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TIME-FREQUENCY REPRESENTATION ENHANCEMENT: 
APPROACH BASED ON IMAGE FILTERING METHODS 

 
The task of filtering of the time-frequency representations, obtained by the S-method, using advanced digital 
image processing filters, both local and nonlocal is considered. Such enhancement is important for design of 
the time-varying filters for processing of nonstationary frequency modulated signals. The class of local filters 
is represented by spatial domain filtering using median and related filters. Orthogonal transform based de-
noising is represented by DCT domain filtering. The block matching 3-D filter is considered as a representa-
tive of nonlocal filter class. It is demonstrated that the noise in the time-frequency representations based on S-
method has rather complicated nature: non-Gaussian pdf, spatially correlated properties with varying pa-
rameters. It is shown that direct application of the considered filters to such a challenging noisy environment 
is not possible. Then, several filter modifications are proposed and analyzed with respect to integral and local 
parameters – MSE and MAE. The block matching 3-D filter is shown to provide the best results but at the ex-
pense of quality loss in representation of weak components. 
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Introduction 

 
The time-frequency representations (TFRs) can be 

considered as a mapping of an analyzed signal to 2-D 
matrix/image indexed with time and frequency coordi-
nates [1, 2]. In this way, it becomes possible to analyze, 
separate, filter, compress, and process signals/data that 
are indistinguishable in both time and spectral domains. 

There are numerous types of the TFRs that can be 
roughly divided into the following categories according 
to the linearity of transform: linear, quadratic, and high-
er-order representations [3]. Also, transforms can be 
non-adaptive (with preselected parameters) or adaptive 
when transform parameters are adjusted somehow to an 
analyzed signal [4]. A particularly interesting issue is 
minimization of the noise influence to the TFRs [5]. 
Existing techniques are mainly focused on noise filter-
ing based on analysis in the spectral domain with thre-
sholding, reassigning, estimating signal parameters, and 
other techniques applicable in time and frequency [6, 7], 
or joint time-frequency (TF) domain [8, 9]. Generally, 
filtering of time-varying signals can be considered as 
one of the most important applications of the TFR proc-
essing. 

It has been shown [6] that the standard filtering in 
time or frequency domain has a limited accuracy for 
nonstationary frequency modulated (FM) signals. One 
of the novel approaches which allows further increasing 
the TFR noise suppression performance while remain-

ing important features of TFR is based on idea to con-
sider TFR as a specific image. Then, it is possible to 
apply different filtering techniques developed in image 
processing field [10, 11] for noise removal from TFR. 
Using this approach, several filters have been proposed 
for 2-D filtering in the TF domain [12-14]. In the time-
varying filtering the most important issue is recognition 
of the signal components in the TF plane. Then efficient 
filtering-denoising or signal reconstruction can be per-
formed using procedure from [14]. 

The first group of filters [12] performs detection of 
regions of the signal components and masking noise 
components in the TFR plane. The second group of 
techniques [13, 14] is based on the switching scheme - 
commonly two TFRs are considered with different cha-
racteristics in rejecting noise and preserving quality of 
signal components. Then, according to some switching 
rule, “pixels” of the resulting TFR are selected from two 
initial TFRs. 

Described filter groups have limited accuracy since 
filtering of a TFR as a 2-D image is rather challenging. 
Namely, noise in TF images is often signal-dependent 
and it differs for various TFRs [15]. For example, for 
the Wigner distribution (WD), noise is Gaussian and 
signal-independent over entire TF plane [16]. Resulting 
noise probability density function (pdf) for many other 
TFRs is closer to the Rayleigh distribution while having 
signal-dependent behavior [17]. Another common fea-
ture of TFR noise is that its variance can be significantly 
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higher for signal terms than in the regions outside them. 
The goal of this paper is to study application of 

several advanced nonlinear filtering approaches to the 
task of TFR denoising. First, nonlinear scanning win-
dow filters are applied. Filters belonging to the second 
group of techniques are based on the discrete cosine 
transform (DCT) since it gives significantly better re-
sults comparing to other transforms [18]. Nonlocal fil-
ters have become extremely popular in image process-
ing [19, 20]. Therefore the block matching 3-D (BM3D) 
filter is used as a representative of the third group of 
techniques [20]. It is shown that these advanced strate-
gies for image filtering can also be used for reducing 
noise effects in the TFRs with small negative impact to 
the signal auto-terms. 

The paper is organized as follows. Introduction to 
the well-known TFRs, their interconnection with S-
method (SM) and the overview of the noise influence on 
different TFRs are considered in Section 2.1. Detailed 
analysis of noise characteristics in the SM is carried out 
in Section 2.2. Section 3 represents an overview of fil-
tering techniques which can provide the SM denoising 
effect. The criterions used for estimation the TFR filter-
ing efficiency are described in Section 4. Simulations 
and detailed analysis of obtained results for each class 
of filtering techniques are given in Section 5. 

 
1. TFR analysis 

 
1.1. Noise influence on common TFRs 

 
The most popular division of TFRs is based on 

their linearity [3, 4]. When linear combination of input 
signals produces linear combination of TFRs, we have 
linear transform. Among them we can mention the 
short-time Fourier transform (STFT), Gabor transform, 
wavelet transform, S-method, etc. [8, 9, 21]. 

Consider noise influence on the STFT. For dis-
crete-time signal s(tn), it is defined as: 

 
     

s n p

n k k p k
k

STFT t , f

s t t w t exp j2 f t ,



                (1) 

where w(tk) is a window function that is commonly 
symmetric w(tk)=w(-tk) and decreasing from the origin 
w(|tk|) ≤ w(|tl|) for |tk| > |tl|, 

tn and fp denote a discrete time and frequency sam-
ples equaled to tn=tst+nTS and fp=pFS/N, 

tst is the start time, 
p[1;N], N=512, 
TS denotes a sampling interval, TS=T/N=1/FS, 
T is a duration of observation interval. 

For signal corrupted by the additive white Gaus-
sian noise (AWGN), (tn), with zero mean and standard 
deviation (STD) σ, the mean value of the STFT is equal 

to 

    n p s n pE STFT t , f STFT t , f ,              (2) 

where ν(tn)=s(tn)+(tn). 
The STFT variance is 

   

 

2
n p s n p

22
k

k

E STFT t , f STFT t , f

w t .


   
 

  
       (3) 

Therefore, noise characteristics in this case are nei-
ther signal, nor time and frequency dependent. 

Situation with TFRs related to the noise influence 
becomes more difficult for nonlinear representations. 
For example, quite often instead of the complex-valued 
STFT its square magnitude version called spectrogram 
(SPEC) is considered: 

    2
s n p s n pSPEC t ,f STFT t ,f .            (4) 

The SPEC shares many favorable properties and 
weaknesses of the STFT but noise characteristics stud-
ied in depth in [11] are quite different. Namely, in the 
SPEC, the resulting noise is signal, time and frequency 
dependent. In the region of signal components, the noise 
variance is significantly higher than in the region where 
there are no signal components. Also, the resulting noise 
is not Gaussian but, in fact, it has Rayleigh pdf [22]. 

Considering nonlinear TFRs, the famous represen-
tation called the WD should be mentioned [23]. It was 
firstly introduced in the quantum mechanics and later on 
extended to the TF analysis and even became its corner-
stone. WD is mainly used for improvement of the TF 
resolution. Namely, in the WD (here given in practical 
windowed-pseudo form), signal components are better 
concentrated and occupy significantly smaller part of 
the TF plane compared to the STFT or SPEC. The WD 
is defined as 

 
       

s n p

n k n k k p k
k

WD t ,f

s t t s* t t w t exp j2 f t ,



     . (5) 

The WD is real-valued TFR and its mean value for 
noisy signal is 

     22
n p k

k
E WD t ,f w t    .            (6) 

It is seen that WD mean value is non-zero but it is 
constant over entire TF plane and it does not influence 
TF image significantly nor other abilities of the TFRs in 
estimation, feature extraction, and detection. Variance 
of the WD is evaluated as 

    
   

2
n p n p

22 2 2
k

k

E WD t ,f E WD t ,f

2A w t ,

 
 

  
 

   
     (7) 
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under assumption that signal of interest is a mono-
component FM s(tn) = A exp(jφ(tn)), where φ(t) is the 
total phase of the signal. Thus, the obtained noise is 
signal dependent. Here, for simplified FM signal model, 
the variance varies with changes of the signal amplitude 
but for other signal models it could be more compli-
cated. In [23], it has been shown that the WD can be 
treated as Gaussian random fields [24]. 

The main difficulty associated with the WD is the 
fact that for signals with several components its TFR 
exhibits emphatic cross-terms. Therefore, numerous 
strategies were proposed for reducing the effect of inter-
ferences/cross-terms. Among them, there is an effective 
and simple TFR called the SM defined as [22] 

 
     

n p

n p n p

SM t ,f

P STFT t ,f STFT* t ,f d ,




    
   (8) 

where P(θ) is a frequency domain low-pass filter. 
For P(θ) = πδ(θ) we obtain the SPEC while for the 

P(θ)=1 the WD follows. Selecting the filter as P(θ)=1 
for θ[-ϕ; ϕ] and P(θ)=0 elsewhere for relatively small 
values of ϕ we can achieve significant concentration 
improvement without undesired terms and interferences. 

Noise influence on the SM is partly studied in 
[15]. It has been shown that in the area of the SPEC 
auto-term the variance in the TF plane is higher while in 
the area where there are no signal components the vari-
ance is smaller. Note that the area of elevated variance 
does not correspond to small region of the SM highly 
concentrated auto-terms but too much wider region of 
the SPEC or STFT auto-terms. All other details required 
to understanding phenomena related to the noise influ-
ence on the TFRs (images) can be found in [25, 26]. 

Thus, one of the common ways to reduce noise in-
fluence on TFRs is to design or select the optimal trans-
form for the corresponding signal and noise models. In 
this paper, we are going to demonstrate another way to 
cope with the noise influence in different TFRs. Name-
ly, our idea is to apply advanced filtering methods [10, 
19, 27] from image processing field at the post-
processing stage of TFR. This can be done if we con-
sider estimated TFR as an image. Following such an 
approach, the first step is to investigate noise character-
istics at TFR image in order to choose a proper filter. 
 

1.2. Resulting noise in SM 
 

As it has been already mentioned, TFRs are noisy 
if disturbance is present in original signal. Such a situa-
tion can prevent solving further tasks of the TF analysis 
and processing. A possible direction for performance 
improvement is to remove noise by filtering while con-
sidering TFR as an image. There are numerous filters 
existing nowadays. To clarify what image denoising 
methods can be applicable for a particular case, it is 

necessary to specify noise model and its characteristics 
for data at hand. In order to do that for our task, con-
sider a three-component test signal of the form  

 
 

 

2
n n n

2
n n

2
n n

s(t ) 0.7exp j36 t j12 t

0.8exp j36 t j84 t

exp j32 t j40 t ,

    

    

    

         (9) 

where tn=tst+nTS, 
tst=-1 sec., 
n[1; N], 
N=512, 
TS=T/N, 
T=2 sec. 

The STFT is evaluated with window of the width 
0.5 sec., while width of the frequency window in the 
SM is ϕ=24π. This signal is used in all forthcoming ex-
amples and statistical analysis. 

The SM of the test signal corrupted by an AWGN 
with the STD σ=1 is represented in Fig. 1a where signal 
components appear themselves as three inclined “strips” 
with noise clearly visible in homogeneous regions of 
this image. Note that the considered TFR has both posi-
tive and negative values. Such a situation differs from 
the case of traditional image processing where data usu-
ally have non-negative values. 

The statistical characteristics of the resulting noise 
in the SM are studied in [15, 25]. For application of the 
filtering in the TFR domain here we will employ simu-
lation and consider resulting noise behavior in the TF 
plane. For this purpose, we have obtained M=512 reali-
zations of the SM and then analyzed statistics of each 
element (pixel) of the SM of the following form: 

(m) (m) true
n p n p n p(t , f ) SM (t ,f ) SM (t , f ),     (10) 

where m  [1;M] is a realization index, 
SMtrue(tn, fp) denotes the SM of noiseless signal. 

While considering this task, we have been inter-
ested in finding answers to the following questions: 1) 
Is the noise induced in the SM Gaussian? 2) Is the noise 
spatially stationary (additive) or non-stationary (possi-
bly, some kind of signal-dependent)? 3) Is the noise 
white or spatially correlated? 

To answer the first question, different approaches 
can be applied. In particular, one can apply some Gaus-
sianity tests [28]. It is also possible to use some parame-
ters that characterize distribution tail heaviness [29]. 
These could be a standard kurtosis or its robust version 
called percentile coefficient of kurtosis (PCK) [28-30]: 

3 1
p

90 10

Q Q1PCK K ,
2 P P


 


                   (11) 

where Q1, Q3, P90, P10, are the first and the third quar-
tiles and the 90th and the 10th percentiles, respectively, 
of the sample to be analyzed. 
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Recall that, for Gaussian pdf the standard kurtosis 
is equal to 0 whilst it is larger for heavy-tailed distribu-
tions. Speaking of PCK values, they are close to 0.265 
for data samples obeying Gaussian pdf and they are 
smaller than 0.265 for pdfs with heavier tails [30] (e.g., 
0.21 for Laplacian distribution).  

Analysis of standard kurtosis values of data 
Δ(tn, fp) (see Fig. 1b) shows that noise pdf is close to 
Gaussian for pixels that belong to “informative strips” 
whilst for other regions it is obviously non-Gaussian. 
Map of PCK values (see Fig. 1c) shows that noise char-
acteristics are close to Laplacian in homogeneous re-
gions and are almost Gaussian in places where signal 
components are present. Therefore, both tests are in 
good agreement and we can state that the resulting noise 
in the TFR is mainly heavy-tailed. 

Due to non-Gaussian nature of the noise induced, 
it is worth analyzing robust estimates of noise intensity 
(scale). A popular technique to do this is to calculate the 
median of absolute deviations from the median (MAD) 
[28-30]: 

  n 1 NMAD med x(t ) med x(t ),..., x(t ) ,    (12) 

where med{…} denotes the sample median, 
x(t1),…, x(tN) are data values of the realization to be 

processed. 
Analysis of data in Fig. 1d clearly shows that the 

resulting noise is non-stationary since such intensive 
spatial variations of MAD values cannot be explained 
by a limited sample size (M=512). Thus, the observed 
noise is of specific signal-dependent type having larger 
variance (scale) in places of signal component presenta-
tion. Besides, MAD for each pair of coordinates (n, p) 
has been found approximately proportional to the vari-
ance σ2 of original data. Additional information on noise 
properties can be retrieved from the SM realization 
analysis. Histogram shown in Fig. 2 has been obtained 
by generating M=512 realizations of noisy signal (σ=1), 
calculating the SM (8) and processing M=512 samples 
of a pixel that belongs to a homogeneous fragment (with 
coordinates n=80 and p=80). Histogram from Fig. 3b 
has been obtained for manually selected quasi- 
 

 
a                                                                                         b 

 
c               d 

Fig. 1. Analysis of noise properties for the case of σ=1: one realization of TFR obtained by SM  
for noisy signal (9) (a), maps of statistical parameters: kurtosis (0 value corresponds to Gaussian process) (b),  

PCK (c) and MAD (d) values 
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homogeneous fragment of SM(m)(tn, fp) realization from 
Fig. 3a. In both cases, it is seen that distributions are not 
Gaussian and have heavy tails. 
 

 
Fig. 2. Histogram of one pixel values  

(with coordinates n=80 and p=80)) in the SM  
for M=512 noisy realizations with σ=1 

 

 
a 

 
b 

Fig. 3. SM(m)(tn, fp) estimate with manually selected 
quasi-homogeneous fragment of size 32x32 pixels (a) 

and histogram of SM(m)(tn, fp) values  
in the selected region (b) 

 

In addition, an important characteristic of the re-
sulting noise is its spatial correlation [31]. In order to 
check this property, we have obtained an estimate of 2-
D auto-correlation function for manually selected quasi-
homogeneous region marked in Fig. 3a. Fig. 4 repre-
sents this estimate in two different views. 

 
a 

 
b 

Fig. 4. Noise 2-D auto-correlation function estimate 
depicted by Matlab pcolor-function (a)  

and surf-function (b) 
 
As it is seen, we can state that the noise is spatially 

correlated and correlation degree in one direction is lar-
ger than in another. These conclusions should be taken 
into account when choosing a proper filter for TFR 
processing. 

 
2. Local and nonlocal filtering of SM 
 
The observed practical situation is not typical for 

image denoising. Namely, there are numerous filters 
designed to cope with AWGN [27, 32, 33] where 
BM3D filter [10] is often considered to be state-of-the-
art. Another group of filters has been proposed to cope 
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with such types of noise as speckle or Poisson [34, 35] 
or others [36, 37]. Notable exceptions from the previous 
class are filters from [31, 38] that have been designed 
for a priori known dependence of noise intensity (vari-
ance) on local parameters (e.g., mean) and for assump-
tion that noise is spatially correlated. Some filters can 
perform in non-Gaussian noise environment [34, 37], 
but not for disturbance with Laplacian pdf. In our case, 
dependence of noise local intensity is a priori unknown, 
i.e., we deal with non-stationary noise with spatial cor-
relation. 

A simple solution could be to use nonlinear non-
adaptive filters such as median, α-trimmed mean, Wil-
coxon, etc. They are able to cope well with heavy-tailed 
non-stationary noise [39]. However, the main problem 
here is selection of the proper filter type which will 
work well both for regions with non-Gaussian interfer-
ence and areas with Gaussian intensive noise. 

 
2.1. Locally adaptive filters (LAF) 

 
Possible solution for the considered problem are 

spatial adaptive filters. Locally adaptive robust filters 
are well tuned to the described situation [40, 41]. Such 
filters include, at least, a noise suppressing filter (NSF), 
a detail preserving filter (DPF) and a local activity indi-
cator (LAI). The working algorithm of such filters is to 
calculate LAI (for a current position of sliding window) 
as the first step, then to compare the LAI value to some 
threshold and, finally, to make a decision what filter 
(NSF or DPF) to apply for evaluating output value for a 
given pixel. For the SM, application of LAF can be 
written as: 

LAF
n p

NSF
n p n p

DPF
n p n p

SM (t , f )

SM (t , f ), if LAI(t , f ) TH;

SM (t , f ), if LAI(t ,f ) TH;



  


        (13) 

where SMNSF(tn, fp) and SMDPF(tn, fp) are NSF and DPF 
outputs, respectively, 

TH denotes LAF threshold value. 
The main idea of applying this kind of filters is 

that in our data (SM) we have locally passive (quasi-
homogeneous) and locally active (strips and their edges) 
areas. Then, it is reasonable to apply NSF in locally 
passive areas and DPF for strips and their neighbor-
hoods assuming that LAI allows discriminating them. 
Practical questions that arise for this group of filters are 
the following: what NSF and DPF to use? What should 
be a proper LAI and threshold for it for the considered 
application? 

In order to find the answers, suppose that we know 
a priori or are able to accurately estimate σ in original 
noisy 1-D signal (9). Then, we check dependence of the 
noise statistics in quasi-homogeneous regions with re-

spect to σ. For this purpose, histograms of SM values 
for single pixel with coordinates (n, m)=(80, 80) have 
been obtained for four values of σ (see Fig. 5). It is seen 
that histogram shapes remain practically the same (dis-
tribution close to the Laplacian) but data scale quickly 
grows with increasing of σ. Data provided actually cha-
racterize the STD in quasi-homogeneous regions of the 
SM. 

To confirm numerically the conclusion made on 
the basis of the histograms’ shape, the STD of the pixel 
values (σIND) are presented in Table 1 for considered 
four input noise σ values. The obtained data show that 
σIND values are approximately proportional to σ2. We 
can adopt an approximation expression between input 
noise STD σ value and induced noise STD σIND as 

2
IND 35   .                           (14) 

Its values provided in the second row of the Ta-
ble 1 show that the expression is good enough. Note that 
the approximation is valid only for the considered size 
of input signal and Gaussian noise affecting the signal. 
It also depends upon window function used. However, 
the main idea is that in each particular situation the pro-
portionality factor can be determined in advance. 

The resulting noise scale in quasi-homogeneous 
region can be also characterized in another way. It can 
be observed from analysis of data in Fig. 1d that pa-
rameter MAD (12) values are almost constant in homo-
geneous regions.  

Therefore, it is possible to determine local MAD 
for 7x7 scanning window as 

    


n p

i j i j

MAD(t , f )

med SM t ,f med SM t ,f ,

i n 3,...,n 3, j p 3,...,p 3 .



 

     

.      (15) 

 
Table 1 

Dependence of induced noise STD on input noise STD 

Input noise STD, σ 
 0.1 0.5 1 1.5 

Induced noise STD, 
σIND 0.35 9.32 33.61 90.15 

APPR 2
IND 35    0.35 8.75 35 78.75 

 
Histograms of local MAD estimates calculated in 

fully overlapping blocks of 7x7 pixel size are presented 
in Fig. 6 for two values of input noise STD. As it is 
seen, local MAD estimates are mostly smaller than val-
ue calculated according to approximation formula (14). 
Such local estimates mostly relate to quasi-
homogeneous regions whilst there are also local esti-
mates with considerably larger values corresponding to 
signal component area. Thus, we can use the value 35σ2 
as the LAF threshold value TH in (13) for discriminat-
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ing the locally passive and active areas in SM image. 
i.e. if the local MAD value in current block is less or 
approximately equal to 35 σ2 then we most probably are 

in quasi-homogeneous region of TFR and NSF should 
be applied, and vice versa. 

 

 
a                   b 

 
c        d 

Fig. 5. Histograms of SM(m)(tn, fp) values for n=80 and p=80 for σ=0.1 (a),  
σ=0.5 (b), σ=1.0 (c), σ=1.5 (d) 

 

 
a        b 

Fig. 6. Histograms of local MAD estimates calculated in fully overlapping blocks of 7x7 pixel size  
for input noise STD values σ=0.5 (a) and σ=1.5 (b) 
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2.2. Orthogonal transform based  
image filters 

 
There are also other options to filter TFRs. One of 

them described in [42] uses wavelet-based denoising 
algorithm whilst the approach considered in [43] im-
plements bilateral filtering. In both cases, it is demon-
strated that denoising of TFRs leads to certain im-
provement but no quantitative data are presented. 

Certain degree of adaptation to noise local inten-
sity and image content can be done applying locally 
adaptive DCT-based filters [44]. The general principles 
of DCT-based denoising are the following. It is carried 
out in blocks of 8x8 pixels (the most typical size). In 
each block, 2-D DCT is calculated and the obtained 
DCT coefficients are compared to one or several thresh-
olds. If noise is approximate white, the threshold is set 
fixed for all DCT coefficients for a given block position 
(thresholds can be frequency dependent if noise is spa-
tially correlated and its DCT spectrum is a priori known 
or pre-estimated). Meanwhile, if noise is not stationary, 
different thresholds can be set for different positions of 
blocks. In particular, a typical practice is to set thresh-
old(s) proportional to local noise STD (or its estimate 
obtained in one or another manner [42]). 

The next operation performed in each block is 
thresholding. Similarly to wavelet denoising techniques, 
there are several types of thresholding schemes but one 
of the most efficient and simple is hard thresholding. It 
will be used in DCT-based TFR denoising filter as: 

 
     

thr
SM n p

SM n p SM n p n p

D k,l, t , f

D k,l, t , f , if D k,l, t , f T k, l, t , f ;

0, otherwise;



  


(16) 

where  SM n pD k,l, t , f  is the kl-th DCT coefficient in 

the considered block,  

 n pT k, l, t , f  denotes a threshold value, block posi-

tion is determined by its left upper corner (indices of tn 
and fp),  

 thr
SM n pD k,l, t , f  is the kl-th DCT coefficient in the 

considered block after thresholding operation. 
Then, inverse 2-D DCT is applied to the thresh-

olded DCT coefficients and filtered values of processed 
data (image) are obtained for all pixels belonging to a 
given block. Note that blocks can be non-overlapping, 
partly overlapping, and fully overlapping. In the latter 
two cases, the filtered values for a given pixel are aver-
aged for all blocks this pixel belongs to. Full overlap-
ping requires more computations than denoising in 
partly or non-overlapping blocks but it usually gives 
smaller output mean square error (MSE). 

A problem that can arise is that the DCT-based fil-
ters in [44] have not been tried for spatially correlated 
and heavy-tailed noise. This is an obstacle that can 
cause problems [31, 45, 46], and restrict performance of 
such filters. Another problem deals with local adapta-
tion mechanisms proposed in [44]. They relate to local 
estimation of noise standard deviation (denoted as 

 n pk, l, t ,f  in our case) and to local adaptation of 

proportionality factor  n pt ,f  used in threshold set-

ting as      n p n p n pT k, l, t , f t , f k,l, t , f   . These 

aspects should be carefully checked in future experi-
ments. In our studies, we have considered a fixed thre-
shold. 

 
2.3. Non-local filters 

 
Finally, there are numerous non-local filters pro-

posed recently [10, 27]. Their peculiarity is that they 
employ search of similar patches and joint processing of 
data for each formed set of such patches. To our best 
knowledge, nonlocal filtering techniques have not been 
tried for denoising data (images) with noise properties 
described previously. An obvious problem is that both 
search and joint processing have to be adapted to noise. 
Therefore, we have decided to consider application of 
the BM3D filter [10] to our data. 

The BM3D has elaborated algorithm realization 
with selection of the similar patches. These patches are 
put into 3D array and they are filtered together using 3D 
linear transform. In this way similar patches in images 
are filtered together and this allows using important 
property of these nonlocal patches that correlation be-
tween noises is smaller than of patch signal compo-
nents. This algorithm is proposed in [10]. Detailed anal-
ysis of realization is provided in [20, 47]. Here only 
very brief algorithm realization will be provided while 
for all other details for interested readers the program 
realization can be found in [48].Rough filtering stage 
consists of search for similar (commonly rectangular 
patches), forming 3D matrix of these patches, calcula-
tion of the 3-D discrete linear transform (commonly 
DCT or Hadamard/Walsh) and filtering using hard thre-
shold technique (transform coefficients below threshold 
are set to 0). In the fine filtering stage again similar 
blocks (patches) are found forming 3D array followed 
by evaluation of the 2D discrete linear transform. Now, 
filtering is performed in the transform domain using 
Wiener filter. The same pixel in the image can belong to 
various filtered blocks and final output is obtained using 
aggregation of results with different blocks. 

The TFRs have large areas influenced by noise. 
These areas represent similar patches that can be effi-
ciently filtered with both local and nonlocal filters. In 
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addition, similar patches (blocks) can be recognized in 
the TF plane in area of the signal components. Then 
application of nonlocal filtering to these parches is sup-
posed to improve filtering of the TFR. 

The available versions of BM3D filter can only be 
applied to data having non-negative values. Then it is 
necessary to provide certain pre-processing stage which 
includes finding the minimal value of current realization 
of TFR denoted as SMmin, and using its absolute value 
to shift the TFR data for obtaining a realization array of 
non-negative values. After that, the BM3D is used and 

results in preliminary filtered data  prel
n pfiltSM t ,f . 

Then, the determined shift value, |SMmin|, is subtracted 

from  prel
n pfiltSM t ,f  for obtaining final processed data 

array  BM3D
n pSM t ,f . 

A key question here is that in order to perform the 
BM3D filtering, noise STD in a filtered process should 
be known or pre-estimated in advance. In Section 5.3, 
we propose methodology to solve this practical ques-
tion. We understand that such a discrepancy between 
actual and assumed noise properties can lead to reduced 
filtering efficiency. Meanwhile, we expect that certain 
positive effect from such denoising can be achieved in 
any case. 

 
3. Performance criterions used 

 
Therefore, we have the practical situation which is 

very rarely met in practice with respect to image (TFR) 
subject to filtering. Note that assessment of denoising 
efficiency for the considered application is specific as 
well. We need such a denoising that should be able to 
suppress noise in quasi-homogeneous regions without 
introducing distortions into informative fragments that 
correspond to signal components. Besides, we deal with 
non-Gaussian noise in data where MSE is not the best 
criterion to characterize filtering efficiency. 

To take into account these peculiarities, the follow-
ing criteria have been used in further studies. First, out-
put MSE which is the well-known and often applied 
parameter was employed. We calculated MSE for entire 
TFR (MSEINT) and for pixels belonged to the signal 
components only (MSESC): 

   

N P

INT
n 1p 1

M 2(m)
FILTn p n pFILT

m 1

1 1MSE
N P M 1

TFR t , f TFR t , f ,

 



 
 

     




    (17) 

   
s s

SC
SR SR n N p P

M 2(m)
FILTn p n pFILT

m 1

1 1MSE
N P M 1

TFR t , f TFR t , f ,

 



  

     

 


   (18) 

where  (m)
n pFILTTFR t , f  denotes the value of a pixel 

with coordinates (tn, fp) for the m-th realization of fil-
tered TFR, 

 FILT n pTFR t , f  denotes averaged (over the en-

semble of M=32 realizations) value for the same pixel 
with coordinates (tn, fp), 

NS and S are the sets of indices of the signal com-
ponent region, 

NSR and SR denote the total number of pixels in the 
signal component region. 

Besides, we were also interested in mean absolute 
error (MAE) calculated with respect to noise-free SM 
[39]. The MAE is also evaluated for entire SM 
(MAEINT) and for regions of signal component only 
(MAESC): 

   

INT

N P M
(m)

FILTn p n pFILT
n 1p 1m 1

1MAE
N P M

TFR t , f TFR t , f ;
  

 
 

 
(19) 

   
s s

SC
SR SR

M
(m)

FILTn p n pFILT
n N p P m 1

1MAE
N P M

TFR t , f TFR t , f .
  

 
 

   
(20) 

The input MSE has been calculated as well: 

   

N P

INT
n 1p 1

M 2(m)
n p NF n pNOISY

m 1

1 1MSE
N P M 1

TFR t , f TFR t , f ,

 



 
 

     




   (21) 

where  (m)
n pNOISYTFR t , f  is the m-th realization of noi-

sy TRF,  

 (m)
n pNFTFR t , f  is a noise-free TFR. 

MSEINT should be considerably smaller than 
MSEINP and it is possible to characterize filtering effi-
ciency by the ratio MSEINT/MSEINP (the smaller, the 
better). Similarly, it is possible to determine input MAE. 
The ratio of output MAE to input MAE should be as 
small as possible as well. 

There is also one more requirement to the denois-
ing methods under study. We would like them to be 
efficient for a wide range of input signal-to-noise ratios 
(SNR). Therefore, the study has been carried out for 
variations in input SNR value from 6.8 to 0.8. To simu-
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late such a variation, four different values of input noise 
STD σ have been used in experiments, namely, 0.5, 0.7, 
1, and 1.5. 

 

4. Analysis of obtained results 
 

4.1. Local nonlinear filters 
 

As the simplest representative of non-adaptive non-
linear filters, the median filter with two different win-
dow sizes, namely, 3x3 and 5x5 pixels, has been ana-
lyzed. The results are presented in Tables 2-5. As it is 
seen from Table 2, MSEINP grows faster than propor-
tionally to σ2, whilst input MAE grows faster than pro-
portionally to σ (see data in Table 4). Median 3x3 filter 
leads to output MSE values smaller in comparison to 
MSEINP but this reduction is not large (see data in Ta-
bles 2 and 3). This takes place for all considered σ. Out-
put MAE is approximately of the same order as input 
MAE (see data in Tables 4 and 5). Thus, there is no ob-
vious benefit in applying the 3x3 median filter. 
 

Table 2 
Output MSE calculated for entire TFR 

Input noise STD, σ  0.5 0.7 1 1.5 
Input MSE 1373 3045 6658 18446 

 Output MSE (MSEINT) 
Median (3x3) 1282 2814 6055 16508 
Median (5x5) 1036 2218 4686 12490 

LAF1 1338 2928 6203 16222 O
ut

pu
t 

M
SE

 

LAF2 1328 2874 5965 15285 
 

Table 3 
Output MSE calculated for signal component area 

Input noise STD, σ  0.5 0.7 1 1.5 
Input MSE 9792 20973 41280 93020 

 Output MSE (MSESC) 
Median (3x3) 9276 19694 38229 84840 
Median (5x5) 7617 15757 30119 65181 

LAF1 9704 20773 40832 92292 O
ut

pu
t 

M
SE

 

LAF2 9704 20781 41267 96523 
 

As to the local MSESC values, the 5x5 median filter 
performs rather well (see data in Table 3), whilst ac-
cording to MAEINT criterion, the results are not good. 
They are in three out of four cases larger than input 
MAE values for entire TFR (see data in Table 4). The 
most undesirable fact is that output MAE for this filter 
can be sufficiently larger than input MAE for signal 
component area (Table 5). 

 

Table 4 
Output MAE calculated for entire TFR 

Input noise STD, σ  0.5 0.7 1 1.5 
Input MAE 16.8 27.0 44.8 84.4 

 Output MAE (MAEINT) 
Median (3x3) 17.7 26.8 43.4 80.3 
Median (5x5) 24.5 31.2 44.8 75.5 

LAF1 15.6 24.5 39.6 72.4 O
ut

pu
t 

M
A

E
 

LAF2 15.3 23.8 38.1 69.2 
 
A larger size median filter (5x5 pixel scanning 

window) is known to suppress noise better but by the 
expense of worse preservation of important details and 
edges in some cases. This statement is proved by data in 
Table 2 where output MSEINT values show that results 
for 5x5 median filter are better in comparison to the 
case of 3x3 median filter. 

 
Table 5 

Output MAE calculated for signal component area 

Input noise STD, σ 
 0.5 0.7 1 1.5 

Input MAE 77.2 111.8 155.5 234.5 
 Output MAE (MAESC) 

Median (3x3) 89.6 118.1 158.7 230.8 
Median (5x5) 154.7 169.8 197.8 249.2 

LAF1 77.1 111.3 154.8 234.1 O
ut

pu
t 

M
A

E
 

LAF2 77.1 111.3 155.9 243.4 

 
4.2. Locally adaptive nonlinear filters 

 
We have analyzed two variants of LAFs denoted as 

LAF1 and LAF2. In LAF1, as noise suppression filter 
(NSF) we propose to apply 7x7 pixel α-trimmed mean 
filter with outer trimming parameter equal to 10% (i.e., 
5 largest and 5 smallest values in ordered data sample in 
a given scanning window are rejected before averaging 
the remainder values). Larger 7x7 scanning window is 
motivated by necessity to efficiently suppress spatially 
correlated noise with remaining mean for pdfs that are 
symmetric with respect to location parameter [37, 43]. 
As the DPF, we propose 3x3 center weighted median 
filter (CWMF) [39] with rather large weight (value 5 is 
adopted in our experiments). Such a filter removes 
spikes but keeps almost all other values unchanged. 
Clearly, noise suppression efficiency of this filter is not 
high but it practically does not destroy information con-
tent. Local MAD value (scale characteristic) is used as a 
local activity indicator and a threshold value depending 
on induced noise STD σIND. The threshold is set equal to 
35 σ2. 
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According to output MSE values (integral in Ta-
ble 2 and local in Table 3), LAF1 provides approxi-
mately the same results as the 3x3 median filter and 
worse than 5x5 median filter. However, according to 
MAE criterions (integral in Table 4 and local in  
Table 5), the use of LAF1 leads to slightly better results 
than for the analyzed standard median filters. 

The locally adaptive filter LAF2 differs from LAF1 
by the set threshold only which is equal to 70 σ2 for 
LAF2. This does not change the results considerably – a 
slightly better noise suppression in homogeneous re-
gions is provided (smaller values of integral MSE in 
Table 2 and integral MAE in Table 4) by the expense of 
a little bit worse processing in signal component area 
(greater values of local MSE in Table 3 and local MAE 
in Table 5). 

Concluding our analysis for non-adaptive and 
adaptive nonlinear filters, we can state that some noise 
reduction with useful information preservation can be 
achieved but the benefit is not large. Maybe, other 
NSFs, DPFs, LAIs or different thresholds can produce 
better results. 
 

4.3. DCT filter 
 

The next considered solution for the SM denoising 
is the application of locally adaptive DCT-based filter 
[44]. If noise is white and additive, a general recom-
mendation is to set the filter threshold as T 2.6      
where   is the estimate of noise STD. If noise is spa-
tially correlated and we do not adapt to noise spectrum, 
optimal β that provides the best noise suppression effi-
ciency can be considerably larger than 2.6 [45]. There-
fore, we apply different threshold values T for analyzing 
its influence on the performance of the DCT-based filter 
for the considered application. The obtained results are 
presented in Tables 6-9. 

Analysis of integral MSE (Table 6) shows that the 
increase of T results in reduction of MSEINT without 
reaching minimum for the considered range of the thre-
shold variations. It can be explained by the following 
fact. Quasi-homogeneous regions occupy large part of 
TFR and noise suppression ability of applied filter has 
the main impact on the estimated output MSEINT. Since 
the increase of threshold value leads to better suppres-
sion of spatially correlated noise [45], steady decreasing 
of output MSEINT is observed.  

Reduction is not large but for intensive input noise 
the output MSEINT can be about 1.7 times smaller than 
input integral MSE value. Larger threshold leads to 
smaller local MSE (Table 7). However, optimum is not 
reached although threshold value is varied in wide lim-
its. The situation changes if MAE criterion is analyzed. 
According to data in Table 8, optimum (minimum MAE 
value) is observed if T 20   where   is defined as 

APPR 2
IND 35     . According to Table 9, optimum 

takes place for slightly smaller T. We have considered 
cases ( T 20   and T 10  ) of adaptive choice of T 
value. Obtained results are presented in two lowest rows 
of Tables 6-9. As it is seen, positive effect takes place 
according to all analyzed criteria but this effect is not 
too large. 
 

Table 6 
Output MSE calculated for entire TFR 

Input noise STD, σ 
 0.5 0.7 1 1.5 

Input MSE 1373 3045 6658 18446 
  Output MSE (MSEINT) 

5 1372 3044 6656 18443 
50 1335 2976 6555 18311 
100 1307 2893 6369 18007 
200 1272 2786 6028 17171 
400 1220 2660 5572 15479 
800 1125 2453 5036 13089 

1600 1050 2255 4537 10963 
1800 1032 2205 4417 10616 

APPR
IND10  1313 2811 5664 13146 D

C
T

 fi
lte

r 
m

od
ifi

ca
tio

ns
 

T
hr

es
ho

ld
 v

al
ue

 T
 

APPR
IND20  1280 2691 5144 11008 

 
Table 7 

Output MSE calculated for signal component area 

Input noise STD, σ 
 0.5 0.7 1 1.5 

Input MSE 9792 20973 41280 93020 
  Output MSE (MSESC) 

5 9792 20972 41279 93018 
50 9772 20937 41222 92917 
100 9738 20872 41107 92693 
200 9636 20714 40826 92118 
400 9396 20223 39887 90179 
800 8769 18900 37160 84022 

1600 8206 17408 33630 73415 
1800 8038 16969 32645 70980 

APPR
IND10  9748 20766 40160 84234 D

C
T

 fi
lte

r 
m

od
ifi

ca
tio

ns
 

T
hr

es
ho

ld
 v

al
ue

 T
 

APPR
IND20  9667 20370 37829 73718 

 
4.4. BM3D filter 

 
It has been mentioned above that for operation of 

BM3D filter one needs to set the noise STD value. 
There is no such a priori information for the considered 
application but it is possible to use formula (14), i.e. 

APPR 2
IND 35   , as some “most often met” standard de-

viation or to employ other values. Results obtained for 
wide range of a priori set induced noise STD values (for 
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filter application) as well as for value APPR
IND  and 2 and 

3 times larger than APPR
IND  are given in Tables 10-13. 

 
Table 8 

Output MAE calculated for entire TFR 

Input noise STD, σ 
 0.5 0.7 1 1.5 

Input MAE 16.8 27.1 44.8 84.4 
  Output MAE (MAEINT) 

5 16.8 27.1 44.8 84.4 
50 15.1 25.3 43.5 83.7 

100 14.4 23.6 41.3 82.1 
200 14.1 22.1 37.8 77.6 
400 14.1 21.4 34.5 69.7 
800 15.3 21.8 33.2 61.3 
1600 21.6 26.3 36.1 58.7 
1800 23.9 28.1 37.2 59.1 

APPR
IND10  14.5 22.3 35.1 61.5 D

C
T

 fi
lte

r 
m

od
ifi

ca
tio
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T
hr

es
ho

ld
 v

al
ue

 T
 

APPR
IND20  14.1 21.4 33.3 58.7 

 
Table 9 

Output MAE calculated for signal component area 

Input noise STD, σ 
 0.5 0.7 1 1.5 

Input MAE 77.2 111.8 155.5 234.5 
  Output MAE (MAESC) 

5 77.2 111.8 155.5 234.5 
50 77.1 111.7 155.3 234.3 

100 77.1 111.5 155.1 234.1 
200 76.9 111.1 154.6 233.4 
400 77.8 110.6 153.4 231.3 
800 86.4 114.1 153.4 226.9 
1600 131.5 145.5 174.5 231.9 
1800 148.8 158.7 183.9 236.1 

APPR
IND10  77.1 111.3 153.7 227.1 D

C
T

 fi
lte

r 
m

od
ifi

ca
tio

ns
 

T
hr

es
ho

ld
 v

al
ue

 T
 

APPR
IND20  76.9 110.7 152.9 231.5 

 
Interestingly, when filter parameter increases, the 

output MSEINT almost steadily decreases (Table 10). 
Output MSEINT can be up to 4…5 smaller than input 
MSE value, i.e. filtering is rather efficient according to 
the considered criterion. It seems possible to set the fil-
ter parameter as high as 105σ2 (the lower row of Table 
10). Analysis of output MSESC (Table 11) leads to simi-
lar conclusions. There is a tendency to local MSE de-
creasing if the filter parameter increases. 

According to local MAE criterion (Table 13), set-
ting the BM3D parameter equal to 35σ2 can be a good 
practical choice. Compared to the DCT-based filter with  

the best parameters settings, there is benefit of about 
10% in denoising of signal component area and substan-
tial improvement in noise suppression efficiency in qua-
si-homogeneous regions. For visual comparison the SM 
estimates obtained by the investigated filtering methods 
are represented in Figs. 7-11.  
 

Table 10 
Output MSE calculated for entire TFR 

Input noise STD, σ 
 0.5 0.7 1 1.5 

Input MSE 1373 3045 6658 18446 
 Output MAE (MSEINT) 

5 1118 2611 5864 16786 
50 602 1455 3256 9374 

100 567 1338 2876 7587 
200 471 1175 2562 6205 
400 296 711 1670 4487 
600 307 715 1598 4112 
35σ2 978 2024 3915 8145 
70σ2 824 1768 3016 6690 B

M
3D

 m
od

ifi
ca

tio
ns

 

B
M

3D
 P

ar
am

et
er

 
105σ2 766 1446 2869 5805 

 
Table 11 

Output MSE calculated for signal components’ area 

Input noise STD, σ 
 0.5 0.7 1 1.5 

Input MSE 9792 20973 41280 93020 
 Output MSE (MSESC) 

5 8636 19437 39329 90300 
50 4827 11480 24293 59646 

100 4526 10523 21517 49776 
200 3662 9031 18812 39893 
400 2085 4900 10833 25258 
600 2013 4539 9334 20522 
35σ2 7684 15682 28589 53123 
70σ2 6532 13739 22528 43656 B

M
3D

 m
od

ifi
ca

tio
ns

 

B
M

3D
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ar
am
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er

 

105σ2 6075 11405 21466 36678 
 

Table 12 
Output MAE calculated for entire TFR 

Input noise STD, σ 
 0.5 0.7 1 1.5 

Input MAE 16.8 27.0 44.8 84.4 
 Output MAE (MAEINT) 

5 13.1 22.1 38.6 77.3 
50 15.4 19.7 29.3 55.1 

100 23.1 26.2 33.8 54.1 
200 40.7 42.1 47.1 61.4 
400 68.3 68.6 69.5 76.3 
600 99.4 99.7 99.2 99.8 
35σ2 12.3 19.1 31.2 53.6 
70σ2 12.1 19.8 30.7 58.1 

B
M

3D
 m
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M
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105σ2 12.8 19.9 34.5 64.1 
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Table 13 
Output MAE calculated for signal components’ area 

Input noise STD, σ 
 0.5 0.7 1 1.5 

Input MAE 77.2 111.8 155.5 234.5 
 Output MAE (MAESC) 

5 72.1 106.8 151.1 230.6 
50 94.4 109.9 140.6 204.6 

100 146.5 154.2 175.7 223.9 
200 257.1 257.7 266.4 285.6 
400 331.5 332.6 334.1 339.4 
600 333.9 336.2 338.4 348.4 
35σ2 68.6 97.9 139.2 213.5 
70σ2 67.8 102.9 151.8 261.1 B

M
3D

 m
od

ifi
ca

tio
ns

 

B
M

3D
 P

ar
am

et
er

 

105σ2 72.8 111.1 180.5 301.5 
 

 
Fig. 7. SM realization at the input of filtering stage 

(MAEINT = 44.1, MAESC = 158.6) 
 

 
Fig. 8. SM estimate at the output of MED 5x5 filtering 

stage (MAEINT = 44.5, MAESC = 202.7) 
 

Alongside with the filtered TFRs (Figs. 8-11), we 
present integral and local MAE values for convenience 
of analysis. It is seen that processing based on median 
filtering in 5x5 sliding window size (Fig. 8) suppresses 
noise but at the same time introduces distortions to the 

signal components. Such results are not surprising and 
have been predicted. Filtering approach based on LAF2 
(Fig. 9) performs better. Namely, there is smaller num-
ber of the undesired signal components with respect to 
the initial SM representation. Better filtering efficiency 
is observed for the DCT and BM3D filters (Figs. 10 and 
11). Interferences between components are attenuated 
with respect to the previous filtering strategies but at the 
expense of significant damage of the weakest signal 
component. 

 

 
Fig. 9. SM estimate at the output of LAF2  

(with T=70σ2) filtering stage  
(MAEINT = 37.6, MAESC = 159.1) 

 
Comparison of SM estimates obtained by the DCT 

and BM3D filters shows that the BM3D preserves the 
most powerful signal component as well as the second 
signal component better than the DCT filter. This con-
clusion is also proved by MAE values (Tables 9  
and 12). 
 

 
Fig. 10. SM estimate at the output of DCT1 

(with T=600) filtering stage 
(MAEINT = 33.9, MAESC = 158.9) 
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Fig. 11. SM estimate at the output of BM3D  
(with filter parameter 70σ2) filtering stage  

(MAEINT = 32.1, MAESC = 164.7) 
 

Conclusions 
 

Filtering of S-method TFRs using filtering tech-
niques common in the digital image processing has been 
studied. Even if the original 1-D signal is corrupted by 
AWGN, the noise induced in the S-method occurs to be 
the non-Gaussian, signal-dependent and spatially corre-
lated. This makes the task of the S-method denoising 
quite complex. 

Several approaches to noise suppression are stud-
ied. They include local nonlinear non-adaptive and 
adaptive techniques, orthogonal transform based filter-
ing (namely, DCT-filter) and nonlocal processing ap-
proach based on the block matching 3-D filter. Consid-
ered filtering techniques are compared using the stan-
dard MSE and MAE metrics determined for both entire 
TFR and a part of TFR containing signal components 
only. 

Analysis shows that significant enhancement (de-
noising effect) can be achieved but it is difficult to pro-
vide a trade-off for such filter properties as noise sup-
pression quality and detail preserving performance. At 
the moment, the best results have been obtained by the 
BM3D filter for which input parameter has been 
adapted to noise properties in a simple way. We are 
confident that better results can be obtained in future if 
spatial correlation of noise is taken into consideration. 
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ВОССТАНОВЛЕНИЕ ЧАСТОТНО-ВРЕМЕННЫХ ПРЕДСТАВЛЕНИЙ: 
ПОДХОД С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ ФИЛЬТРАЦИИ ИЗОБРАЖЕНИЙ 

И. Джурович, В. Лукин, А. Роенко 
Рассмотрена задача повышения качества частотно-временных представлений, полученных S-методом, 

при помощи современных локальных и нелокальных цифровых фильтров, которые разработаны и применя-
ются в области обработки изображений. Актуальность задачи связана с необходимостью наличия частотно-
временных фильтров для обработки нестационарных частотно-модулированных сигналов. В работе рас-
смотрено применение медианного фильтра как представителя класса локальных пространственных фильт-
ров, фильтрации на основе ДКП в качестве представителя методов фильтрации на основе ортогональных 
преобразований, а также BM3D-фильтра как одного из лучших на данный момент среди нелокальных мето-
дов. Показано, что шум в частотно-временных распределениях, полученных с помощью S-метода, имеет 
сложную структуру, а именно, может в ряде ситуаций иметь негауссово распределение значений, а также 
обладать пространственной корреляцией. Показано, что применение описанных выше фильтров в данных 
помеховых условиях приводит к неудовлетворительным результатам. Предложено несколько модификаций 
рассматриваемых методов, эффективность работы которых проанализирована с точки зрения интегральных 
и локальных параметров. Показано, что наилучших результатов в шумоподавлении позволяет достичь мо-
дификация BM3D-фильтра. Однако платой за улучшения является потеря точности в представлении слабых 
компонент полезного сигнала. 

Ключевые слова: частотно-временное распределение; S-метод; цифровая обработка изображений; 
ДКП-фильтр; ВМ3D-фильтр. 
 

ВІДНОВЛЕННЯ ЧАСТОТНО-ЧАСОВИХ ПРЕДСТАВЛЕНЬ: 
ПІДХІД З ЗАСТОСУВАННЯМ МЕТОДІВ ФІЛЬТРАЦІЇ ЗОБРАЖЕНЬ 

І. Джуровіч, В. Лукін, О. Роєнко 
Розглянуто задачу підвищення якості частотно-часових представлень, що отримано S-методом, за до-

помогою сучасних локальних та нелокальних цифрових фільтрів, які розроблено та застосовано у галузі об-
робки зображень. Актуальність задачі пов'язана з необхідністю наявності частотно-часових фільтрів для 
обробки нестаціонарних частотно-модульованих сигналів. У роботі розглянуто застосування медіанного 
фільтру як представника класу локальних просторових фільтрів, фільтрації на базі ДКП у якості представ-
ника методів фільтрації на базі ортогональних перетворень, а також BM3D-фільтра як одного з найкращих 
на даний час серед нелокальних методів. Показано, що шум у частотно-часових розподілах, що отримано за 
допомогою S-методу, має складну структуру, а саме, може у ряді випадків мати негаусів розподіл значень, а 
також мати просторову кореляцію. Наведено, що застосування описаних вище фільтрів у даних завадових 
умовах приводить до незадовільних результатів. Запропоновано декілька модифікацій методів, що розгляну-
то, ефективність роботи яких проаналізовано з точки зору інтегральних та локальних параметрів. Показано, 
що найкращі результати у шумопридушенні дозволяє досягти модифікація BM3D-фільтру. Проте платою за 
покращення є втрата точності у представленні слабких компонент корисного сигналу. 

Ключові слова: Частотно-часовий розподіл; S-метод; цифрова обробка зображень; ДКП-фільтр; 
BM3D-фільтр. 
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