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USAGE OF TRAINING METHODS TO PARAMETERIZATION OF MULTILAYER
NEURAL COMPUTING STRUCTURES FOR TECHNOLOGICAL PROCESSES

The analysis of the existing training methods of multilayer neural network computing structures is carried out.
By the use of computer simulation the most effective training methods are investigated. Recommendations of
selected methods usage by examples of multilayer approximation tasks for technology of benefication are
given. As software environments three independent application program packages (neuroemulators) of type
were applied to computer simulation: Neuro Solution, Statistica Neural Networks and MATLAB Neural
Networks Tools (NNT). Based on the results received in the course of research the comparative analysis was

carried out them.
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Introduction

Nowadays more often to solve applied problems of
information and automation under conditions of
complex production different intelligent control
technologies are used [1]. Thus one of the basic
approaches for mathematical models making in the
process of approximation, identification, classification
is the use of multilayer neural networks (NN) with
different architectures.

At present, there are no clear answers to specific
questions of unique choice of architecture and the most
effective training method (parameterization) in the
theory of artificial neural networks. Therefore, most
researchers act empirically, choosing from the set of
potential alternatives the best variant by certain criteria
and under specific technology condition.

1. Analysis of recent research, publications,
and presentation of task

For training (parameterization) multilayer neural
network structures intended for further identification
and control of complex technological processes (TP) in
real time, it is necessary to apply methods that meet
certain  requirements. According to [2] these
requirements  include: rate of  convergence,
computational robustness, demands to the computer
main memory (RAM) and so on. At present, among the
existing methods the so-called methods of the 2nd order
meet the requirements the best. They are

— Levenberg—Marquardt;

Gauss-Newton;
Conjugate gradient.

Therefore, further analysis, research and selection
of potentially effective methods of training neural
network structures of technological purposes proposed
in [1], will be limited to the set of these methods. From
the point of view of automation of further calculations
and modelling it is very important that these methods
are implemented in the most powerful software
packages of emulating neural network structures
(MATLAB Neural Tools, Neuro Solutions, Statistical
Neural Network, etc.) [5, 6].

2. Material description and results

All these methods are based on functional
expansion into the Taylor series up to the 2-nd order.

This expansion near the e
parameters optimum of NN) will be as follows [4]:

Vi {0.8,2} = Vy [07,8.2}+

point (theoretical
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where Vy {} is the objective function criteria; @ -

vector of parameters which are subject to adjustment
(NN architecture, weighting factor, regression depth); S
- types of regression models which are used; E -

statistical data access for training; G(®*), H(®*) are

the gradient and hessian at the optimum point.
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The gradient is defined as

GO*) =V, {@*,S,E} =% @)

0=0"
and the matrix of other derivatives - hessian or Hessian
matrix
. . d*Vy {075,
H(® )=V]('A{® ,s,5}=—2 3)
doe

0-0"
Sufficient conditions of minimum of function are
zero gradient and positive hessian definition. They are

G(@") =0,
H(®") > 0.

In most cases, finding the minimum may be
reduced to the iterative procedure like:

) — @M 1 O (5)

(4)

where ©" is the current iteration parameters (i); f(i) -

search direction; u(i) - step of the current iteration

algorithm.
At the same time linear approximation of a
prediction error according to the output signal at the
output of neural network dy(t|®) is applied as
follows:
81,0) =£(1,0") +(&'(1,0") " (©-0") =
| PN ()
=5(t,0M) - (w(t,0" )" (©-0")T,
dy(t|©)
de

where y(t,0) = , tis discrete time.

Modified criterion (1) for the i iteration is:
. M

V{08, ~19(0) = Y[ 0)F L ()
i=1

where L (©) is the approximate value of the modified

criterion, M — the number of training sample templates.
The search direction in the Newton-Gauss method

is based on criterion approximation definition L(i)(®)

near the current iteration [2-5]. In turn, the conjugate
gradient method is based on the search direction change
(RESTART) to the gradient direction (antigradient) in a
sharp slowdown of convergence. Thus there are
different approaches and algorithms of implementation
of these procedures for both methods (many versions
[7D.

However, no algorithm takes into account that the

global minimum L(i)(®) can be located outside the

current iteration, as a result the search will be incorrect.
Therefore, it will be more rational to assess the

reasonability of minimum search ® (®) in the area of

current iteration. For that according to the algorithm

method of Levenberg—Marquardt (known in literature as
Levenberg—Marquardt methods, Levenberg scheme, and

the method of Levenberg—Marquardt) radius sphere 5
is chosen. Then the optimization problem can be
formulated as following system

0= arg min o ,

‘@ —@m‘ <50, ®

An interactive minimum search procedure in the
presence of limitation in the system includes the
following stages

el — g 4 £,

R . 9
[R(®(‘))+X(‘)1Jf(‘) =-GeW), ©

where A1) isa parameter that defines the area 5
Hypersphere of radius 50 is defined as an area
within which L (®) can be considered as an adequate
criterion approximation Vy{®,S,Z}.
The feature of the method is the procedure of

determining of the interaction between 5® and A0
parameter. As there is no unique dependence between
them in practice several heuristic procedures are used

[2]. For example, the gradual increase of A9 until the

criterion L(i)(®) will reduce, and then iteration is

completed. Values of AU

operation are reduced.
Also an alternative approach, based on a
comparison of actual reduction criterion and predicted

parameter for the next

reduction based on approximation ® (®) isused. As a

measure of the approximation accuracy the factor r(i) is
considered

Va {@m,s,a} ~Vy {@m +f(i),S,E} )

()
' Vi {008,210 @0 +£0)

In the case of approaching factor r(i) to 1, ® (©)
is an adequate approximation of Vy;{©,S,Z} and the
value of A decreases, that corresponds to the increase of

5@ . On the other hand, small or negative factor leads
to the need of increasing A. Based on this the general
scheme of the algorithm is as follows:

1. Choose the initial parameter vector value that
must be adjustment ® (0), and the factor of A (0).

2. Determine the search direction from the
equations set (5).

3. 1f D 50,75 = A®=2® /2,
4. 1t 1 <0,25 = 2O =2®
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51 Vy[e +£0,2° 2 < vy {00, 2" 2

take as a new iteration ®*) =@® 4+ and define
A G+D) 5 ()

6. If the stopping criterion is not achieved, go to
the step 2.

The criterion value that minimizes can be
presented in the following form

LD @D +£) = vy, {®(i>,s,5} +

o , (11)
+HTGeW)+ EfTR(®<‘> )f.

Substituting to (2) the expression for determining
the search direction, which was obtained from the ratio
ROMNFD = _g@D)-1f®,  (12)
get
Vi {@W,s,a} 1D @0 + £y =
(13)
= O\ T oMy 40O £ 2
= (-0 GO £ 20 OF).
Ratio (8) allows at the algorithm stages 3 and 4 to
determine the factor ! using the expression (10).
Based on the general technique of intellectual
neural multidimensional identification [8] using the
methods of computer simulation the investigation of

model  structures based on neural network
autoregressive predictors in terms of TP magnetite
quartzite  concentration was  conducted.  The

investigation included the following steps:

— choice of teaching methods, evaluation of the
model regression depth (number of delayed signals at
the input and output);

— application of teaching methods (the rate of
convergence, accuracy);

— direct and inverse prediction;

— testing of derived systems at nonlinearity.

Analysis and choice of the base set of teaching
methods for identification models were carried out
based on the methodology described in [2]. The main
stages of the investigation are:

1. For the simulation experiments the simplest
model type NNARX (Neural Network based
AutoRegressive eXogenous signal) was chosen. In order
to simplify the analysis the same regression depth
(l; =1, =2) was adopted on the basis of previous
results [1, 8].

2. Templates of NN of modelling structures in
bases of NN of direct distribution (HIIP), radial-basic
functions (RBF) that full the coherent (FCNN,
recurrent) are prepared. For all models the NN with one
latent layer by the formula: 16-8-8 (corresponding
quantity neurons on a structure input, in the latent layer
and on an output) was applied.

3. Tenfold training and testing of all specified
NNS of structures with application of four methods of
training has been carried out: back propagation (back
propagation or BP — a method, as the actual standard of
NN training [2-6]), Gauss-Newton (GN - method),
Levenberg—Marquardt.

4. LM) and Conjugate gradient. (CG). Statistical
sample of indicators has been applied to training
Northern Mining Complex (“SevGOK”, Kryviy Rih,
Ukraine) by the formula: 350-280-70 (total of templates,
quantity of templates for training, quantity of templates
for verification). Base indicators of first and last stage
TP were thus analyzed.

5. Average indicators of convergence (the
quantity of epoch or iterations for training), robust (a
root-mean-square error — MSE, the generalised root-
mean-square error -- NMSE [6]) and the applied
computing resources (main memory) has been brought
to tabl. 1.

6. On the basis of the results received in the
course of research there was comparative analysis
carried out.

As program environments for computer modelling
there were applied three independent packages of
applied programs (neural simulator) type: Neuro
Solution, Statistica Neural Networks and MATLAB
Neural Networks Tools (NNT). Corresponding results
of modelling in these different packages approximately
coincide. Also all received results coincide well enough
with resulted in [1, 2].

In the course of computer modelling a system
hardware-software platform has been applied:

— personal computer with working parameters
CPU Pentium IV 2.66 HzZ/RAM 2 Gb;

— operating system Windows 7.

On fig. 1 curves which show change of criterion of
root-mean-square error MSE in the course of training of
model of type NNARX for different bases of neural
network structures are resulted. Similar results have
been received by the author for others extended
autoregressive  predictors models NNARXMAX
(NNARX + Moving Average, exogenous signal),
NNOE (Neural Network Output Error).

The analysis of results of computer modelling
allows making certain generalisations in the form of the
following conclusions.

Results of training intellectual neural models of
type NNARX qualitatively almost identical if they are
accordingly grouped (calusterized) by identical methods
of training (GN, CG, LM).

From the point of view of speed of convergence
and robust the most perspective the method of
Levenberg—Marquardt. (LM), but its resources
consumption is the greatest. The standard method of
training of the NN, based on back propagation (BP), has



Hiacnocmysanns ma HaoiiiHiCMb KOMHI IOMEPHUX cUCHEM

103

Table 1

Comparative estimation of accuracy, resources consumption and speed of convergence
of potential algorithms of investigated neural structures training

Algorithm of training | O orEenee: MSE NMSE | COM-PUTER resources, Mb
Epoch (itera-tions)
1. Basis NN (multilayered perceptron)
1.1. BP 568 1,198596 | 1,76165223 30
1.2. GN 303 1,161828 | 1,96306745 24
1.3.ILM 177 0,778172 | 1,45139743 35
1.4.CG 425 0,888760 | 1,45448391 21
2. Basis RBF (radial-basic functions)
2.1.BP 196 1,85732511 | 2,111487478 30
2.2.GN 65 1,19651332 | 2,131730124 25
23.IM 31 0,79076953 | 1,906790835 35
2.4.CG 87 0,89815021 | 1,912728683 21
3. Basis FCNN (full coherent neural networks)
3.1. BP 837 1,0915434 | 1,60226771 33
3.2.GN 451 1,0807423 | 1,77265223 27
3.3.IM 265 0,7223413 | 1,21234453 37
3.4.CG 637 0,8684867 | 1,26644234 22
MSE versus Epoch
0,5
0,45
0,4 1
E 0,35
E 03]
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Fig. 1. Change of criterion MSE from quantity of iterations (epoch) at training neural identification model NNARX:
1 — two-layer perceptron which was trained for CG - method; 2 — a network of radial-basic functions (RBF)
for GN - method; 3 — full coherent and partially recurrent a network for LM - method

shown good enough robust, but its speed of coincidence
slow enough, and requirements concerning resources
are too big. Approximately identical and balanced
enough results methods of Gauss-Newton (GN) and
Conjugate gradient (CG) have shown.

In view of the above-stated tests it is possible to
recommend to apply for approximation complex TP and

using recurrent dynamic neural structure under
condition of possibility of their hardware realisation (for
example, neuro-graphic processors) or application of the
parallel and distributed computing [9]. The latest is
immediate prospects for continuation of the further
researches in this direction.
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HCIIOJIb3OBAHUE METOJ0B ObYYEHUS VIS TAPAMETPU3AIIMA MHOI'OMEPHBIX
HEUPOCETEBBIX CTPYKTYP TEXHOJIOI'MYECKOT'O HABHAYEHUA

A. H. Kynun, 10. A. Kymuenxo

CrenaH aHanu3 CYIICCTBYIONIMX METOJOB OOYYEHHS MHOTOMEpHBIX HEHpOCEeTEeBBIX CTPYKTYp. IlyTem
KOMIIBIOTEPHOT'O MOJICITUPOBAHUS HCCIICI0BaHbI Hanbosee Y eKTuBHbIe METOIbI 00yueHus. [laHbl peKOMEHIAIUH
MpPUMEHEHHST BBIOPAHHBIX METOMOB Ha MpHUMEpe 3aJad MHOTOMEPHOH AammpOKCHMAlWH s 00OraTUTENbHOM
TEXHOJOTHH. B KauecTBe NPOTPaMMHBIX CPEA Ui KOMIBIOTEPHOTO MOJCIUPOBAaHMS OBUTH MPHUMEHEHBI TPH
HE3aBHCUMBIX TaKeThl INPUKIAJHBIX IporpamMm (HekdpoamysstopoB) Tuma: Neuro Solution, Statistica Neural
Networks 1 MATLAB Neural Networks Tools (NNT). Ha ocHOBaHMM MOJy4eHHBIX B MPOLECCE HCCIETOBAHUS
pe3yabTaToB OBLT MPOBECH UX CPABHUTEIBHBIN aHATIH3.

KiioueBble ciioBa: MHoroypoBHeBas HEHpOHHash CeTh, KOMIIBIOTEPHOE MOJEIMPOBAHUE, OOydYeHHE,
anmpoKCUMAIMS, HWACHTH(UKAIWS, KiacCHu(pHKAIlsi, TEXHOIOrHYeckue mporecchl, JleBenOepra-Mapkpapra,
I'aycca-HproTona, ConpspkeHHOro rpajueHTa, 00paTHOe pacipoCcTpaHeHHe.

BUKOPUCTAHHS METO/IB HABYAHHS JIJI1 HAPAMETPU3AIIL BATATOBUMIPHUX
HEMPOMEPEKEBUX CTPYKTYP TEXHOJIOTTYHOI'O ITIPU3HAYEHHS

A. I. Kynin, I0. O. Kymuenko

3pobneHnil aHami3 iCHYIOUMX METOJIB HaBUaHHS 0araTOBUMIpHHX HeHpoMepexeBUX cTpykryp. lllmsxom
KOMIT'FOTEPHOIO MOJICIIOBAHHS JOCIIDKEHO HaWOULTBIT e(eKTHBHI METOAM HaBuaHHA. HamaHi pekomeHmariii
3aCTOCYBaHHS OOpaHMX METOMIB Ha NPHUKIAAI 3aBJaHb OaraTOBUMIpHOI ampokcumamii Juisi 30aradyBajibHOL
TexHONorii. B sSKOCTI MporpaMHHX CepeloBHIN Ui KOMIT' IOTEPHOTO MOJENIOBaHHS Oyiad 3acTOCOBaHI TpH
He3aJISKHHUX MTAKEeTH MPHUKJIaIHUX porpaM (HelipoemyssitopiB) Tumy: Neuro Solution, Statistica Neural Networks Ta
MATLAB Neural Networks Tools (NNT). Ha mincraBi oTpuMaHuX y TpOLECi JOCTIDKEHHS pe3ynbTaTiB OyB
MIPOBEACHUH X MOPIBHSIBHUIA aHAII3.

Karoudosi cioBa: baratopiBHeBa HelipoHHA Mepeka, KOMITIOTEPHE MOJIENIOBAHHS, HABYAHHSI, allpOKCHMAIis,
inenTugikanis, kiacudikaiis, TeXHOJOri4HI mponecu, JleBenOepra-Mapksapara, ['ayca-HeioTona, cromydeHnx
IpaJi€HTIB, 3BOPOTHE MOITHPCHHS.
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