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TIME-FREQUENCY REPRESENTATION ENHANCEMENT:
APPROACH BASED ON IMAGE FILTERING METHODS

The task of filtering of the time-frequency representations, obtained by the S-method, using advanced digital
image processing filters, both local and nonlocal is considered. Such enhancement is important for design of
the time-varying filters for processing of nonstationary frequency modulated signals. The class of local filters
is represented by spatial domain filtering using median and related filters. Orthogonal transform based de-
noising is represented by DCT domain filtering. The block matching 3-D filter is considered as a representa-
tive of nonlocal filter class. It is demonstrated that the noise in the time-frequency representations based on S-
method has rather complicated nature: non-Gaussian pdf, spatially correlated properties with varying pa-
rameters. It is shown that direct application of the considered filters to such a challenging noisy environment
is not possible. Then, several filter modifications are proposed and analyzed with respect to integral and local
parameters — MSE and MAE. The block matching 3-D filter is shown to provide the best results but at the ex-
pense of quality loss in representation of weak components.
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Introduction

The time-frequency representations (TFRs) can be
considered as a mapping of an analyzed signal to 2-D
matrix/image indexed with time and frequency coordi-
nates [1, 2]. In this way, it becomes possible to analyze,
separate, filter, compress, and process signals/data that
are indistinguishable in both time and spectral domains.

There are numerous types of the TFRs that can be
roughly divided into the following categories according
to the linearity of transform: linear, quadratic, and high-
er-order representations [3]. Also, transforms can be
non-adaptive (with preselected parameters) or adaptive
when transform parameters are adjusted somehow to an
analyzed signal [4]. A particularly interesting issue is
minimization of the noise influence to the TFRs [5].
Existing techniques are mainly focused on noise filter-
ing based on analysis in the spectral domain with thre-
sholding, reassigning, estimating signal parameters, and
other techniques applicable in time and frequency [6, 7],
or joint time-frequency (TF) domain [8, 9]. Generally,
filtering of time-varying signals can be considered as
one of the most important applications of the TFR proc-
essing.

It has been shown [6] that the standard filtering in
time or frequency domain has a limited accuracy for
nonstationary frequency modulated (FM) signals. One
of the novel approaches which allows further increasing
the TFR noise suppression performance while remain-

ing important features of TFR is based on idea to con-
sider TFR as a specific image. Then, it is possible to
apply different filtering techniques developed in image
processing field [10, 11] for noise removal from TFR.
Using this approach, several filters have been proposed
for 2-D filtering in the TF domain [12-14]. In the time-
varying filtering the most important issue is recognition
of the signal components in the TF plane. Then efficient
filtering-denoising or signal reconstruction can be per-
formed using procedure from [14].

The first group of filters [12] performs detection of
regions of the signal components and masking noise
components in the TFR plane. The second group of
techniques [13, 14] is based on the switching scheme -
commonly two TFRs are considered with different cha-
racteristics in rejecting noise and preserving quality of
signal components. Then, according to some switching
rule, “pixels” of the resulting TFR are selected from two
initial TFRs.

Described filter groups have limited accuracy since
filtering of a TFR as a 2-D image is rather challenging.
Namely, noise in TF images is often signal-dependent
and it differs for various TFRs [15]. For example, for
the Wigner distribution (WD), noise is Gaussian and
signal-independent over entire TF plane [16]. Resulting
noise probability density function (pdf) for many other
TFRs is closer to the Rayleigh distribution while having
signal-dependent behavior [17]. Another common fea-
ture of TFR noise is that its variance can be significantly
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higher for signal terms than in the regions outside them.

The goal of this paper is to study application of
several advanced nonlinear filtering approaches to the
task of TFR denoising. First, nonlinear scanning win-
dow filters are applied. Filters belonging to the second
group of techniques are based on the discrete cosine
transform (DCT) since it gives significantly better re-
sults comparing to other transforms [18]. Nonlocal fil-
ters have become extremely popular in image process-
ing [19, 20]. Therefore the block matching 3-D (BM3D)
filter is used as a representative of the third group of
techniques [20]. It is shown that these advanced strate-
gies for image filtering can also be used for reducing
noise effects in the TFRs with small negative impact to
the signal auto-terms.

The paper is organized as follows. Introduction to
the well-known TFRs, their interconnection with S-
method (SM) and the overview of the noise influence on
different TFRs are considered in Section 2.1. Detailed
analysis of noise characteristics in the SM is carried out
in Section 2.2. Section 3 represents an overview of fil-
tering techniques which can provide the SM denoising
effect. The criterions used for estimation the TFR filter-
ing efficiency are described in Section 4. Simulations
and detailed analysis of obtained results for each class
of filtering techniques are given in Section 5.

1. TFR analysis
1.1. Noise influence on common TFRs

The most popular division of TFRs is based on
their linearity [3, 4]. When linear combination of input
signals produces linear combination of TFRs, we have
linear transform. Among them we can mention the
short-time Fourier transform (STFT), Gabor transform,
wavelet transform, S-method, etc. [8, 9, 21].

Consider noise influence on the STFT. For dis-
crete-time signal s(¢,), it is defined as:

STFT (1, f, ) =
_ Z (1
where W(tk) is a window function that is commonly
symmetric w(ty)=w(-ty) and decreasing from the origin
w([te) < w(]ti)) for [t > [ti,

t, and f, denote a discrete time and frequency sam-
ples equaled to t,=ty+nTg and f,=pFs/N,

t is the start time,

pe[1;N], N=512,

Ts denotes a sampling interval, Ts=T/N=1/Fs,

T is a duration of observation interval.

For signal corrupted by the additive white Gaus-

sian noise (AWGN), &(¢,), with zero mean and standard
deviation (STD) o, the mean value of the STFT is equal

o ) w(ty )exp( j2nfptk),

to

E{STFTV (ta.£, )} =STFT, (1,5, ). )

where v(t,)=s(t,)+&(t,).
The STFT variance is

£,)-STFT,(t,.f, )‘2} -
:02§|W(tk ).

Therefore, noise characteristics in this case are nei-
ther signal, nor time and frequency dependent.

Situation with TFRs related to the noise influence
becomes more difficult for nonlinear representations.
For example, quite often instead of the complex-valued
STFT its square magnitude version called spectrogram
(SPEC) is considered:

E{‘STFTV (ta
A3)

SPEC, (1. £, ) =[STFT, (1., )‘2 . @)

The SPEC shares many favorable properties and
weaknesses of the STFT but noise characteristics stud-
ied in depth in [11] are quite different. Namely, in the
SPEC, the resulting noise is signal, time and frequency
dependent. In the region of signal components, the noise
variance is significantly higher than in the region where
there are no signal components. Also, the resulting noise
is not Gaussian but, in fact, it has Rayleigh pdf [22].

Considering nonlinear TFRs, the famous represen-
tation called the WD should be mentioned [23]. It was
firstly introduced in the quantum mechanics and later on
extended to the TF analysis and even became its corner-
stone. WD is mainly used for improvement of the TF
resolution. Namely, in the WD (here given in practical
windowed-pseudo form), signal components are better
concentrated and occupy significantly smaller part of
the TF plane compared to the STFT or SPEC. The WD
is defined as

)

—t ) w(ty )exp(—janptk ), -

The WD is real-valued TFR and its mean value for
noisy signal is

E{WDV(tn

+tk

o )} = 62§|W(tk )|2 ) (6)

It is seen that WD mean value is non-zero but it is
constant over entire TF plane and it does not influence
TF image significantly nor other abilities of the TFRs in
estimation, feature extraction, and detection. Variance
of the WD is evaluated as

E{‘WDV (tn.f,)-E{WD, (tn,fp)}‘z} -

i ™
:02 (2A2+52)Z|W(tk)| ,
k
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under assumption that signal of interest is a mono-
component FM s(t,) = A exp(jo(t,)), where o¢(t) is the
total phase of the signal. Thus, the obtained noise is
signal dependent. Here, for simplified FM signal model,
the variance varies with changes of the signal amplitude
but for other signal models it could be more compli-
cated. In [23], it has been shown that the WD can be
treated as Gaussian random fields [24].

The main difficulty associated with the WD is the
fact that for signals with several components its TFR
exhibits emphatic cross-terms. Therefore, numerous
strategies were proposed for reducing the effect of inter-
ferences/cross-terms. Among them, there is an effective
and simple TFR called the SM defined as [22]

SM(t,.f, ) =
= [P(6)STFT(t,.f, +0)STFT*(t,.f, —6)do, ®
0

where P(0) is a frequency domain low-pass filter.

For P(0) = n6(0) we obtain the SPEC while for the
P(0)=1 the WD follows. Selecting the filter as P(0)=1
for 6e[-¢; ¢] and P(0)=0 elsewhere for relatively small
values of ¢ we can achieve significant concentration
improvement without undesired terms and interferences.

Noise influence on the SM is partly studied in
[15]. It has been shown that in the area of the SPEC
auto-term the variance in the TF plane is higher while in
the area where there are no signal components the vari-
ance is smaller. Note that the area of elevated variance
does not correspond to small region of the SM highly
concentrated auto-terms but too much wider region of
the SPEC or STFT auto-terms. All other details required
to understanding phenomena related to the noise influ-
ence on the TFRs (images) can be found in [25, 26].

Thus, one of the common ways to reduce noise in-
fluence on TFRs is to design or select the optimal trans-
form for the corresponding signal and noise models. In
this paper, we are going to demonstrate another way to
cope with the noise influence in different TFRs. Name-
ly, our idea is to apply advanced filtering methods [10,
19, 27] from image processing field at the post-
processing stage of TFR. This can be done if we con-
sider estimated TFR as an image. Following such an
approach, the first step is to investigate noise character-
istics at TFR image in order to choose a proper filter.

1.2. Resulting noise in SM

As it has been already mentioned, TFRs are noisy
if disturbance is present in original signal. Such a situa-
tion can prevent solving further tasks of the TF analysis
and processing. A possible direction for performance
improvement is to remove noise by filtering while con-
sidering TFR as an image. There are numerous filters
existing nowadays. To clarify what image denoising
methods can be applicable for a particular case, it is

necessary to specify noise model and its characteristics
for data at hand. In order to do that for our task, con-
sider a three-component test signal of the form

s(t,)=0.7 exp( PB6nt,2 - jl2nt, ) +
+0.8exp( j36mt,” + 84t )+ )
( . 2 .
+exp|—j32nt, +]40mn),

where t,=ty+nTg,
ts=-1 sec.,
nell; NJ,
N=512,
Ts=T/N,
T=2 sec.

The STFT is evaluated with window of the width
0.5 sec., while width of the frequency window in the
SM is ¢=24n. This signal is used in all forthcoming ex-
amples and statistical analysis.

The SM of the test signal corrupted by an AWGN
with the STD o=1 is represented in Fig. 1a where signal
components appear themselves as three inclined “strips”
with noise clearly visible in homogeneous regions of
this image. Note that the considered TFR has both posi-
tive and negative values. Such a situation differs from
the case of traditional image processing where data usu-
ally have non-negative values.

The statistical characteristics of the resulting noise
in the SM are studied in [15, 25]. For application of the
filtering in the TFR domain here we will employ simu-
lation and consider resulting noise behavior in the TF
plane. For this purpose, we have obtained M=512 reali-
zations of the SM and then analyzed statistics of each
element (pixel) of the SM of the following form:

A (e, ) =SM™ (¢, £)-SM™ (1,.,£,), (10)

where m € [1;M] is a realization index,
SM™(t,, f,) denotes the SM of noiseless signal.

While considering this task, we have been inter-
ested in finding answers to the following questions: 1)
Is the noise induced in the SM Gaussian? 2) Is the noise
spatially stationary (additive) or non-stationary (possi-
bly, some kind of signal-dependent)? 3) Is the noise
white or spatially correlated?

To answer the first question, different approaches
can be applied. In particular, one can apply some Gaus-
sianity tests [28]. It is also possible to use some parame-
ters that characterize distribution tail heaviness [29].
These could be a standard kurtosis or its robust version
called percentile coefficient of kurtosis (PCK) [28-30]:

PCK =K, =1M, an
2Py Py
where Q, Qs, Pgg, Pyo, are the first and the third quar-
tiles and the 90th and the 10th percentiles, respectively,
of the sample to be analyzed.
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Recall that, for Gaussian pdf the standard kurtosis
is equal to 0 whilst it is larger for heavy-tailed distribu-
tions. Speaking of PCK values, they are close to 0.265
for data samples obeying Gaussian pdf and they are
smaller than 0.265 for pdfs with heavier tails [30] (e.g.,
0.21 for Laplacian distribution).

Analysis of standard kurtosis values of data
Aty f,) (see Fig. 1b) shows that noise pdf is close to
Gaussian for pixels that belong to “informative strips”
whilst for other regions it is obviously non-Gaussian.
Map of PCK values (see Fig. 1c) shows that noise char-
acteristics are close to Laplacian in homogeneous re-
gions and are almost Gaussian in places where signal
components are present. Therefore, both tests are in
good agreement and we can state that the resulting noise
in the TFR is mainly heavy-tailed.

Due to non-Gaussian nature of the noise induced,
it is worth analyzing robust estimates of noise intensity
(scale). A popular technique to do this is to calculate the
median of absolute deviations from the median (MAD)
[28-30]:
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MAD = med{|x(tn) —med{x(tl),...,x(tN)}|}, (12)

where med{...} denotes the sample median,
x(ty),..., X(ty) are data values of the realization to be
processed.

Analysis of data in Fig. 1d clearly shows that the
resulting noise is non-stationary since such intensive
spatial variations of MAD values cannot be explained
by a limited sample size (M=512). Thus, the observed
noise is of specific signal-dependent type having larger
variance (scale) in places of signal component presenta-
tion. Besides, MAD for each pair of coordinates (n, p)
has been found approximately proportional to the vari-
ance ¢° of original data. Additional information on noise
properties can be retrieved from the SM realization
analysis. Histogram shown in Fig. 2 has been obtained
by generating M=512 realizations of noisy signal (c=1),
calculating the SM (8) and processing M=512 samples
of a pixel that belongs to a homogeneous fragment (with
coordinates n=80 and p=80). Histogram from Fig. 3b
has been obtained for manually selected quasi-

a0 100 150 200 250

d

Fig. 1. Analysis of noise properties for the case of 6=1: one realization of TFR obtained by SM
for noisy signal (9) (a), maps of statistical parameters: kurtosis (0 value corresponds to Gaussian process) (b),
PCK (c) and MAD (d) values
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homogeneous fragment of SM™\(t,, f,) realization from
Fig. 3a. In both cases, it is seen that distributions are not
Gaussian and have heavy tails.
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Fig. 2. Histogram of one pixel values
(with coordinates n=80 and p=80)) in the SM
for M=512 noisy realizations with o=1
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Fig. 3. SM™t,, f,) estimate with manually selected
quasi-homogeneous fragment of size 32x32 pixels (a)
and histogram of SM™(t,, f,) values
in the selected region (b)

In addition, an important characteristic of the re-
sulting noise is its spatial correlation [31]. In order to
check this property, we have obtained an estimate of 2-
D auto-correlation function for manually selected quasi-
homogeneous region marked in Fig. 3a. Fig. 4 repre-
sents this estimate in two different views.

5
x 10
12

10

8

b
Fig. 4. Noise 2-D auto-correlation function estimate
depicted by Matlab pcolor-function (a)
and surf-function (b)

As it is seen, we can state that the noise is spatially
correlated and correlation degree in one direction is lar-
ger than in another. These conclusions should be taken
into account when choosing a proper filter for TFR
processing.

2. Local and nonlocal filtering of SM

The observed practical situation is not typical for
image denoising. Namely, there are numerous filters
designed to cope with AWGN [27, 32, 33] where
BM3D filter [10] is often considered to be state-of-the-
art. Another group of filters has been proposed to cope
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with such types of noise as speckle or Poisson [34, 35]
or others [36, 37]. Notable exceptions from the previous
class are filters from [31, 38] that have been designed
for a priori known dependence of noise intensity (vari-
ance) on local parameters (e.g., mean) and for assump-
tion that noise is spatially correlated. Some filters can
perform in non-Gaussian noise environment [34, 37],
but not for disturbance with Laplacian pdf. In our case,
dependence of noise local intensity is a priori unknown,
i.e., we deal with non-stationary noise with spatial cor-
relation.

A simple solution could be to use nonlinear non-
adaptive filters such as median, o-trimmed mean, Wil-
coxon, etc. They are able to cope well with heavy-tailed
non-stationary noise [39]. However, the main problem
here is selection of the proper filter type which will
work well both for regions with non-Gaussian interfer-
ence and areas with Gaussian intensive noise.

2.1. Locally adaptive filters (LAF)

Possible solution for the considered problem are
spatial adaptive filters. Locally adaptive robust filters
are well tuned to the described situation [40, 41]. Such
filters include, at least, a noise suppressing filter (NSF),
a detail preserving filter (DPF) and a local activity indi-
cator (LAI). The working algorithm of such filters is to
calculate LAI (for a current position of sliding window)
as the first step, then to compare the LAI value to some
threshold and, finally, to make a decision what filter
(NSF or DPF) to apply for evaluating output value for a
given pixel. For the SM, application of LAF can be
written as:

SMM (1, £,) =

SMMSF (¢, £)), if LAI(t, f,) < TH;  (13)

DPF .
SMPPF (t,.,£,), if LAI(t,.f,) > TH;

where SM™'(t,,, ) and SM”™(t,, f,) are NSF and DPF
outputs, respectively,
TH denotes LAF threshold value.

The main idea of applying this kind of filters is
that in our data (SM) we have locally passive (quasi-
homogeneous) and locally active (strips and their edges)
areas. Then, it is reasonable to apply NSF in locally
passive areas and DPF for strips and their neighbor-
hoods assuming that LAI allows discriminating them.
Practical questions that arise for this group of filters are
the following: what NSF and DPF to use? What should
be a proper LAI and threshold for it for the considered
application?

In order to find the answers, suppose that we know
a priori or are able to accurately estimate ¢ in original
noisy 1-D signal (9). Then, we check dependence of the
noise statistics in quasi-homogeneous regions with re-

spect to . For this purpose, histograms of SM values
for single pixel with coordinates (n, m)=(80, 80) have
been obtained for four values of ¢ (see Fig. 5). It is seen
that histogram shapes remain practically the same (dis-
tribution close to the Laplacian) but data scale quickly
grows with increasing of 6. Data provided actually cha-
racterize the STD in quasi-homogeneous regions of the
SM.

To confirm numerically the conclusion made on
the basis of the histograms’ shape, the STD of the pixel
values (onp) are presented in Table 1 for considered
four input noise ¢ values. The obtained data show that
onp values are approximately proportional to o”. We
can adopt an approximation expression between input
noise STD o value and induced noise STD onp as

(14)
Its values provided in the second row of the Ta-
ble 1 show that the expression is good enough. Note that
the approximation is valid only for the considered size
of input signal and Gaussian noise affecting the signal.
It also depends upon window function used. However,
the main idea is that in each particular situation the pro-
portionality factor can be determined in advance.

The resulting noise scale in quasi-homogeneous
region can be also characterized in another way. It can
be observed from analysis of data in Fig. 1d that pa-
rameter MAD (12) values are almost constant in homo-
geneous regions.

Therefore, it is possible to determine local MAD
for 7x7 scanning window as

MAD(t,.f,) =

OIND = 3562 .

:med{‘SM(ti,fj)—med{SM(ti,f»)}‘,. (15)

i=n-3,..,n +3,j:p—3,--~sp+3}~

Table 1
Dependence of induced noise STD on input noise STD

Input noise STD, ¢
0.1 05 1 1.5

0.35 9.32 33.61 90.15

Induced noise STD,
OIND

c%PSR = 3502

035 875 35 78.75

Histograms of local MAD estimates calculated in
fully overlapping blocks of 7x7 pixel size are presented
in Fig. 6 for two values of input noise STD. As it is
seen, local MAD estimates are mostly smaller than val-
ue calculated according to approximation formula (14).
Such local estimates mostly relate to quasi-
homogeneous regions whilst there are also local esti-
mates with considerably larger values corresponding to
signal component area. Thus, we can use the value 356
as the LAF threshold value TH in (13) for discriminat-
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ing the locally passive and active areas in SM image. in quasi-homogeneous region of TFR and NSF should
i.e. if the local MAD value in current block is less or  be applied, and vice versa.
approximately equal to 35 o then we most probably are

02 0.16
018 b 0441
0.16 B
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0.14 4
0.1
012 .
£ Zz
g o1 4 8oo0s-
[ o
a [
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0 0 - i
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0.2f

o
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c d
Fig. 5. Histograms of SM™(t,, f,) values for n=80 and p=80 for 6=0.1 (a),
6=0.5 (b), 5=1.0 (c), =1.5 (d)

0.18 T T T T T T T T 0.25

Probability
Probability

0 5 10 15 20 25 30 35 40 45 o 100 200 200 400 =00

Local variance values Local variance values

a b
Fig. 6. Histograms of local MAD estimates calculated in fully overlapping blocks of 7x7 pixel size
for input noise STD values 6=0.5 (a) and 6=1.5 (b)
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2.2. Orthogonal transform based
image filters

There are also other options to filter TFRs. One of
them described in [42] uses wavelet-based denoising
algorithm whilst the approach considered in [43] im-
plements bilateral filtering. In both cases, it is demon-
strated that denoising of TFRs leads to certain im-
provement but no quantitative data are presented.

Certain degree of adaptation to noise local inten-
sity and image content can be done applying locally
adaptive DCT-based filters [44]. The general principles
of DCT-based denoising are the following. It is carried
out in blocks of 8x8 pixels (the most typical size). In
each block, 2-D DCT is calculated and the obtained
DCT coefficients are compared to one or several thresh-
olds. If noise is approximate white, the threshold is set
fixed for all DCT coefficients for a given block position
(thresholds can be frequency dependent if noise is spa-
tially correlated and its DCT spectrum is a priori known
or pre-estimated). Meanwhile, if noise is not stationary,
different thresholds can be set for different positions of
blocks. In particular, a typical practice is to set thresh-
old(s) proportional to local noise STD (or its estimate
obtained in one or another manner [42]).

The next operation performed in each block is
thresholding. Similarly to wavelet denoising techniques,
there are several types of thresholding schemes but one
of the most efficient and simple is hard thresholding. It
will be used in DCT-based TFR denoising filter as:

D§v (KoLt £p) =

) {DSM (1Lt By ) i Dy (KoLt B )| 2 T (KoLt )
0, otherwise;

(16)
where Dgy (k, 1, tn,fp) is the kl-th DCT coefficient in
the considered block,

T(k, l,tn,fp) denotes a threshold value, block posi-

tion is determined by its left upper corner (indices of t,
and f;),

DS (k. 1ty f,) is the ki-th DCT coefficient in the

considered block after thresholding operation.

Then, inverse 2-D DCT is applied to the thresh-
olded DCT coefficients and filtered values of processed
data (image) are obtained for all pixels belonging to a
given block. Note that blocks can be non-overlapping,
partly overlapping, and fully overlapping. In the latter
two cases, the filtered values for a given pixel are aver-
aged for all blocks this pixel belongs to. Full overlap-
ping requires more computations than denoising in
partly or non-overlapping blocks but it usually gives
smaller output mean square error (MSE).

A problem that can arise is that the DCT-based fil-
ters in [44] have not been tried for spatially correlated
and heavy-tailed noise. This is an obstacle that can
cause problems [31, 45, 46], and restrict performance of
such filters. Another problem deals with local adapta-
tion mechanisms proposed in [44]. They relate to local
estimation of noise standard deviation (denoted as

G(k,l,tn,fp) in our case) and to local adaptation of
proportionality factor B(tn,fp) used in threshold set-

ting as T(k,Lty,f,)=B(ty.fp)-6(k.Lty,f,). These

aspects should be carefully checked in future experi-
ments. In our studies, we have considered a fixed thre-
shold.

2.3. Non-local filters

Finally, there are numerous non-local filters pro-
posed recently [10, 27]. Their peculiarity is that they
employ search of similar patches and joint processing of
data for each formed set of such patches. To our best
knowledge, nonlocal filtering techniques have not been
tried for denoising data (images) with noise properties
described previously. An obvious problem is that both
search and joint processing have to be adapted to noise.
Therefore, we have decided to consider application of
the BM3D filter [10] to our data.

The BM3D has elaborated algorithm realization
with selection of the similar patches. These patches are
put into 3D array and they are filtered together using 3D
linear transform. In this way similar patches in images
are filtered together and this allows using important
property of these nonlocal patches that correlation be-
tween noises is smaller than of patch signal compo-
nents. This algorithm is proposed in [10]. Detailed anal-
ysis of realization is provided in [20, 47]. Here only
very brief algorithm realization will be provided while
for all other details for interested readers the program
realization can be found in [48].Rough filtering stage
consists of search for similar (commonly rectangular
patches), forming 3D matrix of these patches, calcula-
tion of the 3-D discrete linear transform (commonly
DCT or Hadamard/Walsh) and filtering using hard thre-
shold technique (transform coefficients below threshold
are set to 0). In the fine filtering stage again similar
blocks (patches) are found forming 3D array followed
by evaluation of the 2D discrete linear transform. Now,
filtering is performed in the transform domain using
Wiener filter. The same pixel in the image can belong to
various filtered blocks and final output is obtained using
aggregation of results with different blocks.

The TFRs have large areas influenced by noise.
These areas represent similar patches that can be effi-
ciently filtered with both local and nonlocal filters. In



12 ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMITI'YOTEPHI CUCTEMM, 2016, Ne 4 (78)

addition, similar patches (blocks) can be recognized in
the TF plane in area of the signal components. Then
application of nonlocal filtering to these parches is sup-
posed to improve filtering of the TFR.

The available versions of BM3D filter can only be
applied to data having non-negative values. Then it is
necessary to provide certain pre-processing stage which
includes finding the minimal value of current realization
of TFR denoted as SM,;;,, and using its absolute value
to shift the TFR data for obtaining a realization array of
non-negative values. After that, the BM3D is used and

results in preliminary filtered data SMFS‘:I (tn,fp).

Then, the determined shift value, |SM|, is subtracted

from SME{?I (tn,fp) for obtaining final processed data
MBM}D (tn’ fp ) )

A key question here is that in order to perform the
BM3D filtering, noise STD in a filtered process should
be known or pre-estimated in advance. In Section 5.3,
we propose methodology to solve this practical ques-
tion. We understand that such a discrepancy between
actual and assumed noise properties can lead to reduced
filtering efficiency. Meanwhile, we expect that certain
positive effect from such denoising can be achieved in
any case.

array S

3. Performance criterions used

Therefore, we have the practical situation which is
very rarely met in practice with respect to image (TFR)
subject to filtering. Note that assessment of denoising
efficiency for the considered application is specific as
well. We need such a denoising that should be able to
suppress noise in quasi-homogeneous regions without
introducing distortions into informative fragments that
correspond to signal components. Besides, we deal with
non-Gaussian noise in data where MSE is not the best
criterion to characterize filtering efficiency.

To take into account these peculiarities, the follow-
ing criteria have been used in further studies. First, out-
put MSE which is the well-known and often applied
parameter was employed. We calculated MSE for entire
TFR (MSEnr) and for pixels belonged to the signal
components only (MSEg():

> mT_ﬁEE{M—l'

(17)

Mz

[TFR%T{T (tn , fp ) —TFRFILT (tn , fp )T }’

=1
n

1 1

SR * PSR neNg pePy

Mz

) (18)
[TFRg{‘ﬁT (tn £y ) —TFRFILT (tn,fp )J },

=4
n

where TFRgIngT (tn,fp) denotes the value of a pixel

with coordinates (t,, f,) for the m-th realization of fil-
tered TFR,

TFRFILT (tn,fp) denotes averaged (over the en-

semble of M=32 realizations) value for the same pixel
with coordinates (t,, f,),

Ns and Qg are the sets of indices of the signal com-
ponent region,

Nsr and Qgg denote the total number of pixels in the
signal component region.

Besides, we were also interested in mean absolute
error (MAE) calculated with respect to noise-free SM
[39]. The MAE is also evaluated for entire SM
(MAENT) and for regions of signal component only
(MAEsc):

1
MAE Nt = NP M
N P M (19)

Z‘i Z} Zl ‘TFRg{RT (tn’fp ) ~TFRFILT (tn,fp )‘
n=lp=lm=

1
Ngg -Psg -M

M —
DI z‘TFR%I}RT(tn,fp)—TFRFILT(tn,fp)‘.
neNg pePy m=1

(20)

The input MSE has been calculated as well:

SET _N.PEE{M—{

M
3 [TFR{}&SY (tnfy )~ TFR e (t.F, )T }

m=

21)

where TFR%\?&SY (tn ,fp) is the m-th realization of noi-
sy TREF,
TFR%\I?F) (tn,fp) is a noise-free TFR.

MSEnt should be considerably smaller than
MSEnp and it is possible to characterize filtering effi-
ciency by the ratio MSEnN/MSEp (the smaller, the
better). Similarly, it is possible to determine input MAE.
The ratio of output MAE to input MAE should be as
small as possible as well.

There is also one more requirement to the denois-
ing methods under study. We would like them to be
efficient for a wide range of input signal-to-noise ratios
(SNR). Therefore, the study has been carried out for
variations in input SNR value from 6.8 to 0.8. To simu-
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late such a variation, four different values of input noise
STD o have been used in experiments, namely, 0.5, 0.7,
1, and 1.5.

4. Analysis of obtained results

4.1. Local nonlinear filters

As the simplest representative of non-adaptive non-
linear filters, the median filter with two different win-
dow sizes, namely, 3x3 and 5x5 pixels, has been ana-
lyzed. The results are presented in Tables 2-5. As it is
seen from Table 2, MSEp grows faster than propor-
tionally to ¢°, whilst input MAE grows faster than pro-
portionally to ¢ (see data in Table 4). Median 3x3 filter
leads to output MSE values smaller in comparison to
MSEpp but this reduction is not large (see data in Ta-
bles 2 and 3). This takes place for all considered c. Out-
put MAE is approximately of the same order as input
MAE (see data in Tables 4 and 5). Thus, there is no ob-
vious benefit in applying the 3x3 median filter.

Table 2
Output MSE calculated for entire TFR

Table 4
Output MAE calculated for entire TFR

Input noise STD, ¢

0.5 0.7 1 1.5
Input MAE 16.8 27.0 448 84.4

Output MAE (MAE]NT)
Median (3x3) 17.7  26.8 434 80.3
E_ % Median (5x5) 245 31.2 448 755
5 = LAF1 15,6 245 396 724
LAF2 153 238 38.1 69.2

A larger size median filter (5x5 pixel scanning
window) is known to suppress noise better but by the
expense of worse preservation of important details and
edges in some cases. This statement is proved by data in
Table 2 where output MSEr values show that results
for 5x5 median filter are better in comparison to the
case of 3x3 median filter.

Table 5
Output MAE calculated for signal component area
Input noise STD, ¢
0.5 0.7 1 1.5
Input MAE 772 111.8 1555 2345
Output MAE (MAEgc)
Median (3x3) | 89.6 118.1 158.7 230.8
:ﬁ_ % Median (5x5) | 154.7 169.8 197.8 249.2
3= LAF1 77.1 1113 154.8 234.1
LAF2 77.1 1113 1559 2434

Input noise STD, ¢
0.5 0.7 1 1.5
Input MSE 1373 3045 6658 18446
Output MSE (MSEnt)
Median (3x3) | 1282 2814 6055 16508
E & Median (5x5) | 1036 2218 4686 12490
g = LAF1 1338 2928 6203 16222
LAF2 1328 2874 5965 15285
Table 3
Output MSE calculated for signal component area
Input noise STD, ¢
0.5 0.7 1 1.5
Input MSE 9792 20973 41280 93020
Output MSE (MSEg(c)
Median (3x3) | 9276 19694 38229 84840
E = Median (5x5) | 7617 15757 30119 65181
g = LAF1 9704 20773 40832 92292
LAF2 9704 20781 41267 96523

As to the local MSEgc values, the 5x5 median filter
performs rather well (see data in Table 3), whilst ac-
cording to MAE |t criterion, the results are not good.
They are in three out of four cases larger than input
MAE values for entire TFR (see data in Table 4). The
most undesirable fact is that output MAE for this filter
can be sufficiently larger than input MAE for signal
component area (Table 5).

4.2. Locally adaptive nonlinear filters

We have analyzed two variants of LAFs denoted as
LAF1 and LAF2. In LAFI, as noise suppression filter
(NSF) we propose to apply 7x7 pixel a-trimmed mean
filter with outer trimming parameter equal to 10% (i.e.,
5 largest and 5 smallest values in ordered data sample in
a given scanning window are rejected before averaging
the remainder values). Larger 7x7 scanning window is
motivated by necessity to efficiently suppress spatially
correlated noise with remaining mean for pdfs that are
symmetric with respect to location parameter [37, 43].
As the DPF, we propose 3x3 center weighted median
filter (CWMF) [39] with rather large weight (value 5 is
adopted in our experiments). Such a filter removes
spikes but keeps almost all other values unchanged.
Clearly, noise suppression efficiency of this filter is not
high but it practically does not destroy information con-
tent. Local MAD value (scale characteristic) is used as a
local activity indicator and a threshold value depending
on induced noise STD onp. The threshold is set equal to
356"
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According to output MSE values (integral in Ta-
ble 2 and local in Table 3), LAF1 provides approxi-
mately the same results as the 3x3 median filter and
worse than 5x5 median filter. However, according to
MAE criterions (integral in Table 4 and local in
Table 5), the use of LAF1 leads to slightly better results
than for the analyzed standard median filters.

The locally adaptive filter LAF2 differs from LAF1
by the set threshold only which is equal to 70 o for
LAF2. This does not change the results considerably — a
slightly better noise suppression in homogeneous re-
gions is provided (smaller values of integral MSE in
Table 2 and integral MAE in Table 4) by the expense of
a little bit worse processing in signal component area
(greater values of local MSE in Table 3 and local MAE
in Table 5).

Concluding our analysis for non-adaptive and
adaptive nonlinear filters, we can state that some noise
reduction with useful information preservation can be
achieved but the benefit is not large. Maybe, other
NSFs, DPFs, LAIs or different thresholds can produce
better results.

4.3. DCT filter

The next considered solution for the SM denoising
is the application of locally adaptive DCT-based filter
[44]. If noise is white and additive, a general recom-
mendation is to set the filter threshold as T =6 = 2.66

where & is the estimate of noise STD. If noise is spa-
tially correlated and we do not adapt to noise spectrum,
optimal [ that provides the best noise suppression effi-
ciency can be considerably larger than 2.6 [45]. There-
fore, we apply different threshold values T for analyzing
its influence on the performance of the DCT-based filter
for the considered application. The obtained results are
presented in Tables 6-9.

Analysis of integral MSE (Table 6) shows that the
increase of T results in reduction of MSEt without
reaching minimum for the considered range of the thre-
shold variations. It can be explained by the following
fact. Quasi-homogeneous regions occupy large part of
TFR and noise suppression ability of applied filter has
the main impact on the estimated output MSEnr. Since
the increase of threshold value leads to better suppres-
sion of spatially correlated noise [45], steady decreasing
of output MSEnr is observed.

Reduction is not large but for intensive input noise
the output MSEyr can be about 1.7 times smaller than
input integral MSE value. Larger threshold leads to
smaller local MSE (Table 7). However, optimum is not
reached although threshold value is varied in wide lim-
its. The situation changes if MAE criterion is analyzed.
According to data in Table 8, optimum (minimum MAE
value) is observed if T~20c where & is defined as

G=omNp "

takes place for slightly smaller T. We have considered
cases (T~20c and T=100) of adaptive choice of T
value. Obtained results are presented in two lowest rows
of Tables 6-9. As it is seen, positive effect takes place
according to all analyzed criteria but this effect is not
too large.

=356°. According to Table 9, optimum

Table 6
Output MSE calculated for entire TFR

Input noise STD, ¢
05 ] 07 | 1 1.5
Input MSE 1373 3045 6658 18446
Output MSE (MSE]NT)

5 1372 3044 6656 18443

2 50 1335 2976 6555 18311
E| = 100 1307 2893 6369 18007
é E 200 1272 2786 6028 17171
s S 400 1220 2660 5572 15479
gl = 800 1125 2453 5036 13089
5 % 1600 1050 2255 4537 10963
= | £ 1800 1032 2205 4417 10616

= 10APPR

8 IND 1313 2811 5664 13146
200pp" | 1280 2691 5144 11008
Table 7

Output MSE calculated for signal component area

Input noise STD, ¢
05] 07 | 1 | 15
Input MSE 9792 20973 41280 93020
Output MSE (MSEgc)
5 9792 20972 41279 93018
2 50 9772 20937 41222 92917
g | = 100 9738 20872 41107 92693
g E 200 9636 20714 40826 92118
5| g 400 9396 20223 39887 90179
gl = 800 8769 18900 37160 84022
5 = 1600 8206 17408 33630 73415
| £ 1800 8038 16969 32645 70980
o 10APPR
= GIND | 9748 20766 40160 84234
APPR
2001NDp | 9667 20370 37829 73718
4.4. BM3D filter

It has been mentioned above that for operation of
BM3D filter one needs to set the noise STD value.
There is no such a priori information for the considered
application but it is possible to use formula (14), i.e.

c&P]];R = 3502, as some “most often met” standard de-

viation or to employ other values. Results obtained for
wide range of a priori set induced noise STD values (for
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filter application) as well as for value c&P]];R

3 times larger than c&P]];R

and 2 and

are given in Tables 10-13.

Table 8
Output MAE calculated for entire TFR

the best parameters settings, there is benefit of about
10% in denoising of signal component area and substan-
tial improvement in noise suppression efficiency in qua-
si-homogeneous regions. For visual comparison the SM
estimates obtained by the investigated filtering methods
are represented in Figs. 7-11.

Input noise STD
og P neieSID e Table 10
Input MAE 168 271 448 844 Output MSE calculated for entire TFR
Output MAE (MAEnT) Input noise STD, ¢
5 16.8 27.1 448 84.4 05 ] 07 | 1 1.5
2 50 151 253 435 837 Input MSE 1373 3045 6658 18446
g | = 100 144 236 413 821 Output MAE (MSExy)
g g 200 141 221 378 776 " 5 1118 2611 5864 16786
S| ¢ 400 141 214 345 697 Sls 50 602 1455 3256 9374
£ = 800 153 218 332 613 5| g | 100 | 567 1338 2876 7587
5| = 1600 21.6 263 361 587 5| E igg ;‘gé 1711715 %2% Zigg
= )
= 1800 239 281 372 59.1 s | &
ol = - E| o | 600 | 307 715 1598 4112
2 10oND 145 223 351 615 e S | 356° | 978 2024 3915 8145
APPR = | & | 706> | 824 1768 3016 6690
20oiNp [ 141 214 333 587 | | M 1056> | 766 1446 2869 5805
Table 9 Table 11

Output MAE calculated for signal component area

Output MSE calculated for signal components’ area

Input noise STD, ¢
05 107 ] 1 | 15
Input MAE 772 1118 155.5 234.5
Output MAE (MAEgc)
5 772 1118 155.5 234.5
2 50 77.1 1117 1553 2343
S| = 100 77.1 1115 155.1 234.1
g E 200 76.9 111.1 154.6 233.4
5| % 400 77.8  110.6 153.4 231.3
E| = 800 86.4 114.1 153.4 226.9
5| = 1600 | 131.5 1455 1745 2319
| £ 1800 | 148.8 158.7 183.9 236.1
O | & | 100ARER
= IND 77.1 1113 153.7 227.1
200080" | 769 1107 1529 2315

Interestingly, when filter parameter increases, the
output MSEr almost steadily decreases (Table 10).
Output MSEt can be up to 4...5 smaller than input
MSE value, i.e. filtering is rather efficient according to
the considered criterion. It seems possible to set the fil-
ter parameter as high as 1056 (the lower row of Table
10). Analysis of output MSEgc (Table 11) leads to simi-
lar conclusions. There is a tendency to local MSE de-
creasing if the filter parameter increases.

According to local MAE criterion (Table 13), set-
ting the BM3D parameter equal to 356> can be a good
practical choice. Compared to the DCT-based filter with

Input noise STD, ¢
05 ] 07 ] 1 | 15
Input MSE 9792 20973 41280 93020
Output MSE (MSEg(c)
” 5 8636 19437 39329 90300
S| s 50 | 4827 11480 24293 59646
g ‘g 100 | 4526 10523 21517 49776
€ | | 200 | 3662 9031 18812 39893
2| £ | 400 | 2085 4900 10833 25258
E | a| 600 |2013 4539 9334 20522
2 g 356° | 7684 15682 28589 53123
= | B | 706* | 6532 13739 22528 43656
a 1056° | 6075 11405 21466 36678
Table 12

Output MAE calculated for entire TFR

Input noise STD, ¢
05 ] 07 ] 1 | 15
Input MAE 16.8 27.0 448 844
Output MAE (MAEnT)

> 5 13.1 221 386 773
E 5 50 154 19.7 293 551
‘5 E 100 23.1 262 338 541
= s 200 40.7 421 471 614
2 £ 400 683 68.6 695 763
£ a 600 994 99.7 992 99.8
] % 3567 123 19.1 312 536
= =2 706> 12.1 19.8  30.7  58.1
2 1056 128 199 345 64.1
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Table 13

Output MAE calculated for signal components’ area

Input noise STD, ¢
05 ] 07 | 1 [ 15
Input MAE 772 111.8 1555 2345
Output MAE (MAEgc)
” 5 72.1  106.8 151.1 230.6
R 50 944 1099 140.6 204.6
g ‘«E‘» 100 | 146.5 1542 175.7 2239
€ | & | 200 [257.1 2577 2664 285.6
2| & | 400 |331.5 3326 3341 3394
E| a | 600 | 3339 3362 3384 3484
2 g 356 | 68.6 979 1392 2135
§ @ | 706° | 67.8 1029 151.8 261.1
1056 | 72.8 111.1 180.5 301.5
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Fig. 7. SM realization at the input of filtering stage
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(MAEnt = 44.1, MAEgc = 158.6)
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Fig. 8. SM estimate at the output of MED 5x5 filtering
stage (MAEnT = 44.5, MAEgc = 202.7)

Alongside with the filtered TFRs (Figs. 8-11), we
present integral and local MAE values for convenience
of analysis. It is seen that processing based on median
filtering in 5x5 sliding window size (Fig. 8) suppresses
noise but at the same time introduces distortions to the

signal components. Such results are not surprising and
have been predicted. Filtering approach based on LAF2
(Fig. 9) performs better. Namely, there is smaller num-
ber of the undesired signal components with respect to
the initial SM representation. Better filtering efficiency
is observed for the DCT and BM3D filters (Figs. 10 and
11). Interferences between components are attenuated
with respect to the previous filtering strategies but at the
expense of significant damage of the weakest signal
component.

250

200

150 1500

100 1000

50

50 100 1501 200 250

Fig. 9. SM estimate at the output of LAF2
(with T=706?) filtering stage
(MAEt = 37.6, MAEsc = 159.1)

Comparison of SM estimates obtained by the DCT
and BM3D filters shows that the BM3D preserves the
most powerful signal component as well as the second
signal component better than the DCT filter. This con-
clusion is also proved by MAE values (Tables 9
and 12).

250

200

100 41000

50

50 100 150 200 250

Fig. 10. SM estimate at the output of DCT1
(with T=600) filtering stage
(MAEnr = 33.9, MAEgc = 158.9)
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250
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Fig. 11. SM estimate at the output of BM3D
(with filter parameter 70c%) filtering stage
(MAE[NT =32. 1, MAESC = 1647)

Conclusions

Filtering of S-method TFRs using filtering tech-
niques common in the digital image processing has been
studied. Even if the original 1-D signal is corrupted by
AWGN, the noise induced in the S-method occurs to be
the non-Gaussian, signal-dependent and spatially corre-
lated. This makes the task of the S-method denoising
quite complex.

Several approaches to noise suppression are stud-
ied. They include local nonlinear non-adaptive and
adaptive techniques, orthogonal transform based filter-
ing (namely, DCT-filter) and nonlocal processing ap-
proach based on the block matching 3-D filter. Consid-
ered filtering techniques are compared using the stan-
dard MSE and MAE metrics determined for both entire
TFR and a part of TFR containing signal components
only.

Analysis shows that significant enhancement (de-
noising effect) can be achieved but it is difficult to pro-
vide a trade-off for such filter properties as noise sup-
pression quality and detail preserving performance. At
the moment, the best results have been obtained by the
BM3D filter for which input parameter has been
adapted to noise properties in a simple way. We are
confident that better results can be obtained in future if
spatial correlation of noise is taken into consideration.
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BOCCTAHOBJIEHUE YACTOTHO-BPEMEHHBIX IIPEJICTABJIEHUM:
MOAXO0/JI C UCITOJIb30BAHUEM METO/IOB ®UJIbTPALIUU N30BPAKEHUM

U. /Dicyposuu, B. JIykun, A. Poenko

PaccmoTpena 3a7a4a MOBBIIIEHUS KaueCTBa YaCTOTHO-BPEMEHHBIX MPEICTAaBICHUH, MMOIY4YEHHBIX S-METOIOM,
TIPY TIOMOIIM COBPEMEHHBIX JIOKAJIBHBIX M HEIOKAJIBHBIX IIU(POBBIX (PUIBTPOB, KOTOpPBIE pa3paboTaHbl U MIPUMEHSI-
10TCS B 0071acTH 00pabOTKU M300paskeHUi. AKTYalIbHOCTh 33[Ia4d CBA3aHA C HCOOXOMUMOCTBIO HAJIMYUS YaCTOTHO-
BPEMEHHBIX (HMIBTPOB Ui 00paOOTKM HECTAI[MOHAPHBIX YaCTOTHO-MOJYJIMPOBAHHBIX CUTHaNIOB. B pabote pac-
CMOTpEHO MPHUMEHEHHE MeIUaHHOro QHIbTpa KakK MPEeJCTaBHUTENsl Kilacca JIOKAJIbHBIX MMPOCTPaHCTBEHHBIX (HIIBT-
poB, ¢unbrpanuu Ha ocHoBe JIKII B kauecTBe mpercTaBUTENs METONOB (HIBTPAIMA HAa OCHOBE OPTOrOHAJIBHBIX
npeoOpa3oBanuii, a Takxke BM3D-(uisTpa Kak OIHOTO M3 JIYUIIMX Ha TaHHBIH MOMEHT CPEIU HEIOKAIBHBIX METO-
noB. IlokazaHo, 4TO IIyM B YaCTOTHO-BPEMEHHBIX PAaCHpENENICHUAX, MOIYyYEHHBIX C MOMOUIbIO S-METOAa, UMEET
CIIO)KHYIO CTPYKTYpY, @ UMEHHO, MOXKET B psJie CUTYyallMil MIMETh HETayCcCOBO paclpeseieHne 3HaueHuil, a Takxke
o051aiaTh MPOCTPAHCTBEHHOM Koppessiiueil. [lokazaHo, 4TO MpUMEHEHHE OMUCAHHBIX BhINIE (DMIBTPOB B JTAHHBIX
TIOMEXOBBIX YCIOBHSAX MPUBOJMT K HEYIIOBJIETBOPUTENBHBIM pe3yibraTaM. [IpeanokeHo HECKOIbKO MOAN(pHKAINT
paccMaTpuBaeMbIX METOMOB, 3PPEKTHBHOCTh Pa0OTHI KOTOPBIX IPOAHAIN3UPOBAHA C TOUYKU 3PEHHUS] HHTETrPAIbHBIX
U JIOKaJIbHBIX MapaMeTpoB. [loka3zaHo, 4TO HAMIYYIIUX PEe3yIbTaTOB B IIYMONOAABIEHUU IO3BONISET HOCTUYb MO-
mudukamms BM3D-¢dunbrpa. OqHako miaTol 3a yimydlieHus SBISETCS [TOTepsi TOYHOCTH B MPECTaBICHUN CIIA0bIX
KOMIIOHEHT I0JIE3HOT O CUTHAJIA.

KnaroueBble cioBa: 4acTOTHO-BpEMEHHOE pacrpeesieHne; S-MeTol; uudpoas oOpaboTka M300pa)KeHUId;
JKII-¢punerp; BM3D-¢dunbtp.

BITHOBJIEHHSI YACTOTHO-YACOBUX IPE/ICTABJIEHD:
mIAX1A 3 3ACTOCYBAHHAM METOAIB ®1JIbTPAIII 306PA’KEHD

L /Tncyposiu, B. Jlykin, O. Poenko

PosrmsinyTo 3amady miABHIIEHHS SKOCTI YaCTOTHO-YaCOBHX IPEICTaBJIEHb, IO OTPUMAHO S-METOJOM, 3a JI0-
ITOMOTOI0 CYYaCHUX JIOKAJBHHUX Ta HEJIOKAIbHUX IU(MPOBUX (iTIBTPIB, sIKi pO3pOOJICHO Ta 3aCTOCOBAHO Y Tay3i 00-
poOKHu 300pakeHb. AKTYaJbHICTh 3ajadi IMOB'A3aHa 3 HEOOXIIHICTIO HAsBHOCTI YaCTOTHO-9aCOBUX (iIBTPIB I
00pOoOKM HECTaliOHAPHUX YaCTOTHO-MOAYJILOBAaHMX CHIHAJIB. Y poOOTI PO3IJISTHYTO 3aCTOCYBAaHHsS MEiaHHOT'O
(GIIBTPY SIK MpeJCTaBHUKA KJIAcy JIOKAIBHHUX MPOCTOpOBUX (unbTpiB, dinprpanii Ha 6a3i JAKII y skocti npencras-
HHUKa MeToJiB (ijpTpalii Ha 6a3i OPTOrOHAJBHUX IEPETBOPEHb, a Takoxk BM3D-¢inbTpa sk 0HOTO 3 HaWKpammx
Ha JIaHWH 4Yac cepel HeJIOKaJIbHUX MeToliB. [loka3aHo, o IIyM y 4YacTOTHO-4aCOBUX PO3MOJiiaX, 0 OTPUMAHO 32
JIOTTOMOTOF0 S-METO/Ty, Ma€ CKIAIHY CTPYKTYPY, a CaMme, MOXKE Y PsAi BUIAIKIB MATH HETayciB pO3MOILT 3HAUCHb, a
TaKOX MaTH MPOCTOPOBY Kopensito. HaBeneHo, 1o 3acTOCyBaHHS ONHMCAHHUX BHUIE QUIBTPIB Y JaHUX 3aBaJOBHX
YMOBaXx MMPHUBOJUTS JIO HE3IOBIILHUX PE3YbTATIB. 3alpPOIIOHOBAHO JEKijIbka MoaudiKaIiii METoO/iB, O PO3TIIIHY-
TO, eeKTUBHICTh POOOTH SIKMX MPOAHAJI30BAHO 3 TOUKHU 30pY IHTErpAIbHHUX Ta JOKAJIBLHUX NapaMeTpiB. [lokaszaHo,
10 HAaWKpalli pe3yJbTaTH y HIyMONPHAYIIEHH] J03BoJsie qocsrti Momudikanis BM3D-¢inbtpy. [Ipore mnaroro 3a
TIOKPAIIEHHsI € BTPaTa TOYHOCTI Yy MPEJCTaBICHH] CIA0KNX KOMIIOHEHT KOPUCHOTO CHTHATY.

KiarouoBi caoa: YactoTHOo-yacoBuil po3mofisn; S-meronm; muppoBa o0podka 3o00paxkens; JKII-diasTp;
BM3D-¢inbtp.
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