HAxicmv ma naoiunicme 113

69

YK 621.396.6.019.3

O. V.IVANCHENKQO, Y. L. YAVKUN, A. A. TOMASHPOLSKAYA

Sevastopol national technical university,

Ukraine

OPTIMIZATION OF THE TEST CONTROL
OF SOFTWARE CRITICAL APPLICATION

Lessons learned from the analysis of accidents and disasters involving different critical infrastructures (CI),
indicate about low level of fault tolerance software (SW) of the CI'’s management systems. In order to address
this gap is proposed optimization procedure based on the correct distribution of the test resource of software
of the infrastructure creation’s management system. Further prospects of using the proposed models can be
relating with optimizing test resource consumption of critical applications software sub-modules and also can be
using to specify requirements for functional safety of different critical infrastructures management systems.

Keywords: fault tolerability, sofiware module, test duration, Markov models.

Introduction

The need to ensure effective use of critical
infrastructures (CI) for its intended purpose has high
requirements for fault tolerance of software modules
control systems. Achievement of positive results in this
area of functional use of critical applications software
(SW) is impossible without serious financial costs of
test control (check) software.

According to current standards of functional safety
trials ensuring [1, 2] an acceptable level of risk, which
determines the possibility of failsafe operation of the
software module is given at the design stage of an
infrastructure management formation. However, such an
approach to the critical software applications fault
tolerance assessment doesn’t allow developers to
implement test control (TC) of the corresponding
software, spending the minimum amount of computing
resource. Application of known software reliability
models only partially solves the problem, because in
most cases, their practical use is hampered by
introducing a large number of restrictions and
assumptions, which significantly affects the adequacy of
the developed model range [3].

The aim of the article is to optimize the duration of
the software (SW) of the CI’s management systems
(MS) test control through the implementation of fault
tolerance mechanism of an appropriate software
module.

1. Statement of the researches results

Suggested approach is based on the
implementation of the principle of analytical and
stochastic modeling (ASM) for cases we are concerned
about [2]. Ground segment management system
spacecraft (SC) is considered as a studied SC MS. Its

architecture is shown in Figure 1.

Control Special-
ground s/ purposed
complex ground complex

IIII IitI

Communication and data transmission system

@@@@@@@@@@@
e

Control center
Fig. 1. Architecture of the SC MS ground segment

According to the established level of formalization
let’s represent the process of SC MS functioning in 2-
phase process, each phase of which is characterized by
the following modes of operation: a) the first phase —
standby of SC MS intended use mode; b) the second
phase — SC MS intended use mode.

The duration of the corresponding time intervals
will be considered as the main characteristics of the

operation modes: te(0;ty) — intended use standby

interval; e (tgy;tg, +At;,) — intended use interval.

Analysis of operating experience and SC MS
intended use testifies the desirability of introducing the
following limitations and assumptions:

1) intervals t and t are predictable nonrandom
quantities, because SC MS mainly exploited and used as
intended in a planned manner;

2) exponential distribution with parameters
A=1/T, and p=1/T, (where T,

between failures, T, —

— average time

average recovery time) is

© O. V. Ivanchenko, Y. L. Yavkun, A. A. Tomashpolskaya

70 ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMITI’IOTEPHI CUCTEMMU, 2014, Ne 6 (70)

considered as the basic model of CI MS reliability;
3) readiness of a control system in standby mode at

a te(0ty) time is determined by the dependability

and recoverability of the SC MS technological
equipment [4];

4) transition to the second phase is carried out after
the completion of SC MS informative and technical
state (ITS) monitoring;

5) control system reliability at the intended use
interval depends mainly on the fault tolerability of the
SC CS software module [5].

Features of operation management system CS at
the standby interval of using te[0;t.,] point to the

following ITS: S; — operating state of SC management
system; S, — fault state corresponds to the destruction

of the main body and (or) partial destruction of the
reserve; S; — state of returning corresponds to the

reduction of SC MS after crash (return to operating state
using backups and (or) history); S, — state of SC

ITS control; S5 —

calculated performance targets solutions corresponds to
the presence in the system of additional indestructible
array of operating states.

We can build a reference model as a continuous
time Markov chain and perform calculations of
reliability spacecraft management system based on its
application. According to the illustrated graph (Fig. 2),
we write the system of differential equations of
Kolmogorov-Chapman in the form [2]

management system state of

dpcllt(t) = (=M =g —Ms)P (D) + A3 P3 (1) +
% = APy () = Ap3Py () + A3y P3 (1);
dP;(t
c31t(- AosPr ()= (A31 + A3 +A30)P3(1); (1)
dP,(t
_gt() 4P (0)+ A3 Py ()~ (hgy + s)Py (1)
P
5
Zpi t=1
i=1

Solve the problem using the Runge-Kutta method,
for the initial conditions at the time t=0, when
P(0)=1, VP(0)=0, where i=2,..,5. Results of
calculations of coefficient

stationary readiness

Krpn(H) =P (t) of SC mangement system as a
function Kgpn(T,,t) for average recovery time

T, =0,5hr are shown in Figure 3.

"/o

Fig. 2. Graph of transitions for the first phase
of SC MS operation

Fig. 3. Dependence of Krpn(To,t)

At the next stage we construct a Markov model of
critical applications software reliability, which
adequately describes the processes occurring in the SC
management system in the second phase of its
operation. For clarity, we get a view on a critical
application written in the high level programming
language C, used in the European Space Agency (ESA).
The software module provides a user interface of ESA
spacecraft control center ESA (Figure 1) and is used to
generate the data file in accordance with a
predetermined user format corresponding to the specific
characteristics of the configuration of the array of
antenna systems (AS). This software includes about
10,000 lines of C code [5]. Software module consists of
three main sub-modules:

1) parsing sub-module (PSM);

2) computing sub-module (CSM);

3) formatting sub-module (FSM).

Using architectural-oriented approach described in
[5], we can determine the probability of the correct
functioning of critical software applications as

n-1
E[R] {HR}}RnW!)

where R; — probabilistic indicator of i-th component of

the software correct functioning; R, — probabilistic

n
indicator of n-th component of the software correct
functioning (i.e., the probability rate of completion of

the program module operation); W probability

HAxicmv ma naoiunicme 113

71

indicator of the operating system (OS) correct
functioning.

In (2) value is determined with implemented in AS
MS mechanism of fault tolerance of software. In
addition, in further calculations OS regarded as a system

that is absolutely reliable and functioning properly. So,

we can take W' ~ 1. Simulation results obtained using a
specialized software utility SREPT (Software
Reliability Estimation and Prediction Tool), are
presented in Table 1.

Table 1
Main time and system characteristics of software

Time characteristics of software, hr

Duration of custom functions realization (for C sub-

modules)

Cl1 C2 C3
0,01128 0,00248 0,0001251
Duration of system calls | 0,10589

realization (for OS)

User and system characteristics of the software

Average number of custom | 407
functions (for C Module)
Average number of system calls 5442

(for OS)

At the next stage we construct a model of software
fault tolerance used in the future to develop a system of
tests for critical applications software module. Logical
basis of the model is the statement: "The more testing
efforts we spend, the higher the level of software
reliability". As for the main analytical dependence, it
can be represented by the objective function T =f(1),

where T — testing time, A — the desired value of the
failure rate. The search for optimal combinations of
tests can later be carried out with reference to individual
elements, basing on providing the required level of
of CI MS in

reliability KRDqu general, as

KrpNys = KRDN,, » where Kppy,,, — value of the

complex index of reliability, corresponding to the actual
level of reliability of critical infrastructure control
system. Then the optimization criterion can be written
as:

n
Tzzfi(}“i)_)Tmin;

&= i1 3)
KrpNys = KRrDN, 3
Krpys = Kron(DE(R), 4)
where i=0,...,n—-1n — number of software
components with a total testing time T ;
A; — the failure rate of the components of the

program module.

To display changes of the reliability of each i-th
component is suggested to use software model of Goel-
Okumoto [5], for which the failure rate is determined in
accordance with the expression

MT) =Ege P,)
at the same time the objective function according to the
relation (3) can be written as

Z[Bl In(i;N; /A,)J ©

where Ep =«N — the expected value of the failure

(crash) rate of software per finite time of its execution
T;
B — the rate of decrease of failure (crash) rate due to

the implementation of software fault tolerance
mechanism;

Kk — proportionality coefficient that establishes the
connection between the number of failures and software
run time.

Table 2 presents the results of statistical estimation
of Goel-Okumoto model parameters obtained in [5] on
the stage of the client use software modules, the
architecture of which includes a three basic sub-module

Cl1, C2, C3 (sub-modules PSM, CSM, FSM).

Table 2
Statistical evaluation
of Goel-Okumoto model parameters
Cl C2 C3
N K N K N K
13 0,0546 11 0,0946 5 0,0534

As known [5], the basis of the mechanism of fault
tolerance CI MS software modules make restarts
components, ie applications with retrying and
redundancy. Generally, program modules include
primary copies and backups. Accordingly, the fault
tolerance mechanism implemented in accordance with
the scheme shown in Figure 4.

Failure

occurance Detection

Restart Ret Transition
software u apprllllcatlon to the backup
module) software module \

Fig. 4. Scheme of the mechanism of fault tolerance
of critical applications software implementation

72 ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMITI’IOTEPHI CUCTEMMU, 2014, Ne 6 (70)

To obtain analytical expressions in accordance
with the scheme shown in Figure 4, consider the
following sequence of events:

1) DETFailed — discovery of the failure (crash)
after its occurrence failed;

2) RESFailed — restart of a software module after
occurring undetected failure (crash) failed;

3) RETFailed — impossible to perform the restart
of the application after a fault (crash) has occurred, its
detection and execution to restart the software module
failed;

4) FOFailed — impossible to make the transition to
the backup software module after a fault (crush) has
occurred and restart of the software module and the
application failed.

Provided that the developer did not perform
critical application debugging or any changes of
software sub-modules on their main exploitation stage it
would be wise to consider the failures intensity A; for
different components as constants. Then, the reliability
indicator i-th component can be determined by the
following relation:

T
R; =exp{— [h(t)dt f=exp{-d7}, (7)
0
where t; — time implementing custom functions for i-
submodule C.

According to the relation (7) the probability of
failure of i-th components of the module is defined as
E =1-R; =1-exp{-A;t}, ie operating time between
failure (TTF) is distributed exponentially.

According to [5] the general expression for
determining the level of the reliability of the C module
with a fully implemented fault tolerance mechanism
(Figure 4) can be written as follows:

R =1-[Pg; -EXP(L) + Py, - ERLANG(A,2) +

8
+Pg; - (v- ERLANG(X,2) + 7 - HYPO(A;,A2))], ®)

where y =1, if the backup version is the same with the
main, otherwise y=0.

If the fault tolerance mechanism wasn’t fully
implemented, then Presrailea = PreTFailed = Prorailea = 1 and
Pg; =1, but P, = Pg3 = 0. Then

Rc =1-EXP(}A).)

If implemented in a software module reset or
restart operation is without switching to a backup
version, i.€., Proraica= 1, Pr3 = 0, then

(10)
+Pg, - ERLANG(%,2)].

Finally, if the software module has a backup
version without restarting operations sold or re-start the
application, i.e. Presrailed = PreTRailea = 1, Pg2 = 0, then

+v- HYPO()L] , 7\,2))]

If we substitute (11) in equation (2), then we can
get the following expression:

n-1
E[R]= {H Re. }ch w.

Next, using as input data as the temporal
characteristics of the software module (Table 1), and the
statistical evaluation of the Goel-Okumoto model
parameters (Table 2), substituting (19) into (8), we
determine the resulting value of the stationary readiness

(11)

(12)

coefficient Kgpy,, - Graph of dependence of
KRDNMS (T,,t) for said original data represented in

Figure 5.

Fig. 5. Dependence of Kgppy,, (Tot)

The results (Fig. 5), Pareto optimal, may be used
to determine the rational duration of the test control of
CI MS software with safe, fault-tolerant operation of
process equipment as well as critical applications
software. Further prospects of using the proposed models
can be relating with optimizing test resource consumption
of critical applications software sub-modules and also can
be using to specify requirements for functional safety of
different MS CIL.

References

1. CASE-assesment of critical software systems
[Text] / V. S. Kharchenko, K. I. Netkacheva, A. O. Ore-
khova, O. M. Tarasyk, A. V. Gorbenko, V. V. Sklyar,
E. V. Brezhnev, E.V. Babeshko, O. A. llliashenko //
Safety V. Kharchenko (edit) // Three-volume edition. —
Department of Education and Science, Youth and Sports
of Ukraine, National aerospace university named after
N. Zhukovsky “KhAI”, 2012. —Vol. 3. — 301 p.

2. Critical Infrastructures Safety: Mathematical
and Engineering Methods of Analysis and Assurance
[Text] / V. Kharchenko (edit). — Department of
Education and Science of Ukraine, National aerospace

HAxicmv ma naoiunicme 113

73

university named after N. Zhukovsky “KhAI”, 2011.
— 641 p.

3. Stringfellow, C. An empirical method for
selecting sofiware reliability growth models [Text] /
C. Stringfellow, A. Amschler Andrews // Empirical
Software Engineering. —2002. — Vol. 7. — P. 319 — 343.

4. Theoretical bases of designing information and
control systems of spacecrafi [Text] / V. V. Kulba,

E. A. Micrin, V. V. Pavilov, V. N. Paviov, V. N. Platonov,
Ins-ut of managements problems named after
V. A. Trapeznikova RAS. — M. : Science, 2006. — 579 p.

5. Pietrantuono, R. Software Reliability and
Testing Time Allocation: An Architecture-Based
Approach [Text] / R. Pietrantuon, S. Russo, Kishor S.
Trivedi // IEEE Transactions on Software Engineering.
—2010. - Vol. 36, No. 3. — P. 323 — 337.

Tocmynuna 6 pedaxyuio 3.03.2014, paccmompena na peoxonnecuu 25.03.2014
PenenzenT: na-p TexH. Hayk, mpod. b. M. Konope, HamnuoHanbHBIIi a’pOKOCMHYECKUH YHUBEPCHTET
nM. H. E. XKyxosckoro «XAW», XapbkoB, YkpauHa.

ONITUMIBALIA TECTOBOI'O KOHTPOJIIO TIPOI'PAMHOI'O 3ABE3ITEYEHHS
KPUTUYHOI'O JOAATKA

0. B. Isanuenko, I10. JI. Aekyn, O. A. Tomawinonscoka

VYpoxku, siki Oyinu 3aCBOEHI M/ Yac aHaNi3y aBapiil Ta katactpod 3a y4acTio pi3HHX KPUTHYHUX THPPACTPYKTYP
(KI), cBimuaTh IpO HU3BKHIA piBEHH BiIMOBOCTIMKOCTI mporpamuoro 3abesneuenns (I13) cucrem ympasninas KI.
Juns ycyHeHHst 1i€i mpoOJjeMu 3alpoNOHOBAaHO ONTHMI3alliiiHYy Mpoleaypy, ska 0a3yeTbCsi Ha KOPEKTHOMY
posmopinenHi TecroBoro pecypcy II3 cucremu ympasniHHA iH(pacTpykTypHOro yrBOpeHHs. [lomambii
HEPCIEKTUBU 3aCTOCYBAaHHSA pPO3POOJIEHUX MOAENECH IOB’SA3aHI 3 ONTUMI3ALI€I0 BUTPAT TECTOBOTO PECYPCY
MiAMOIYINIB 31 CKJIagy NPOrpaMHOro 3a0e3nedyeHHs KPUTHYHUX JONATKIB 1 MOXYTh OYTH BUKOPHCTaHI s
OOTpYHTYBaHHS! BUMOT JI0 (DYHKIIIOHAIBHOI OE3MEKH CHCTEM YIPAaBIiHHSI KPUTHYHHUX 1HOPACTPYKTYD.

Karo4ogi ciioBa: BiJMOBOCTIHKICTh, IPOrpaMHHUN MOZYJIb, TPUBAJIICTh TECTYBaHHS, MapKiBCbKi MOJIEII.

ONITUMU3ALUA TECTOBOT'O KOHTPOJIAA TIPOI'PAMMHOI'O OBECIIEYEHUA
KPUTUYECKOTI'O NTPUJIOKEHUA

O. B. Hganuenxo, 10. JI. flexkyn, A. A. Tomawnonscxkan

VYpoku, H3BJIEUYEHHBIE B XOJ€ aHajlW3a aBapuil W KartacTpod C y4acTHEM pas3iIM4YHBIX KPUTHYECKUX
undpacrpykryp (KU), cBHAETEIHCTBYIOT O HM3KOM YPOBHE OTKAa30yCTOHYMBOCTU INPOrPaMMHOrO 00ECHeyYeHUs
(ITO) cuctem ympapnenus KW. [[ns ycTpaHeHHs 3TOro mpodena MpeijiaraeTcs ONTUMHU3AIMOHHAS IPOIEaypa,
OCHOBaHHAsl HA KOPPEKTHOM pacrpeeseHnu TectoBoro pecypca 10 cucremsl yrnpaBieHUs UHOPACTPYKTYPHOTO
oOpazoBanus. JlanpHelInne NepCrieKTHBBI HCIONBb30BaHHUs Pa3pabOTaHHBIX MOJIENEH CBSI3aHbI C ONTHUMH3AIMEH
pacxozia TECTOBOTO pecypca MOIMOIYJEH U3 cocTaBa IMPOrpaMMHOTO 00ECIeYeHUs] KPUTHYECKOTO MPUIIOKEHUST U
MOr'YT OBITh MCIIOJIb30BaHbI Uil 0OOCHOBaHUs TpeOoBaHUH (PYHKIMOHAIHHOH 0€30MaCHOCTH CHUCTEM YIIPaBIICHUS
KPUTUUYECKUX HHPPACTPYKTYP.

KuarwueBble cjioBa: OTKa30}’CTOI>i‘IPIBOCTB, HpOl”paMHHﬁ MOAYJb, TMPOAOJIKHUTCIBHOCTh TECTUPOBAHUAA,
MapKOBCKHE MOJECIIN.
HBanyenko Ouer BacuabeBuu — KaHA. TEXH. HayK, JOLCHT, OOLCHT Ka(l)e}lpbl KI/I6epHeTI/IKI/I u

BBIYUCITUTENFHON TexXHUKH, (CeBacTOMOJIbCKUNA HAllMOHANBHBIA TeXHUYECKUH yHuBepcureT, CeBacToIolb,
VYkpauna, e-mail: vmsul2@gmail.com.

SBkyn IOpmii JleonupoBu4 — crapmmii npenofaBarenb Kadeapbl KHOSPHETUKH M BBIYUCIUTENBHON
TexHuKH, CeBacTONMONBCKUI HAIMOHATIBHBIN TeXHUYeCKUil yHuBepcuter, CeBacromoib, YKpawHa, e-mail:
yavkun@mail.ru.

Tomammoabckass AJieKcaHIpa AHATOJbeBHA — CTYICHTKA Ka(eapbl KMOCPHETHKH U BBIYHCIUTEIHHON
TexHUKH, CeBacTONMONBCKUI HAIMOHATIBHBIN TeXHUYeCKUil yHuBepcuter, CeBacromoib, YKpawHa, e-mail:

sashaa.tomash@gmail.com.

