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ADAPTABLE LOGICAL FPGA-ELEMENTS

The paper proposes the restoration of FPGA (field-programmable gate array) logic for critical applications by
adapting to failures of logical elements. The principle of adaptation FPGA is to switch to residual features
LUT (Look Up Table), with the possibility of hardware and software to be used in case of hardware failure
after massive failures. In the case of failure of hardware (logic elements) after massive failures, for example, in
catastrophic situations, it is also possible sofiware-hardware utilization failed elements. In addition, it is useful
to explore the possibility of using partial functionality for diagnosing FPGA.
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Introduction

Modern FPGA, containing several billion of
transistors [1], provide wide opportunities for logic
reconfiguration, but do not use them to adapt to failures.
Thus, one of the leading experts in FPGA area Yervant
Zorian said: "Now the main problem of system on a
chip repair is development of embedded technologies
and methods of the logic repair that occupies no more
than 10% of chip area" [2].

To solve this problem we may provide retaining
of basic in the terms of Post theorem [3] logic
functions that allow to calculate the input for a longer
time at a given pattern of failures, that is - the
reservation bases elements, the use of elements with
an excess basis [4, 5].

In case of failures it is possible to calculate the
initial logic functions — all or only critical parts of the
residual bases of all or a subset of items with the
possible use of software and hardware implementation
[6]. With that the scheme is adapted to the conditions of
a fault with the appropriate reconfiguration.

Contemporary programmable logic — FPGA (field-
programmable gate array) provide wide opportunities of
logic reconfiguration, but do not use them to adapt to
the failures and logic recovery [13].

Let us consider the proposed principle and
characteristics of recovery logic FPGA for critical
applications by adapting to failures of logic elements.

1. The principle of adaptation to failure
of 8-1 multiplexer

Let us consider the gate FPGA - multiplexer with
three address inputs xi, x;, x3 — 8 channels a, b, ¢, d, e, f,
g, h, (8-1), consisting of seven elementary multiplexers
2-1 (Fig. 1).

On the assumption that there is not a single failure
data inputs a, b, ¢, d, e, f, g, h, or not more than one
failure in seven elementary multiplexers 2-1 propose the
switch to the "half" of the scheme.

Let there be a failure in the element, which is
connected to the input channels ¢, d. Then it is
necessary to do after finding out the transition to the
second half of the scheme — channels e, f, g, #. And the
failures may occur on the input — but not of the last
element.

When a fault is detected, for example, by external
means, it is necessary to perform two tests — on the one
and the other half. But this is allowed only in case of
failure of elements and data inputs (one failure).

If there is half the items (allow refusal on the
inputs of all the elements and even by choice but out on
the exit of the last element), for example, the older
variable is equal to zero:

z=0 xz(E;1 vd_xl)vgz(ggl vb_xl)v

= = =_ = = == (1)
v0 x2(gx1vhxi)vx2(exivixy)
Then we get:
z=0 ;2(:;1Vd=x1)v;2(z;1vb=x1) 2)
or
z) = ;2 (:;1 vd=xl)v;2 (221 VE;]) 3)

The second half of channels will be implemented
similarly:

Zy = xz(g;1 vhxl)vgz(egl v fx1) 4)

That is, to restore one eight-channel multiplexer of

the three "half" of the four channels is necessary, so that

the third multiplexer plug on the leading variable either

one or the other half, that is operated in a two-channel
multiplexer.
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Fig. 1. The 8-1 multiplexer (eight channels), consisting of seven elementary multiplexers 2-1

Therefore, to set up the third component is
necessary to:

73 =X3 (21(_)vi(_))v;3 (226\/15), 5)
which corresponds to the two-channel multiplexer
functions

Z3 =Z;X3V ZpX3. (6)
If there is a failure (one-time constant) to the

address inputs — everything is much more complicated.
Table 1 shows how to rewire channels to counter
such denial. Accordingly, the process of failure

detecting is getting slow.
Table 1
Required reconnect channels with constant
denials eight-channel multiplexer address inputs

Xy | X1 | X9 | No Failure

Fault) 8 | xd | x| xd | x6 | x
0]0]0] O 0[4]0]2]0]1
010]1 1 1 | 5|1 ]3]0]1
0j170] 2 216 1012|123
0111 3 3711131213
1/0]0)| 4 0|4 ]4]64]5
1101 5 1 | 5|51 7145
110 6 2 16 4][6 66
1111 7 31715171616

"Half" of the logical elements can be used alone,
but to restore a full multiplexer requires three "half" of
the multiplexer.

2. Features of FPGA logic elements

Currently, FPGA contain configurable logic
blocks (CLB) [1, 7], consisting of the logic elements,
programmable local and global matrix connections
MC - Fig. 2.

Logic gate FPGA - is a super redundant basis, and
it is constructed as a read-only memory ROM (LUT -
Look Up Table), which is a variable for the four
multiplexer 16-1 (tree multiplexers), input data is set up
so-called configurable memory cells [1] — Fig. 3.

In Fig. 3 inputs — Sy, S}, S,, S5, the element is set to
implement the sum modulo two Sy®S;®5®S;. On a
specific set of variables is realized the only way from
input to output, for example, from input 14: S3S2S1
(not Sp) [1].

Elementary multiplexers 2-1 is implemented as a
switch (this is also a multiplexer) for example, on the
basis of two chains of two transmit MOS transistors
[1] — Fig. 4. Memory configuration (configuration data
logic elements and matrices compounds) - this is the
configurational cells, each of them contains six
transistors [1, 8].
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Fig. 3. Conversion table (Look-up Table) of FPGA
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Interconnect Matrix

0

Fig. 4. The switch signals from the local interconnect to the input CLB:
a — multiplexers’ tree, b — implementation of the multiplexer transmitting MOSFETs

3. Features of adaptation
to failures of transistors
and inputs of LUT FPGA

Given the great redundancy logic elements on the
basis of the conversion tables LUT, it is possible to
restore the faulty conversion table. It is obvious that in
this case there is a loss of functionality, but even LUT
with limited functionality can be used for the synthesis
of a large number of Boolean functions.

Let us consider a simple model of single constant
failures. And we shall consider themselves as failures
based transistors, which are built LUT, and the failure
of address inputs. Input failure provides that the address
input LUT has fixed logic level "0" and "1." A constant
refusal to "1" in the CMOS transistor circuit includes
sample source-drain or latching gate. A constant refusal
to "0" CMOS transistor — is an open circuit source-drain
or open the shutter.

Consider the possible cases of failure of the
transistor.Suppose there was a single constant denial of
transistor VT29 (Fig. 5).

If you set a single constant refusal to "0", in this
case, the upper part of the network goes down, because

the information from the SRAM cells that are connected
to transistors VT1-VT8, can not be transferred to the
output. But setting D=0, we can always connect the
bottom of the exit and realize the function of three
variables A, B and C. If you set up once the constant
refusal of "1", the top part of the circuit is always
connected to the output. In this case, setting D=1, turn
off the lower part of the scheme and prevent the
occurrence of faults.

At the top of the chart can also be synthesized
function of three variables A, B, C.

Consider the failures in transistors connected to the
line C. Suppose there was a single constant refusal to
"0" in the transistor VT27. This means that the
information from the SRAM cells that are connected to
the transistors VT9-VT11, will never be passed on to
the input. However, you can set C=0 and for all open
transistors V128 and VT26. Then we can implement the
function of three variables A, B and D. In the event of a
"1" on the transistor VT27, can not turn this thread from
the transistor VT30. But setting C=1, we will close the
transistors VT26 and VT28. Here again we can
implement arbitrary functions of three variables A, B
and D.
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Fig. 5. Modeling failure of transistors in LUT

Consider the failures in transistors, which are
connected to the line B. Let there was a failure to "0" in
the transistor VT19. This means that the transistors and
VTS5 VT6, can never be switched to the input of the
transistor VT26. Filed B=0 we open transistor VT18,
VT20, VT22 and VT24. In this case the cells
1,2,5,6,9,10,13,14 will not be used when using LUT.
However, in the remaining 8 SRAM can build the
function of 3 variables A, C, and D. In the event of a "1"
in the transistor VT19, is served B=1 and also
implement a function of three variables A, C, and D
from the remaining cells and SRAM transistors.

Suppose there was a failure in the transistor of the
first stage, for example, not "0" in the transistor VT7. In
this case, we can work with even the SRAM cell, it
needs to set A=0. In this case, we can construct a
function of the variables B, C and D. In case of refusal
to "1" in the transistor VT7, similarly set A=1 and work
with odd SRAM cells. Here, again, the remaining
elements can be synthesized function of three variables
B, Cand D.

It is obvious that a similar situation will occur
during the failure of the other transistors. Thus, a single
failure in any transistor reduces the functionality of the
item, however, due to the large redundancy is still
possible to build a function of three input variables.

At single constant failures of the inputs LUT
actually enforce the same situation arises that in case of
failure of transistors. That is forcibly turned off one half
of the LUT and a conversion table is converted from the
multiplexer 16 to 1 in 8 to 1 multiplexer. But in this
case it is also possible to synthesize a function of three
variables.

Conclusion

Thus, this article presents an approach for FPGA
logic partial recovery for critical applications by
adapting to failures of logic elements based on the
Look Up Table. The principle and the example of
recovery of the LUT in single constant failures of
transistors and inputs - go to the "half" or, more
precisely, a "partial" functional. Use classical LUT
for 4 variables, however, the same procedure can be
applied to a larger number of LUT inputs. This gives
rise to new opportunities parry multiple failures in a
more complex tree transistors.

In the case of failure of hardware (logic elements)
after massive failures, for example, in catastrophic
situations, it is also possible software-hardware
utilization failed elements.

In the future, should spread this approach, which
could be called "partial firmware functionality” in other
areas — for the implementation of energy-efficient
FPGA.

In addition, it is useful to explore the possibility of
using partial functionality for diagnosing FPGA.
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AJANITAIUA FPGA K OTKA3AM JIOTUKA
C.®. Twopun, A.B. I'pexos, O.A. I'pomos, H.C. Ilonyposckuii

B crarbe mpemaraercs Boccranopnenue joruku FPGA (field-programmable gate array) st KpUTHYECKHX
MIPUMEHEHUH MyTEM aJanTallud K OTKa3aM JIOrWyeckux 3neMeHToB. [IpuHnun amantammu FPGA 3axmtouaercs B
nepexojie Ha ocraroynble QpyHkunoHansHeie Bo3moxxHoctd LUT (Look Up Table), ¢ BO3MOXHOCTBIO IPOrpaMMHO-
anmapaTHOTO MCHOJB30BAHUS MX B CIydae HEIOCTATOYHOCTH alllapaTHBIX CPEACTB IOCIE MAaCCOBBIX OTKA30B, T.€.
ajanTanys NPOBOAUTCS B CIIydya€ HEBO3MOXHOCTU MCIIONB30BaHMA TEXHUYECKUX CPEACTB IIOCIEe OTKa30B
JIOTUYECKUX JJIEMEHTOB, HAalpUMep, MPH YaCTUYHOM OTKa3e amlnapaTHBIX CPEeACTB. Tarke MpeaoKeHHBIH METO.
aJanTalii MOYKHO UCIIOJIb30BaTh IPU YaCTHYHOH (DYyHKIIMOHAILHOCTH CUCTEMBI [UIsl iuarHoctiupoBanus FPGA.

KnarwueBsble ciaoBa: aganTaiys, OTKasbl, MporpaMMupyeMasi oJIb30BaTelieM BEHTHJIbHAS MaTpHna, Taliuia
TIOUCKA, JIOTHYECKUH 37IEMEHT, 0TKa30yCTOMYMBOCTb, IPOrpaMMHO-aIIapaTHasl peaau3anus.

AJANTALIA FPGA 10 BIIMOBMU JIOT'IKA
C.®@. Twpin, A.B. I'pekos, 0.0. I pomos, 1.C. Ilonyposcovkuii

VY crarri npononyerbcsi BimHOBieHHs Joriku FPGA (field-programmable gate array) anst KpUTHYHHX
3aCTOCYBaHb IIUISIXOM aJanTaliii 1o BiAMOB JoriyHux enemenTiB. [Ipunnmn ananranii FPGA nonsrae B nepexosi Ha
3anumkoBi ¢yHkuioHanbHi MoxnuBocti LUT (Look Up Table), 3 MOXIMBEM BHKOPHUCTAHHSM IPOrPaMHO-
armapaTHOro X BHKOPHCTaHHS Yy pa3i HEIOCTAaTHOCTI amapaTHUX 3aco0iB IMicsl MAacOBHX BiIMOB, TOOTO ajamTailis
MPOBOJUTHCS Y pa3i HEMOXKJIMBOCTI BUKOPUCTAHHS TEXHIYHHMX 3acO0IB IICISA BiMOB JIOTIYHHMX €JIEMCHTIB,
HANPUKJIaJd, TPH YacTKOBIM BIOMOBI amapaTHHX 3aco0iB. Takok 3alpONOHOBAaHUA METON ajanTallii MOXKHa
BHUKOPHCTOBYBATH NP YaCTKOBIN (hYHKIIIOHAJIBHOCTI CUCTEMH s JiarHocTyBaHHs FPGA.

KmiouoBi ciioBa: ajanraiis, BiIMOBH, ITporpaMOBaHa KOPHCTYBaueM BEHTWJIbHA MAaTpHIS, TaOJIUIs TOLIYKY,
JIOTIYHUH €JIEMEHT, BiIMOBOCTIHKICTh, MPOrpaMHO-anapaTHa peaizallis.
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