OOYMCIIOBANIBEHOTO HaBaHTaxkeHHs. Texnomorii OpenMP i MPI no3Bomnsrore po3poOnsTi nporpamue
3a0e3neueHHs Uil OLIBIIOCTI CYyYacHHUX MapaielbHUX OOYMCIIOBAJIbHUX apXiTekTyp, mpore MPI He nepenbauae
CTaHAapTHHUX 3ac00iB IS JUHAMIYHOTO OajlaHCyBaHHS OOYMCIIOBAJILHOTO HaBaHTa)KeHHs. [y BUpIlIEHHS 3a3Ha-
YeHoi Mpo0JIeMH 3alpoNoHOBaHui naTepH posnapanentoBanas MPI-MAP, sikuii peanizye cTaHAapTHUMHU 3aCO0aMU
MPI eran MAP Binomoro narepay MAP-REDUCE. EdekTiBHICT AMHAMIYHOTO OajlaHCyBaHHSI 00YMCIIOBAILHOTO
HaBaHTa)kxeHHs1 Ha ocHOBI OpenMP i MPI-MAP noka3zaHa Jj1si CHMETPUYHUX MYJIBTHIIPOIIECOPHUX CHCTEM 31 CIiJIb-
HOIO TaM'ATTIO, KJIACTEPHUX CHUCTEM 3 PO3IMOALJICHOI0 MaM'STTIO 1 OOYMCIIOBAJIBHUX CHCTEM 3 CONPOLECOpaMH-
npuckoptoBadamu Intel Xeon Phi. Slk mpukian po3risHyTO 3a7ady YHCETBHOTO MOJAENIOBAHHS BIUIUBY THITOBHX
HEJIIHIHHOCTEH Ha BUXIJHI BEKTOP-(DYHKINT HETIHIHHOT CHCTEMH CTa01Ti3a1ii pyXOMOro 00'€KTy yIpaBIiHHS.

Karwuogi cioBa: MPI, OpenMP, napanensHe nporpaMmyBaHHs, KOMOiHOBaHi JUHAMIYHI CHCTEMHU.

JTAHAMHMYECKAS BAJJAHCUPOBKA BBIYMCJIUTEJILHOM HAT'PY3KH ITPA PELIEHUA
3AJAY C BBICOKO#M CTENEHBIO ITAPAJLIEJIU3MA

. K. Andpeiiuenxo, /I. B. Meavnuuyk, A. A. Epoghmuee

OntumMu3anus ajJropuTMOB JUIs apaJUIENbHBIX BBIYMCIUTENBLHBIX CHCTEM TpeOyeT 3((eKTUBHON TUHAMUYe-
CKOWl OallaHCUPOBKH BBIYMCIUTENbHON Harpy3ku. Texuomorun OpenMP u MPI nmosBonstor paspabaTbiBaTh Ipo-
rpaMMHOe oOecrieueHne Uit OOJBIIMHCTBA COBPEMEHHBIX IMapajlIeNIbHbIX BBIYUCIUTEIBHBIX apXUTEKTYP, OIHAKO
MPI He mpemycMaTpuBaeT CTaHIAPTHBIX CPEACTB IS TUHAMUYECKOH OalaHCUPOBKH BBIYMCIHMTENBHON HArpy3KH.
Jlst pemieHnst ykasaHHOW TpOOJIeMBI MPEIOKEH MaTTepH pacnapasuienuBanus MPI-MAP, peanusyrommii craH-
naptabiMu cpeactBamu MPI sran MAP usBectHoro narreppa MAP-REDUCE. D¢ dexkTuBHOCTD AMHAMUYECKON
0aJaHCHPOBKH BBIYHCINTENbHOW Harpy3ku Ha ocHoBe OpenMP nu MPI-MAP noka3zana s CHMMETPUYHBIX MYJIb-
THUIIPOLIECCOPHBIX CUCTEM C OOIEH MaMAThIO, KJIACTEPHBIX CHCTEM C PACHPEIEIICHHON NaMSAThIO ¥ BBIYUCIUTEIBHBIX
cucTeM ¢ conpoueccopamu-yckoputeasimu Intel Xeon Phi. B kadecTBe npumMepa paccMoTpeHa 3aj1a4a YUCICHHOTO
MOJICTTMPOBAHHMS BIIUSIHUS THIIOBBIX HEIMHEWHOCTEH Ha BBIXOJHBIC BEKTOP-(QYHKIMU HEMHEHHOH CHCTEMBI CTaOu-
JIU3ALUH TOABHKHOTO O0BEKTa YIPABICHHSI.

Karwuessbie ciaoBa: MPL, OpenMP, nmapamiensHoe nporpaMMHpOBaHHE, KOMOMHHUPOBAaHHbBIE JAUHAMUYECKHE
CHUCTEMBI
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