Hiacnocmysannn ma HaoiiiHiCMb KOMI IOMEPHUX cUCHEM 91

UDC 004.3:681.518

D. E. IVANOV

IAMM NAS of Ukraine, Donetsk, Ukraine, ivanoviamm.ac.donetsk.ua

A NEW PARALLEL FAULT SIMULATION ALGORITHM
OF VLSI FOR MULTICORE WORKSTATIONS

A new algorithm for parallel fault simulation of VLSI on multicore workstations with common memory is
proposed. To speeding up the algorithm two-level parallelization is used. First, main schema of the algorithm
is based on the concurrent many-threaded simulation of the groups of faults for each input vector. Second,
each group of faults is simulated in bit-parallel way. Also the algorithm is used dynamic fault partitioning for
forming those groups. The results of computational experiments on ISCAS-89 benchmarks circuits are
reported, which are obtained on the 12-core workstation.

Keywords: VLSI circuit, fault simulation, multicore workstation, parallel calculation, multithreaded

programming

Introduction

Fault simulation algorithms of VLSI are important
in the design of digital circuits. The results of these
algorithms are lists of tested/untested faults or the
fraction of detected faults to the total number, named as
fault coverage. The disadvantage of these algorithms is
that for large circuit the simulation process may
continue for a very long time due the large list of faults.
So, today is the actual task of constructing of fast fault
simulation algorithms of VLSI.

One way to speed-up the fault simulation
algorithm is use of parallel calculation. To date, there
are three main schemes for parallelizing of fault
simulation of sequential circuits.

1) Fault list partitioning [1-2]. In this approach, a
complete list of faults F is partitioned into several
sublists F,F,,...,F,, each of which is transferred to a

separate processor in system, where fault simulation on
a given test sequence is performed. In this scheme each
processor must have its own copy of the circuit
description and test sequence. Currently, this method is
used most widely and considered that he has a good
scalability with increasing the number of processors.

2) Circuit partitioning [3]. In this approach, the
circuit is partitioned into several subcircuits, each of
which is simulated on a separate processor. The main
advantage of this approach is that it significantly
reduces the memory requirements, which stores the
description of the circuit. The main disadvantage is the
necessity of developing of processor interaction
protocols.

3) Test sequence partitioning [4] is that the input
sequence is divided into a number of sequences, which
are formed subtasks to computer nodes. Processes also

need to communicate to inform each other about what
faults detected to the current time.

Methods with fault list partitioning also are
divided into synchronous and asynchronous, which try
to improve processor utilization by reducing their idle,
which occurs during synchronization [5]. Conceptually
they are often based on the synchronous methods.
Therefore, we will talk about synchronous methods. It
should be noted the work [6], in which proposed one of
the basic methods of parallel algorithms for fault
simulation. The authors also suggested algorithms of
this kind for cluster systems [7] and for multi-core
workstations with shared memory [8].

One of the trends is the development of the
methods for multicore systems with shared-memory [9].
Our experiments were shown that blind transfer of
methods with the fault list partition to such systems
does not give expected growth of productivity. In this
paper we propose a new parallel algorithm for fault
simulation of VLSI circuits, which works on such
systems. This algorithm uses a parallel simulation of
group of faulty circuits on the current input test vector.
In addition, it uses bit-parallel simulation for those
faults, which are simulated on the same processor.

1. Bit-parallel fault simulation algorithm
for single-processor system

In this section it is briefly described a fault
simulation algorithm of digital circuits, which is the
basis for the parallel version. The algorithm is
ideologically based on the PROOFS algorithm, and its
details are given in [10]. The main advantage of this
algorithm is the bit-parallel fault simulation. The
algorithm works with synchronous sequential circuits,

© D. E. Ivanov

92 ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMIT'YOTEPHI CUCTEMM, 2014, Ne 5 (69)

in which the combinational part and elements of the
states are marked out. Simulation of behavior of the
circuit is performed by iterative simulation of its
combinational part. Algorithm deals with single stuck-
at-0 and stuck-at-1 faults. Below is considered the
pseudocode of the basic algorithm, since it is essential
to understanding the principle of building of parallel
version.

FaultSimulation1(Circuit, FaultList, Test, Length){
for(inti=0; i<Length ; i++){
Vector=Test][i];
SVI=SimulateGoodCircuit(Circuit,Vector);
while(there are unconsidered faults in FaultList){
Group=FormGroupOfFaults(FaultList);
SimulateGroupOfFaults(Circuit,Group, Vector);
CheckFaultDetectionInGroup(SVI,Group);
SaveStatesForUndetectedFaults(SVI,Group);
} // end loop on faults
} // end loop on test vectors
} 1/l end of simulation

Here: Circuit — netlist of circuit description; FaultList —
list of faults, Test — test sequence; Length — its length.
The main loop of simulation is performed by the
input test vectors and includes the following steps. First
the simulation of fault-free circuit is executed. This
result the values of signal on all lines of the circuits,
which are stored in the array SVI. This values then used
in three next cases: a) to determine the activity of faults:
inactive fault is not simulated for current input vector;
b) to determine the testability of faults after their
simulation; c) to determine what elements of the state of
faulty circuits should be saved for the simulation in the
next time frame. The internal loop is performed while in
the list there are faults, which were not considered for
the current test vector. First it is formed the group of
faults which will be simulated in parallel in different
bits of the machine word. Each group contains the
number of faults which corresponds to the number of
bits in the computer word. This follows by the fault
detectability analysis. Detected faults are deleted from
the list. For all undetected faults the values of states are
saved to perform the simulation in the next time frame.
Only signal values that differ from those in the fault-
free circuit are stored. Then both cycles are continued.

2. Parallel by groups of faults simulation
algorithm for multiprocessor system
with common memory

In this section is described the proposed algorithm,
which is the multi-threaded version of the algorithm
described in the previous section.

Parallelization of the greatest possible fragment of
code should lead to the better scalability by reducing the
proportion of sequential code. Therefore, is better to
start from the top cycle. However, in this case it is not

possible: the simulation on the next input vector t+1
cannot start when is not finished the simulation on the
current test vector t, because the signal values in the
circuit in the time of transition from vector t to vector
t+1 are not defined.

The internal loop by the faults includes several
functions. The greatest computational load falls on the
function SimulateGroupOfFaults(). Simulation of some
group of faults on the current input vector does not
affect on the simulation of another group on the same
vector. Therefore, simulation of the one group is an
independent branch of the program and several of these
groups can be simulated in parallel. To organize the
parallel execution, the function
SimulateGroupOfFaults() should be implemented as a
thread class. Because such threads are independent and
do not interact, there is no need to synchronize their
execution. It is clear that the procedures
CheckFaultDetectionInGroup() and
SaveStatesForUndetectedFaults() can be easily included
in our thread. Otherwise, the function
FormGroupOfFaults() is a preparatory. It must be
executed before the parallel threads start and therefore
cannot be included into this thread. But this should not
greatly affect the performance, because the function
performs the minimal computational steps with the
pointers on the faults in the group. Pseudocode of this
implementation in terms of threads is shown below.

FaultSimulation2(Circuit,
ThreadsNumber){
CreateSimulationThreads();
for(inti=0 ; i<Length i++ X
Vector=Test][i];
SVI=SimulateGoodCircuit(Circuit,Vector);
while(there are unconsidered faults in FaultList){
for(int Number=0;Number<ThreadsNumber;Number++){
Group=FormGroupOfFaults(FaultList);
ThreadsArray[Number]->Data=(Vector,SVI,Group);
ThreadsArray[Number]->Resume();
}
for(int Number=0;Number<ThreadsNumber;Number++){
ThreadsArray[Number]->W aitFor();
}
} // end loop on faults
} 1/ end loop on test vectors
DeleteSimulationThreads();
} // end of simulation

FaultList, Test, Length,

Here: ThreadsNumber indicates the number of
simultaneously running simulation threads. Its value
must be determined experimentally. ThreadsArray
contains the corresponding number of pointers to the
object of our thread class. Simulation thread includes
the code of functions SimulateGroupOfFaults(),
CheckFaultDetectionInGroup() and
SaveStatesForUndetectedFaults() from the algorithm
FaultSimulationl. Function WaitFor() waits the
suspension of corresponding thread.

Hiacnocmysannn ma HaoiiiHiCMb KOMI IOMEPHUX cUCHEM 93

The pseudo-code of the algorithm
FaultSimulation2 shows that the simulation is
performed in parallel for groups of faulty circuits.
Execution of the simulation for one input vector t is
illustrated on Figure 1.

time ‘

core Nel core Ne2

$

fault-free
simulation for idle idle idle
time t

—

simulation
group of faults #
1 for time t

core NeN

| |

simulation simulation
group of faults # group of faults
2 for time t #m for time t

l }

h.

[

Fig. 1. Simulation of fault-free VLSI and further parallel
simulation of groups of faults

Section of parallel simulation must be repeated
required number of times because the number of groups
of faults may not match to the number of cores in the
system. Also, before the parallel section there is a big
part of sequential code, which simulates the fault-free
circuit. It is also desirable to perform its parallel
simulation with other threads. However, the thread with
simulation of fault-free circuit cannot be created and run
directly, because it calculated the signal values in the
circuit, which required for subsequent procedures of
fault simulation. However, parallelization in this case is
still possible. To do this, it is necessary to create an
additional thread that will contain the code of function
SimulateGoodCircuit(). But on the step t fault-free
circuit is simulated for the input vector t+1, which
results are needed for simulation of faulty circuits in the
next time frame. This will require an additional
simulation of fault-free circuit for the first time frame,
which must be done before the opening cycle by the
input vectors. Also, it is necessary to create two copies
of the array of signal values in the fault-free circuit: SVI
- for fault simulation at current time frame, SVINEXT -
for pre-calculated values for the next time frame. After
the end of the simulation of the fault-free circuit for the
next time frame it is necessary to rewrite the value of
SVINEXT in SVI.

Pseudocode of such implementation is shown
below, and schematic representation of the threads
execution for time frame t is illustrated on Figure 2.

In such implementation the number of concurrent
threads is ThreadsNumber+1.

core NaN

fault-free simulation simulation
simulation for group of faults # group of faults
timet+] 1 fortime t #mfor timet

A,

I

Fig. 2. Parallel simulation of fault-freeVLSI
for time t+1 and groups of faults for time t

FaultSimulation3(Circuit,
ThreadsNumber){
CreateSimulationThreads();
SimulateGoodCircuit->Data(Test[0]);
SimulateGoodCircuit->Resume();
SVI=SimulateGoodCircuit->W aitFor();
for(inti=0 ; i<Length i++)
Vector=Test[i];
NextVector=Test[i+1];
SimulateGoodCircuit->Data(NextVector);
SimulateGoodCircuit->Resume();
while(there are unconsidered faults in FaultList){
for(int Number=0;Number<ThreadsNumber;Number++){
Group=FormGroupOfFaults(FaultList);
ThreadsArray[Number]->Data=(Vector,SVI,Group);
ThreadsArray[Number]->Resume();
}
for(int Number=0;Number<ThreadsNumber;Number++)
{
ThreadsArray[Number]->W aitFor();
}
} // end loop on faults
SVINEXT=SimulateGoodCircuit->W aitF or();
SVI=SVINEXT;
} // end loop on test vectors
DeleteSimulationThreads();
} // end of simulation

FaultList, Test, Length,

Proposed scheme of the construction of fault
simulation algorithm does not refer to any of the
schemes mentioned in introduction. Most closely it
coincides with the fault list partitioning scheme.
However, in this scheme there is no pre-partition of
fault list and no binding of sub-lists with the nodes of
system. Instead, faults’ grouping for different nodes
occurs dynamically for each input vector in the test
sequence.

3. The experimental results

Experiments were performed only with five big
benchmarks from the catalog ISCAS-89 on the parallel
system with the following characteristics: two Intel(R)
Xeon CPU X5650 with frequency 2.67Ghz (each of 6
cores); the technology HyperThreading is off; the RAM

94

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMIT'YOTEPHI CUCTEMM, 2014, Ne 5 (69)

16 GB; operating system MS Windows Server 2008 R2.
Two series of experiments were carried out, which must
answer the following questions. 1) It is known that the
memory subsystem in parallel computing systems is
bottleneck. Is it necessary to use separate or common
circuits’ description table for each simulation thread? 2)
How well the proposed algorithm is scalable?

Series 1. Two versions of the algorithm were
implemented. In the first modification one copy of
tables with circuit’s descriptions is used. In the second
modification a number of copies of the tables were
created equal to the threads number. The experiments
show that no matter which kind of circuit’s description
was used: common or separate tables. Therefore, further
development of the algorithm was carried out for the
modification with common tables.

Series 2 is studying the scalability of the parallel
fault simulation algorithm of digital circuits
FaultSimulation3 depending on the threads number. It
was varied from 1 to 18. To accurately determine the
extremum in the graph of acceleration maximum
number of threads was chosen greater than the cores
number in the system. Graphs of the acceleration
depending on the number of concurrent processing
threads on average, in the best and worst cases are
shown in Figure 3. Analysis of the numerical values
shows that the greatest acceleration for all circuits is
achieved when running in parallel 11 threads of
simulation of fault groups. In this case the actual
number of parallel threads is 12, because 1 fault-free
simulation thread must be added. This count
corresponds to the number of cores in the system.

Based on the simulation time the acceleration,
utilization of cores and proportion of sequential code are
calculated [18], which reported in Table 1.

speed up, times
o 4N W A& O O N ©

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

number of parallel faut simulation threads

‘ ——an average —®—— at best —&— at worst ‘

Fig. 3. The speed-up of the algorithm depending
on the number of parallel fault simulation threads

Note that for all circuits achieved a relatively high
acceleration: in the worst case it is equal to 4.61 times.
The range of this parameter is relatively small: from
4.61 to 6.72. This is qualitatively differs from another
results. For example, in [11] acceleration is in interval
from 1.10 to 7.31 for eight-processor system iPSC/860.
This indicates the advantage of the proposed algorithm.

Conclusion

In this paper a new parallel algorithm of fault
simulation of VLSI was proposed. Main idea consists in
parallelizing of simulation of fault groups for each input
vector. In addition, it is organized a thread of fault-free
simulation of circuit for the next input vector. This
allows eliminate the scheme in which the behavior of
fault-free circuit is performed before simulation of
groups of faults for current input vector, when only one
core is loaded and all the other are idle.

The reported numerical results of computer
experiments show good scalability of the parallel
version of the algorithm.

Table 1
Characteristics of the parallel version of the algorithm
Circuit
Number
of thrends $9234 $35932 s38417 $38584 538584 1

«1» «2» «3I» «1» «2» «3I» «1» «2» «3I» «1» «2» «3I» «1» «2» «3I»

1 98 0.08 1 619 0.08 1 2441 0.08 1 2792 | 0.08 1 1512 | 0.08 1
2 1.78 0.15 0.52 1.96 0.16 0.47 2.04 0.17 0.44 1.92 0.16 0.48 1.38 0.11 0.70
3 2.51 0.21 0.34 2.88 0.24 0.29 2.90 0.24 0.29 2.79 0.23 0.30 2.00 0.17 0.45
4 3.16 0.26 0.25 3.73 0.31 0.20 3.86 0.32 0.19 3.66 0.31 0.21 2.62 0.22 0.32
5 3.38 0.28 0.23 4.30 0.36 0.16 4.40 0.37 0.16 4.20 0.35 0.17 3.05 0.25 0.27
6 3.06 0.26 0.27 3.92 0.33 0.19 3.89 0.32 0.19 3.81 0.32 0.20 2.70 0.23 0.31
7 3.38 0.28 0.24 4.30 0.36 0.16 4.50 0.38 0.15 4.28 0.36 0.16 3.12 0.26 0.26
8 3.77 0.31 0.20 4.84 0.40 0.13 4.83 0.40 0.13 4.84 0.40 0.13 3.60 0.30 0.21
9 4.08 0.34 0.18 5.29 0.44 0.12 5.35 0.45 0.11 5.25 0.44 0.12 3.99 0.33 0.18
10 4.26 0.36 0.17 5.68 0.47 0.10 5.77 0.48 0.10 5.67 0.47 0.10 4.26 0.35 0.17
11 4.67 0.39 0.14 6.19 0.52 0.08 6.72 0.56 0.07 6.24 0.52 0.08 4.61 0.38 0.15
12 4.45 0.37 0.15 5.07 0.42 0.12 5.42 0.45 0.11 4.99 0.41 0.13 3.34 0.28 0.24
13 3.92 0.33 0.19 4.95 0.41 0.13 5.31 0.44 0.11 5.09 0.42 0.12 3.54 0.30 0.22
14 3.92 0.33 0.19 4.73 0.39 0.14 5.55 0.46 0.11 5.19 0.43 0.12 3.61 0.30 0.21
15 3.92 0.33 0.19 4.45 0.37 0.15 5.05 0.42 0.12 5.09 0.42 0.16 3.48 0.29 0.22
16 3.06 0.26 0.27 4.33 0.36 0.16 4.69 0.42 0.14 4.40 0.37 0.16 3.38 0.28 0.23
17 2.97 0.25 0.28 427 0.36 0.16 4.71 0.39 0.14 4.38 0.36 0.16 3.36 0.28 0.23
18 2.80 0.23 0.30 4.21 0.35 0.17 4.66 0.39 0.14 4.42 0.37 0.16 3.35 0.28 0.23

«1» - speed up of the algorithm (row 1 shows the time in seconds), «2» - efficiency of use of cores,

«3» - proportion of serial code

Hiacnocmysannn ma HaoiiiHiCMb KOMI IOMEPHUX cUCHEM 95

References

1 VLSI Logic and Fault Simulation on General-
Purpose Parallel Computers [Text]/ R. B. Mueller-
Thuns, D. G. Saab, R. F. Damiano, J. A. Abraham //
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. — 1993. — Ne 12 (3).
— P. 446-460.

2 Han, J. A Parallel Implementation of Fault
Simulation on a Cluster of Workstations [Text]/ J. Han,
S. Y. Lee // Proc. IEEE International Symposium
Parallel and Distributed Processing IPDPS. — 2008.
—-P. 1-8

3 Subbaraj, P. Circuit Partitioning Problem
using Graphical Processing Units [Text] / P. Subbaraj,
P. Sivakumar, S. Nandhanam // Journal of Computer
Science. —2012. —Ne 8 (5). — P. 705-710.

4 Ravikumar, C. P. Distributed Fault Simulation
Algorithms on Parallel Virtual Machine [Text] /
C. P. Ravikumar, V. Jain, A. Dod // VLSI Design.
—2001. — Volume 12, Issue 1. — P. 81-99.

5 Ivask, E. Distributed fault simulation with
collaborative load balancing for VLSI circuits [Text]/
E. Ivask, S. Devadze, R. Ubar // Scalable Computing:
Practice and Experience. — 2011. — Vol. 12, Ne I
—P. 153-163.

6 Parker, S. A parallel algorithm for fault
simulation based on PROOFS [Text]/ S. Parker,
P. Banerjee, J. Patel // Proc. IEEE Int. Conf. Computer
Design. — 1995. — P. 616-621.

7 Ivanov, D. Distributed fault simulation of
digital circuits [Text] / D. Ivanov, Yu. Skobtsov,
EL Khatib // Proceedings of the Donetsk National
Technical University. Series: "Computers and
Automation. — 2006. — Vol. 107. — P. 128-134.

8 Ivanov, D.E. Parallel fault simulation on
multi-core processors [Text] / D. E. Ivanov // Electronic
and computer systems. — 2009. — Vol. 6(40).
—P. 109-112.

9 Kochte, M. A. Efficient Fault Simulation on
Many-Core Processors [Text] / M. A. Kochte,
M. Schaal, H.-J. Wunderlich, C.G. Zoellin //
Proceedings of the 47th Design Automation Conference
ACM. — NY, USA. — 2010. — P. 380-385.

10 Ivanov, D. E. Parallel fault simulation for
sequential circuits [Text]/ D. E. Ivanov, Yu. A. Skobtsov
// Artificial intelligence. — 1999. —No 1. — P. 44-50.

11 Gergel, V. Introduction to Parallel
Programming for multiprocessor systems. Textbook
[Text]/ V. Gergel, R. Strongin. — Nizhny Novgorod :
Press of NNSU, 2003. — 184 p.

Iocmynuna 6 pedaxyuro 20.02.2014, paccmompena na peoxonneeuu 24.03.2014

PeuenseHnT: n-p TexH. HayK, mpod., 3aB. kadenpsl ACY F). A Cko0O1oB, JloHeIkuii HAITMOHAIBHBIA TEXHUYCCKHIH
YHUBEpCUTET, JloHenk, YkpauHa.

HOBBIN MAPAJIJIEJIBHBINA AJITOPUTM MOJIEJIUPOBAHUSI CBUC C HEUCIIPABHOCTSIMHU
JJISI MHOT OSITEPHBIX PABOYUX CTAHIIUM
/. E. Heanoe

B cratee npemiaraercst HOBbIM anroputMm MozaenupoBaHusi CBUC ¢ HeucrnpaBHOCTAMU ISl MHOTOSJIEPHBIX
pabounx craHmuii ¢ oOmeld mnamsThio. [l TOBBIIEHUS OBICTPOACUCTBHS HCIOIB3YETCS BYXYpPOBHEBAs
nmapauienuzanys. Bo mepBhIX, 0a3oBas cxXeMa aJIropurMa OCHOBaHA Ha OJHOBPEMEHHOM MHOTOIIOTOYHOM
MOJICIIUPOBAHUM TPYII HEUCIPABHOCTEH IJI Ka)KJIOTO BXOJHOI'0 Habopa. Bo BTOpBIX, HEMCIPABHOCTH B KaXKIOH
TpyIIe MOASTUPYIOTCS MapalIeNbHO 110 pa3psiiaM MallMHHOTO clioBa. Takke aaropuTM UCHONb3YeT JMHAMUYECKOe
(hopMHUpOBaHUE TPYIIN HEUCTpaBHOCTEeH. [IpUBEICHBI PE3yabTATH MAIIUHHBIX 3KCIICPUMEHTOB JJI CXEM KaTajora
ISCAS-89, npoBenénnsie Ha 12-s1epHoi pabouei cTaHIHy.

KiioueBbie cioBa: CBUC, wmonmenupoBanue c
MHOTOIIOTOYHOE MPOrpaMMHUPOBAHUE.

HCUCIIPAaBHOCTAMU, napaiyiCJIbHbIC BBIYMCIICHUA,

HOBUM MAPAJIEJIbHUM AJITOPUTM MOJIEJIFOBAHHS HBIC 3 OINKO/KEHHSAMUA
JJIS1 BATATOSIIEPHUX POBOYIX CTAHIIA
/. €. Ieanos

B crarti mpomnonyeThcsl HOBHE anmroputMm MoxenmtoBanHs HBIC i3 momkomkeHHAMH A1 OaraTosiiepHUX
pobouUnX CTaHIii i3 3araJibHOIO Iam’sATTIO. JIJIsl MiJBUINEHHS LIBHIKOAII aJTOPUTMY BHKOPHUCTaHO BOPIBHEBY
napanenizarmito. [To mepire, 6a30Ba cxeMa alroputTMy 0a3yeThcs Ha OMHOYACHOMY 0araTOOTOYHOMY MOJCTIOBAHHI
Tpyn TOIIKO/DKEHb JUIS KOXKHOTO BXigHOro BekTopa. Ilo apyre, MOIIKO/KEHHS y KOXHIM Tpymi MOIEIIOIOTHCS
MapajieNbHO 33 POo3psiaMH MAalIMHHOTO CJIOBa. TaKoX alropuTM BHKOPUCTOBYE AWHAMIiYHE (OPMYBaHHS TIpyI
MIOIIKO/DKEeHb. HaBeneHo pe3ynbTaTi MallMHHUX eKCIIEpUMEHTIB Ha cxeMmax i3 katanory ISCAS-89, mo npoBezneni
Ha 12-spepHiit poOoyiii craHii.

Kiarouori caosa: HBIC, mopenroBaHHS 3 IONIKODKEHHSAMH, MapaieibHi OOYHCIICHHS, 0araTornoTOYHE
MIpOrpaMyBaHHSI.

HNBanoB JImutpuii EBrenbeBu4 — J-p TeXH. HayK, JOIEHT, CT. Hayd. COTP. OTJeNa TEOPUU YIPABJISIOMINUX
cucreM MHctuTyTa npuKinagHod Marematiku W Mexanuku HAH Vkpawnel, [loHenk, VYkpauHa, e-mail:
ivanov(@iamm.ac.donetsk.ua.

