
Комп’ютерні системи та інформаційні технології 73

UDC 004.9:658.14.012.2, 004.051

A. Y. KRYVTSOV, S. V. HONTOVYI

Donbass state technical university, Ukraine

APPROACH TO IMPROVE ENERGY EFFICIENCY OF INFORMATION SYSTEMS

This article covers the problems of improving the energy efficiency of information systems. Two main direc-
tions - hardware and software - have been identified. The existing methods to reduce energy consumption at
the software level have been analyzed. A new holistic approach to the development of energy efficient software
that passes through its entire life cycle has been proposed. This approach consists of the five levels, including
requirements, design, building, compile and testing. For each level algorithms, methods and techniques to im-
prove the energy efficiency have been proposed.

Key words: energy efficiency, software life cycle, green compiler, C-state, green software.

Introduction

The problem of energy efficiency is one of the

most important in the world today. The increasing
hardware performance led to a powerful surge of energy
consumption in workstations and servers. Especially it
has affected the large data centers, which contain a lot
of computer facilities and networking equipment.

Additionally, the problem of high energy con-
sumption touched the scope of mobile information tech-
nology. The increase of hardware energy consumption
was more rapid than the development of electricity stor-
age technologies, in particular increasing the capacity of
the batteries. This fact is expressed in a substantial re-
duction in battery life of mobile devices at the expan-
sion of their functionality.

Thus the problem of increasing the energy effi-
ciency of information technology is due not only to the
necessity to save energy, but also with the need to in-
crease the battery life of mobile devices.

The energy consumption of any device depends
not only on the hardware, but also on its software [1].
Therefore, methods to improve the energy efficiency are
created both for the hardware and the software.

The methods relating to the software in general op-
timize the upper levels of the system design hierarchy,
thus eventually giving more substantial results than the
hardware methods.

Problem statement

All information systems can be structured into

three layers - hardware, operating system (OS), and ap-
plication program. Even though the two software layers
do not consume the power directly, they control the be-
havior of the hardware and have strong impact on the
energy consumption of the hardware layer. However,
most research has focused on the energy optimization of

the hardware itself [2].
There are several other reasons to focus on the

software:
 some progress has been made on the level of

hardware, the network, and the data centre;
 focus on reducing energy loss in the power

supply chain;
 hardware consumes energy on behalf of appli-

cation of the software;
 the software design and construction are cur-

rently mostly energy-oblivious;
 focus on reducing the energy demand at the

source.
The Software Improvement Group research shows

that only 25% of the algorithms in the software provide
optimal computational efficiency. The same studies
show that only 65% of the technology features provide
the solutions to the tasks, the remaining 35% provide
the optional functionality [3]. On figure 1 we can see
the power loss chain.

Thus we see that the hidden potential of the soft-
ware in this area is huge. The given researches are only
some of the many confirmations of weightiness of the
software in the problem of the energy efficiency of the
information technology.

The problems of energy efficient software have
been widely discussed by home and foreign scholars. In
some areas they achieve very significant results [2, 4-7],
for example in the work [4] a series of recommenda-
tions for the development of green software is partly
formulated. However, all these studies are somewhat
fragmented.

Thus, currently the green optimization methods for
the software are in the process of development. There-
fore the main purpose of the article is to investigate the
existing methods of reducing energy consumption of the
software and to improve the energy efficiency of the

 A. Y. Kryvtsov, S. V. Hontovyi

ISSN 1814-4225. РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2014, № 1 (65) 74

Figure 1. Power loss chain

information systems through the formation of a holistic
approach to the creation of green software.

Main part

So, we want to offer a holistic approach to the de-
velopment of green software that passes through its
whole life cycle. Consider the life cycle of green soft-
ware on figure 2. It consists of five stages.

At the first phase of the cycle we are developing
the software requirements. They include the impact as-
sessment requirements for the energy efficiency and
eliminate frivolous requirements. The best tool for this
is the "green" gap analysis [5].

A gap is sometimes called "the space between
where we are and where we want to be."A gap analysis
helps bridge that highlights which requirements are be-
ing met and which are not.

The next stage is the design stage. At this stage we
assess the energy efficiency of the design decisions and
consider a more profitable alternative.

An effective tool for the assessment of the soft-
ware design is energy metrics. Their use makes it possi-
ble to predict the energy consumption in part at the de-
sign stage. In addition it is necessary to consider the
software design methods. Article [6] shows the effec-
tiveness of Agile methods at the design stage.

The building stage is the most complex and time-
consuming.

It consists of four directions: computational effi-
ciency, data efficiency, context awareness and idle effi-
ciency.

The main idea of the computational efficiency is to
complete the task quickly as possible. The sooner we
complete the workload the faster we can return to the
idle, and the more energy we will save. To obtain the
necessary level of the computing performance it is nec-
essary to use the software techniques such as multi-
threading, vectorization, and of course efficient algo-
rithms.

The algorithms and data structures present quite an
extensive area of research in the field of energy effi-
ciency. The selection of appropriate algorithms and data
structures can lead to a huge difference in performance.
And for each set of tasks such algorithms are unique.
The use of algorithms largely depends on a thorough
study of the problem, detailed examination of the appli-
cation architecture. This choice depends on just increase
productivity and decrease power.

Another approach used to achieve more computa-
tional efficiency is vectorizing the code. Instead of a
scalar C-code, we use the advanced instructions such as
SIMD (Single Instruction Multiple-Data) for implemen-
tation of instruction-level data parallelism. If the solu-
tion can be vectorized, we obtain the corresponding
gains in productivity.
Multithreading will provide a better application per-
formance and energy efficiency, respectively, as the
work of a single thread takes much more time and en-
ergy than any of the multi-threaded runs.

Data efficiency reduces energy costs by minimiz-
ing data movement. Data efficiency can be achieved by
using [7]:

Figure 2. Green software life cycle

Requirements'
development

Design Building Compile Testing

Комп’ютерні системи та інформаційні технології 75

 software algorithms that minimize data move-
ment;

 memory hierarchies that keep data close to
processing elements;

 application software that efficiently uses cache
memories.

The goal of context awareness is to create applica-
tions that can react or adapt to changes in the environ-
ment. The software can take advantage of the context-
awareness to save energy for example by using power
policies or AC/DC monitoring.

Power Policies provide a timely opportunity to
change the power consumption depending on the soft-
ware behavior, or change the software behavior, de-
pending on the requirements for power consumption.

Similarly, monitoring of the AC/DC gives benefits
in flexible adaptation of the software to the operating
mode of the battery, thereby increasing the current bat-
tery life.

Another development of context-aware is monitor-
ing the status of other components of the device, such as
network cards, WI-FI, Bluetooth etc., and use this in-
formation for efficient software and save energy.

And the last direction - Idle efficiency It is based
on the use of deep C-State residency (figure 3), timer
resolutions and background activity.

Figure 3. C-states

The power consumed when the system is in ACPI

S0 state (S3- sleep or S4-Hibernate) with a running
software, but with not active workloads, is called the
Idle power. The background activity should be minimal
in this state. The main objective is to reduce the idle
floor by improving the software idle efficiency that will
greatly increase the battery runtime. It will also give
some benefits for various power scenarios even with the
most demanding workloads.

To keep the platform in deep C-state as long as
possible is one of the key requirements for idle effi-
ciency. While the platform is in idle state, the level of
deep C-state should compose at least 90%. The software
should try to make the number of C-State transitions as
low as possible. Frequent C-State transitions from deep
to active state are not energy efficient. So to allow high-
er C-state residencies the activity should be coalesced
where it is available.

This sort of frequent C-state transition can be im-
plemented in two ways [8]:

 the energy requirements to enter/exit C-state
are non-trivial. When the C0 (active) duration is very
short, the latency to transition in and out of the C-states
is appreciable and may result in net energy loss;

 the hardware policy may demote the C-state to
a lower state based on heuristics. Even if the frequent C-
state transition behavior occurs only for 2-3msec in a
15.6msec window, the hardware polices may either de-
mote the core C-state or re-open the package level cache
and this will impact the power for the remaining ~12-
13msec of the idle period.

Reducing the C-state transitions in the software
does not need division of the tasks among the processes
/ threads, if the parallel execution can occur. If there is a
need to divide the task between the processes, the time
schedule is constructed so that the amount of C-state
transition may be reduced. The same can be mentioned
in the connection with the increasing idle period resi-
dency, the software should coalesce the activity when-
ever possible.

Another approach to the energy efficiency is to
change the system timer. On figure 4 we can see how
the power consumption changes when the system timer
is changed.

Figure 4. Power Impact of increasing Periodic

Timer resolution

If the software must use a high-resolution periodic
timer, one should use the periodic timer only while the
required functionality is active. The same consider dis-

ISSN 1814-4225. РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2014, № 1 (65) 76

abling use of the periodic timer and associated function-
ality when the system is running on battery power or
when a Power Saver power plan is active.

Frequent changes of the background activity in-
creases the power consumption. This loads both the
processor and the chipset power. The system will also
prevent idling to sleep by using long-term rare events.
There are some ways to minimize frequent idle activ-
ity [8]:

 elimination of TCP DPC timer on every system
timer interruption;

 reduction in frequency of USB driver mainte-
nance timers;

 intelligent timer tick distribution;
 timer coalescing.
Compiling is the next stage of software life cycle.

It includes two directions - to compile interpreted lan-
guages and using green compiler.

Most of the developed software using program-
ming languages that are translated into machine code by
interpreter at run-time, cannot be compiled into efficient
machine code before deployment. Such interpreted code
accordingly requires more processing power, therefore,
requires more energy to do the same job. However, for
some of these interpreted languages, such as PHP, com-
pilation is still possible. If small changes are included to
the code, it may be suitable for compilation, then it can
be started more energy efficiently [9].

Compiler is a power source to optimize energy on
the software level. The most known green compiler are:

 encc an energy aware C compiler;
 Coffee compiler for C language is combination

of software and customized hardware to achieve energy
conservation at compile time;

 mrcc is a distributed open source C compiler
using Map Reduce on Hadoop platform;

 DGC is a hardware independent compiler that
does not require any special hardware.

Energy aware compilers analyze software pro-
grams at run time and reshape the software source code
by applying several green aspects during the code trans-
formation. The following green techniques that can
make the software more energy aware [10]:

 cache skipping;
 use of register operands;
 instruction clustering;
 instruction re-ordering and memory addressing;
 use of energy cost database;
 loop optimization;
 dynamic power management;
 resource hibernation;
 cloud aware task mapping;
 eliminate recursion.
And the last stage is testing. During this stage we

monitor the energy consumption and provide feedback
to the development. To determine the energy efficiency
of the resulting software, we should first define a set of
metrics for analysis. The paper [11] proposed the set of
metrics characterizing energy consumption. To deter-
mine the metric data, we can use the existing software
tools. We will review a few of them, because at the
moment there are quite a lot of such software.

Intel Power Checker - perhaps the easiest and fast-
est way to evaluate the energy efficiency of the pro-
gram [12].

Intel Battery Life analyzer - more complicated, but
at the same time more informative tool used to track
various hardware and software activities that affect the
battery life [13].

Microsoft Joulemeter - also quite interesting tool
that determines the power consumption of various com-
ponents of the platform [14]. It can work in conjunction
with a power meter WattsUp [15].

Summary

In the given paper the problem of improving the

energy efficiency of the information systems has been
considered. Despite the progress obtained in the field of
hardware, the energy consumption of information sys-
tems continues to grow. To achieve the required level of
energy savings one must look for new approaches. One
of these approaches is the creation of a green software.

In the given work the existing methods of reducing
the energy consumption by optimizing the software
have been analyzed. A holistic approach to creating the
energy efficiency software passing through the entire
life cycle has been formulated. At each stage modern
green methods, from the requirement development with
green gap analysis to the use of the existing software
tools for determining the energy efficiency of the final
product, are used.

The proposed approach could be the basis for a
new model of green software.

The software optimization techniques used in the
approach affect the upper levels of the system design
hierarchy. Therefore it can be concluded that the use of
this approach will help achieve the desired level of en-
ergy efficiency of information systems.

Literature

1. Power estimation of embedded systems: A

hardware/software codesign approach [Text] / W. For-
naciari, P. Gubian, D. Sciuto, C. Silvano // IEEE Trans.
on VLSI Systems. - 1998. - Vol. 6/2. - P. 266-275.

2. Chung, E. Software Approaches for Energy-
efficient System Design: Focused on Dynamic Power
Management and Program Specialization [Text] /

Комп’ютерні системи та інформаційні технології 77

E. Chung. - VDM Publishing, 2009. - 128 p.
3. Visser, J. Green Software [Electronic re-

source] / J. Visser. - Access mode: http://staff.science.
uva.nl/~delaat/news/2012-03-23/slides_visser.pdf.
– 25.11.2013.

4. Сидоров, Н. А. Зеленые информационные
технологии и системы [Текст] / Н. А. Сидоров //
Інженерія програмного забезпечення. – 2011. – № 3.
– С. 5-12.

5. McDonald, M. F. Integrating green into an ex-
isting management system: Performing a “green” gap
analysis [Text] / M. F. McDonald // Annual Quality
Congress. - 2002. - Vol. 56, № 1. - P. 451-458.

6. Green software engineering with agile methods
[Text] / М. Dick, J. Drangmeister, E. Kern, S. Naumann
// 2nd International Workshop on Green and Sustain-
able Software (GREENS 2013), May 20, 2013 San
Francisco, CA, USA. – 2013. – P. 78–85.

7. Steigerwald, B. Developing Green Software
[Electronic resource] / B. Steigerwald, A. Agrawal. -
Access mode: http://software.intel.com/sites/default/
files/m/0/6/7/8/1/37258-developing_green_software.pdf.
– 25.11.2013.

8. Murugesan, S. Harnessing Green IT: Princi-
ples and Practices [Text] / S. Murugesan, G. R. Gan-
gadharan. - Wiley, 2012. - 432 p.

9. Bicknell, D. 8 ways to make your software ap-

plications more energy efficient [Electronic resource] /
D. Bicknell. - Access mode: http://www.
computerweekly.com/blogs/greentech/. – 25.11.2013.

10. Software level green computing for large scale
systems [Text] / F. Fakhar, B. Javed, R. Rasool,
O. Malik, K. Zulfiqar// Journal of Cloud Computing:
Advances, Systems and Applications. – 2012. – Vol. 1,
№ 4. – P. 1-17.

11. Юрченко, А. В. Проектирование и анализ
программного обеспечения с низким энергопотреб-
лением с помощью программных метрик энергоэф-
фективности [Текст] / А. В. Юрченко // Инженер-
ное образование. - Т. 1. - 2013. - С. 215-234.

12. Intel Power Checker [Electronic resource].
– Access mode: http://software.intel.com/en-us/blogs/
2011/06/27/intel-power-checker. – 25.11.2013.

13. Intel Battery Life analyzer [Electronic re-
source]. – Access mode: https://downloadcenter.intel.
com/Detail_Desc.aspx?agr=Y&DwnldID=19351.
– 25.11.2013.

14. Microsoft Joulemeter [Electronic resource].
– Access mode: http://research.microsoft.com/en-us
/projects/joulemeter/. – 25.11.2013.

15. WattsUp [Electronic resource]. – Access
mode: https://www.wattsupmeters.com/secure/
index.php. – 25.11.2013.

Поступила в редакцию 25.11.2013, рассмотрена на редколлегии 12.02.2014

Рецензент: д-р техн. наук, професор, завідувач кафедри комп’ютерних систем та мереж В. С. Харченко,
Національний аерокосмічний університет ім. М. Є. Жуковського «ХАІ», м. Харків, Україна.

ПОДХОД К ПОВЫШЕНИЮ ЭНЕРГОЭФФЕКТИВНОСТИ ИНФОРМАЦИОННЫХ СИСТЕМ

А. Ю. Кривцов, С. В. Гонтовой
В данной статье освещен вопрос повышения энергоэффективности информационных систем. Опреде-

лены два основных направления - аппаратное и программное. Проанализированы существующие методы
уменьшения энергопотребления на программном уровне. Предложен новый целостный подход к разработке
энергоэффективного программного обеспечения, проходящий через весь его жизненный цикл. Предложен-
ный подход состоит из пяти этапов, включающих требования, проектирование, построение, компилирование
и тестирование. Для каждого этапа предложены алгоритмы, способы и методы повышения энергоэффектив-
ности программного обеспечения.

Ключевые слова: энергоэффективность, жизненный цикл программного обеспечения, зеленый ком-
пилятор, С-состояние.

ПІДХІД К ПІДВИЩЕННЮ ЕНЕРГОЕФЕКТИВНОСТІ ІНФОРМАЦІЙНИХ СИСТЕМ

А. Ю. Кривцов, С. В. Гонтовий
У даній статті висвітлено питання підвищення енергоефективності інформаційних систем. Визначено

два основні напрями - апаратний і програмний. Проаналізовано існуючі методи зменшення енергоспожи-
вання на програмному рівні. Запропоновано новий цілісний підхід до розробки енергоефективного програм-
ного забезпечення, що проходить через весь його життєвий цикл. Запропонований підхід складається з п'яти
етапів, що включають вимоги, проектування, побудову, компілювання і тестування. Для кожного етапу за-
пропоновано алгоритми, способи і методи підвищення енергоефективності програмного забезпечення.

Ключові слова: енергоефективність, життєвий цикл програмного забезпечення, зелений компілятор,
С-стан.

Кривцов Андрей Юрьевич – аспирант кафедры "Специализированные компьютерные системы",

Донбасский государственный технический университет, г. Алчевск, Украина, e-mail: andrewdgtu@mail.ru.
Гонтовой Сергей Викторович – канд. техн. наук, заведующий кафедрой "Специализированные ком-

пьютерные системы", Донбасский государственный технический университет, г. Алчевск, Украина, e-mail:
gsv@dmmi.edu.ua.

